1
|
Zhang J, Zhou W, Zhao J, Xu L, Jiang X, Li Z, Peng Y, Li G. Intrareticular Exciton Effects Regulate Photocatalytic Activity in Donor-Acceptor Olefin-Linked Covalent Organic Frameworks. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408324. [PMID: 39491491 DOI: 10.1002/smll.202408324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/16/2024] [Indexed: 11/05/2024]
Abstract
Olefin-linked covalent organic frameworks (OL-COFs) show great promise for visible-light-driven photocatalysis. Manipulating atomic-level donor-acceptor interactions in OL-COFs is key to understanding their exciton effects in this system. Here, three OL-COFs are presented with orthorhombic lattice structures, synthesized via Knoevenagel polycondensation reaction of terephthalaldehyde and tetratopic monomers featuring phenyl, benzo[c][1,2,5]oxadiazole, and benzo[c][1,2,5]thiadiazole moieties. These OL-COFs feature tunable donor-acceptor interactions, making them ideal for studying exciton effects in olefin-linked systems. Comprehensive analyses, including temperature-dependent photoluminescence spectra, ultrafast spectroscopy, and theoretical calculations, reveal that stronger donor-acceptor interactions lead to reduced exciton binding energy (Eb), accelerated exciton dissociation, and longer-lived photogenerated charges, thereby enhancing photocatalytic performance. Notably, The TMO-BDA COF, with the lowest Eb, demonstrates superior photocatalytic activity in one-pot sequential organic transformation and excellent catalytic performance in gram-scale reactions, highlighting its potential for practical applications. This work provides valuable insights into regulating the exciton effect at the molecular level in OL-COFs, offering pathways to enhance photocatalytic efficiency.
Collapse
Affiliation(s)
- Jie Zhang
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, China
| | - Wenwen Zhou
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, China
| | - Jianfeng Zhao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Liangliang Xu
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Xuekai Jiang
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, China
| | - Zhiwen Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yongwu Peng
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Gao Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, 110034, China
| |
Collapse
|
2
|
Venkatareddy VK, Parsimehr H, Ignaszak A, M RR. Near-IR absorbing tetraene-linked π-conjugated porous polymers for energy storage and electrical conductivity. Chem Commun (Camb) 2024; 61:125-128. [PMID: 39620340 DOI: 10.1039/d4cc05074f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Tetraene-linked diketopyrrolopyrrole (DPP)-based CMPs were developed via Knoevenagel condensation of ditopic active hydrogen containing DPP with tritopic aryl aldehydes. The "tetra-ene" π-arrangement in the molecular framework promotes uninterrupted π-delocalization, resulting in near-infrared (NIR) absorption (∼red edge of 1200 nm), high electrical conductivity in the pristine (10-3 S m-1) and doped states (0.2 S m-1), and moderate energy storage (70 F g-1).
Collapse
Affiliation(s)
| | | | - Anna Ignaszak
- Department of Chemistry, University of New Brunswick, Fredericton, Canada
| | - Rajeswara Rao M
- Department of Chemistry, Indian Institute of Technology, Dharwad, Karnataka, India.
| |
Collapse
|
3
|
Doremus JG, Lotsi B, Sharma A, McGrier PL. Photocatalytic applications of covalent organic frameworks: synthesis, characterization, and utility. NANOSCALE 2024; 16:21619-21672. [PMID: 39495099 DOI: 10.1039/d4nr03204g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Photocatalysis has emerged as an energy efficient and safe method to perform organic transformations, and many semiconductors have been studied for use as photocatalysts. Covalent organic frameworks (COFs) are an established class of crystalline, porous materials constructed from organic units that are easily tunable. COFs importantly display semiconductor properties and respectable photoelectric behaviour, making them a strong prospect as photocatalysts. In this review, we summarize the design, synthetic methods, and characterization techniques for COFs. Strategies to boost photocatalytic performance are also discussed. Then the applications of COFs as photocatalysts in a variety of reactions are detailed. Finally, a summary, challenges, and future opportunities for the development of COFs as efficient photocatalysts are entailed.
Collapse
Affiliation(s)
- Jared G Doremus
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA.
| | - Bertha Lotsi
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA.
| | - Aadarsh Sharma
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA.
| | - Psaras L McGrier
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA.
| |
Collapse
|
4
|
Yu X, Zhao Y, Bao Q, Wang W, Li Y, Xiao J, Sui Z, Tian X, Chen Q. Vinyl-bearing sp 2 carbon-conjugated covalent organic framework composites for enhanced electrochemical performance in hydrogen evolution reaction and lithium-sulfur batteries. J Colloid Interface Sci 2024; 675:970-979. [PMID: 39003816 DOI: 10.1016/j.jcis.2024.07.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024]
Abstract
Vinyl-bearing triazine-functionalized covalent organic frameworks (COFs) have emerged as promising materials for electrocatalysis and energy storage. Guided by density functional theory calculations, a vinyl-enriched COF (VCOF-1) featuring a donor-acceptor structure was synthesized based on the Knoevenagel reaction. Moreover, the VCOF-1@Ru without pyrolysis was obtained through chemical coordination interactions between VCOF-1 and RuCl3, exhibiting enhanced electrocatalytic performance in the hydrogen evolution reaction when exposed to 0.5 M H2SO4. The results demonstrated that the protonation of VCOF-1@Ru enhanced the electrical conductivity and accelerated the generation of H2 on the catalytically active site Ru. Additionally, VCOF-1@CNT with a tubular structure was prepared by uniformly wrapping VCOF-1 onto carbon nanotubes (CNTs) and using it as a cathode for lithium-sulfur batteries by chemically and physically encapsulating S. The enhanced performance of VCOF-1@CNT was attributed to the effective suppression of lithium polysulfide migration. This suppression was achieved through several mechanisms, including the inverse vulcanization of vinyl on VCOF-1@CNT, the enhancement of material conductivity, and the interaction between N in the materials and Li ions. This study demonstrated a strategy for enhancing material performance by precisely modulating the COF structure at the molecular level.
Collapse
Affiliation(s)
- Xinxin Yu
- School of Marine Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, PR China
| | - Yuzhen Zhao
- School of Marine Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, PR China
| | - Qiuyi Bao
- School of Marine Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, PR China
| | - Weina Wang
- School of Marine Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, PR China
| | - Yongpeng Li
- School of Chemistry & Chemical Engineering, Yantai University, Yantai 264005, PR China
| | - Juanxiu Xiao
- School of Marine Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, PR China
| | - Zhuyin Sui
- School of Chemistry & Chemical Engineering, Yantai University, Yantai 264005, PR China.
| | - Xinlong Tian
- School of Marine Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, PR China.
| | - Qi Chen
- School of Marine Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, PR China.
| |
Collapse
|
5
|
Zhang Z, Zhang Q, Hou Y, Li J, Zhu S, Xia H, Yue H, Liu X. Tris(triazolo)triazine-Based Covalent Organic Frameworks for Efficiently Photocatalytic Hydrogen Peroxide Production. Angew Chem Int Ed Engl 2024; 63:e202411546. [PMID: 38949611 DOI: 10.1002/anie.202411546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 07/02/2024]
Abstract
Two-dimensional covalent organic frameworks (2D-COFs) have recently emerged as fascinating scaffolds for solar-to-chemical energy conversion because of their customizable structures and functionalities. Herein, two tris(triazolo)triazine-based COF materials (namely COF-JLU51 and COF-JLU52) featuring large surface area, high crystallinity, excellent stability and photoelectric properties were designed and constructed for the first time. Remarkably, COF-JLU51 gave an outstanding H2O2 production rate of over 4200 μmol g-1 h-1 with excellent reusability in pure water and O2 under one standard sun light, that higher than its isomorphic COF-JLU52 and most of the reported metal-free materials, owing to its superior generation, separation and transport of photogenerated carriers. Experimental and theoretical researches prove that the photocatalytic process undergoes a combination of indirect 2e- O2 reduction reaction (ORR) and 4e- H2O oxidation reaction (WOR). Specifically, an ultrahigh yield of 7624.7 μmol g-1 h-1 with apparent quantum yield of 18.2 % for COF-JLU52 was achieved in a 1 : 1 ratio of benzyl alcohol and water system. This finding contributes novel, nitrogen-rich and high-quality tris(triazolo)triazine-based COF materials, and also designate their bright future in photocatalytic solar transformations.
Collapse
Affiliation(s)
- Zhenwei Zhang
- College of Chemistry, Jilin University, Changchun, 130012, P.R. China
| | - Qi Zhang
- School of Engineering, University of Warwick, Coventry, CV4 7AL, UK
| | - Yuxin Hou
- College of Chemistry, Jilin University, Changchun, 130012, P.R. China
| | - Jiali Li
- College of Chemistry, Jilin University, Changchun, 130012, P.R. China
| | - Shanshan Zhu
- College of Chemistry, Jilin University, Changchun, 130012, P.R. China
| | - Hong Xia
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Technology, Jilin University, Changchun, 130012, P.R. China
| | - Huijuan Yue
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P.R. China
| | - Xiaoming Liu
- College of Chemistry, Jilin University, Changchun, 130012, P.R. China
| |
Collapse
|
6
|
Wu D, Zhang Q, Yin S, Song C, Gu N, Wang D, Cai T, Zhang B. Room-Temperature Single-Phase Synthesis of Semiconducting Metal-Covalent Organic Frameworks With Microenvironment-Tuned Photocatalytic Efficiency. SMALL METHODS 2024:e2401284. [PMID: 39394717 DOI: 10.1002/smtd.202401284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/16/2024] [Indexed: 10/14/2024]
Abstract
In order to improve the solubility of metallated monomers and product crystallinity, metal-covalent organic frameworks (MCOFs) are commonly prepared via high-temperature sol-vothermal synthesis. However, it hampers the direct extraction of crystallization evolution information. Exploring facile room-temperature strategies for both synthesizing MCOFs and exploiting the crystallinity mechanism is extremely desired. Herein, by a novel single-phase synthetic strategy, three MCOFs with different microstructure is rapidly prepared based on the Schiff base reaction between planarity-tunable C3v monomers and metallated monomers at room temperature. Based on detailed time-dependent experiments and theoretical calculations, it is found that there is a planarity-tuned and competitive growth relationship between disordered structures and crystal nucleus for the first time. The high planarity of monomers boosts the formation of crystal nucleus and rapid growth, suppressing the forming of amorphous structures. In addition, the microenvironment effect on selective photocatalytic coupling of benzylamine (BA) is investigated. The strong donor-acceptor (D-A) MCOF exhibits efficient photocatalytic activity with a high conversion rate of 99% and high selectivity of 99% in 5 h under the 520 nm light irradiation. This work opens a new pathway to scalable and efficient synthesis of highly crystalline MCOFs.
Collapse
Affiliation(s)
- Dongchuang Wu
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
- School of Energy and Power Engineering, North University of China, Taiyuan, 030051, China
| | - Qiongshan Zhang
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Shiyu Yin
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Congying Song
- State Key Laboratory of Power Grid Environmental Protection, College of Chemistry and Molecular Science, Wuhan University, Wuhan, Hubei, 430072, China
| | - Ning Gu
- School of Energy and Power Engineering, North University of China, Taiyuan, 030051, China
| | - Dong Wang
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Tao Cai
- State Key Laboratory of Power Grid Environmental Protection, College of Chemistry and Molecular Science, Wuhan University, Wuhan, Hubei, 430072, China
| | - Bin Zhang
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Shanghai Key Laboratory of Intelligent Sensing and Detection, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
7
|
Zhao G, Ma H, Zhang C, Yang Y, Yu S, Zhu H, Sun Y, Guo H. Constructing Donor-Acceptor-Linked COFs Electrolytes to Regulate Electron Density and Accelerate the Li + Migration in Quasi-Solid-State Battery. NANO-MICRO LETTERS 2024; 17:21. [PMID: 39325321 PMCID: PMC11427627 DOI: 10.1007/s40820-024-01509-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 08/11/2024] [Indexed: 09/27/2024]
Abstract
Regulation the electronic density of solid-state electrolyte by donor-acceptor (D-A) system can achieve highly-selective Li+ transportation and conduction in solid-state Li metal batteries. This study reports a high-performance solid-state electrolyte thorough D-A-linked covalent organic frameworks (COFs) based on intramolecular charge transfer interactions. Unlike other reported COF-based solid-state electrolyte, the developed concept with D-A-linked COFs not only achieves electronic modulation to promote highly-selective Li+ migration and inhibit Li dendrite, but also offers a crucial opportunity to understand the role of electronic density in solid-state Li metal batteries. The introduced strong electronegativity F-based ligand in COF electrolyte results in highly-selective Li+ (transference number 0.83), high ionic conductivity (6.7 × 10-4 S cm-1), excellent cyclic ability (1000 h) in Li metal symmetric cell and high-capacity retention in Li/LiFePO4 cell (90.8% for 300 cycles at 5C) than substituted C- and N-based ligands. This is ascribed to outstanding D-A interaction between donor porphyrin and acceptor F atoms, which effectively expedites electron transferring from porphyrin to F-based ligand and enhances Li+ kinetics. Consequently, we anticipate that this work creates insight into the strategy for accelerating Li+ conduction in high-performance solid-state Li metal batteries through D-A system.
Collapse
Affiliation(s)
- Genfu Zhao
- School of Materials and Energy, International Joint Research Center for Advanced Energy Materials of Yunnan Province, Yunnan University, Kunming, 650091, People's Republic of China
| | - Hang Ma
- Yunnan Yuntianhua Co., Ltd, R & D Center, Kunming, 650228, People's Republic of China
| | - Conghui Zhang
- School of Materials and Energy, International Joint Research Center for Advanced Energy Materials of Yunnan Province, Yunnan University, Kunming, 650091, People's Republic of China
| | - Yongxin Yang
- School of Materials and Energy, International Joint Research Center for Advanced Energy Materials of Yunnan Province, Yunnan University, Kunming, 650091, People's Republic of China
| | - Shuyuan Yu
- School of Materials and Energy, International Joint Research Center for Advanced Energy Materials of Yunnan Province, Yunnan University, Kunming, 650091, People's Republic of China
| | - Haiye Zhu
- School of Materials and Energy, International Joint Research Center for Advanced Energy Materials of Yunnan Province, Yunnan University, Kunming, 650091, People's Republic of China
| | - Yongjiang Sun
- School of Materials and Energy, International Joint Research Center for Advanced Energy Materials of Yunnan Province, Yunnan University, Kunming, 650091, People's Republic of China
| | - Hong Guo
- School of Materials and Energy, International Joint Research Center for Advanced Energy Materials of Yunnan Province, Yunnan University, Kunming, 650091, People's Republic of China.
- Southwest United Graduate School, Kunming, 650091, People's Republic of China.
| |
Collapse
|
8
|
Liu J, Zhu Y, Li S, Hu Y, Chen K, Li T, Zhang Y. Benzothiadiazole-Based Ordered Mesoporous Polymer as a Versatile, Metal-Free Heterogeneous Photocatalyst. Chemistry 2024; 30:e202402040. [PMID: 39007169 DOI: 10.1002/chem.202402040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/04/2024] [Accepted: 07/10/2024] [Indexed: 07/16/2024]
Abstract
Visible-light active heterogeneous organophotocatalysts have recently gained considerable interest in organic synthetic community. Ordered mesoporous polymers (OMPs) are highly promising as heterogeneous alternative to traditional precious metal/organic dyes-based photocatalysts. Herein, we report the preparation of a benzothiadiazole functionalized OMPs (BT-MPs) through a "bottom-up" strategy. High ordered periodic porosity, large surface area, excellent stability and rational energy-band structures guarantee the high catalytic activity of BT-MPs. As a result, at least six conversions, e. g., the [3+2] cycloaddition of phenols with olefins, the selective oxidation of sulfides, the C-3 thiocyanation of indole and the aminothiocyanation of β-keto ester, could be promoted smoothly by BT-MPs. In addition, BT-MPs was readily recovered with well maintaining its photocatalytic activity and could be reused for at least eight times. This study highlights the potential of exploiting photoactive OMPs as recyclable, robust and metal-free heterogeneous photocatalysts.
Collapse
Affiliation(s)
- Jiyu Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. China
| | - Yin Zhu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. China
| | - Shengyu Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. China
| | - Yansong Hu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. China
| | - Kuan Chen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. China
| | - Tingyan Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. China
| | - Yuan Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. China
| |
Collapse
|
9
|
Cheng YZ, Yang DH, Ji W, Hao PY, Ma P, Wang J, Niu J, Ding X, Zhang L, Han BH. Restricted Growth of Vinylene-Linked Covalent Organic Frameworks along Two-Dimensional Plane Using Heterogeneous Catalysis. J Am Chem Soc 2024; 146:22959-22969. [PMID: 39106438 DOI: 10.1021/jacs.4c01836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
The vinylene-linked covalent organic frameworks (viCOFs) have been generally synthesized in the presence of homogeneous catalysts such as KOH or trifluoroacetic acid. However, highly ordered viCOFs cannot always be obtained due to the uncommitted growth of viCOF layers in the homogeneous system with ubiquitous catalysts. Here, we propose a scalable protocol to restrict the growth of viCOFs along the two-dimensional (2D) plane by introducing a heterogeneous catalyst, polyoxometalates (POMs). With the unique Brønsted alkalinity and catalytic surface, POMs induce the growth of 2D viCOF layers along the surface of the catalytic substrate and restrain the generation of out-of-plane branches. Based on this protocol, six typical 2D viCOFs with high crystallinity and porosity were synthesized within a shorter reaction time as compared with the reported works using the common homogeneous catalysts for viCOF synthesis. On the basis of the density functional theory calculations and experimental results, a bottom intercalation growth pattern of viCOFs was revealed during the heterogeneous reaction. The unique growth pattern greatly promotes the orderly assembly of monomers, thus shortening the reaction time and improving the crystallinity of viCOFs. Furthermore, this heterogeneous catalysis strategy is suitable for the gram-scale preparation of 2D viCOFs. These results provide a novel avenue for the synthesis of high-quality viCOFs and may bring new insights into the synthetic methodology of COFs.
Collapse
Affiliation(s)
- Yuan-Zhe Cheng
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong-Hui Yang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Wenyan Ji
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Peng-Yuan Hao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengtao Ma
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Jingping Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Jingyang Niu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Xuesong Ding
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Lizhi Zhang
- CAS Key Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Bao-Hang Han
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Zhao L, Wu Z, Qin H, Bin G, Gao J, Zeng W, Zhao Y, Chen H. Ambipolar conjugated ladder polymers by room-temperature Knoevenagel polymerization. Chem Sci 2024; 15:11594-11603. [PMID: 39055013 PMCID: PMC11268504 DOI: 10.1039/d4sc03222e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 06/19/2024] [Indexed: 07/27/2024] Open
Abstract
Two soluble conjugated ladder polymers (cLPs), decorated with multiple electron-poor species (i.e., cyano groups, fused pentagons, and N-heterocyclic rings), have been synthesized from the newly developed tetraketo-functionalized double aza[5]helicene building blocks using a single-step Knoevenagel polycondensation strategy. This facile approach features mild conditions (e.g., room temperature) and high efficiency, allowing us to quickly access a nonalternant ladder-like conjugated system with the in situ formation of multicyano substituents in the backbone. Analysis by 1H NMR, FT-Raman, and FT-IR spectra confirms the successful synthesis of the resulting cLPs. The combination of theoretical calculations and experimental characterizations reveals that the slightly contorted geometry coupled with a random assignment of trans- and cis-isomeric repeating units in each main chain contributes to improving the solubility of such rigid, multicyano nanoribbon systems. Apart from outstanding thermal stability, the resulting cLPs exhibit attractive red fluorescence, excellent redox properties, and strong π-π interactions coupled with orderly face-on packing in their thin-film states. They are proven to be the first example of ambipolar cLPs that show satisfactory hole and electron mobilities of up to 0.01 and 0.01 cm2 V-1 s-1, respectively. As we demonstrate, the Knoevenagel polycondensation chemistries open a new window to create complex and unique ladder-like nanoribbon systems under mild reaction conditions that are otherwise challenging to achieve.
Collapse
Affiliation(s)
- Lingli Zhao
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Key Laboratory of Polymeric Materials and Application Technology of Hunan Province, College of Chemistry, Xiangtan University Xiangtan 411105 P. R. China
| | - Zeng Wu
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University Shanghai 200438 P. R. China
| | - Hanwen Qin
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Key Laboratory of Polymeric Materials and Application Technology of Hunan Province, College of Chemistry, Xiangtan University Xiangtan 411105 P. R. China
| | - Guangxiong Bin
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Key Laboratory of Polymeric Materials and Application Technology of Hunan Province, College of Chemistry, Xiangtan University Xiangtan 411105 P. R. China
| | - Junxiang Gao
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Key Laboratory of Polymeric Materials and Application Technology of Hunan Province, College of Chemistry, Xiangtan University Xiangtan 411105 P. R. China
| | - Weixuan Zeng
- Zhangjiang Laboratory Shanghai 201210 P. R. China
| | - Yan Zhao
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University Shanghai 200438 P. R. China
| | - Huajie Chen
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Key Laboratory of Polymeric Materials and Application Technology of Hunan Province, College of Chemistry, Xiangtan University Xiangtan 411105 P. R. China
| |
Collapse
|
11
|
Zhao W, Zhu Q, Wu X, Zhao D. The development of catalysts and auxiliaries for the synthesis of covalent organic frameworks. Chem Soc Rev 2024; 53:7531-7565. [PMID: 38895859 DOI: 10.1039/d3cs00908d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Covalent organic frameworks (COFs) have recently seen significant advancements. Large quantities of structurally & functionally oriented COFs with a wide range of applications, such as gas adsorption, catalysis, separation, and drug delivery, have been explored. Recent achievements in this field are primarily focused on advancing synthetic methodologies, with catalysts playing a crucial role in achieving highly crystalline COF materials, particularly those featuring novel linkages and chemistry. A series of reviews have already been published over the last decade, covering the fundamentals, synthesis, and applications of COFs. However, despite the pivotal role that catalysts and auxiliaries play in forming COF materials and adjusting their properties (e.g., crystallinity, porosity, stability, and morphology), limited attention has been devoted to these essential components. In this Critical Review, we mainly focus on the state-of-the-art progress of catalysts and auxiliaries applied to the synthesis of COFs. The catalysts include four categories: acid catalysts, base catalysts, transition-metal catalysts, and other catalysts. The auxiliaries, such as modulators, oxygen, and surfactants, are discussed as well. This is then followed by the description of several specific applications derived from the utilization of catalysts and auxiliaries. Lastly, a perspective on the major challenges and opportunities associated with catalysts and auxiliaries is provided.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
| | - Qiang Zhu
- Leverhulme Research Centre for Functional Materials Design, Materials Innovation Factory and Department of Chemistry, University of Liverpool, Liverpool, UK
| | - Xiaofeng Wu
- Leverhulme Research Centre for Functional Materials Design, Materials Innovation Factory and Department of Chemistry, University of Liverpool, Liverpool, UK
| | - Dan Zhao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
| |
Collapse
|
12
|
Yang S, Meng F, Li X, Fu Y, Xu Q, Zhang F. Tuning the Pyridine Units in Vinylene-Linked Covalent Organic Frameworks Boosting 2e - Oxygen Reduction Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308801. [PMID: 38295007 DOI: 10.1002/smll.202308801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/10/2024] [Indexed: 02/02/2024]
Abstract
The N-doped carbon materials are supposed to be the efficient oxygen reduction reaction (ORR) catalysts with the undefined N-doped carbon ring groups. It is essential to well define the role of the nitrogen atoms of these carbon structures in active behavior. Even though, the covalent organic frameworks (COFs) with precise structures are well developed, but unable to exclude the polar linkages influence. This study presents a series of pyridine-containing COFs linked via nonpolar carbon-carbon double bonds (C = C). Their catalytic activity and selectivity for 2e- ORR are successfully modulated by locating the embedded pyridine nitrogen in the backbones through the linking modes of pyridine moieties within the frameworks. Such phenomena can be attributed to their different binding abilities toward O2, leading to the different binding strength of the intermediate OH* to the catalytic sites, also verified by the theoretical calculation. This work provides us a new insight to design high-efficiency ORR catalysts through the exact location of pyridine nitrogen.
Collapse
Affiliation(s)
- Shuai Yang
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, 201210, P. R. China
| | - Fancheng Meng
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Xiaomeng Li
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Yubin Fu
- Center for Advancing Electronics Dresden (cfaed), Faculty of Chemistry, Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Qing Xu
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, 201210, P. R. China
| | - Fan Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, P. R. China
| |
Collapse
|
13
|
Zhen D, Liu C, Deng Q, Li L, Grimes CA, Yang S, Cai Q, Liu Y. Novel Olefin-Linked Covalent Organic Framework with Multifunctional Group Modification for the Fluorescence/Smartphone Detection of Uranyl Ion. ACS APPLIED MATERIALS & INTERFACES 2024; 16:27804-27812. [PMID: 38756089 DOI: 10.1021/acsami.4c05522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Monitoring and purification of uranium contamination are of great importance for the rational utilization of uranium resources and maintaining the environment. In this work, an olefin-linked covalent organic framework (GC-TFPB) and its amidoxime-modified product (GC-TFPB-AO) are synthesized with 3-cyano-4,6-dimethyl-2-hydroxypyridine (GC) and 1,3,5-tris(4-formylphenyl) benzene (TFPB) by Knoevenagel condensation. GC-TFPB-AO results in specificity for rapid fluorescent/smartphone uranyl ion (UO22+) detection based on the synergistic effect of multifunctional groups (amidoxime, pyridine, and hydroxyl groups). GC-TFPB-AO features a rapid and highly sensitive detection and adsorption of UO22+ with a detection limit of 21.25 nM. In addition, it has a good recovery (100-111%) for fluorescence detection in real samples, demonstrating an excellent potential of predesigned olefin-linked fluorescent COFs in nuclear contaminated wastewater detection and removal.
Collapse
Affiliation(s)
- Deshuai Zhen
- Hunan Key Laboratory of Typical Environment Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, School of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Chunlin Liu
- Hunan Key Laboratory of Typical Environment Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, School of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Qiuhui Deng
- Hunan Key Laboratory of Typical Environment Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, School of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Le Li
- Hunan Key Laboratory of Typical Environment Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China
| | - Craig A Grimes
- Flux Photon Corporation, 5950 Shiloh Road East, Alpharetta, Georgia 30005, United States
| | - Shengyuan Yang
- Hunan Key Laboratory of Typical Environment Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China
| | - Qingyun Cai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, School of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Yu Liu
- Hunan Key Laboratory of Typical Environment Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, School of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| |
Collapse
|
14
|
Luo X, Wang Y, Lv H, Wu X. Asymmetric Potential Model of Two-Dimensional Imine Covalent Organic Frameworks with Enhanced Quantum Efficiency for Photocatalytic Water Splitting. J Phys Chem Lett 2024; 15:5467-5475. [PMID: 38748088 DOI: 10.1021/acs.jpclett.4c00980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Two-dimensional (2D) covalent organic frameworks (COFs) assembled using building blocks have been widely employed in photocatalysis due to their customizable optoelectronic characteristics and porous structure, which facilitate charge carrier and mass movement. Nevertheless, the development of COF photocatalysts encounters a continuous obstacle in enhancing the efficiency of photocatalysis, impeded by a limited comprehension of the orbital interaction between molecular fragments and linkers. In this study, we present a model that examines the interaction between molecular fragments in an imine-based COF at the frontier molecular orbital level, enabling us to comprehend the impact of manipulating linkers on light adsorption, exciton efficiency, and catalytic activity. Our findings demonstrate that altering the connecting orientation of 14 R-C=N-R imine linkers in 2D COFs can enhance solar-to-hydrogen (STH) efficiency under visible light from 2.76% to 4.24%. This research has the potential to provide a valuable model for refining photocatalysts with enhanced photocatalytic performance.
Collapse
Affiliation(s)
- Xiao Luo
- Key laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Sciences, and Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yunlei Wang
- Key laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Sciences, and Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Haifeng Lv
- Key laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Sciences, and Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiaojun Wu
- Key laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Sciences, and Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
15
|
Prieto T, Ponte C, Guntermann R, Medina DD, Salonen LM. Synthetic Strategies to Extended Aromatic Covalent Organic Frameworks. Chemistry 2024:e202401344. [PMID: 38771916 DOI: 10.1002/chem.202401344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 05/23/2024]
Abstract
π-Conjugated materials are highly attractive owing to their unique optical and electronic properties. Covalent organic frameworks (COFs) offer a great opportunity for precise arrangement of building units in a π-conjugated crystalline matrix and tuning of the properties through choice of functionalities or post-synthetic modification. With this review, we aim at summarizing both the most representative as well as emerging strategies for the synthesis of π-conjugated COFs. We give examples of direct synthesis using large, π-extended building blocks. COFs featuring fully conjugated linkages such as vinylene, pyrazine, and azole are discussed. Then, post-synthetic modification methods that result in the extension of the COF π-system are reviewed. Throughout, mechanistic insights are presented when available. In the context of their utilization as film devices, we conduct a concise survey of the prominent COF layer deposition techniques reported and their aptness for the deposition of fused aromatic systems.
Collapse
Affiliation(s)
- Tania Prieto
- CINBIO, Universidade de Vigo, Department of Organic Chemistry, 36310, Vigo, Spain
| | - Clara Ponte
- Nanochemistry Research Group, International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga, 4715-330, Braga, Portugal
- CICECO-Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Roman Guntermann
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig Maximilians University (LMU), Butenandtstraße 11 (E), 81377, Munich, Germany
| | - Dana D Medina
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig Maximilians University (LMU), Butenandtstraße 11 (E), 81377, Munich, Germany
| | - Laura M Salonen
- CINBIO, Universidade de Vigo, Department of Organic Chemistry, 36310, Vigo, Spain
- Nanochemistry Research Group, International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga, 4715-330, Braga, Portugal
| |
Collapse
|
16
|
Yang N, Yan W, Zhou ZJ, Tian C, Zhang P, Liu H, Wu XP, Xia C, Dai S, Zhu X. Synthetic Leaves Based on Crystalline Olefin-Linked Covalent Organic Frameworks for Efficient CO 2 Photoreduction with Water. NANO LETTERS 2024; 24:5444-5452. [PMID: 38639448 DOI: 10.1021/acs.nanolett.4c00343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
We report, for the first time, a new synthetic strategy for the preparation of crystalline two-dimensional olefin-linked covalent organic frameworks (COFs) based on aldol condensation between benzodifurandione and aromatic aldehydes. Olefin-linked COFs can be facilely crystallized through either a pyridine-promoted solvothermal process or a benzoic anhydride-mediated organic flux synthesis. The resultant COF leaf with high in-plane π-conjugation exhibits efficient visible-light-driven photoreduction of carbon dioxide (CO2) with water (H2O) in the absence of any photosensitizer, sacrificial agents, or cocatalysts. The production rate of carbon monoxide (CO) reaches as high as 158.1 μmol g-1 h-1 with near 100% CO selectivity, which is accompanied by the oxidation of H2O to oxygen. Both theoretical and experimental results confirm that the key lies in achieving exceptional photoinduced charge separation and low exciton binding. We anticipate that our findings will facilitate new possibilities for the development of semiconducting COFs with structural diversity and functional variability.
Collapse
Affiliation(s)
- Na Yang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Wenkai Yan
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Zi-Jian Zhou
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Chengcheng Tian
- School of Resources and Environment Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Peng Zhang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Honglai Liu
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xin-Ping Wu
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Chungu Xia
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Sheng Dai
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Xiang Zhu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
17
|
Lei L, Luan TX, Li PZ, Qiu Y, Su J, Wang Z, Wang P, Zheng Z, Cheng H, Dai Y, Huang B, Liu Y. Strong Second-Harmonic Generation Induced by a Triphenylamine-Based Bismuth-Organic Framework for Photocatalytic Activity Enhancement. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38603468 DOI: 10.1021/acsami.4c00967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Taking advantage of the well-defined geometry of metal centers and highly directional metal-ligand coordination bonds, metal-organic frameworks (MOFs) have emerged as promising candidates for nonlinear optical (NLO) materials. In this work, taking a photoresponsive carboxylate triphenylamine derivative as an organic ligand, a bismuth-based MOF, Bi-NBC, NBC = 4',4‴,4‴″-nitrilotris(([1,1'-biphenyl]-4-carboxylic acid)) is obtained. Structure determination reveals that it is a potential NLO material derived from its noncentrosymmetric structure, which is finally confirmed by its rarely strong second harmonic generation (SHG) effect. Theoretical calculations reveal that the potential difference around Bi atoms is large; therefore, it leads to a strong local built-in electric field, which greatly facilitates the charge separation and transfer and finally improves the photocatalytic performance. Our results provide a reference for the exploration of MOFs with NLO properties.
Collapse
Affiliation(s)
- Longfei Lei
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China
- The 46th Research Institute, China Electronics Technology Group Corporation, Tianjin 300220, P. R. China
| | - Tian-Xiang Luan
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Pei-Zhou Li
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Yi Qiu
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Jie Su
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Zeyan Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China
| | - Peng Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China
| | - Zhaoke Zheng
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China
| | - Hefeng Cheng
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China
| | - Ying Dai
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China
| | - Baibiao Huang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China
| | - Yuanyuan Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China
| |
Collapse
|
18
|
Zadehnazari A, Khosropour A, Altaf AA, Rosen AS, Abbaspourrad A. Tetrazine-Linked Covalent Organic Frameworks With Acid Sensing and Photocatalytic Activity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311042. [PMID: 38140890 DOI: 10.1002/adma.202311042] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/29/2023] [Indexed: 12/24/2023]
Abstract
The first synthesis and comprehensive characterization of two vinyl tetrazine-linked covalent organic frameworks (COF), TA-COF-1 and TA-COF-2, are reported. These materials exhibit high crystallinity and high specific surface areas of 1323 and 1114 m2 g-1. The COFs demonstrate favorable band positions and narrow band gaps suitable for light-driven applications. These advantages enable TA-COFs to act as reusable metal-free photocatalysts in the arylboronic acids oxidation and light-induced coupling of benzylamines. In addition, these TA-COFs show acid sensing capabilities, exhibiting visible and reversible color changes upon exposure to HCl solution, HCl vapor, and NH3 vapor. Further, the TA-COFs outperform a wide range of previously reported COF photocathodes. The tetrazine linker in the COF skeleton represents a significant advancement in the field of COF synthesis, enhancing the separation efficiency of charge carriers during the photoreaction and contributing to their photocathodic properties. TA-COFs can also degrade 5-nitro-1,2,4-triazol-3-one (NTO), an insensitive explosive present in industrial wastewater, in 20 min in a sunlight-driven photocatalytic process; thus, revealing dual functionality of the protonated TA-COFs as both photodegradation and Brønsted acid catalysts. This pioneering work opens new avenues for harnessing the potential of the tetrazine linker in COF-based materials, facilitating advances in catalysis, sensing, and other related fields.
Collapse
Affiliation(s)
- Amin Zadehnazari
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Stocking Hall, Ithaca, NY, 14853, USA
| | - Ahmadreza Khosropour
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Stocking Hall, Ithaca, NY, 14853, USA
| | - Ataf Ali Altaf
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Stocking Hall, Ithaca, NY, 14853, USA
| | - Andrew S Rosen
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA, 94720, USA
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Alireza Abbaspourrad
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Stocking Hall, Ithaca, NY, 14853, USA
| |
Collapse
|
19
|
Chen Q, Wang Y, Luo G. Photoenzymatic CO 2 Reduction Dominated by Collaborative Matching of Linkage and Linker in Covalent Organic Frameworks. J Am Chem Soc 2024; 146:586-598. [PMID: 38109499 DOI: 10.1021/jacs.3c10350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Artificial photoenzymatic systems based on covalent organic frameworks (COFs) provide an interesting platform for converting CO2 to value-added fuels. However, the dual roles of COFs as photocatalysts and enzyme hosts showcase contradictory preferences for structures, which poses a great challenge for their rational design. Herein, we report the collaborative matching of linkages and linkers in COFs on their ability to exert both photocatalytic activity and enzyme loading, which has been neglected until now. The linkage-dependent linker regulation pattern was elucidated, and the optimal match showed a record-breaking apparent quantum efficiency at 420 nm for photocatalytic cofactor regeneration of 13.95% with a high turnover frequency of 5.3 mmol g-1 h-1, outperforming other reported crystalline framework photocatalysts. Moreover, theoretical calculations and experiments revealed the mechanism underlying the effects of matching the linkage and linker on exciton dissociation and charge migration in photocatalysis. This newfound understanding enabled the construction of COFs with both high photoactivity and large pores closer in size to the formate dehydrogenase, achieving high loading capacity and a suitable confinement effect. Remarkably, the artificial photoenzymatic system constructed according to optimal linkage-linker matching exhibited highly efficient CO2 reduction, yielding formic acid with a specific activity as high as 1.46 mmol g-1 catalyst h-1 and good reusability, paving the way for sustainable CO2 conversion driven by visible light.
Collapse
Affiliation(s)
- Qiang Chen
- The State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yujun Wang
- The State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Guangsheng Luo
- The State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
20
|
Huang NY, Zheng YT, Chen D, Chen ZY, Huang CZ, Xu Q. Reticular framework materials for photocatalytic organic reactions. Chem Soc Rev 2023; 52:7949-8004. [PMID: 37878263 DOI: 10.1039/d2cs00289b] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Photocatalytic organic reactions, harvesting solar energy to produce high value-added organic chemicals, have attracted increasing attention as a sustainable approach to address the global energy crisis and environmental issues. Reticular framework materials, including metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), are widely considered as promising candidates for photocatalysis owing to their high crystallinity, tailorable pore environment and extensive structural diversity. Although the design and synthesis of MOFs and COFs have been intensively developed in the last 20 years, their applications in photocatalytic organic transformations are still in the preliminary stage, making their systematic summary necessary. Thus, this review aims to provide a comprehensive understanding and useful guidelines for the exploration of suitable MOF and COF photocatalysts towards appropriate photocatalytic organic reactions. The commonly used reactions are categorized to facilitate the identification of suitable reaction types. From a practical viewpoint, the fundamentals of experimental design, including active species, performance evaluation and external reaction conditions, are discussed in detail for easy experimentation. Furthermore, the latest advances in photocatalytic organic reactions of MOFs and COFs, including their composites, are comprehensively summarized according to the actual active sites, together with the discussion of their structure-property relationship. We believe that this study will be helpful for researchers to design novel reticular framework photocatalysts for various organic synthetic applications.
Collapse
Affiliation(s)
- Ning-Yu Huang
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China.
| | - Yu-Tao Zheng
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China.
| | - Di Chen
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China.
| | - Zhen-Yu Chen
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China.
| | - Chao-Zhu Huang
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China.
| | - Qiang Xu
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China.
| |
Collapse
|
21
|
Wang T, Zhang Y, Wang Z, Chen Y, Cheng P, Zhang Z. Olefin-linked covalent organic frameworks: synthesis and applications. Dalton Trans 2023; 52:15178-15192. [PMID: 37461388 DOI: 10.1039/d3dt01684f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Covalent organic frameworks (COFs) with high specific porosity, easy functionalization, and tailored structure are an emerging class of crystalline porous polymers that have been extensively exploited as ideal materials in various fields. Among them, sp2-carbon linked COFs with high chemical stability, porous backbone, and unique π-electron conjugated architectures structure have raised widespread attention. Specifically, the porous channels of olefin-linked COFs could be packed with active sites for catalysis and guest molecules, while π-π stacking interactions and conjugation systems pave the way for electron transfer. In recent years, many efforts have been devoted to the development of sp2-carbon linked COFs for applications in catalysis, energy storage, gas adsorption, and separation. In this review, we highlight the design principles, synthesis strategies, and impactful applications of olefin-linked COFs. We are looking forward to this review to deepen the understanding of the synthesis of olefin-linked COFs and motivate the further development of these novel conjugated organic materials with distinctive physicochemical properties, as well as their applications in a variety of fields.
Collapse
Affiliation(s)
- Ting Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China.
| | - Yushu Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China.
| | - Zhifang Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China.
- Key Laboratory of Advanced Energy Materials Chemistry, Ministry of Education, Nankai University, Tianjin, 300071, P. R. China
| | - Yao Chen
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China.
- College of Pharmacy, Nankai University, Tianjin, 300071, P. R. China
| | - Peng Cheng
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China.
- Key Laboratory of Advanced Energy Materials Chemistry, Ministry of Education, Nankai University, Tianjin, 300071, P. R. China
- Frontiers Science Center for New Organic Matter, Renewable Energy Conversion and Storage Cente, Nankai University, Tianjin, 300071, P. R. China
| | - Zhenjie Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China.
- Key Laboratory of Advanced Energy Materials Chemistry, Ministry of Education, Nankai University, Tianjin, 300071, P. R. China
- Frontiers Science Center for New Organic Matter, Renewable Energy Conversion and Storage Cente, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
22
|
Zhang M, Huang P, Liao JP, Yang MY, Zhang SB, Liu YF, Lu M, Li SL, Cai YP, Lan YQ. Relative Local Electron Density Tuning in Metal-Covalent Organic Frameworks for Boosting CO 2 Photoreduction. Angew Chem Int Ed Engl 2023; 62:e202311999. [PMID: 37709724 DOI: 10.1002/anie.202311999] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/04/2023] [Accepted: 09/14/2023] [Indexed: 09/16/2023]
Abstract
The high local electron density and efficient charge carrier separation are two important factors to affect photocatalytic activity, especially for the CO2 photoreduction reaction. However, the systematic studies on the structure-functional relationship regarding the above two factors based on precisely structure model are rarely reported. Herein, as a proof-of-concept, we developed a new strategy on the evaluation of local electron density by controlling the relative electron-deficient (ED) and electron-rich (ER) intensity of monomer at a molecular level based on three rational-designed vinylene-linked sp2 carbon-covalent organic frameworks (COFs). As expected, the as-prepared vinylene-linked sp2 carbon-conjugated metal-covalent organic framework (MCOFs) (VL-MCOF-1) with molecular junction exhibited excellent activities for CO2 -to-HCOOH conversion (283.41 μmol g-1 h-1 ) and high selectivity of 97.1 %, much higher than the VL-MCOF-2 and g-C34 N6 -COF, which is due to the synergistic effect of the multi-electronic metal clusters (Cu3 (PyCA)3 ) (PyCA=pyrazolate-4-carboxaldehyde) as strong ER roles and cyanopyridine units as ED roles and active sites, as well as the boosted photo-induced charge separation efficiency of vinyl connection and increased light utilization ability. These results not only provide a strategy for regulating the electron-density distribution of photocatalysts at the molecular level but also offers profound insights for metal clusters-based COFs to effective CO2 conversion.
Collapse
Affiliation(s)
- Mi Zhang
- School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Pei Huang
- School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Jia-Peng Liao
- School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Ming-Yi Yang
- School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Shuai-Bing Zhang
- School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Yu-Fei Liu
- School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Meng Lu
- School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Shun-Li Li
- School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Yue-Peng Cai
- School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Ya-Qian Lan
- School of Chemistry, South China Normal University, Guangzhou, 510006, China
| |
Collapse
|
23
|
Zhu L, Zhang Q, Meng F, Li M, Liang Q, Zhang F. Narrow-Pore Engineering of Vinylene-Linked Covalent Organic Frameworks with Weak Interaction-Triggered Multiple Responses. Angew Chem Int Ed Engl 2023; 62:e202309125. [PMID: 37646743 DOI: 10.1002/anie.202309125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/26/2023] [Accepted: 08/30/2023] [Indexed: 09/01/2023]
Abstract
Vinylene-linked covalent organic frameworks (COFs) are emerging as promising crystalline materials, but their narrow pore engineering is severely impeded by the weak reversibility of the carbon-carbon double bond formation reaction, which has led to less exploration of their ultramicroporous structures and properties. Herein, we developed a single aromatic ring-based tetratopic monomer, tetramethylpyrazine, which undergoes a smooth Knoevenegal condensation at its four arylmethly carbon atoms with linear aromatic dialdehyde monomers upon the self-catalyzed activation of pyridine nitrogen-containing monomers in the presence of an organic anhydride. This has resulted in the formation of two vinylene-linked COFs, which both crystallized in orthorhombic lattices, and layered in AA stacking fashions along the vertical directions. They exhibit high surface areas and well-tailored ultramicropore sizes up to 0.5 nm. The unique cross-linking mode at two pairs of para-positions of each pyrazine unit through carbon-carbon double bonds afford them with π-extended conjugation over the in-plane backbones and substantial semiconducting characters. The resultant COFs can be well-dispersed in water to form stable sub-microparticles with negative charges (zeta potentials: ca. -30 mV), and exhibiting tunable aggregation behaviors through protonation/deprotonation. As a consequence, they exhibit pore-size-dependent colorimetric responses to various anions with different pKa values in high selectivity.
Collapse
Affiliation(s)
- Lin Zhu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
- Department of Physics, Shaoxing University, 508 Huanchengxi Road, Shaoxing, 312000, China
| | - Qian Zhang
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240, China
| | - Fancheng Meng
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Mengqi Li
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Qifeng Liang
- Department of Physics, Shaoxing University, 508 Huanchengxi Road, Shaoxing, 312000, China
| | - Fan Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
24
|
Feng XN, Yang Y, Cao X, Wang T, Kong DM, Yin XB, Li B, Bu XH. General Approach to Construct C-C Single Bond-Linked Covalent Organic Frameworks. J Am Chem Soc 2023; 145:21284-21292. [PMID: 37703101 DOI: 10.1021/jacs.3c05403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
C-C single bond-linked covalent organic frameworks (CSBL-COFs) are extremely needed because of their excellent stabilities and potential applications in harsh conditions. However, strategies to generate CSBL-COFs are limited to the acetylenic self-homocoupling Glaser-Hay reaction or post-synthetic reduction of vinylene-based COFs. Exploring new strategies to expand the realm of CSBL-COFs is urgently needed but extremely challenging. To address the synthetic challenges, we for the first time developed a general approach via the reaction between aromatic aldehydes and active methyl group-involving monomers with enhanced acidity, which realized the successful construction of a series of CSBL-COFs. As expected, the obtained CSBL-COFs exhibited outstanding chemical stability, which can stabilize in 6 M NaOH, 3 M HCl, boiling water, and 100 mg/mL NaBH4 for at least 3 days. It is important to mention that CSBL-COFs possess a large amount of ionic sites distributed throughout the networks; gentle shaking allowed our COFs to easily self-disperse as nanoparticles and suspend in water for at least 12 h without reprecipitating. As far as we know, such self-dispersed COFs with high water dispersity are rare to date, and few examples are mainly limited to the guanidinium- and pseudorotaxane-based COFs. Our work thus developed a family of self-dispersed COFs for potential applications in different sorts of fields. Our contribution would thus pave a new avenue for constructing a broader class of CSBL-COFs for their wide applications in various fields.
Collapse
Affiliation(s)
- Xue-Nan Feng
- Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yi Yang
- Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Xuejie Cao
- Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Ting Wang
- Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - De-Ming Kong
- Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Xue-Bo Yin
- Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, P. R. China
| | - Baiyan Li
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, P. R. China
| | - Xian-He Bu
- Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, P. R. China
| |
Collapse
|
25
|
Li Z, Wang W, Tao F, Zhou W, Wang L, Yu Z, Wang K, Zhang J, Zhou H. Fabricating s-collidine-derived vinylene-linked covalent organic frameworks for photocatalysis. Chem Commun (Camb) 2023; 59:11728-11731. [PMID: 37702593 DOI: 10.1039/d3cc03446a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Research into vinyl-linked covalent organic frameworks (COFs) has grown significantly in recent years due to various attractive properties. Herein, we design and synthesize two highly crystalline and stable 2,4,6-collidine-derived vinylene-linked 2D COFs. Both COFs can act as efficient photocatalysts to facilitate visible-light-driven aerobic oxidation. The TM-TBT-COF was observed to exhibit superior activity and recyclability owing to its excellent semiconducting properties.
Collapse
Affiliation(s)
- Zuyi Li
- Institute of Material Science and Information Technology, College of Chemistry and Chemical Engineering Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, 230601, P. R. China.
| | - Wengjing Wang
- Institute of Material Science and Information Technology, College of Chemistry and Chemical Engineering Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, 230601, P. R. China.
| | - Feng Tao
- Institute of Material Science and Information Technology, College of Chemistry and Chemical Engineering Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, 230601, P. R. China.
| | - Wenwen Zhou
- Institute of Material Science and Information Technology, College of Chemistry and Chemical Engineering Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, 230601, P. R. China.
| | - Lianke Wang
- Institute of Material Science and Information Technology, College of Chemistry and Chemical Engineering Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, 230601, P. R. China.
| | - Zhipeng Yu
- Institute of Material Science and Information Technology, College of Chemistry and Chemical Engineering Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, 230601, P. R. China.
| | - Kaixuan Wang
- Institute of Material Science and Information Technology, College of Chemistry and Chemical Engineering Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, 230601, P. R. China.
| | - Jie Zhang
- Institute of Material Science and Information Technology, College of Chemistry and Chemical Engineering Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, 230601, P. R. China.
| | - Hongping Zhou
- Institute of Material Science and Information Technology, College of Chemistry and Chemical Engineering Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, 230601, P. R. China.
| |
Collapse
|
26
|
Li Z, Sun L, Zhai L, Oh KS, Seo JM, Li C, Han D, Baek JB, Lee SY. Olefin-Linked Covalent Organic Frameworks with Electronegative Channels as Cationic Highways for Sustainable Lithium Metal Battery Anodes. Angew Chem Int Ed Engl 2023; 62:e202307459. [PMID: 37488979 DOI: 10.1002/anie.202307459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/16/2023] [Accepted: 07/24/2023] [Indexed: 07/26/2023]
Abstract
Despite the enormous interest in Li metal as an ideal anode material, the uncontrollable Li dendrite growth and unstable solid electrolyte interphase have plagued its practical application. These limitations can be attributed to the sluggish and uneven Li+ migration towards Li metal surface. Here, we report olefin-linked covalent organic frameworks (COFs) with electronegative channels for facilitating selective Li+ transport. The triazine rings and fluorinated groups of the COFs are introduced as electron-rich sites capable of enhancing salt dissociation and guiding uniform Li+ flux within the channels, resulting in a high Li+ transference number (0.85) and high ionic conductivity (1.78 mS cm-1 ). The COFs are mixed with a polymeric binder to form mixed matrix membranes. These membranes enable reliable Li plating/stripping cyclability over 700 h in Li/Li symmetric cells and stable capacity retention in Li/LiFePO4 cells, demonstrating its potential as a viable cationic highway for accelerating Li+ conduction.
Collapse
Affiliation(s)
- Zhongping Li
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- School of Energy and Chemical Engineering/Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Linhai Sun
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 45007, P. R. China
| | - Lipeng Zhai
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 45007, P. R. China
| | - Kyeong-Seok Oh
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jeong-Min Seo
- School of Energy and Chemical Engineering/Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Changqing Li
- School of Energy and Chemical Engineering/Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Diandian Han
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 45007, P. R. China
| | - Jong-Beom Baek
- School of Energy and Chemical Engineering/Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Sang-Young Lee
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
27
|
Zhang F, Dong X, Wang Y, Lang X. Design and Synthesis of a Triazine-Based sp 2 Carbon-Conjugated Covalent Organic Framework for Blue Light Photocatalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302456. [PMID: 37196416 DOI: 10.1002/smll.202302456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/18/2023] [Indexed: 05/19/2023]
Abstract
Fully conjugated covalent organic frameworks (COFs) can exhibit great potential in semiconductor photocatalysis. But their syntheses remain elusive due to the low reversibility of vinylene linkage. Herein, by tuning the amount of base and temperature, a novel triazine-based sp2 carbon-conjugated COF (TA-sp2 c-COF) is successfully constructed over Cs2 CO3 . Besides, the influence of modulating factors on the chemical and optoelectronic properties of TA-sp2 c-COF is thoroughly investigated. TA-sp2 c-COF adopts an eclipsed AA stacking structure with uniform micropores (1.4 nm). The blue light photocatalysis of the highly crystalline TA-sp2 c-COF is established for the selective oxidative coupling of amines with oxygen, and the predominant role of superoxide is identified in forming imines. This work foretells that meticulous modulation of reaction conditions is the key to constructing sp2 carbon-conjugated COFs toward solar photocatalysis.
Collapse
Affiliation(s)
- Fulin Zhang
- Sauvage Center for Molecular Sciences, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Xiaoyun Dong
- Sauvage Center for Molecular Sciences, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Yuexin Wang
- Sauvage Center for Molecular Sciences, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Xianjun Lang
- Sauvage Center for Molecular Sciences, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
28
|
Cheng K, Li H, Wang JR, Li PZ, Zhao Y. From Supramolecular Organic Cages to Porous Covalent Organic Frameworks for Enhancing Iodine Adsorption Capability by Fully Exposed Nitrogen-Rich Sites. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301998. [PMID: 37162443 DOI: 10.1002/smll.202301998] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/18/2023] [Indexed: 05/11/2023]
Abstract
In order to overcome the limitations of supramolecular organic cages for their incomplete accessibility of active sites in the solid state and uneasy recyclability in liquid solution, herein a nitrogen-rich organic cage is rationally linked into framework systems and four isoreticular covalent organic frameworks (COFs), that is, Cage-TFB-COF, Cage-NTBA-COF, Cage-TFPB-COF, and Cage-TFPT-COF, are successfully synthesized. Structure determination reveals that they are all high-quality crystalline materials derived from the eclipsed packing of related isoreticular two-dimensional frameworks. Since the nitrogen-rich sites usually have a high affinity toward iodine species, iodine adsorption investigations are carried out and the results show that all of them display an enhancement in iodine adsorption capacities. Especially, Cage-NTBA-COF exhibits an iodine adsorption capacity of 304 wt%, 14-fold higher than the solid sample packed from the cage itself. The strong interactions between the nitrogen-rich sites and the adsorbed iodine species are revealed by spectral analyses. This work demonstrates that, utilizing the reticular chemistry strategy to extend the close-packed supramolecular organic cages into crystalline porous framework solids, their inherent properties can be greatly exploited for targeted applications.
Collapse
Affiliation(s)
- Ke Cheng
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Ji'nan, 250100, P. R. China
| | - Hailian Li
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Ji'nan, 250100, P. R. China
| | - Jia-Rui Wang
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Ji'nan, 250100, P. R. China
| | - Pei-Zhou Li
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University, No. 27 Shanda South Road, Ji'nan, 250100, P. R. China
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| |
Collapse
|
29
|
López-Magano A, Daliran S, Oveisi AR, Mas-Ballesté R, Dhakshinamoorthy A, Alemán J, Garcia H, Luque R. Recent Advances in the Use of Covalent Organic Frameworks as Heterogenous Photocatalysts in Organic Synthesis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209475. [PMID: 36563668 DOI: 10.1002/adma.202209475] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/30/2022] [Indexed: 06/16/2023]
Abstract
Organic photochemistry is intensely developed in the 1980s, in which the nature of excited electronic states and the energy and electron transfer processes are thoroughly studied and finally well-understood. This knowledge from molecular organic photochemistry can be transferred to the design of covalent organic frameworks (COFs) as active visible-light photocatalysts. COFs constitute a new class of crystalline porous materials with substantial application potentials. Featured with outstanding structural tunability, large porosity, high surface area, excellent stability, and unique photoelectronic properties, COFs are studied as potential candidates in various research areas (e.g., photocatalysis). This review aims to provide the state-of-the-art insights into the design of COF photocatalysts (pristine, functionalized, and hybrid COFs) for organic transformations. The catalytic reaction mechanism of COF-based photocatalysts and the influence of dimensionality and crystallinity on heterogenous photocatalysis performance are also discussed, followed by perspectives and prospects on the main challenges and opportunities in future research of COFs and COF-based photocatalysts.
Collapse
Affiliation(s)
- Alberto López-Magano
- Inorganic Chemistry Department, Módulo 7, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Saba Daliran
- Department of Chemistry, Faculty of Sciences, University of Zabol, Zabol, 98615-538, Iran
| | - Ali Reza Oveisi
- Department of Chemistry, Faculty of Sciences, University of Zabol, Zabol, 98615-538, Iran
| | - Rubén Mas-Ballesté
- Inorganic Chemistry Department, Módulo 7, Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Amarajothi Dhakshinamoorthy
- School of Chemistry, Madurai Kamaraj University, Madurai, Tamil Nadu, 625021, India
- Organic Chemistry Department, Módulo 1, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - José Alemán
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Instituto de Tecnología Química CSIC-UPV, Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas, Av. de los Naranjos s/n, Valencia, 46022, Spain
| | - Hermenegildo Garcia
- Organic Chemistry Department, Módulo 1, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Rafael Luque
- Department of Organic Chemistry, University of Cordoba, Campus de Rabanales, Edificio Marie Curie (C-3), Ctra Nnal IV-A, Km 396, Cordoba, E14014, Spain
- Department of Chemistry, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya str., Moscow, 117198, Russian Federation
| |
Collapse
|
30
|
Xu Y, Yu Z, Zhang Q, Luo F. Sulfonic-Pendent Vinylene-Linked Covalent Organic Frameworks Enabling Benchmark Potential in Advanced Energy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300408. [PMID: 36859764 PMCID: PMC10161031 DOI: 10.1002/advs.202300408] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/09/2023] [Indexed: 05/06/2023]
Abstract
Both proton exchange membrane fuel cells and uranium-based nuclear techniques represent two green and advanced energies. However, both of them still face some intractable scientific and industrial problems. For the former, established proton-conduction materials always suffer one or another defect such as low proton conductivity, high activation energy, bad durability, or just small-scale product; while for the later, there still lacks available adsorbent to selectively recover of UO2 2+ from concentrated nitric acid (>1 M) during the spent fuel reprocessing due to the deactivation of the adsorption site or the decomposition of adsorbent under such rigorous conditions. It is found that the above two issues can be well solved by the construction of sulfonic-pendent vinylene-linked covalent organic frameworks (COFs), since these COFs contain abundant sulfonic units for both intrinsic proton conduction and UO2 2+ capture through strong coordination fixation and vinylene linkage that enhances the stability up to 12 M nitric acid (one of the best materials surviving in 12 M HNO3 ).
Collapse
Affiliation(s)
- Ying Xu
- School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang, 330013, China
| | - Zhiwu Yu
- High Magnetic Field Laboratory Chinese Academy of Sciences Hefei, Anhui, 230031, China
| | - Qingyun Zhang
- School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang, 330013, China
| | - Feng Luo
- School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang, 330013, China
| |
Collapse
|
31
|
Wang Y, Zhao L, Liu S, Ji G, He C, Tang Y, Duan C. Mixed-Component Metal-Organic Framework for Boosting Synergistic Photoactivation of C(sp 3)-H and Oxygen. ACS APPLIED MATERIALS & INTERFACES 2023; 15:16744-16754. [PMID: 36943723 DOI: 10.1021/acsami.2c23245] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Synergistic catalysis is an efficient and powerful strategy for simultaneously activating reactants by multiple active sites to promote the efficiency of difficult and challenging catalytic reactions. Meanwhile, enzymes with multi-active-site synergistic catalytic properties possessing high efficiency and high selectivity have become the goal pursued in the field of catalytic chemistry in recent years. Metal-organic frameworks (MOFs), as an effective heterogeneous catalytic platform, that can integrate multiple active sites for synergistic catalysis like enzymatic systems have recently attracted interest. Herein, we report a doubly interpenetrated metal-organic framework with dual active sites, MnIII-porphyrin sites to directly activate molecular oxygen and fluoren-9-one sites to produce a hydrogen atom transfer (HAT) agent by the proton-coupled electron transfer (PCET) process to simultaneously activate inert C(sp3)-H bonds for efficient inert C(sp3)-H bond oxidation under mild conditions. The bifunctional mixed-component MOF structure forced the two catalytic sites closer together to a more suitable distance, exhibiting high photocatalytic activity for inert C(sp3)-H bond oxidation with almost unique selectivity under mild conditions. The density functional theory (DFT) calculation of free energy during the whole catalytic process demonstrated that it is likely that the synergistic catalytic process occurred in the interframework to accelerate the catalytic reaction. The assembling mixed-component MOF for synergistic catalysis would be a prospective approach for the inert C(sp3)-H photoactivation and functionalization.
Collapse
Affiliation(s)
- Yefei Wang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China
| | - Liang Zhao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China
| | - Songtao Liu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China
| | - Guanfeng Ji
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China
| | - Cheng He
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China
| | - Yang Tang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
32
|
Zheng Z, Yuan C, Sun M, Dong J, Liu Y, Cui Y. Construction of Monophosphine-Metal Complexes in Privileged Diphosphine-Based Covalent Organic Frameworks for Catalytic Asymmetric Hydrogenation. J Am Chem Soc 2023; 145:6100-6111. [PMID: 36898039 DOI: 10.1021/jacs.2c11037] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Privileged diphosphine ligands that chelate many transition metals to form stable chelation complexes are essential in a variety of catalytic processes. However, the exact identity of the catalytically active moieties remains ambiguous because the chelated metal catalysts may undergo rearrangement during catalysis to produce monophosphine-metal complexes, which are hard to isolate and evaluate the activities. By taking advantage of the isolation of two phosphorus atoms, we demonstrate here the successful construction of chiral monophosphine-Ir/Ru complexes of diphosphine ligands in covalent organic frameworks (COFs) for enantioselective hydrogenation. By condensation of the tetraaldehyde of enantiopure MeO-BIPHEP and linear aromatic diamines, we prepare two homochiral two-dimensional COFs with ABC stacking, in which the two P atoms of each diphosphine are separated and fixed far apart. Post-synthetic metalations of the COFs thus afford the single-site Ir/Ru-monophosphine catalysts, in contrast to the homogeneous chelated analogues, that demonstrated excellent catalytic and recyclable performance in the asymmetric hydrogenation of quinolines and β-ketoesters, affording up to 99.9% enantiomeric excess. Owing to the fact that the porous catalyst is capable of adsorbing and concentrating hydrogen, the catalytic reactions are promoted under ambient/medium pressure, which are typically performed under high pressure for homogeneous catalysis. This work not only shows that monophosphine-metal complexes of diphosphines can be catalytically active centers for asymmetric hydrogenation reactions but also provides a new strategy to prepare new types of privileged phosphine-based heterogeneous catalysts.
Collapse
Affiliation(s)
- Zehao Zheng
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chen Yuan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Meng Sun
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jinqiao Dong
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yong Cui
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
33
|
Ji G, Zhao L, Tang Y, Liu S, Wang Y, He C, Duan C. Ultrathin 2D Cerium-Based Metal-Organic Framework Nanosheet That Boosts Selective Oxidation of Inert C(sp 3 )H Bond through Multiphoton Excitation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300597. [PMID: 36938902 DOI: 10.1002/smll.202300597] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/22/2023] [Indexed: 06/18/2023]
Abstract
The development of methodologies for inducing and tailoring activities of catalysts is an important issue in various catalysis. The ultrathin 2D monolayer metal-organic framework (MOF) nanosheets with more accessible active sites and faster diffusion obtained by exfoliating 3D layered MOFs are of great potential as heterogeneous catalysts, but the rational design and preparation of 3D layered MOFs remains a grand challenge. Herein, a novel weak electrostatic interaction strategy to construct a 3D layered cerium-bearing MOF by coordinating chlorine-capped cerium nodes and linear photoactive methyl viologen (MV+ ) organic linkers is used. Under multiphoton excitation, the MV+ ligands and CeCl chromophores are triggered consecutively to form the high activity chlorine radical (Cl• ) for activation of inert C(sp3 )H bond through a hydrogen atom transfer. Benefiting from framework confinement effects, synergistic effects of two active sites and/or flexibility of the ultrathin framework nanosheets with high surface utilization, the observed activities increase in the order CeCl3 /MV+ < bulk 3D MOF crystals < 2D MOF nanosheets in photocatalysis. This work not only contributes a new strategy to construct 3D layered MOFs and their ultrathin nanosheets but also paves the way to use nanostructured MOFs to handle synergy of multiple molecular catalysts.
Collapse
Affiliation(s)
- Guanfeng Ji
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Liang Zhao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Yang Tang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Songtao Liu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Yefei Wang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Cheng He
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024, P. R. China
| |
Collapse
|
34
|
Li Z, Deng T, Ma S, Zhang Z, Wu G, Wang J, Li Q, Xia H, Yang SW, Liu X. Three-Component Donor-π-Acceptor Covalent-Organic Frameworks for Boosting Photocatalytic Hydrogen Evolution. J Am Chem Soc 2023. [PMID: 36917067 DOI: 10.1021/jacs.2c11893] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
Two-dimensional covalent-organic frameworks (2D COFs) have recently emerged as great prospects for their applications as new photocatalytic platforms in solar-to-hydrogen conversion; nevertheless, their inefficient solar energy capture and fast charge recombination hinder the improvement of photocatalytic hydrogen production performance. Herein, two photoactive three-component donor-π-acceptor (TCDA) materials were constructed using a multicomponent synthesis strategy by introducing electron-deficient triazine and electron-rich benzotrithiophene moieties into frameworks through sp2 carbon and imine linkages, respectively. Compared with two-component COFs, the novel TCDA-COFs are more convenient in regulating the inherent photophysical properties, thereby realizing outstanding photocatalytic activity for hydrogen evolution from water. Remarkably, the first sp2 carbon-linked TCDA-COF displays an impressive hydrogen evolution rate of 70.8 ± 1.9 mmol g-1 h-1 with excellent reusability in the presence of 1 wt % Pt under visible-light illumination (420-780 nm). Utilizing the combination of diversified spectroscopy and theoretical prediction, we show that the full π-conjugated linkage not only effectively broadens the visible-light harvesting of COFs but also enhances charge transfer and separation efficiency.
Collapse
Affiliation(s)
- Ziping Li
- College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Tianqi Deng
- Institute of High Performance Computing, Agency for Science, Technology and Research, 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Singapore.,Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, P. R. China
| | - Si Ma
- College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Zhenwei Zhang
- College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Gang Wu
- Institute of High Performance Computing, Agency for Science, Technology and Research, 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Singapore
| | - Jiaao Wang
- Department of Chemistry and the Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas 78712-0165, United States
| | - Qizhen Li
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Hong Xia
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Technology, Jilin University, Changchun 130012, P. R. China
| | - Shuo-Wang Yang
- Institute of High Performance Computing, Agency for Science, Technology and Research, 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Singapore
| | - Xiaoming Liu
- College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
35
|
Wang K, Yang H, Liao Z, Li S, Hambsch M, Fu G, Mannsfeld SCB, Sun Q, Zhang T. Monolayer-Assisted Surface-Initiated Schiff-Base-Mediated Aldol Polycondensation for the Synthesis of Crystalline sp 2 Carbon-Conjugated Covalent Organic Framework Thin Films. J Am Chem Soc 2023; 145:5203-5210. [PMID: 36779889 DOI: 10.1021/jacs.2c12186] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
sp2 carbon-conjugated covalent organic frameworks (sp2c-COFs) with superb in-plane π-conjugations, high chemical stability, and robust framework structure are expected to be ideal films/membranes for a wide range of applications including energy-related devices and optoelectronics. However, so far, sp2c-COFs have been mainly limited to microcrystalline powders, and this consequently hampered their performances in devices. Herein, we report a simple and robust methodology to fabricate large-area, free-standing, and crystalline sp2c-COF films (TFPT-TMT and TB-TMT) on various solid substrates (e.g., fluorine-doped tin oxide, aluminum sheet, polyacrylonitrile membrane) by self-assembly monolayer-assisted surface-initiated Schiff-base-mediated aldol polycondensation (namely, SI-SBMAP). The resultant sp2c-COF films show lateral sizes up to 120 cm2 and tunable thickness from tens of nanometers to a few micrometers. Owing to the robust framework and highly ordered quasi-1D channels, the sp2c-COF membrane-based osmotic power generator presents an output power density of 14.1 W m-2 under harsh conditions, outperforming most reported COF membranes as well as commercialized benchmark devices (5 W m-2). This work demonstrates a simple and robust interfacial methodology for the fabrication of sp2c-COF films/membranes for green energy applications and potential optoelectronics.
Collapse
Affiliation(s)
- Ke Wang
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Haoyong Yang
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhongquan Liao
- Fraunhofer Institute for Ceramic Technologies and Systems (IKTS), Maria-Reiche-Strasse 2, 01109 Dresden, Germany
| | - Shengxu Li
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Mike Hambsch
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Electrical and Computer Engineering Technische Universität Dresden, 01062 Dresden, Germany
| | - Guangen Fu
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Stefan C B Mannsfeld
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Electrical and Computer Engineering Technische Universität Dresden, 01062 Dresden, Germany
| | - Qi Sun
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Tao Zhang
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| |
Collapse
|
36
|
Wu D, Zhang Q, Wang X, Zhang B. Interface-confined synthesis of a nonplanar redox-active covalent organic framework film for synaptic memristors. NANOSCALE 2023; 15:2726-2733. [PMID: 36655780 DOI: 10.1039/d2nr06904k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The development of novel synthetic methodologies and unprecedented structures of covalent organic framework (COF) films is of great importance for exploring their potential applications in optoelectronic devices, sensors, and membrane separation. From the point of view of monomer selection, rigid building blocks are always the first choice for synthesizing crystalline COF films. However, the preparation of COF films with flexible building units remains challenging. Herein, by introducing flexible triphenylamine-based building units, a nonplanar COF film (TFPA-TAPA film) is fabricated via liquid-liquid interface-confined synthesis at room temperature and atmospheric pressure. The growth mechanism of the flexible building units at the liquid-liquid interface is related to the transformation of strip-type slices into free-standing COF films by dynamic covalent chemistry. As a proof-of-concept, the as-fabricated Al/TFPA-TAPA/ITO device shows excellent multilevel storage and history-dependent memristive switching behavior. The synaptic potentiation/depression, human learning and memorization functions, as well as the transition from short-term synaptic plasticity to long-term plasticity, are successfully emulated by using this synaptic memristor.
Collapse
Affiliation(s)
- Dongchuang Wu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, China.
| | - Qiongshan Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, China.
| | - Xiaoyang Wang
- Guangxi Key Laboratory of Information Material, Engineering Research Center of Electronic Information Materials and Devices, School of Material Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, P. R. China
| | - Bin Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, China.
| |
Collapse
|
37
|
Das P, Chakraborty G, Roeser J, Vogl S, Rabeah J, Thomas A. Integrating Bifunctionality and Chemical Stability in Covalent Organic Frameworks via One-Pot Multicomponent Reactions for Solar-Driven H 2O 2 Production. J Am Chem Soc 2023; 145:2975-2984. [PMID: 36695541 DOI: 10.1021/jacs.2c11454] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Multicomponent reactions (MCRs) can be used to introduce different functionalities into highly stable covalent organic frameworks (COFs). In this work, the irreversible three-component Doebner reaction is utilized to synthesize four chemically stable quinoline-4-carboxylic acid DMCR-COFs (DMCR-1-3 and DMCR-1NH) equipped with an acid-base bifunctionality. These DMCR-COFs show superior photocatalytic H2O2 evolution (one of the most important industrial oxidants) compared to the imine COF analogue (Imine-1). This is achieved with sacrificial oxidants but also in pure water and under an oxygen or air atmosphere. Furthermore, the DMCR-COFs show high photostability, durability, and recyclability. MCR-COFs thus provide a viable materials' platform for solar to chemical energy conversion.
Collapse
Affiliation(s)
- Prasenjit Das
- Department of Chemistry/Functional Materials, Technische Universität Berlin, 10623 Berlin, Germany
| | - Gouri Chakraborty
- BAM Federal Institute for Materials Research and Testing, Richard-Willstätter-Str. 11, 12489 Berlin, Germany
| | - Jérôme Roeser
- Department of Chemistry/Functional Materials, Technische Universität Berlin, 10623 Berlin, Germany
| | - Sarah Vogl
- Department of Chemistry/Functional Materials, Technische Universität Berlin, 10623 Berlin, Germany
| | - Jabor Rabeah
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Str. 29a, 18059 Rostock, Germany
| | - Arne Thomas
- Department of Chemistry/Functional Materials, Technische Universität Berlin, 10623 Berlin, Germany
| |
Collapse
|
38
|
Lei T, Mi Y, Wei Z, Li S, Pang S. Application of fully conjugated covalent organic frameworks in photocatalytic carbon dioxide reduction performance. Dalton Trans 2023; 52:1761-1767. [PMID: 36655823 DOI: 10.1039/d2dt03743b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Photocatalytic reduction of carbon dioxide into useful feedstocks has attracted increasing attention. In this study, a fully conjugated COF material COF-TMT-A with the main structure containing an alkyne group and triazine part was synthesized using sp2-carbon-carbon double bond (CC) linked COF as a research target. The prepared COF materials were characterized in detail by FT-IR, PXRD, and 13C solid-state NMR. The introduction of an alkyne group not only enhanced the conjugated π-electron leaving domain but also optimized the electronic band structure and significantly improved the photocatalytic activity. The selectivity for the product HCOO was as high as 99%. A 10 h photocatalytic CO2 reduction experiment was carried out, and COF-TMT-A showed a significantly higher HCOO- yield of about 43 μmol compared with COF-701 and the ligand.
Collapse
Affiliation(s)
- Tian Lei
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Yongsheng Mi
- State Key Laboratory of Special Functional Waterproof Materials, Beijing Oriental Yuhong Waterproof Technology Co. Ltd, Beijing 101111, China.
| | - Zihao Wei
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Shenghua Li
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Siping Pang
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
39
|
Porous organic polymers: a progress report in China. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1475-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
40
|
Huang H, Jing X, Deng J, Meng C, Duan C. Enzyme-Inspired Coordination Polymers for Selective Oxidization of C(sp 3)-H Bonds via Multiphoton Excitation. J Am Chem Soc 2023; 145:2170-2182. [PMID: 36657380 DOI: 10.1021/jacs.2c09348] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Nature's blueprint provides the fundamental principles for expanding the use of abundant metals in catalysis; however, mimicking both the structure and function of copper enzymes simultaneously in one artificial system for selective C-H bond oxidation faces marked challenges. Herein, we report a new approach to the assembly of artificial monooxygenases utilizing a binuclear Cu2S2Cl2 cluster to duplicate the identical structure and catalysis of the CuA enzyme. The designed monooxygenase Cu-Cl-bpyc facilitates well-defined redox potential that initially activated O2via photoinduced electron transfer, and generated an active chlorine radical via a ligand-to-metal charge transfer (LMCT) process from the consecutive excitation of the in situ formed copper(II) center. The chlorine radical abstracts a hydrogen atom selectively from C(sp3)-H bonds to generate the radical intermediate; meanwhile, the O2•- species interacted with the mimic to form mixed-valence species, giving the desired oxidization products with inherent product selectivity of copper monooxygenases and recovering the catalyst directly. This enzymatic protocol exhibits excellent recyclability, good functional group tolerance, and broad substrate scope, including some biological and pharmacologically relevant targets. Mechanistic studies indicate that the C-H bond cleavage was the rate-determining step and the cuprous interactions were essential to stabilize the active oxygen species. The well-defined structural characters and the fine-modified catalytic properties open a new avenue to develop robust artificial enzymes with uniform and precise active sites and high catalytic performances.
Collapse
Affiliation(s)
- Huilin Huang
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian116024, China
| | - Xu Jing
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian116024, China
| | - Jiangtao Deng
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian116024, China
| | - Changgong Meng
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian116024, China
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian116024, China
| |
Collapse
|
41
|
Wu C, Xing Z, Yang S, Li Z, Zhou W. Nanoreactors for photocatalysis. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
42
|
Xu X, Zhang S, Xu K, Chen H, Fan X, Huang N. Janus Dione-Based Conjugated Covalent Organic Frameworks with High Conductivity as Superior Cathode Materials. J Am Chem Soc 2023; 145:1022-1030. [PMID: 36584327 DOI: 10.1021/jacs.2c10509] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The development of conductive covalent organic frameworks (COFs) with high stability is desirable for the practical applications in optoelectronics and energy storage. Herein, we developed a new kind of Janus dione-based COF, which is fully sp2 carbon-conjugated through the connection by olefin units. The electrical conductivity and carrier mobility reached up to 10-3 S cm-1 and 7.8 cm2 V-1 s-1, respectively. In addition, these COFs are strongly robust against various harsh conditions. The well-ordered two-dimensional crystalline structures, excellent porosity, high conductivity, and abundant redox-active carbonyl units render these COFs serviceable as high-performance cathode materials in lithium-ion batteries. It is worth noting that TFPPy-ICTO-COF exhibits a capacity of up to 338 mAh g-1 at a discharge rate of 0.1 C, which sets a new capacity record among COF-based lithium-ion batteries. Its capacity retention was as high as 100% even after 1000 cycles, demonstrating the remarkable stability of these Janus dione-based COF materials. This work not only expands the diversity of olefin-linked COFs but also makes a new breakthrough in energy storage.
Collapse
Affiliation(s)
- Xiaoyi Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, State Key Laboratory of Silicon Materials, International Research Centre for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Shuoqing Zhang
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Kai Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, State Key Laboratory of Silicon Materials, International Research Centre for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hongzheng Chen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, State Key Laboratory of Silicon Materials, International Research Centre for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xiulin Fan
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ning Huang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, State Key Laboratory of Silicon Materials, International Research Centre for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
43
|
Chen R, Zhao J, Yu Z, Cong M, Wang Y, Wang M, Li G, Li Z, Zhao Y. Post-synthetic Fully π-Conjugated Three-Dimensional Covalent Organic Frameworks for High-Performance Lithium Storage. ACS APPLIED MATERIALS & INTERFACES 2023; 15:830-837. [PMID: 36583732 DOI: 10.1021/acsami.2c14813] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
A fully π-conjugated nitrogen-rich three-dimensional covalent organic framework (PYTRI-COF-2) containing both pyrazine and triazine units was prepared through a post-synthetic strategy. The imine linkages in the pre-prepared PYTRI-COF-1 were converted into heterocyclic quinoline by the Povarov reaction. The obtained PYTRI-COF-2 displayed high Li-ion storage capacity and excellent cycling stability when it was used as the lithium (Li)-ion battery electrode.
Collapse
Affiliation(s)
- Renzeng Chen
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jingteng Zhao
- Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China
| | - Zefang Yu
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Minghao Cong
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yuancheng Wang
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Mingsen Wang
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Guoxing Li
- Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China
| | - Zhibo Li
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yingjie Zhao
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
44
|
Li S, Ma R, Xu S, Zheng T, Wang H, Fu G, Yang H, Hou Y, Liao Z, Wu B, Feng X, Wu LZ, Li XB, Zhang T. Two-Dimensional Benzobisthiazole-Vinylene-Linked Covalent Organic Frameworks Outperform One-Dimensional Counterparts in Photocatalysis. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Shengxu Li
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- College of Material Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Rui Ma
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190 P. R. China
| | - Shunqi Xu
- Center for Advancing Electronics Dresden (CFAED) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden 01062, Germany
| | - Tianyue Zheng
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Huaping Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190 P. R. China
| | - Guangen Fu
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Haoyong Yang
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Yang Hou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhongquan Liao
- Fraunhofer Institute for Ceramic Technologies and Systems (IKTS), Maria-Reiche-Strasse 2, Dresden 01109, Germany
| | - Bozhen Wu
- College of Material Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (CFAED) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden 01062, Germany
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190 P. R. China
| | - Xu-Bing Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190 P. R. China
| | - Tao Zhang
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| |
Collapse
|
45
|
Peng SS, Shao XB, Gu MX, Zhang GS, Gu C, Nian Y, Jia Y, Han Y, Liu XQ, Sun LB. Catalytically Stable Potassium Single-Atom Solid Superbases. Angew Chem Int Ed Engl 2022; 61:e202215157. [PMID: 36333269 DOI: 10.1002/anie.202215157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Indexed: 11/06/2022]
Abstract
Solid superbases can catalyze diverse reactions under mild conditions, while they suffer from aggregation of basic sites and poor stability during recycling. Here we report a new generation of solid superbases derived from K single atoms (SAs) prepared by a tandem redox strategy. The initial redox reaction takes place between base precursor KNO3 and graphene support, producing K2 O at 400 °C. Further increasing the temperature to 800 °C, the graphene reduces K2 O to K anchored by its vacancies, leading to the generation of K SAs (denoted as K1 /G). The source of basicity in the K1 /G is K SAs, and neighboring single atoms (NSAs) possess superbasicity, which is different from conventional basicity originated from oxygen and nitrogen atoms. Due to the superbasicity as well as high dispersion and anchoring of basic sites, the K1 /G shows excellent catalytic activity and stability in transesterification reaction, which is much superior to the reported catalysts.
Collapse
Affiliation(s)
- Song-Song Peng
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Xiang-Bin Shao
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Meng-Xuan Gu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Guo-Song Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Chen Gu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Yao Nian
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Yiming Jia
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - You Han
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| | - Xiao-Qin Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Lin-Bing Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| |
Collapse
|
46
|
Zhang P, Wang Z, Wang S, Wang J, Liu J, Wang T, Chen Y, Cheng P, Zhang Z. Fabricating Industry-Compatible Olefin-Linked COF Resins for Oxoanion Pollutant Scavenging. Angew Chem Int Ed Engl 2022; 61:e202213247. [PMID: 36300874 DOI: 10.1002/anie.202213247] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Indexed: 11/27/2022]
Abstract
Large-scale and low-cost synthesis of covalent organic frameworks (COFs) to meet the demands of industrial application remains formidably challenge. Here we report using 2,4,6-collidine as monomer to produce a series of highly crystalline olefin-linked COFs by a melt polymerization method. This method enables the kilogram-scale fabrication of self-shaped monolithic robust foams. The afforded COFs possess extremely low cost (<50 USD/kg), superior to all the reported COFs. Furthermore, using one-pot or post-modification methods can conveniently transform neutral COFs to ionic COFs, which can be applied as highly efficient ion-exchange sorbents for scavenging oxoanion pollutants. Remarkably, the superior adsorption capacity of a model oxoanion (ReO4 - ) is the highest among crystalline porous materials reported so far. This work not only expands the scopes of olefin-linked COFs but also enlightens the route for the industrial production of crystalline ion exchange sorbents.
Collapse
Affiliation(s)
- Penghui Zhang
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, P. R. China.,Key Laboratory of Advanced Energy Materials Chemistry, Ministry of Education, Nankai University, Tianjin, 300071, P. R. China
| | - Zhifang Wang
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, P. R. China.,Key Laboratory of Advanced Energy Materials Chemistry, Ministry of Education, Nankai University, Tianjin, 300071, P. R. China
| | - Sa Wang
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, P. R. China
| | - Jian Wang
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, P. R. China
| | - Jinjin Liu
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, P. R. China
| | - Ting Wang
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, P. R. China
| | - Yao Chen
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, P. R. China.,College of Pharmacy, Nankai University, Tianjin, 300071, P. R. China
| | - Peng Cheng
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, P. R. China.,Key Laboratory of Advanced Energy Materials Chemistry, Ministry of Education, Nankai University, Tianjin, 300071, P. R. China
| | - Zhenjie Zhang
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, P. R. China.,Key Laboratory of Advanced Energy Materials Chemistry, Ministry of Education, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
47
|
Zhang CR, Cui WR, Yi SM, Niu CP, Liang RP, Qi JX, Chen XJ, Jiang W, Liu X, Luo QX, Qiu JD. An ionic vinylene-linked three-dimensional covalent organic framework for selective and efficient trapping of ReO 4- or 99TcO 4. Nat Commun 2022; 13:7621. [PMID: 36494388 PMCID: PMC9734744 DOI: 10.1038/s41467-022-35435-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
The synthesis of ionic olefin linked three-dimensional covalent organic frameworks (3D COFs) is greatly challenging given the hardness of the formation of stable carbon-carbon double bonds (-C = C-). Herein, we report a general strategy for designing porous positively charged sp2 carbon-linked 3D COFs through the Aldol condensation promoted by quaternization. The obtained 3D COFs, namely TFPM-PZI and TAPM-PZI, showed impressive chemical stability. Furthermore, the positively charged frameworks with regular porosity endow 3D ionic COFs with selective capture radioactive ReO4-/TcO4- and great removal efficiency in simulated Hanford waste. This research not only broadens the category of 3D COFs but also promotes the application of COFs as efficient functional materials.
Collapse
Affiliation(s)
- Cheng-Rong Zhang
- College of Chemistry and Chemical Engineering, Nanchang University, 330031, Nanchang, China
| | - Wei-Rong Cui
- College of Chemistry and Chemical Engineering, Nanchang University, 330031, Nanchang, China
| | - Shun-Mo Yi
- College of Chemistry and Chemical Engineering, Nanchang University, 330031, Nanchang, China
| | - Cheng-Peng Niu
- College of Chemistry and Chemical Engineering, Nanchang University, 330031, Nanchang, China
| | - Ru-Ping Liang
- College of Chemistry and Chemical Engineering, Nanchang University, 330031, Nanchang, China
| | - Jia-Xin Qi
- College of Chemistry and Chemical Engineering, Nanchang University, 330031, Nanchang, China
| | - Xiao-Juan Chen
- College of Chemistry and Chemical Engineering, Nanchang University, 330031, Nanchang, China
| | - Wei Jiang
- College of Chemistry and Chemical Engineering, Nanchang University, 330031, Nanchang, China
| | - Xin Liu
- College of Chemistry and Chemical Engineering, Nanchang University, 330031, Nanchang, China
| | - Qiu-Xia Luo
- College of Chemistry and Chemical Engineering, Nanchang University, 330031, Nanchang, China
| | - Jian-Ding Qiu
- College of Chemistry and Chemical Engineering, Nanchang University, 330031, Nanchang, China.
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, 330013, Nanchang, China.
| |
Collapse
|
48
|
Xue S, Rong Y, Ding N, Zhao C, Sun Q, Li S, Pang S. Simultaneous Recognition and Separation of Organic Isomers Via Cooperative Control of Pore-Inside and Pore-Outside Interactions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2204963. [PMID: 36307904 PMCID: PMC9798982 DOI: 10.1002/advs.202204963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Despite the desirability of organic isomer recognition and separation, current strategies are expensive and complicated. Here, a simple strategy for simultaneously recognizing and separating organic isomers using pillararene-based charge-transfer cocrystals through the cooperative control of pore-inside and pore-outside intermolecular interactions is presented. This strategy is illustrated using 1-bromobutane (1-BBU), which is often produced as an isomeric mixture with 2-bromobutane (2-BBU). According to its structure, perethylated pillar[5]arene (EtP5) and 3,5-dinitrobenzonitrile (DNB) are strategically chosen as a donor and an acceptor. As a result, their cocrystal exhibited stronger pore-inside interactions and much weaker pore-outside interactions with 1-BBU than with 2-BBU. Consequently, nearly 100% 1-BBU selectivity is achieved in two-component mixtures, even in those containing trace 1-BBU (1%), whereas free EtP5 only achieved 89.80% selectivity. The preference for linear bromoalkanes is retained in 1-bromopentane/3-bromopentane and 1-bromohexane/2-bromohexane mixtures, demonstrating the generality of this strategy. Selective adsorption of linear bromoalkanes induced a naked-eye-detectable color change from red to white. Moreover, the cocrystal are used over multiple cycles without losing selectivity.
Collapse
Affiliation(s)
- Shaomin Xue
- School of Materials Science and EngineeringBeijing Institute of TechnologyBeijing100081P. R. China
| | - Yujia Rong
- School of Materials Science and EngineeringBeijing Institute of TechnologyBeijing100081P. R. China
| | - Ning Ding
- School of Materials Science and EngineeringBeijing Institute of TechnologyBeijing100081P. R. China
| | - Chaofeng Zhao
- School of Materials Science and EngineeringBeijing Institute of TechnologyBeijing100081P. R. China
| | - Qi Sun
- School of Materials Science and EngineeringBeijing Institute of TechnologyBeijing100081P. R. China
| | - Shenghua Li
- School of Materials Science and EngineeringBeijing Institute of TechnologyBeijing100081P. R. China
- Yangtze Delta Region AcademyBeijing Institute of TechnologyJiaxing314019P. R. China
| | - Siping Pang
- School of Materials Science and EngineeringBeijing Institute of TechnologyBeijing100081P. R. China
| |
Collapse
|
49
|
Lu Z, Zhao R, Yang H, Fu X, Zhao Y, Xiao L, Hou L. Influence of the Building Unit on Covalent Organic Frameworks in Mediating Photo‐induced Energy‐Transfer Reversible Complexation‐Mediated Radical Polymerization (PET‐RCMP). Angew Chem Int Ed Engl 2022; 61:e202208898. [DOI: 10.1002/anie.202208898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Zhen Lu
- Qingyuan Innovation Laboratory Quanzhou 362801 P. R. China
- College of Chemistry Fuzhou University No. 2 Xueyuan Road Fuzhou 350116 P. R. China
| | - Rui Zhao
- Qingyuan Innovation Laboratory Quanzhou 362801 P. R. China
| | - Hongjie Yang
- Department of Materials-Oriented Chemical Engineering School of Chemical Engineering Fuzhou University No. 2 Xueyuan Road Fuzhou 350116 P. R. China
| | - Xiaoling Fu
- Department of Materials-Oriented Chemical Engineering School of Chemical Engineering Fuzhou University No. 2 Xueyuan Road Fuzhou 350116 P. R. China
| | - Yulai Zhao
- Qingyuan Innovation Laboratory Quanzhou 362801 P. R. China
- Department of Materials-Oriented Chemical Engineering School of Chemical Engineering Fuzhou University No. 2 Xueyuan Road Fuzhou 350116 P. R. China
- Fujian Key Laboratory of Advanced Manufacturing Technology of Specialty Chemicals Fuzhou University No. 2 Xueyuan Road Fuzhou 350116 P. R. China
| | - Longqiang Xiao
- Qingyuan Innovation Laboratory Quanzhou 362801 P. R. China
- Department of Materials-Oriented Chemical Engineering School of Chemical Engineering Fuzhou University No. 2 Xueyuan Road Fuzhou 350116 P. R. China
- Fujian Key Laboratory of Advanced Manufacturing Technology of Specialty Chemicals Fuzhou University No. 2 Xueyuan Road Fuzhou 350116 P. R. China
| | - Linxi Hou
- Qingyuan Innovation Laboratory Quanzhou 362801 P. R. China
- Department of Materials-Oriented Chemical Engineering School of Chemical Engineering Fuzhou University No. 2 Xueyuan Road Fuzhou 350116 P. R. China
- Fujian Key Laboratory of Advanced Manufacturing Technology of Specialty Chemicals Fuzhou University No. 2 Xueyuan Road Fuzhou 350116 P. R. China
| |
Collapse
|
50
|
Lu Z, Zhao R, Yang H, Fu X, Zhao Y, Xiao L, Hou L. Influence of Building Unit on the Covalent Organic Framework in Mediating Photo‐induced PET‐RCMP. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zhen Lu
- Fuzhou University Department of Materials-Oriented Chemical Engineering, School of Chemical Engineering CHINA
| | - Rui Zhao
- Fuzhou University Qingyuan Innovation Laboratory CHINA
| | - Hongjie Yang
- Fuzhou University Department of Materials-Oriented Chemical Engineering, School of Chemical Engineering xueyuan road,2 350116 fuzhou CHINA
| | - Xiaoling Fu
- Fuzhou University Department of Materials-Oriented Chemical Engineering, School of Chemical Engineering xueyuan road,2 350116 fuzhou CHINA
| | - Yulai Zhao
- Fuzhou University Department of Materials-Oriented Chemical Engineering, School of Chemical Engineering CHINA
| | - Longqiang Xiao
- Fuzhou University Department of Materials-Oriented Chemical Engineering, School of Chemical Engineering CHINA
| | - Linxi Hou
- Fuzhou University Department of Materials-Oriented Chemical Engineering, School of Chemical Engineering Xueyuan Road No. 2, Fuzhou 350116, China CHINA
| |
Collapse
|