1
|
Wang Z, Han W, Fu B, Kang H, Cheng P, Guan J, Zheng Y, Shi R, Xu J, Bu XH. Mechanical Twisting-Induced Enhancement of Second-Order Optical Nonlinearity in a Flexible Molecular Crystal. J Am Chem Soc 2025. [PMID: 39772554 DOI: 10.1021/jacs.4c15519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Flexible molecular crystals are essential for advancing smart materials, providing unique functionality and adaptability for applications in next-generation electronics, pharmaceuticals, and energy storage. However, the optical applications of flexible molecular crystals have been largely restricted to linear optics, with nonlinear optical (NLO) properties rarely explored. Herein, we report on the application of mechanical twisting of flexible molecular crystals for second-order nonlinear optics. The crystal formed through the self-assembly of the model compound 9-anthraldehyde (AA) features an intrinsic chiral and noncentrosymmetric structure, demonstrating high efficiency second harmonic generation (SHG) and NLO circular dichroism, which could be greatly enhanced by macroscopic mechanical twisting. The anisotropic molecular stacking imparts the AA crystal with mechanical flexibility of combined elastic bending and plastic twisting. The isochiral mechanical twisting could greatly enhance the SHG intensities by an order of magnitude depending on their M- or P-configuration. Meanwhile, the SHG circular dichroism factor gSHG-CD of the isochiral twisted crystal is greatly increased, achieving the highest reported NLO anisotropy factor among organic NLO materials. These boosted NLO performances of SHG intensity and nonlinear chiroptical response are expected to greatly expand the photonic applications of flexible molecular crystals.
Collapse
Affiliation(s)
- Zhihua Wang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecular Materials Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, Tianjin 300350, P. R. China
| | - Wenqing Han
- School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecular Materials Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, Tianjin 300350, P. R. China
| | - Bona Fu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecular Materials Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, Tianjin 300350, P. R. China
| | - Hanwen Kang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecular Materials Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, Tianjin 300350, P. R. China
| | - Puxin Cheng
- School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecular Materials Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, Tianjin 300350, P. R. China
| | - Junjie Guan
- School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecular Materials Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, Tianjin 300350, P. R. China
| | - Yongshen Zheng
- School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecular Materials Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, Tianjin 300350, P. R. China
| | - Rongchao Shi
- School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecular Materials Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, Tianjin 300350, P. R. China
- SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd. Yanshan Branch, Fenghuangting Road 15, Beijing 102500, P. R. China
| | - Jialiang Xu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecular Materials Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, Tianjin 300350, P. R. China
| | - Xian-He Bu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecular Materials Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, Tianjin 300350, P. R. China
| |
Collapse
|
2
|
Michalchuk AAL. On the physical processes of mechanochemically induced transformations in molecular solids. Chem Commun (Camb) 2024; 60:14750-14761. [PMID: 39611238 DOI: 10.1039/d4cc04062g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Initiating or sustaining physical and chemical transformations with mechanical force - mechanochemistry - provides an opportunity for more sustainable chemical processes, and access to new chemical reactivity. These transformations, however, do not always adhere to 'conventional' chemical wisdom, making them difficult to design and rationalise. This challenge is exacerbated by the fact that not all mechanochemical transformations are equal, with mechanical force playing a different role in different types of processes. In this review we discuss some of the different roles mechanical force can play in mechanochemical transformations, set primarily against the author's own research. We classify mechanochemical reactions broadly as those (1) where mechanical energy is for mixing, (2) where mechanical energy alters the stability of the reagent, and (3) where mechanical energy directly excites the solid. Finally, we demonstrate how - while useful - these classifications have fuzzy boundaries and concepts from across them are needed to understand many mechanochemical reactions.
Collapse
Affiliation(s)
- Adam A L Michalchuk
- School of Chemistry, University of Birmingham, Edgbaston, UK.
- Federal Institute for Materials Research and Testing (BAM), Richard Wilstaetter Str 11, 12489 Berlin, Germany
| |
Collapse
|
3
|
Rahman A, Mondal S, Modak M, Singh A, Thayat NS, Singh H, Clegg JK, Poswal HK, Haridas V, Thomas SP. Large Local Internal Stress in an Elastically Bent Molecular Crystal Revealed by Raman Shifts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402120. [PMID: 39045899 DOI: 10.1002/smll.202402120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/02/2024] [Indexed: 07/25/2024]
Abstract
The structural dynamics involved in the mechanical flexibility of molecular crystals and the internal stress in such flexible materials remain obscure. Here, the study reports an elastically bending lipidated molecular crystal that shows systematic shifts in characteristic vibrational frequencies across the bent crystal region - revealing the nature of structural changes during bending and the local internal stress distribution. The blueshifts in the bond stretching modes (such as C═O and C-H modes) in the inner arc region and redshifts in the outer arc region of the bent crystals observed via micro-Raman mapping are counterintuitive to the bending models based on intermolecular hydrogen bonds. Correlating these shifts with the trends observed from high-pressure Raman studies on the crystal reveals the local stress difference between the inner arc and outer arc regions of the bent crystal to be ≈2 GPa, more than an order of magnitude higher than the previously proposed value in elastically bending crystals. High local internal stress can have direct ramifications on the properties of molecular piezoelectric energy harvesters, actuators, semiconductors, and flexible optoelectronic materials.
Collapse
Affiliation(s)
- Atiqur Rahman
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, 110016, India
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Srijan Mondal
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Mantu Modak
- High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Center, Mumbai, 400085, India
| | - Ashi Singh
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Navdeep S Thayat
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Hanuman Singh
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Jack K Clegg
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Himanshu K Poswal
- High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Center, Mumbai, 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India
| | - V Haridas
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, 110016, India
- Department of Chemistry, Indian Institute of Technology Palakkad, Kerala, 678623, India
| | - Sajesh P Thomas
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, 110016, India
| |
Collapse
|
4
|
Dar AH, Rahman A, Mondal S, Barman A, Gupta M, Chowdhury PK, Thomas SP. Mechanical Tuning of Fluorescence Lifetime and Bandgap in an Elastically Flexible Molecular Semiconductor Crystal. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406184. [PMID: 39118551 DOI: 10.1002/smll.202406184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Indexed: 08/10/2024]
Abstract
Despite having superior transport properties, lack of mechanical flexibility is a major drawback of crystalline molecular semiconductors as compared to their polymer analogues. Here single crystals of an organic semiconductor are reported that are not only flexible but exhibit systematic tuning of bandgaps, fluorescence lifetime, and emission wavelengths upon elastically bending. Spatially resolved fluorescence lifetime imaging and confocal fluorescence microscopy reveals systematic trends in the lifetime decay across the bent crystal region along with shifts in the emission wavelength. From the outer arc to the inner arc of the bent crystal, a significant decrease in the lifetime of ≈1.9 ns is observed, with a gradual bathochromic shift of ≈10 nm in the emission wavelength. For the crystal having a bandgap of 2.73 eV, the directional stress arising from bending leads to molecular reorientation effects and variations in the extent of intermolecular interactions- which are correlated to the lowering of bandgap and the evolution of the projected density of states. The systematic changes in the interactions quantified using electron density topological analysis in the compressed inner arc and elongated outer arc region are correlated to the non-radiative decay processes, thus rationalizing the tuning of fluorescence lifetime.
Collapse
Affiliation(s)
- Arif Hassan Dar
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Atiqur Rahman
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Srijan Mondal
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Argha Barman
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Monika Gupta
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Pramit K Chowdhury
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Sajesh P Thomas
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, 110016, India
| |
Collapse
|
5
|
Zhang L, Illes-Toth E, Cryar A, Drinkwater G, Di Vagno L, Pons ML, Mateyka J, McCullough B, Achtar E, Clarkson C, Göschel L, Körtvélyessy P, Mussell C, Hopley CJ, Flöel A, Hirtz C, Lehmann S, Quaglia M. A candidate reference measurement procedure for the quantification of α-synuclein in cerebrospinal fluid using an SI traceable primary calibrator and multiple reaction monitoring. Analyst 2024. [PMID: 39041602 DOI: 10.1039/d4an00634h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
α-synuclein aggregation is an important hallmark of neurodegenerative diseases such as Parkinson's disease (PD) and Lewy body dementia. α-synuclein has been increasingly used as a diagnostic biomarker in PD and other synucleinopathies. Current clinical assays rely on antibody-based immunoassays to detect α-synuclein, which possess high sensitivity, afford high throughput and require small sample volumes. The utility of these assays, however, may be compounded by the specificity, selectivity and batch-to-batch heterogeneity of the antibody used, which can lead to deviations in the total amount of the protein measured when comparing results among different laboratories. Similarly, current mass spectrometry-based quantification methods for α-synuclein lack well-defined, value assigned calibrators to ensure comparability of measurements. Therefore, there is still an unmet need for the standardisation of clinical measurements for α-synuclein that can be achieved by the development of reference measurement procedures (RMPs) utilising calibrators traceable to the SI (International System of Units). Here, we report a candidate RMP for α-synuclein, using an SI traceable primary calibrator and an isotope dilution mass spectrometry (IDMS) approach to address this need. The gravimetrically prepared primary calibrator was traceably quantified utilising a combination of amino acid analysis (AAA) and quantitative nuclear magnetic resonance (qNMR) for value assignment. An optimised targeted sample clean-up procedure involving a non-denaturing Lys-C digestion and solid-phase extraction strategy was devised, followed by the development of a targeted multiple reaction monitoring (MRM) method for the quantification of α-synuclein in cerebrospinal fluid (CSF). This candidate RMP was then deployed for the sensitive detection and accurate quantification of multiple proteotypic α-synuclein peptides in patient derived CSF samples. The LC-MS based results were subsequently compared to immunoassay data to assess the overall performance of our approach. The development and adoption of this candidate RMP, along with the availability of the SI traceable primary calibrator will allow for reliable quantifications of α-synuclein in CSF by an LC-MS based assay. The RMP will potentially contribute towards the standardisation of this important biomarker and may lead to future interlaboratory comparisons.
Collapse
Affiliation(s)
- Leran Zhang
- LGC Group, Queens Road, TW11 0LY Teddington, UK.
| | | | - Adam Cryar
- LGC Group, Queens Road, TW11 0LY Teddington, UK.
| | | | | | - Marie-Laure Pons
- LBPC-PPC, Univ Montpellier, IRMB CHU Montpellier, INM INSERM, 34295 Montpellier, France
| | | | | | - Eli Achtar
- LGC Group, Queens Road, TW11 0LY Teddington, UK.
| | | | - Laura Göschel
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology, 10117 Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Neuroscience Clinical Research Center, 10117 Berlin, Germany
| | - Peter Körtvélyessy
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology, 10117 Berlin, Germany
- Labor Berlin, Innovations, Sylter Strasse 2, 13353 Berlin, Germany
| | | | | | - Agnes Flöel
- Department of Neurology, Universitätsmedizin Greifswald, 17475 Greifswald, Germany
| | - Christophe Hirtz
- LBPC-PPC, Univ Montpellier, IRMB CHU Montpellier, INM INSERM, 34295 Montpellier, France
| | - Sylvain Lehmann
- LBPC-PPC, Univ Montpellier, IRMB CHU Montpellier, INM INSERM, 34295 Montpellier, France
| | | |
Collapse
|
6
|
Linberg K, Szymoniak P, Schönhals A, Emmerling F, Michalchuk AAL. The Origin of Delayed Polymorphism in Molecular Crystals Under Mechanochemical Conditions. Chemistry 2023; 29:e202302150. [PMID: 37679939 DOI: 10.1002/chem.202302150] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/09/2023]
Abstract
We show that mechanochemically driven polymorphic transformations can require extremely long induction periods, which can be tuned from hours to days by changing ball milling energy. The robust design and interpretation of ball milling experiments must account for this unexpected kinetics that arises from energetic phenomena unique to the solid state. Detailed thermal analysis, combined with DFT simulations, indicates that these marked induction periods are associated with processes of mechanical activation. Correspondingly, we show that the pre-activation of reagents can also lead to marked changes in the length of induction periods. Our findings demonstrate a new dimension for exerting control over polymorphic transformations in organic crystals. We expect mechanical activation to have a much broader implication across organic solid-state mechanochemistry.
Collapse
Affiliation(s)
- Kevin Linberg
- Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Strasse 11, and Unter den Eichen 87, 12205, Berlin, Germany
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489, Berlin, Germany
| | - Paulina Szymoniak
- Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Strasse 11, and Unter den Eichen 87, 12205, Berlin, Germany
| | - Andreas Schönhals
- Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Strasse 11, and Unter den Eichen 87, 12205, Berlin, Germany
| | - Franziska Emmerling
- Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Strasse 11, and Unter den Eichen 87, 12205, Berlin, Germany
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489, Berlin, Germany
| | - Adam A L Michalchuk
- Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Strasse 11, and Unter den Eichen 87, 12205, Berlin, Germany
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| |
Collapse
|
7
|
Lin Y, Liu S, Yan D. Flexible Crystal Heterojunctions of Low-Dimensional Organic Metal Halides Enabling Color-Tunable Space-Resolved Optical Waveguides. RESEARCH (WASHINGTON, D.C.) 2023; 6:0259. [PMID: 37915767 PMCID: PMC10616971 DOI: 10.34133/research.0259] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/08/2023] [Indexed: 11/03/2023]
Abstract
Molecular luminescent materials with optical waveguide have wide application prospects in light-emitting diodes, sensors, and logic gates. However, the majority of traditional optical waveguide systems are based on brittle molecular crystals, which limited the fabrication, transportation, storage, and adaptation of flexible devices under diverse application situations. To date, the design and synthesis of photofunctional materials with high flexibility, novel optical waveguide, and multi-port color-tunable emission in the same solid-state system remain an open challenge. Here, we have constructed new types of zero-dimensional organic metal halides (Au-4-dimethylaminopyridine [DMAP] and In-DMAP) with a rarely high elasticity and rather low loss coefficients for optical waveguide. Theoretical calculations on the intermolecular interactions showed that the high elasticity of 2 molecular crystalline materials was original from their herringbone structure and slip plane. Based on one-dimensional flexible microrods of 2 crystals and the 2-dimensional microplate of the Mn-DMAP, heterojunctions with multi-color and space-resolved optical waveguides have been fabricated. The formation mechanism of heterojunctions is based on the surface selective growth on account of the low lattice mismatch ratio between contacting crystal planes. Therefore, this work describes the first attempt to the design of metal-halide-based crystal heterojunctions with high flexibility and optical waveguide, expanding the prospects of traditional luminescent materials for smart optical devices, such as logic gates and multiplexers.
Collapse
Affiliation(s)
| | | | - Dongpeng Yan
- Beijing Key Laboratory of Energy Conversion and Storage Materials, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry,
Beijing Normal University, Beijing 100875, China
| |
Collapse
|
8
|
Kamski-Hennekam ER, Huang J, Ahmed R, Melacini G. Toward a molecular mechanism for the interaction of ATP with alpha-synuclein. Chem Sci 2023; 14:9933-9942. [PMID: 37736631 PMCID: PMC10510630 DOI: 10.1039/d3sc03612j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/19/2023] [Indexed: 09/23/2023] Open
Abstract
The ability of Adenosine Triphosphate (ATP) to modulate protein solubility establishes a critical link between ATP homeostasis and proteinopathies, such as Parkinson's (PD). The most significant risk factor for PD is aging, and ATP levels decline dramatically with age. However, the mechanism by which ATP interacts with alpha-synuclein (αS), whose aggregation is characteristic of PD, is currently not fully understood, as is ATP's effect on αS aggregation. Here, we use nuclear magnetic resonance spectroscopy as well as fluorescence, dynamic light scattering and microscopy to show that ATP affects multiple species in the αS self-association cascade. The triphosphate moiety of ATP disrupts long-range electrostatic intramolecular contacts in αS monomers to enhance initial aggregation, while also inhibiting the formation of late-stage β-sheet fibrils by disrupting monomer-fibril interactions. These effects are modulated by magnesium ions and early onset PD-related αS mutations, suggesting that loss of the ATP hydrotropic function on αS fibrillization may play a role in PD etiology.
Collapse
Affiliation(s)
| | - Jinfeng Huang
- Department of Chemistry and Chemical Biology, McMaster University Hamilton ON L8S 4M1 Canada
| | - Rashik Ahmed
- Department of Biochemistry and Biomedical Sciences, McMaster University Hamilton ON L8S 4M1 Canada
| | - Giuseppe Melacini
- Department of Chemistry and Chemical Biology, McMaster University Hamilton ON L8S 4M1 Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University Hamilton ON L8S 4M1 Canada
| |
Collapse
|
9
|
Pantuso E, Ahmed E, Fontananova E, Brunetti A, Tahir I, Karothu DP, Alnaji NA, Dushaq G, Rasras M, Naumov P, Di Profio G. Smart dynamic hybrid membranes with self-cleaning capability. Nat Commun 2023; 14:5751. [PMID: 37717049 PMCID: PMC10505219 DOI: 10.1038/s41467-023-41446-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 09/01/2023] [Indexed: 09/18/2023] Open
Abstract
The growing freshwater scarcity has caused increased use of membrane desalination of seawater as a relatively sustainable technology that promises to provide long-term solution for the increasingly water-stressed world. However, the currently used membranes for desalination on an industrial scale are inevitably prone to fouling that results in decreased flux and necessity for periodic chemical cleaning, and incur unacceptably high energy cost while also leaving an environmental footprint with unforeseeable long-term consequences. This extant problem requires an immediate shift to smart separation approaches with self-cleaning capability for enhanced efficiency and prolonged operational lifetime. Here, we describe a conceptually innovative approach to the design of smart membranes where a dynamic functionality is added to the surface layer of otherwise static membranes by incorporating stimuli-responsive organic crystals. We demonstrate a gating effect in the resulting smart dynamic membranes, whereby mechanical instability caused by rapid mechanical response of the crystals to heating slightly above room temperature activates the membrane and effectively removes the foulants, thereby increasing the mass transfer and extending its operational lifetime. The approach proposed here sets a platform for the development of a variety of energy-efficient hybrid membranes for water desalination and other separation processes that are devoid of fouling issues and circumvents the necessity of chemical cleaning operations.
Collapse
Affiliation(s)
- Elvira Pantuso
- Consiglio Nazionale delle Ricerche (CNR), Istituto per la Tecnologia delle Membrane (ITM), Via P. Bucci, Cubo 17/C, 87036, Rende (CS), Italy
| | - Ejaz Ahmed
- Smart Materials Lab, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, UAE
| | - Enrica Fontananova
- Consiglio Nazionale delle Ricerche (CNR), Istituto per la Tecnologia delle Membrane (ITM), Via P. Bucci, Cubo 17/C, 87036, Rende (CS), Italy
| | - Adele Brunetti
- Consiglio Nazionale delle Ricerche (CNR), Istituto per la Tecnologia delle Membrane (ITM), Via P. Bucci, Cubo 17/C, 87036, Rende (CS), Italy
| | - Ibrahim Tahir
- Smart Materials Lab, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, UAE
| | - Durga Prasad Karothu
- Smart Materials Lab, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, UAE
| | - Nisreen Amer Alnaji
- Center for Smart Engineering Materials, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, UAE
- Division of Engineering, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, UAE
| | - Ghada Dushaq
- Division of Engineering, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, UAE
| | - Mahmoud Rasras
- Center for Smart Engineering Materials, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, UAE
- Division of Engineering, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, UAE
| | - Panče Naumov
- Smart Materials Lab, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, UAE.
- Center for Smart Engineering Materials, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, UAE.
- Research Center for Environment and Materials, Macedonian Academy of Sciences and Arts, Bul. Krste Misirkov 2, MK‒1000, Skopje, Macedonia.
- Molecular Design Institute, Department of Chemistry, New York University, 100 Washington Square East, New York, NY, 10003, USA.
| | - Gianluca Di Profio
- Consiglio Nazionale delle Ricerche (CNR), Istituto per la Tecnologia delle Membrane (ITM), Via P. Bucci, Cubo 17/C, 87036, Rende (CS), Italy.
| |
Collapse
|
10
|
Roles of Hydrogen, Halogen Bonding and Aromatic Stacking in a Series of Isophthalamides. Symmetry (Basel) 2023. [DOI: 10.3390/sym15030738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
Abstract
The synthesis and spectroscopic characterisation of six bis(5-X-pyridine-2-yl)isophthalamides (X = H, F, Br, Cl, I, NO2) are reported, together with five crystal structure analyses (for X = H, F to I). The isophthalamides span a range of conformations as syn/anti (H-DIP; I-DIP), anti/anti- (F-DIP; Br-DIP) and with both present in ratio 2:1 in Cl-DIP. The essentially isostructural F-DIP and Br-DIP molecules (using strong amide…amide interactions) aggregate into 2D molecular sheets that align with either F/H or Br atoms at the sheet surfaces (interfaces), respectively. Sheets are linked by weak C-H⋯F contacts in F-DIP and by Br⋯Br halogen bonding interactions as a ‘wall of bromines’ at the Br atom rich interfaces in Br-DIP. Cl-DIP is an unusual crystal structure incorporating both syn/anti and anti/anti molecular conformations in the asymmetric unit (Z’ = 3). The I-DIP•½(H2O) hemihydrate structure has a water molecule residing on a twofold axis between two I-DIPs and has hydrogen and N⋯I (Nc = 0.88) halogen bonding. The hydrate is central to an unusual synthon and involved in six hydrogen bonding interactions/contacts. Contact enrichment analysis on the Hirshfeld surface demonstrates that F-DIP, Cl-DIP and Br-DIP have especially over-represented halogen···halogen interactions. With the F-DIP, Cl-DIP and Br-DIP molecules having an elongated skeleton, the formation of layers of halogen atoms in planes perpendicular to the long unit cell axis occurs in the crystal packings. All six DIPs were analysed by ab initio calculations and conformational analysis; comparisons are made between their minimized structures and the five crystal structures. In addition, physicochemical properties are compared and assessed.
Collapse
|
11
|
Das C, Nishiguchi T, Fan Z, Horike S. Crystallization Kinetics of a Liquid-Forming 2D Coordination Polymer. NANO LETTERS 2022; 22:9372-9379. [PMID: 36441580 DOI: 10.1021/acs.nanolett.2c03207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
We investigated a mechanism of crystal melting and crystallization behavior of a two-dimensional coordination polymer [Ag2(L1)(CF3SO3)2] (1, L1 = 4,4'-biphenyldicarbonitrile) upon heating-cooling processes. The crystal showed melting at 282 °C, and the following gentle cooling induced the abrupt crystallization at 242 °C confirmed by DSC. A temperature-dependent structural change has been discussed through calorimetric, spectroscopic, and mechanical measurements. They indicated that the coordination-bond networks are partially retained in the melt state, but the melt showed a significantly low viscosity of 9.8 × 10-2 Pa·s at Tm which is six orders lower than that of ZIF-62 at Tm (435 °C). Rheological studies provided an understanding of the fast relaxation dynamics for the recrystallization process, along with that the high Tm provides enough thermal energy to crossover the activation energy barrier for the nucleation. The isothermal crystallization kinetics through calorimetric measurements with applying the Avrami equation identified the nature of the nuclei and its crystal growth mechanism.
Collapse
Affiliation(s)
- Chinmoy Das
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto606-8501, Japan
| | - Taichi Nishiguchi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto615-8510, Japan
| | - Zeyu Fan
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto615-8510, Japan
| | - Satoshi Horike
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto606-8501, Japan
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto615-8510, Japan
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong21210, Thailand
| |
Collapse
|
12
|
Bopardikar M, Koti Ainavarapu SR, Hosur RV. Pyrogallol, Corilagin and Chebulagic acid target the "fuzzy coat" of alpha-synuclein to inhibit the fibrillization of the protein. RSC Adv 2022; 12:35770-35777. [PMID: 36545068 PMCID: PMC9749937 DOI: 10.1039/d2ra04358k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/13/2022] [Indexed: 12/15/2022] Open
Abstract
The accumulation of the intrinsically disordered protein alpha-synuclein (αSyn) in the form of insoluble fibrillar aggregates in the central nervous system is linked to a variety of neurodegenerative disorders such as Parkinson's disease, Lewy body dementia, and multiple system atrophy. Here we show that Pyrogallol, Corilagin and Chebulagic acid, compounds containing a different number of catechol rings, are independently capable of delaying and reducing the extent of αSyn fibrillization. The efficiency of inhibition was found to correlate with the number of catechol rings. Further, our NMR studies reveal that these compounds interact with the N-terminal region of αSyn which is unstructured even in the fibrillar form of the protein and is known as the "fuzzy coat" of fibrils. Thus, Corilagin and Chebulagic acid target the fuzzy coat of αSyn and not the amyloid core which is a common target for the inhibition of protein fibrillization. Our results indicate that the N-terminus also plays a key role in the fibrillization of αSyn.
Collapse
Affiliation(s)
- Mandar Bopardikar
- Department of Chemical Sciences, Tata Institute of Fundamental ResearchHomi Bhabha Road, ColabaMumbai 400005India
| | - Sri Rama Koti Ainavarapu
- Department of Chemical Sciences, Tata Institute of Fundamental ResearchHomi Bhabha Road, ColabaMumbai 400005India
| | - Ramakrishna V. Hosur
- UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Kalina CampusSantacruzMumbai 400098India
| |
Collapse
|
13
|
Boada M, Martínez-Lage P, Serrano-Castro P, Costa M, Páez A. Therapeutic plasma exchange with albumin: a new approach to treat Alzheimer's disease. Expert Rev Neurother 2021; 21:843-849. [PMID: 34338566 DOI: 10.1080/14737175.2021.1960823] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Alzheimer's disease (AD) is a chronic neurodegenerative disease and the most common cause of dementia. It has a complex pathophysiology that is not yet completely understood, where multiple central, systemic, and environmental factors play a key role in disease progression. Understanding the multifactorial nature of AD is paramount to formulate new therapies. AREAS COVERED The authors reviewed the role of the amyloid-β-binding, antioxidant, and immunomodulatory properties of albumin in AD and the use of therapeutic plasma exchange (PE) in neurology. The results from the Alzheimer Management By Albumin Replacement (AMBAR) trial that combined the use of PE with albumin replacement in patients with mild-to-moderate AD, are also analyzed. EXPERT OPINION Findings from the AMBAR study provide encouraging results in the treatment of AD with PE and albumin replacement, especially in patients at the moderate stage of the disease, who showed less cognitive decline from baseline compared with placebo in most of the variables analyzed. Further research is warranted to ascertain the possible mechanisms of action underlying these results. Different cohorts of patients that may also benefit from this treatment, such as those with mild cognitive impairment or other types of dementia, could also be the target of additional studies.
Collapse
Affiliation(s)
- Mercè Boada
- Ace Alzheimer Center Barcelona, Universitat Internacional De Catalunya, Barcelona, Spain
| | - Pablo Martínez-Lage
- Centro De Investigación Y Clínica Memoria, Fundación CITA-Alzheimer Fundazioa, Donostia, San Sebastián, Spain
| | - Pedro Serrano-Castro
- Instituto De Investigación Biomédica De Málaga, Hospital Regional Universitario De Málaga, Málaga, Spain
| | | | - Antonio Páez
- Grifols Bioscience Research Group, Barcelona, Spain
| |
Collapse
|
14
|
O’Neill RT, Boulatov R. The many flavours of mechanochemistry and its plausible conceptual underpinnings. Nat Rev Chem 2021; 5:148-167. [PMID: 37117533 DOI: 10.1038/s41570-020-00249-y] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2020] [Indexed: 12/12/2022]
Abstract
Mechanochemistry describes diverse phenomena in which mechanical load affects chemical reactivity. The fuzziness of this definition means that it includes processes as seemingly disparate as motor protein function, organic synthesis in a ball mill, reactions at a propagating crack, chemical actuation, and polymer fragmentation in fast solvent flows and in mastication. In chemistry, the rate of a reaction in a flask does not depend on how fast the flask moves in space. In mechanochemistry, the rate at which a material is deformed affects which and how many bonds break. In other words, in some manifestations of mechanochemistry, macroscopic motion powers otherwise endergonic reactions. In others, spontaneous chemical reactions drive mechanical motion. Neither requires thermal or electrostatic gradients. Distinct manifestations of mechanochemistry are conventionally treated as being conceptually independent, which slows the field in its transformation from being a collection of observations to a rigorous discipline. In this Review, we highlight observations suggesting that the unifying feature of mechanochemical phenomena may be the coupling between inertial motion at the microscale to macroscale and changes in chemical bonding enabled by transient build-up and relaxation of strains, from macroscopic to molecular. This dynamic coupling across multiple length scales and timescales also greatly complicates the conceptual understanding of mechanochemistry.
Collapse
|
15
|
Kusumoto S, Sugimoto A, Kosumi D, Kim Y, Sekine Y, Nakamura M, Hayami S. A plastically bendable and polar organic crystal. CrystEngComm 2021. [DOI: 10.1039/d1ce00724f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
An organic crystal of the polar space group Pc that is capable of plastic bending is reported, and its high dielectric constant and strong second-order harmonic generation (SHG) effect have been demonstrated.
Collapse
Affiliation(s)
- Sotaro Kusumoto
- Department of Material and Life Chemistry, Faculty of Engineering, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| | - Akira Sugimoto
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Daisuke Kosumi
- Department of Physics, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
- Institute of Industrial Nanomaterials (IINa), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Yang Kim
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Yoshihiro Sekine
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
- Priority Organization for Innovation and Excellence, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Masaaki Nakamura
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Shinya Hayami
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
- Institute of Industrial Nanomaterials (IINa), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| |
Collapse
|
16
|
Bhattacharya B, Roy D, Dey S, Puthuvakkal A, Bhunia S, Mondal S, Chowdhury R, Bhattacharya M, Mandal M, Manoj K, Mandal PK, Reddy CM. Mechanical‐Bending‐Induced Fluorescence Enhancement in Plastically Flexible Crystals of a GFP Chromophore Analogue. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007760] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Biswajit Bhattacharya
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Kolkata 741246 Nadia, West Bengal India
| | - Debjit Roy
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Kolkata 741246 Nadia, West Bengal India
| | - Somnath Dey
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Kolkata 741246 Nadia, West Bengal India
| | - Anisha Puthuvakkal
- Photosciences and Photonics Chemical Sciences and Technology Division CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram 695019 India
| | - Surojit Bhunia
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Kolkata 741246 Nadia, West Bengal India
- Centre for Advanced Functional Materials (CAFM) Indian Institute of Science Education and Research (IISER) Kolkata 741246 Nadia, West Bengal India
| | - Saikat Mondal
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Kolkata 741246 Nadia, West Bengal India
- Centre for Advanced Functional Materials (CAFM) Indian Institute of Science Education and Research (IISER) Kolkata 741246 Nadia, West Bengal India
| | - Rituparno Chowdhury
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Kolkata 741246 Nadia, West Bengal India
| | - Manjima Bhattacharya
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Kolkata 741246 Nadia, West Bengal India
| | - Mrinal Mandal
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Kolkata 741246 Nadia, West Bengal India
| | - Kochunnoonny Manoj
- Photosciences and Photonics Chemical Sciences and Technology Division CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram 695019 India
| | - Prasun K. Mandal
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Kolkata 741246 Nadia, West Bengal India
- Centre for Advanced Functional Materials (CAFM) Indian Institute of Science Education and Research (IISER) Kolkata 741246 Nadia, West Bengal India
| | - C. Malla Reddy
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Kolkata 741246 Nadia, West Bengal India
- Centre for Advanced Functional Materials (CAFM) Indian Institute of Science Education and Research (IISER) Kolkata 741246 Nadia, West Bengal India
| |
Collapse
|
17
|
Bhattacharya B, Roy D, Dey S, Puthuvakkal A, Bhunia S, Mondal S, Chowdhury R, Bhattacharya M, Mandal M, Manoj K, Mandal PK, Reddy CM. Mechanical-Bending-Induced Fluorescence Enhancement in Plastically Flexible Crystals of a GFP Chromophore Analogue. Angew Chem Int Ed Engl 2020; 59:19878-19883. [PMID: 32667123 DOI: 10.1002/anie.202007760] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Indexed: 01/25/2023]
Abstract
Single crystals of optoelectronic materials that respond to external stimuli, such as mechanical, light, or heat, are immensely attractive for next generation smart materials. Here we report single crystals of a green fluorescent protein (GFP) chromophore analogue with irreversible mechanical bending and associated unusual enhancement of the fluorescence, which is attributed to the strained molecular packing in the perturbed region. Soft crystalline materials with such fluorescence intensity modulations occurring in response to mechanical stimuli under ambient pressure conditions will have potential implications for the design of technologically relevant tunable fluorescent materials.
Collapse
Affiliation(s)
- Biswajit Bhattacharya
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Kolkata, 741246, Nadia, West Bengal, India
| | - Debjit Roy
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Kolkata, 741246, Nadia, West Bengal, India
| | - Somnath Dey
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Kolkata, 741246, Nadia, West Bengal, India
| | - Anisha Puthuvakkal
- Photosciences and Photonics, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695019, India
| | - Surojit Bhunia
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Kolkata, 741246, Nadia, West Bengal, India.,Centre for Advanced Functional Materials (CAFM), Indian Institute of Science Education and Research (IISER), Kolkata, 741246, Nadia, West Bengal, India
| | - Saikat Mondal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Kolkata, 741246, Nadia, West Bengal, India.,Centre for Advanced Functional Materials (CAFM), Indian Institute of Science Education and Research (IISER), Kolkata, 741246, Nadia, West Bengal, India
| | - Rituparno Chowdhury
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Kolkata, 741246, Nadia, West Bengal, India
| | - Manjima Bhattacharya
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Kolkata, 741246, Nadia, West Bengal, India
| | - Mrinal Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Kolkata, 741246, Nadia, West Bengal, India
| | - Kochunnoonny Manoj
- Photosciences and Photonics, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695019, India
| | - Prasun K Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Kolkata, 741246, Nadia, West Bengal, India.,Centre for Advanced Functional Materials (CAFM), Indian Institute of Science Education and Research (IISER), Kolkata, 741246, Nadia, West Bengal, India
| | - C Malla Reddy
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Kolkata, 741246, Nadia, West Bengal, India.,Centre for Advanced Functional Materials (CAFM), Indian Institute of Science Education and Research (IISER), Kolkata, 741246, Nadia, West Bengal, India
| |
Collapse
|