1
|
Zhao X, Hou YL, Yang J, Wang XH, Hu CS, Zhu XQ, Shen GB. Establishing Thermodynamic Graphs of Nitrogenous Radical Cations Abstracting Hydrogen Atoms and Their Applications in Photoredox Reactions. Molecules 2025; 30:435. [PMID: 39942543 PMCID: PMC11819841 DOI: 10.3390/molecules30030435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/05/2025] [Accepted: 01/10/2025] [Indexed: 02/16/2025] Open
Abstract
Nitrogenous compounds have been extensively utilized as hydrogen atom transfer (HAT) catalysts in photoredox reactions, with nitrogenous radical cations being the actual hydrogen atom abstractors. Building upon our previous work, 120 thermodynamic graphs of nitrogenous radical cations abstracting hydrogen atoms, which encompass seven vital thermodynamic parameters, are designed and established to elucidate their redox characteristics. Furthermore, the applications of thermodynamic graphs to select appropriate photocatalysts, assess the feasibility of the HAT process, and diagnose the possible activation mechanism were discussed, which would enable the utilities of nitrogenous compounds as HAT catalysts or nitrogenous radical cations as hydrogen atom abstractors in photoredox reactions.
Collapse
Affiliation(s)
- Xia Zhao
- College of Medical Engineering, Jining Medical University, Jining 272000, China
| | - Yi-Lin Hou
- College of Medical Engineering, Jining Medical University, Jining 272000, China
| | - Jun Yang
- College of Medical Engineering, Jining Medical University, Jining 272000, China
| | - Xin-Hua Wang
- College of Medical Engineering, Jining Medical University, Jining 272000, China
| | - Chong-Shan Hu
- College of Medical Engineering, Jining Medical University, Jining 272000, China
| | - Xiao-Qing Zhu
- Department of Chemistry, Nankai University, Tianjin 300071, China
| | - Guang-Bin Shen
- College of Medical Engineering, Jining Medical University, Jining 272000, China
| |
Collapse
|
2
|
Huang C, Ye ZM, Qin YS, You GP, Wei Z, Cai H. Radical α-C-H Alkylation and Heteroarylation of Benzyl Anilines Enabled by Organic Photoredox Catalysis. Org Lett 2025; 27:275-281. [PMID: 39688377 DOI: 10.1021/acs.orglett.4c04278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
A photocatalysis-involved α-amino radical provides an appealing approach for rapid construction of complex amine architectures. Reported herein is an organophotoredox catalytic approach to α-C-H alkylation and heteroarylation of benzyl anilines, which enables the introduction of valuable trifluoromethyl alcohol, chromanone, or pyridine motifs at the α position of amines. This protocol highlights metal-free, step and atom economies and broad substrate scopes (>80 examples). Control experiments and electron paramagnetic resonance spectroscopy identified the α-amino radical derived from the α-amino C-H bond.
Collapse
Affiliation(s)
- Cheng Huang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, People's Republic of China
| | - Zhong-Ming Ye
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, People's Republic of China
| | - Yu-Shu Qin
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, People's Republic of China
| | - Gui-Ping You
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, People's Republic of China
| | - Zhenhong Wei
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, People's Republic of China
| | - Hu Cai
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, People's Republic of China
| |
Collapse
|
3
|
Pulcinella A, Chandra Tiwari P, Luridiana A, Yamazaki K, Mazzarella D, Sadhoe AK, Alfano AI, Tiekink EH, Hamlin TA, Noël T. C1-4 Alkylation of Aryl Bromides with Light Alkanes enabled by Metallaphotocatalysis in Flow. Angew Chem Int Ed Engl 2025; 64:e202413846. [PMID: 39192732 PMCID: PMC11720381 DOI: 10.1002/anie.202413846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 08/29/2024]
Abstract
The homologous series of gaseous C1-4 alkanes represents one of the most abundant sources of short alkyl fragments. However, their application in synthetic organic chemistry is exceedingly rare due to the challenging C-H bond cleavage, which typically demands high temperatures and pressures, thereby limiting their utility in the construction of complex organic molecules. In particular, the formation of C(sp2)-C(sp3) bonds is crucial for constructing biologically active molecules, including pharmaceuticals and agrochemicals. In this study, we present the previously elusive coupling between gaseous alkanes and (hetero)aryl bromides, achieved through a combination of Hydrogen Atom Transfer (HAT) photocatalysis and nickel-catalyzed cross coupling at room temperature. Utilizing flow technology allowed us to conduct this novel coupling reaction with reduced reaction times and in a scalable fashion, rendering it practical for widespread adoption in both academia and industry. Density Functional Theory (DFT) calculations unveiled that the oxidative addition constitutes the rate-determining step, with the activation energy barrier increasing with smaller alkyl radicals. Furthermore, radical isomerization observed in propane and butane analogues could be attributed to the electronic properties of the bromoarene coupling partner, highlighting the crucial role of oxidative addition in the observed selectivity of this transformation.
Collapse
Affiliation(s)
- Antonio Pulcinella
- Flow Chemistry GroupVan't Hoff Institute for Molecular Sciences (HIMS)University of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Prakash Chandra Tiwari
- Flow Chemistry GroupVan't Hoff Institute for Molecular Sciences (HIMS)University of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Alberto Luridiana
- Flow Chemistry GroupVan't Hoff Institute for Molecular Sciences (HIMS)University of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
- Dipartimento di Scienze Chimiche e Geologiche Università degli Studi di CagliariS.S. 554, bivio per Sestu09042MonserratoCAItaly
| | - Ken Yamazaki
- Department of Chemistry and Pharmaceutical SciencesAIMMSVrije Universiteit AmsterdamDe Boelelaan 11081081 HZAmsterdamThe Netherlands
- Division of Applied ChemistryOkayama UniversityTsushimanaka700-8530OkayamaJapan
| | - Daniele Mazzarella
- Flow Chemistry GroupVan't Hoff Institute for Molecular Sciences (HIMS)University of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
- Department of Chemical SciencesUniversity of PadovaVia Francesco Marzolo 135131PadovaItaly
| | - Akshay K. Sadhoe
- Flow Chemistry GroupVan't Hoff Institute for Molecular Sciences (HIMS)University of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Antonella Ilenia Alfano
- Flow Chemistry GroupVan't Hoff Institute for Molecular Sciences (HIMS)University of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Eveline H. Tiekink
- Department of Chemistry and Pharmaceutical SciencesAIMMSVrije Universiteit AmsterdamDe Boelelaan 11081081 HZAmsterdamThe Netherlands
| | - Trevor A. Hamlin
- Department of Chemistry and Pharmaceutical SciencesAIMMSVrije Universiteit AmsterdamDe Boelelaan 11081081 HZAmsterdamThe Netherlands
| | - Timothy Noël
- Flow Chemistry GroupVan't Hoff Institute for Molecular Sciences (HIMS)University of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| |
Collapse
|
4
|
Xu S, Ping Y, Su Y, Guo H, Luo A, Kong W. A modular approach to catalytic stereoselective synthesis of chiral 1,2-diols and 1,3-diols. Nat Commun 2025; 16:364. [PMID: 39754022 PMCID: PMC11699147 DOI: 10.1038/s41467-024-55744-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 12/23/2024] [Indexed: 01/06/2025] Open
Abstract
Optically pure 1,2-diols and 1,3-diols are the most privileged structural motifs, widely present in natural products, pharmaceuticals and chiral auxiliaries or ligands. However, their synthesis relies on the use of toxic or expensive metal catalysts or suffer from low regioselectivity. Catalytic asymmetric synthesis of optically pure 1,n-diols from bulk chemicals in a highly stereoselective and atom-economical manner remains a formidable challenge. Here, we disclose a versatile and modular method for the synthesis of enantioenriched 1,2-diols and 1,3-diols from the high-production-volume chemicals ethane-1,2-diol (MEG) and 1,3-propanediol (PDO), respectively. The key to success is to temporarily mask the diol group as an acetonide, which imparts selectivity to the key step of C(sp3)-H functionalization. Additionally, 1,n-diols containing two stereogenic centers are also prepared through diastereoselective C(sp3)-H functionalization. The late-stage functionalization of biological active compounds and the expedient synthesis of chiral ligands and pharmaceutically relevant molecules further highlight the synthetic potential of this protocol.
Collapse
Affiliation(s)
- Sheng Xu
- The Institute for Advanced Studies and Hongyi Honor College, Wuhan University, Wuhan, China
| | - Yuanyuan Ping
- The Institute for Advanced Studies and Hongyi Honor College, Wuhan University, Wuhan, China
| | - Yinyan Su
- The Institute for Advanced Studies and Hongyi Honor College, Wuhan University, Wuhan, China
| | - Haoyun Guo
- The Institute for Advanced Studies and Hongyi Honor College, Wuhan University, Wuhan, China
| | - Aowei Luo
- The Institute for Advanced Studies and Hongyi Honor College, Wuhan University, Wuhan, China
| | - Wangqing Kong
- The Institute for Advanced Studies and Hongyi Honor College, Wuhan University, Wuhan, China.
- Wuhan Institute of Photochemistry and Technology, Wuhan, China.
| |
Collapse
|
5
|
Pradhan S, Satav D, Dutta S, Maity B, Cavallo L, Sundararaju B. Reductive coupling of allenyl/allyl carbonate with alkyne under dual cobalt-photoredox catalysis. Nat Commun 2024; 15:10421. [PMID: 39613777 DOI: 10.1038/s41467-024-54718-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 11/19/2024] [Indexed: 12/01/2024] Open
Abstract
Skipped dienes are among the most prevalent motifs in a vast array of natural products, medicinal compounds, and fatty acids. Herein, we disclose a straightforward one-step reductive protocol under Co/PC for the synthesis of diverse 1,4-dienes with excellent regio- and stereoselectivity. The protocol employs allenyl or allyl carbonate as π-allyl source, allowing for the direct synthesis of skipped diene with a broad range of alkynes including terminal alkynes, propargylic alcohols, and internal alkynes. The method also demonstrated the biomimetic homologation of natural terpenols into synthetic counterparts via iterative allylation of three-carbon allyl units, employing propargylic alcohol as a readily available alkyne source. Experimental studies, control experiments, and DFT calculations suggest the dual catalytic process generates 1,3-diene from allenyl carbonate, followed by proton and electron transfer leading to Co(II)-π-allyl species prior to the alkyne coupling. The catalytic cycle transitions through Co(II), Co(I), and Co(III).
Collapse
Affiliation(s)
- Subhankar Pradhan
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Dhananjay Satav
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Sayan Dutta
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Bholanath Maity
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Luigi Cavallo
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| | - Basker Sundararaju
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India.
| |
Collapse
|
6
|
Taylor OR, Saucedo PJ, Bahamonde A. Leveraging the Redox Promiscuity of Nickel To Catalyze C-N Coupling Reactions. J Org Chem 2024; 89:16093-16105. [PMID: 38231475 DOI: 10.1021/acs.joc.3c02353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
This perspective details advances made in the field of Ni-catalyzed C-N bond formation. The use of this Earth abundant metal to decorate amines, amides, lactams, and heterocycles enables direct access to a variety of biologically active and industrially relevant compounds in a sustainable manner. Herein, different strategies that leverage the propensity of Ni to facilitate both one- and two-electron processes will be surveyed. The first part of this Perspective focuses on strategies that facilitate C-N couplings at room temperature by accessing oxidized Ni(III) intermediates. In this context, advances in photochemical, electrochemical, and chemically mediated processes will be analyzed. A special emphasis has been put on providing a comprehensive explanation of the different mechanistic avenues that have been proposed to facilitate these chemistries; either Ni(I/III) self-sustained cycles or Ni(0/II/III) photochemically mediated pathways. The second part of this Perspective details the ligand designs that also enable access to this reactivity via a two-electron Ni(0/II) mechanism. Finally, we discuss our thoughts on possible future directions of the field.
Collapse
Affiliation(s)
- Olivia R Taylor
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Paul J Saucedo
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Ana Bahamonde
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
7
|
Kumar S, Dutta S, Cavallo L, Maity B. A Comprehensive Multireference Study of Excited-State Ni-Br Bond Homolysis in (dtbbpy)Ni II(aryl)(Br). Inorg Chem 2024; 63:20361-20371. [PMID: 39417647 DOI: 10.1021/acs.inorgchem.4c02572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The mechanism of visible light-driven Ni-C(aryl) bond homolysis in (2,2'-bipyridine)NiII(aryl)(halide) complexes, which play a crucial role in metallaphotoredox catalysis for cross-coupling reactions, has been well studied. Differently, the theoretical understanding of Ni-halide bond homolysis remains limited. In this study, we introduce a novel electronic structural framework to elucidate the mechanisms underlying photoinduced Ni-Br bond rupture in the (dtbbpy)NiII(aryl)(Br) complex. Using multireference ab initio calculations, we characterized the excited state potential energy surfaces corresponding to metal-to-ligand charge transfer (MLCT) and ligand-to-metal charge transfer (LMCT). Our calculations reveal that the Ni-Br dissociation, triggered by an external photocatalyst, begins with the promotion of Ni(II) to a 1MLCT excited state. This state undergoes intersystem crossing with repulsive triplet surfaces corresponding to the 3MLCT and Br-to-Ni 3LMCT states, resulting in Ni-Br bond breaking via the Dexter energy transfer mechanism. In the absence of a photocatalyst, the photoexcited Ni(II) favors Ni-C(aryl) homolysis, whereas the presence of a photocatalyst promotes Ni-Br dissociation. The Ni(III) species, resulting from the oxidation of Ni(II) by the photocatalyst, was found to be unproductive toward Ni-Br or Ni-C(aryl) activation.
Collapse
Affiliation(s)
- Sanchit Kumar
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Sayan Dutta
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Luigi Cavallo
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Bholanath Maity
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
8
|
Bodiuzzaman M, Murugesan K, Yuan P, Maity B, Sagadevan A, Malenahalli H N, Wang S, Maity P, Alotaibi MF, Jiang DE, Abulikemu M, Mohammed OF, Cavallo L, Rueping M, Bakr OM. Modulating Decarboxylative Oxidation Photocatalysis by Ligand Engineering of Atomically Precise Copper Nanoclusters. J Am Chem Soc 2024; 146:26994-27005. [PMID: 39297671 DOI: 10.1021/jacs.4c08688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Copper nanoclusters (Cu NCs) characterized by their well-defined electronic and optical properties are an ideal platform for organic photocatalysis and exploring atomic-level behaviors. However, their potential as greener, efficient catalysts for challenging reactions like decarboxylative oxygenation under mild conditions remains unexplored. Herein, we present Cu13(Nap)3(PPh3)7H10 (hereafter Cu13Nap), protected by 1-naphthalene thiolate (Nap), which performs well in decarboxylative oxidation (90% yield) under photochemical conditions. In comparison, the isostructural Cu13(DCBT)3(PPh3)7H10 (hereafter Cu13DCBT), stabilized by 2,4-dichlorobenzenethiolate (DCBT), yields only 28%, and other previously reported Cu NCs (Cu28, Cu29, Cu45, Cu57, and Cu61) yield in the range of 6-18%. The introduction of naphthalene thiolate to the surface of Cu13 NCs influences their electronic structure and charge transfer in the ligand shell, enhancing visible light absorption and catalytic performance. Density functional theory (DFT) and experimental evidence suggest that the reaction proceeds primarily through an energy transfer mechanism. The energy transfer pathway is uncommon in the context of previous reports for decarboxylative oxidation reactions. Our findings suggest that strategically manipulating ligands holds significant potential for creating composite active sites on atomically precise copper NCs, resulting in enhanced catalytic efficacy and selectivity across various challenging reactions.
Collapse
Affiliation(s)
- Mohammad Bodiuzzaman
- Center for Renewable Energy and Storage Technologies (CREST), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Kathiravan Murugesan
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Peng Yuan
- Center for Renewable Energy and Storage Technologies (CREST), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Bholanath Maity
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Arunachalam Sagadevan
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Naveen Malenahalli H
- Center for Renewable Energy and Storage Technologies (CREST), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Song Wang
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Partha Maity
- Center for Renewable Energy and Storage Technologies (CREST), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Mohammed F Alotaibi
- Center for Renewable Energy and Storage Technologies (CREST), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - De-En Jiang
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235-1604, United States
| | - Mutalifu Abulikemu
- Center for Renewable Energy and Storage Technologies (CREST), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Omar F Mohammed
- Center for Renewable Energy and Storage Technologies (CREST), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Luigi Cavallo
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Magnus Rueping
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Osman M Bakr
- Center for Renewable Energy and Storage Technologies (CREST), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
9
|
Wang X, He J, Wang YN, Zhao Z, Jiang K, Yang W, Zhang T, Jia S, Zhong K, Niu L, Lan Y. Strategies and Mechanisms of First-Row Transition Metal-Regulated Radical C-H Functionalization. Chem Rev 2024; 124:10192-10280. [PMID: 39115179 DOI: 10.1021/acs.chemrev.4c00188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Radical C-H functionalization represents a useful means of streamlining synthetic routes by avoiding substrate preactivation and allowing access to target molecules in fewer steps. The first-row transition metals (Ti, V, Cr, Mn, Fe, Co, Ni, and Cu) are Earth-abundant and can be employed to regulate radical C-H functionalization. The use of such metals is desirable because of the diverse interaction modes between first-row transition metal complexes and radical species including radical addition to the metal center, radical addition to the ligand of metal complexes, radical substitution of the metal complexes, single-electron transfer between radicals and metal complexes, hydrogen atom transfer between radicals and metal complexes, and noncovalent interaction between the radicals and metal complexes. Such interactions could improve the reactivity, diversity, and selectivity of radical transformations to allow for more challenging radical C-H functionalization reactions. This review examines the achievements in this promising area over the past decade, with a focus on the state-of-the-art while also discussing existing limitations and the enormous potential of high-value radical C-H functionalization regulated by these metals. The aim is to provide the reader with a detailed account of the strategies and mechanisms associated with such functionalization.
Collapse
Affiliation(s)
- Xinghua Wang
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Jing He
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Ya-Nan Wang
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing 401331, P. R. China
| | - Zhenyan Zhao
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Kui Jiang
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Wei Yang
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Tao Zhang
- Institute of Intelligent Innovation, Henan Academy of Sciences, Zhengzhou, Henan 451162, P. R. China
| | - Shiqi Jia
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Kangbao Zhong
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Linbin Niu
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Yu Lan
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing 401331, P. R. China
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| |
Collapse
|
10
|
Zhao X, Hou YL, Qian BC, Shen GB. Thermodynamic H-Abstraction Abilities of Nitrogen Centered Radical Cations as Potential Hydrogen Atom Transfer Catalysts in Y-H Bond Functionalization. ACS OMEGA 2024; 9:26708-26718. [PMID: 38911737 PMCID: PMC11191127 DOI: 10.1021/acsomega.4c04209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 06/25/2024]
Abstract
Y-H bond functionalization has always been the focus of research interest in the area of organic synthesis. Direct hydrogen atom transfer (HAT) from the Y-H bond is one of the most efficient and practical methods to activate the Y-H bond. Recently, nitrogen centered radical cations were broadly utilized as H-abstraction catalysts to activate Y-H bonds via the HAT process. As a type of HAT catalyst, the H-affinity of nitrogen centered radical cations is a significant thermodynamic parameter to quantitatively evaluate the thermodynamic H-abstraction potentials of nitrogen centered radical cations. In this work, the pK a values of 120 protonated N-containing compounds in acetonitrile (AN) are predicted, and the H-affinities of 120 nitrogen centered radical cations in AN are derived from the reduction potentials of nitrogen centered radical cations and pK a of protonated N-containing compounds using Hess' law. This work focuses on the H-abstraction abilities of 120 nitrogen centered radical cations in AN to enrich the molecule library of novel HAT catalysts or H-abstractors and provides valuable thermodynamic guidelines for the application of nitrogen centered radical cations in Y-H bond functionalization.
Collapse
Affiliation(s)
- Xia Zhao
- College of Medical Engineering, Jining Medical University, Jining, Shandong 272000, P. R. China
| | - Yi-Lin Hou
- College of Medical Engineering, Jining Medical University, Jining, Shandong 272000, P. R. China
| | - Bao-Chen Qian
- College of Medical Engineering, Jining Medical University, Jining, Shandong 272000, P. R. China
| | - Guang-Bin Shen
- College of Medical Engineering, Jining Medical University, Jining, Shandong 272000, P. R. China
| |
Collapse
|
11
|
Kancherla R, Muralirajan K, Dutta S, Pal K, Li B, Maity B, Cavallo L, Rueping M. Photoexcitation of Distinct Divalent Palladium Complexes in Cross-Coupling Amination Under Air. Angew Chem Int Ed Engl 2024; 63:e202314508. [PMID: 37956272 DOI: 10.1002/anie.202314508] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/13/2023] [Accepted: 11/13/2023] [Indexed: 11/15/2023]
Abstract
The development of metal complexes that function as both photocatalyst and cross-coupling catalyst remains a challenging research topic. So far, progress has been shown in palladium(0) excited-state transition metal catalysis for the construction of carbon-carbon bonds where the oxidative addition of alkyl/aryl halides to zero-valent palladium (Pd0 ) is achievable at room temperature. In contrast, the analogous process with divalent palladium (PdII ) is uphill and endothermic. For the first time, we report that divalent palladium can act as a light-absorbing species that undergoes double excitation to realize carbon-nitrogen (C-N) cross-couplings under air. Differently substituted aryl halides can be applied in the mild, and selective cross-coupling amination using palladium acetate as both photocatalyst and cross-coupling catalyst at room temperature. Density functional theory studies supported by mechanistic investigations provide insight into the reaction mechanism.
Collapse
Affiliation(s)
- Rajesh Kancherla
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Krishnamoorthy Muralirajan
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Sayan Dutta
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Kuntal Pal
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Bo Li
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Bholanath Maity
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Luigi Cavallo
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Magnus Rueping
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
12
|
Keum H, Ryoo H, Kim D, Chang S. Amidative β-Scission of Alcohols Enabled by Dual Catalysis of Photoredox Proton-Coupled Electron Transfer and Inner-Sphere Ni-Nitrenoid Transfer. J Am Chem Soc 2024; 146:1001-1008. [PMID: 38109265 DOI: 10.1021/jacs.3c11813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
The photoredox/Ni dual catalysis is an appealing strategy to enable unconventional C-heteroatom bond formation. While significant advances have been achieved using this system, intermolecular C(sp3)-N bond formation has been relatively underdeveloped due to the difficulty in C(sp3)-N reductive elimination. Herein, we present a new mechanistic approach that utilizes dioxazolones as the Ni(II)-nitrenoid precursor to capture carbon-centered radicals by merging proton-coupled electron transfer (PCET) with nickel catalysis, thus forming synthetically versatile N-alkyl amides using alcohols. Based on mechanistic investigations, the involvement of (κ2-N,O)Ni(II)-nitrenoid species was proposed to capture photoredox PCET-induced alkyl radicals, thereby playing a pivotal role to enable the C(sp3)-N bond formation.
Collapse
Affiliation(s)
- Hyeyun Keum
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Harin Ryoo
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Dongwook Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Sukbok Chang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| |
Collapse
|
13
|
Yi L, Zhu C, Chen X, Yue H, Ji T, Ma Y, Cao Y, Kancherla R, Rueping M. O-H bond activation of β,γ-unsaturated oximes via hydrogen atom transfer (HAT) and photoredox dual catalysis. Chem Sci 2023; 14:14271-14279. [PMID: 38098711 PMCID: PMC10718179 DOI: 10.1039/d3sc04410f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/10/2023] [Indexed: 12/17/2023] Open
Abstract
Hydrogen atom transfer (HAT) and photoredox dual catalysis provides a unique opportunity in organic synthesis, enabling the direct activation of C/Si/S-H bonds. However, the activation of O-H bonds of β,γ-unsaturated oximes poses a challenge due to their relatively high redox potential, which exceeds the oxidizing capacity of most currently developed photocatalysts. We here demonstrate that the combination of HAT and photoredox catalysis allows the activation of O-H bond of β,γ-unsaturated oximes. The strategy effectively addresses the oxime's high redox potential and offers a universal pathway for iminoxyl radical formation. Leveraging the versatility of this approach, a diverse array of valuable heterocycles have been synthesized with the use of different radical acceptors. Mechanistic studies confirm a HAT process for the O-H bond activation.
Collapse
Affiliation(s)
- Liang Yi
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
- Institute of Organic Chemistry, RWTH Aachen University Landoltweg 1 D-52074 Aachen Germany
| | - Chen Zhu
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Xiangyu Chen
- Institute of Organic Chemistry, RWTH Aachen University Landoltweg 1 D-52074 Aachen Germany
| | - Huifeng Yue
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Tengfei Ji
- Institute of Organic Chemistry, RWTH Aachen University Landoltweg 1 D-52074 Aachen Germany
| | - Yiqiao Ma
- Institute of Organic Chemistry, RWTH Aachen University Landoltweg 1 D-52074 Aachen Germany
| | - Yuanyuan Cao
- Institute of Organic Chemistry, RWTH Aachen University Landoltweg 1 D-52074 Aachen Germany
| | - Rajesh Kancherla
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Magnus Rueping
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| |
Collapse
|
14
|
Liu K, Wang Z, Künzel AN, Layh M, Studer A. Regioselective Formal β-Allylation of Carbonyl Compounds Enabled by Cooperative Nickel and Photoredox Catalysis. Angew Chem Int Ed Engl 2023; 62:e202303473. [PMID: 37141023 DOI: 10.1002/anie.202303473] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/05/2023]
Abstract
The Tsuji-Trost reaction between carbonyl compounds and allylic precursors has been widely used in the synthesis of natural products and pharmaceutical compounds. As the α-C-H bond is far more acidic than the β-C-H bond, carbonyl compounds undergo highly regioselective allylation at the α-position and their β-allylation is therefore highly challenging. This innate α-reactivity conversely hampers diversity, especially if the corresponding β-allylation product is targeted. Herein, we present a formal intermolecular β-C-C bond formation reaction of a broad range of aldehydes and ketones with different allyl electrophiles through cooperative nickel and photoredox catalysis. β-Selectivity is achieved via initial transformation of the aldehydes and ketones to their corresponding silyl enol ethers. The overall transformation features mild conditions, excellent regioselectivity, wide functional group tolerance and high reaction efficiency. The introduced facile and regioselective β-allylation of carbonyl compounds proceeding through cooperative catalysis allows the preparation of valuable building blocks that are difficult to access from aldehydes and ketones using existing methodology.
Collapse
Affiliation(s)
- Kun Liu
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraße 40, 48149, Münster, Germany
| | - Zhe Wang
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraße 40, 48149, Münster, Germany
| | - Augustinus N Künzel
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraße 40, 48149, Münster, Germany
| | - Marcus Layh
- Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität, Corrensstraße 28/30, 48149, Münster, Germany
| | - Armido Studer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraße 40, 48149, Münster, Germany
| |
Collapse
|
15
|
Maity B, Dutta S, Cavallo L. The mechanism of visible light-induced C-C cross-coupling by C sp3-H bond activation. Chem Soc Rev 2023; 52:5373-5387. [PMID: 37464786 DOI: 10.1039/d2cs00960a] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Csp3-C cross-coupling by activating Csp3-H bonds is a dream reaction for the chemical community, and visible light-induced transition metal-catalysis under mild reaction conditions is considered a powerful tool to achieve it. Advancement of this research area is still in its infancy because of the chemical and technical complexity of this catalysis. Mechanistic studies illuminating the operative reaction pathways can rationalize the increasing amount of experimental catalysis data and provide the knowledge allowing faster and rational advances in the field. This goal requires complementary experimental and theoretical mechanistic studies, as each of them is unfit to clarify the operative mechanisms alone. In this tutorial review we summarize representative experimental and computational mechanistic studies, highlighting weaknesses, strengths, and synergies between the two approaches.
Collapse
Affiliation(s)
- Bholanath Maity
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Sayan Dutta
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Luigi Cavallo
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
16
|
Chrisman CH, Kudisch M, Puffer KO, Stewart TK, Lamb YML, Lim CH, Escobar R, Thordarson P, Johannes JW, Miyake GM. Halide Noninnocence and Direct Photoreduction of Ni(II) Enables Coupling of Aryl Chlorides in Dual Catalytic, Carbon-Heteroatom Bond-Forming Reactions. J Am Chem Soc 2023; 145:12293-12304. [PMID: 37204458 PMCID: PMC10786213 DOI: 10.1021/jacs.3c02784] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Recent mechanistic studies of dual photoredox/Ni-catalyzed, light-driven cross-coupling reactions have found that the photocatalyst (PC) operates through either reductive quenching or energy transfer cycles. To date, reports invoking oxidative quenching cycles are comparatively rare and direct observation of such a quenching event has not been reported. However, when PCs with highly reducing excited states are used (e.g., Ir(ppy)3), photoreduction of Ni(II) to Ni(I) is thermodynamically feasible. Recently, a unified reaction system using Ir(ppy)3 was developed for forming C-O, C-N, and C-S bonds under the same conditions, a prospect that is challenging with PCs that can photooxidize these nucleophiles. Herein, in a detailed mechanistic study of this system, we observe oxidative quenching of the PC (Ir(ppy)3 or a phenoxazine) via nanosecond transient absorption spectroscopy. Speciation studies support that a mixture of Ni-bipyridine complexes forms under the reaction conditions, and the rate constant for photoreduction increases when more than one ligand is bound. Oxidative addition of an aryl iodide was observed indirectly via oxidation of the resulting iodide by Ir(IV)(ppy)3. Intriguingly, the persistence of the Ir(IV)/Ni(I) ion pair formed in the oxidative quenching step was found to be necessary to simulate the observed kinetics. Both bromide and iodide anions were found to reduce the oxidized form of the PC back to its neutral state. These mechanistic insights inspired the addition of a chloride salt additive, which was found to alter Ni speciation, leading to a 36-fold increase in the initial turnover frequency, enabling the coupling of aryl chlorides.
Collapse
Affiliation(s)
- Cameron H Chrisman
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Max Kudisch
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
- National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Katherine O Puffer
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Trevor K Stewart
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Yisrael M L Lamb
- Department of Chemistry and Biochemistry, Fort Lewis College, 1000 Rim Drive, Durango, Colorado 81301, United States
| | - Chern-Hooi Lim
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
- New Iridium LLC, Boulder, Colorado 80303, United States
| | - Randolph Escobar
- Chemistry, Oncology R&D, AstraZeneca, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Pall Thordarson
- School of Chemistry, The Australian Centre for Nanomedicine and the UNSW RNA Institute, The University of New South Wales, Sydney 2052, NSW, Australia
| | - Jeffrey W Johannes
- Chemistry, Oncology R&D, AstraZeneca, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Garret M Miyake
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
17
|
Sanosa N, Ruiz-Campos P, Ambrosi D, Sampedro D, Funes-Ardoiz I. Investigating the Mechanism of Ni-Catalyzed Coupling of Photoredox-Generated Alkyl Radicals and Aryl Bromides: A Computational Study. Int J Mol Sci 2023; 24:ijms24119145. [PMID: 37298098 DOI: 10.3390/ijms24119145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/18/2023] [Accepted: 05/20/2023] [Indexed: 06/12/2023] Open
Abstract
Photoredox catalysis has emerged as an alternative to classical cross-coupling reactions, promoting new reactivities. Recently, the use of widely abundant alcohols and aryl bromides as coupling reagents was demonstrated to promote efficient coupling through the Ir/Ni dual photoredox catalytic cycle. However, the mechanism underlying this transformation is still unexplored, and here we report a comprehensive computational study of the catalytic cycle. We have shown that nickel catalysts can promote this reactivity very efficiently through DFT calculations. Two different mechanistic scenarios were explored, suggesting that two catalytic cycles operate simultaneously depending on the concentration of the alkyl radical.
Collapse
Affiliation(s)
- Nil Sanosa
- Centro de Investigación en Síntesis Química (CISQ), Department of Chemistry, Universidad de la Rioja, Madre de Dios 53, 26004 Logroño, Spain
| | - Pedro Ruiz-Campos
- Centro de Investigación en Síntesis Química (CISQ), Department of Chemistry, Universidad de la Rioja, Madre de Dios 53, 26004 Logroño, Spain
| | - Diego Ambrosi
- Centro de Investigación en Síntesis Química (CISQ), Department of Chemistry, Universidad de la Rioja, Madre de Dios 53, 26004 Logroño, Spain
| | - Diego Sampedro
- Centro de Investigación en Síntesis Química (CISQ), Department of Chemistry, Universidad de la Rioja, Madre de Dios 53, 26004 Logroño, Spain
| | - Ignacio Funes-Ardoiz
- Centro de Investigación en Síntesis Química (CISQ), Department of Chemistry, Universidad de la Rioja, Madre de Dios 53, 26004 Logroño, Spain
| |
Collapse
|
18
|
Xu S, Ping Y, Li W, Guo H, Su Y, Li Z, Wang M, Kong W. Enantioselective C(sp 3)-H Functionalization of Oxacycles via Photo-HAT/Nickel Dual Catalysis. J Am Chem Soc 2023; 145:5231-5241. [PMID: 36812098 DOI: 10.1021/jacs.2c12481] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
The selective functionalization of ubiquitous but inert C-H bonds is highly appealing in synthetic chemistry, but the direct transformation of hydrocarbons lacking directing groups into high-value chiral molecules remains a formidable challenge. Herein, we develop an enantioselective C(sp3)-H functionalization of undirected oxacycles via photo-HAT/nickel dual catalysis. This protocol provides a practical platform for the rapid construction of high-value and enantiomerically enriched oxacycles directly from simple and abundant hydrocarbon feedstocks. The synthetic utility of this strategy is further demonstrated in the late-stage functionalization of natural products and the synthesis of many pharmaceutically relevant molecules. Experimental and density functional theory calculation studies provide detailed insights into the mechanism and the origin of enantioselectivity for the asymmetric C(sp3)-H functionalization.
Collapse
Affiliation(s)
- Sheng Xu
- The Institute for Advanced Studies and Hongyi Honor College, Wuhan University, Wuhan 430072, China
| | - Yuanyuan Ping
- The Institute for Advanced Studies and Hongyi Honor College, Wuhan University, Wuhan 430072, China
| | - Wei Li
- The Institute for Advanced Studies and Hongyi Honor College, Wuhan University, Wuhan 430072, China
| | - Haoyun Guo
- The Institute for Advanced Studies and Hongyi Honor College, Wuhan University, Wuhan 430072, China
| | - Yinyan Su
- The Institute for Advanced Studies and Hongyi Honor College, Wuhan University, Wuhan 430072, China
| | - Ziyang Li
- The Institute for Advanced Studies and Hongyi Honor College, Wuhan University, Wuhan 430072, China
| | - Minyan Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wangqing Kong
- The Institute for Advanced Studies and Hongyi Honor College, Wuhan University, Wuhan 430072, China
| |
Collapse
|
19
|
El Chami K, Liu Y, Belahouane MA, Ma Y, Lagueux-Tremblay PL, Arndtsen BA. A Visible Light Driven Nickel Carbonylation Catalyst: The Synthesis of Acid Chlorides from Alkyl Halides. Angew Chem Int Ed Engl 2023; 62:e202213297. [PMID: 36576428 DOI: 10.1002/anie.202213297] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/27/2022] [Accepted: 12/27/2022] [Indexed: 12/29/2022]
Abstract
We describe here the development of a visible light driven nickel carbonylation catalyst. The combination of the large bite-angle Xantphos ligand with nickel(0) generates a catalyst capable of activating alkyl halides toward carbonylation at ambient temperature in the presence of blue light irradiation, and the reductive elimination of high energy acid chloride products. Unlike classical carbonylations, where the coordination of carbon monoxide inhibits the reactivity of earth abundant nickel catalysts, a CO-associated nickel is found to be the active catalyst in the reaction. Coupling the build-up of acid chlorides with nucleophile addition can be used to access various amides, esters and thioesters, including those of sterically encumbered substrates or with metal-reactive functionalities.
Collapse
Affiliation(s)
- Kristian El Chami
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, H3A0B8, Montreal, QC, Canada
| | - Yi Liu
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, H3A0B8, Montreal, QC, Canada
| | - Mohammed A Belahouane
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, H3A0B8, Montreal, QC, Canada
| | - Yiyang Ma
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, H3A0B8, Montreal, QC, Canada
| | | | - Bruce A Arndtsen
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, H3A0B8, Montreal, QC, Canada
| |
Collapse
|
20
|
Das A, Choi A, Coldham I. Photocatalysis and Kinetic Resolution by Lithiation to Give Enantioenriched 2-Arylpiperazines. Org Lett 2023; 25:987-991. [PMID: 36735675 PMCID: PMC9942196 DOI: 10.1021/acs.orglett.3c00074] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Piperazines are important heterocycles in drug compounds. We report the asymmetric synthesis of arylpiperazines by photocatalytic decarboxylative arylation (metallaphotoredox catalysis) then kinetic resolution using n-BuLi/(+)-sparteine. This gave a range of piperazines with very high enantioselectivities. Further functionalizations gave enantioenriched 2,2-disubstituted piperazines, and either N-substituent can be removed selectively. Late-stage functionalizations of enantioenriched piperazine derivatives were demonstrated, including synthesis of a drug compound with glycogen synthase kinase (GSK)-3β inhibitor activity with potential for treating Alzheimer's disease.
Collapse
|
21
|
Huang L, Szewczyk M, Kancherla R, Maity B, Zhu C, Cavallo L, Rueping M. Modulating stereoselectivity in allylic C(sp 3)-H bond arylations via nickel and photoredox catalysis. Nat Commun 2023; 14:548. [PMID: 36725849 PMCID: PMC9892578 DOI: 10.1038/s41467-023-36103-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 01/16/2023] [Indexed: 02/03/2023] Open
Abstract
While significant progress has been made in developing selective C-H bond cross-couplings in the field of radical chemistry, the site and stereoselectivity remain a long-standing challenge. Here, we present the successful development of stereodivergent allylic C(sp3)-H bond arylations through a systematic investigation of the direction and degree of stereoselectivity in the cross-coupling process. In contrast to the signature photosensitized geometrical isomerization of alkenes, the catalytic reaction demonstrates the feasibility of switching the C-C double bond stereoselectivity by means of ligand control as well as steric and electronic effects. Computational studies explain the stereochemical outcome and indicate that excitation of a Ni-allyl complex from singlet to a triplet state results in a spontaneous change of the allyl group coordination and that the subsequent isomerization can be directed by the choice of the ligand to achieve E/Z selectivity.
Collapse
Affiliation(s)
- Long Huang
- grid.1957.a0000 0001 0728 696XInstitute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Marcin Szewczyk
- grid.1957.a0000 0001 0728 696XInstitute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Rajesh Kancherla
- grid.45672.320000 0001 1926 5090KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi Arabia
| | - Bholanath Maity
- grid.45672.320000 0001 1926 5090KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi Arabia
| | - Chen Zhu
- grid.45672.320000 0001 1926 5090KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi Arabia
| | - Luigi Cavallo
- grid.45672.320000 0001 1926 5090KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi Arabia
| | - Magnus Rueping
- grid.45672.320000 0001 1926 5090KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi Arabia ,grid.1957.a0000 0001 0728 696XInstitute for Experimental Molecular Imaging, RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
22
|
Dong YJ, Zhao ZW, Geng Y, Su ZM, Zhu B, Guan W. Theoretical Insight on the High Reactivity of Reductive Elimination of Ni III Based on Energy- and Electron-Transfer Mechanisms. Inorg Chem 2023; 62:1156-1164. [PMID: 36625518 DOI: 10.1021/acs.inorgchem.2c03502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Iridium/nickel (Ir/Ni) metallaphotoredox dual catalysis overcomes the challenging reductive elimination (RE) of Ni(II) species and has made a breakthrough progress to construct a wide range of C-X (X = C, N, S, and P) bonds. However, the corresponding reaction mechanisms are still ambiguous and controversial because the systematic research on the nature of this synergistic catalysis is not sufficient. Herein, IrIII/NiII and IrIII/Ni0 metallaphotoredox catalysis have been theoretically explored taking the aryl esterification reaction of benzoic acid and aryl bromide as an example by a combination of density functional theory (DFT), molecular dynamics, and time-dependent DFT computations. It is found that an electron-transfer mechanism is applicable to IrIII/NiII metallaphotoredox catalysis, but an energy-transfer mechanism is applicable to IrIII/Ni0 combination. The IrIII/NiII metallaphotoredox catalysis succeeds to construct a NiI-NiIII catalytic cycle to avoid the challenging RE of Ni(II) species, while the RE occurs from triplet excited-state Ni(II) species in the IrIII/Ni0 metallaphotoredox catalysis. In addition, the lower lowest unoccupied molecular orbital energy level of Ni(III) species than that of Ni(II) species accelerates RE from Ni(III) one. The triplet excited-state Ni(II) species can resemble a Ni(III) center, considering the metal-to-ligand charge transfer character to promote the RE.
Collapse
Affiliation(s)
- Yu-Jiao Dong
- Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Zhi-Wen Zhao
- College of Chemical Engineering, Hubei University of Arts and Science, Xiangyang 441053, People's Republic of China
| | - Yun Geng
- Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Zhong-Min Su
- College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Bo Zhu
- Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Wei Guan
- Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China
| |
Collapse
|
23
|
Shu X, Zhong D, Huang Q, Huan L, Huo H. Site- and enantioselective cross-coupling of saturated N-heterocycles with carboxylic acids by cooperative Ni/photoredox catalysis. Nat Commun 2023; 14:125. [PMID: 36624097 PMCID: PMC9829739 DOI: 10.1038/s41467-023-35800-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 01/02/2023] [Indexed: 01/11/2023] Open
Abstract
Site- and enantioselective cross-coupling of saturated N-heterocycles and carboxylic acids-two of the most abundant and versatile functionalities-to form pharmaceutically relevant α-acylated amine derivatives remains a major challenge in organic synthesis. Here, we report a general strategy for the highly site- and enantioselective α-acylation of saturated N-heterocycles with in situ-activated carboxylic acids. This modular approach exploits the hydrogen-atom-transfer reactivity of photocatalytically generated chlorine radicals in combination with asymmetric nickel catalysis to selectively functionalize cyclic α-amino C-H bonds in the presence of benzylic, allylic, acyclic α-amino, and α-oxy methylene groups. The mild and scalable protocol requires no organometallic reagents, displays excellent chemo-, site- and enantioselectivity, and is amenable to late-stage diversification, including a modular synthesis of previously inaccessible Taxol derivatives. Mechanistic studies highlight the exceptional versatility of the chiral nickel catalyst in orchestrating (i) catalytic chlorine elimination, (ii) alkyl radical capture, (iii) cross-coupling, and (iv) asymmetric induction.
Collapse
Affiliation(s)
- Xiaomin Shu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - De Zhong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Qian Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Leitao Huan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Haohua Huo
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| |
Collapse
|
24
|
Ligand-controlled stereodivergent alkenylation of alkynes to access functionalized trans- and cis-1,3-dienes. Nat Commun 2023; 14:55. [PMID: 36599820 PMCID: PMC9813127 DOI: 10.1038/s41467-022-35688-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/20/2022] [Indexed: 01/05/2023] Open
Abstract
Precise stereocontrol of functionalized alkenes represents a long-standing research topic in organic synthesis. Nevertheless, the development of a catalytic, easily tunable synthetic approach for the stereodivergent synthesis of both E-selective and even more challenging Z-selective highly substituted 1,3-dienes from common substrates remains underexploited. Here, we report a photoredox and nickel dual catalytic strategy for the stereodivergent sulfonylalkenylation of terminal alkynes with vinyl triflates and sodium sulfinates under mild conditions. With a judicious choice of simple nickel catalyst and ligand, this method enables efficient and divergent access to both Z- and E-sulfonyl-1,3-dienes from the same set of simple starting materials. This method features broad substrate scope, good functional compatibility, and excellent chemo-, regio-, and stereoselectivity. Experimental and DFT mechanistic studies offer insights into the observed divergent stereoselectivity controlled by ligands.
Collapse
|
25
|
Pitchai M, Ramirez A, Mayder DM, Ulaganathan S, Kumar H, Aulakh D, Gupta A, Mathur A, Kempson J, Meanwell N, Hudson ZM, Oderinde MS. Metallaphotoredox Decarboxylative Arylation of Natural Amino Acids via an Elusive Mechanistic Pathway. ACS Catal 2022. [DOI: 10.1021/acscatal.2c05554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Manivel Pitchai
- Department of Discovery Synthesis, Biocon Bristol Myers Squibb Research Centre, Plot 2 & 3, Bommasandra Industrial Estate─Phase-IV, Bommasandra-Jigani Link Road, Bengaluru, Karnataka 560099, India
| | - Antonio Ramirez
- Chemical & Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08901, United States
| | - Don M. Mayder
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Sankar Ulaganathan
- Department of Discovery Synthesis, Biocon Bristol Myers Squibb Research Centre, Plot 2 & 3, Bommasandra Industrial Estate─Phase-IV, Bommasandra-Jigani Link Road, Bengaluru, Karnataka 560099, India
| | - Hemantha Kumar
- Department of Discovery Synthesis, Biocon Bristol Myers Squibb Research Centre, Plot 2 & 3, Bommasandra Industrial Estate─Phase-IV, Bommasandra-Jigani Link Road, Bengaluru, Karnataka 560099, India
| | - Darpandeep Aulakh
- Materials Science and Engineering, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08901, United States
| | - Anuradha Gupta
- Department of Discovery Synthesis, Biocon Bristol Myers Squibb Research Centre, Plot 2 & 3, Bommasandra Industrial Estate─Phase-IV, Bommasandra-Jigani Link Road, Bengaluru, Karnataka 560099, India
| | - Arvind Mathur
- Small Molecule Discovery Chemistry, Bristol Myers Squibb Research & Early Development, Route 206 & Province Line Road, Princeton, New Jersey 08543, United States
| | - James Kempson
- Small Molecule Discovery Chemistry, Bristol Myers Squibb Research & Early Development, Route 206 & Province Line Road, Princeton, New Jersey 08543, United States
| | - Nicholas Meanwell
- Small Molecule Discovery Chemistry, Bristol Myers Squibb Research & Early Development, Route 206 & Province Line Road, Princeton, New Jersey 08543, United States
| | - Zachary M. Hudson
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Martins S. Oderinde
- Small Molecule Discovery Chemistry, Bristol Myers Squibb Research & Early Development, Route 206 & Province Line Road, Princeton, New Jersey 08543, United States
| |
Collapse
|
26
|
Chen J, Han J, Zhang J, Li L, Zhang Z, Yang Y, Jiang Y. Rhodium/Amine Dual Catalytic System for Reassembling C≡C Bonds of Conjugated Alkynes with Cyclopropenes via Cutting/Insertion Cascade. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Jie Chen
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jiabin Han
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jian Zhang
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Ling Li
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Zhengyu Zhang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yanhui Yang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yaojia Jiang
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
27
|
Li LH, Gu XT, Shi M, Wei Y. Visible-light-induced dual catalysis for N-α C(sp 3)-H amination and alkenylation of N-alkyl benzamides. Chem Sci 2022; 13:12851-12857. [PMID: 36519035 PMCID: PMC9645395 DOI: 10.1039/d2sc03385b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/30/2022] [Indexed: 09/06/2023] Open
Abstract
The amination and alkenylation of the C(sp3)-H bond at the N-α position of secondary benzamides were both realized in this work by using N-hydroxyphthalimide (NHPI) imidate esters as substrates under a dual catalysis involving a photoredox catalyst and hydrogen atom transfer (HAT) catalyst. The developed methods significantly extended the scope of applications of the N-α position C(sp3)-H bond functionalization with regard to secondary N-alkylamides. More importantly, new reaction models in photoredox catalysis have been established. Based on corresponding experiments and density functional theory (DFT) calculations on the critical reaction steps combined with information reported previously, we proposed a synergistic photo- and organocatalytic reaction process for the C(sp3)-H bond functionalization and also clarified the occurrence of a chain process in the reaction pathway.
Collapse
Affiliation(s)
- Long-Hai Li
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Xin-Tao Gu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Min Shi
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Yin Wei
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| |
Collapse
|
28
|
Maity B, Scott TR, Stroscio GD, Gagliardi L, Cavallo L. The Role of Excited States of LNi II/III(Aryl)(Halide) Complexes in Ni–Halide Bond Homolysis in the Arylation of C sp3–H Bonds. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bholanath Maity
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal23955-6900, Saudi Arabia
| | - Thais R. Scott
- Department of Chemistry, Pritzker School of Molecular Engineering, James Franck Institute, Chicago Center for Theoretical Chemistry, University of Chicago, Chicago, Illinois60637-5418, United States
| | - Gautam D. Stroscio
- Department of Chemistry, Pritzker School of Molecular Engineering, James Franck Institute, Chicago Center for Theoretical Chemistry, University of Chicago, Chicago, Illinois60637-5418, United States
| | - Laura Gagliardi
- Department of Chemistry, Pritzker School of Molecular Engineering, James Franck Institute, Chicago Center for Theoretical Chemistry, University of Chicago, Chicago, Illinois60637-5418, United States
| | - Luigi Cavallo
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal23955-6900, Saudi Arabia
| |
Collapse
|
29
|
Marchi M, Gentile G, Rosso C, Melchionna M, Fornasiero P, Filippini G, Prato M. The Nickel Age in Synthetic Dual Photocatalysis: A Bright Trip Toward Materials Science. CHEMSUSCHEM 2022; 15:e202201094. [PMID: 35789214 PMCID: PMC9804426 DOI: 10.1002/cssc.202201094] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/01/2022] [Indexed: 05/30/2023]
Abstract
Recently, the field of dual photocatalysis has grown rapidly, to become one of the most powerful tools for the functionalization of organic molecules under mild conditions. In particular, the merging of Earth-abundant nickel-based catalytic systems with visible-light-activated photoredox catalysts has allowed the development of a number of unique green synthetic approaches. This goes in the direction of ensuring an effective and sustainable chemical production, while safeguarding human health and environment. Importantly, this relatively new branch of catalysis has inspired an interdisciplinary stream of research that spans from inorganic and organic chemistry to materials science, thus establishing itself as one dominant trend in modern organic synthesis. This Review aims at illustrating the milestones on the timeline evolution of the photocatalytic systems used, with a critical analysis toward novel applications based on the use of photoactive two-dimensional carbon-based nanostructures. Lastly, forward-looking opportunities within this intriguing research field are discussed.
Collapse
Affiliation(s)
- Miriam Marchi
- Department of Chemical and Pharmaceutical SciencesCENMATCenter of Excellence for Nanostructured MaterialsINSTM UdR TriesteUniversity of TriesteVia Licio Giorgieri 134127TriesteItaly
| | - Giuseppe Gentile
- Department of Chemical and Pharmaceutical SciencesCENMATCenter of Excellence for Nanostructured MaterialsINSTM UdR TriesteUniversity of TriesteVia Licio Giorgieri 134127TriesteItaly
| | - Cristian Rosso
- Department of Chemical and Pharmaceutical SciencesCENMATCenter of Excellence for Nanostructured MaterialsINSTM UdR TriesteUniversity of TriesteVia Licio Giorgieri 134127TriesteItaly
| | - Michele Melchionna
- Department of Chemical and Pharmaceutical SciencesCENMATCenter of Excellence for Nanostructured MaterialsINSTM UdR TriesteUniversity of TriesteVia Licio Giorgieri 134127TriesteItaly
- Consorzio Interuniversitario Nazionale per laScienza e Tecnologia dei Materiali (INSTM)Unit of Triestevia L. Giorgieri 134127TriesteItaly
| | - Paolo Fornasiero
- Department of Chemical and Pharmaceutical SciencesCENMATCenter of Excellence for Nanostructured MaterialsINSTM UdR TriesteUniversity of TriesteVia Licio Giorgieri 134127TriesteItaly
- Consorzio Interuniversitario Nazionale per laScienza e Tecnologia dei Materiali (INSTM)Unit of Triestevia L. Giorgieri 134127TriesteItaly
| | - Giacomo Filippini
- Department of Chemical and Pharmaceutical SciencesCENMATCenter of Excellence for Nanostructured MaterialsINSTM UdR TriesteUniversity of TriesteVia Licio Giorgieri 134127TriesteItaly
| | - Maurizio Prato
- Department of Chemical and Pharmaceutical SciencesCENMATCenter of Excellence for Nanostructured MaterialsINSTM UdR TriesteUniversity of TriesteVia Licio Giorgieri 134127TriesteItaly
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE)Basque Research and Technology Alliance (BRTA)Paseo Miramón 19420014Donostia San SebastiánSpain
- Basque Fdn Sci, Ikerbasque48013BilbaoSpain
| |
Collapse
|
30
|
Ben-Tal Y, Lloyd-Jones GC. Kinetics of a Ni/Ir-Photocatalyzed Coupling of ArBr with RBr: Intermediacy of ArNi II(L)Br and Rate/Selectivity Factors. J Am Chem Soc 2022; 144:15372-15382. [PMID: 35969479 PMCID: PMC9413222 DOI: 10.1021/jacs.2c06831] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The Ni/Ir-photocatalyzed coupling of an aryl bromide
(ArBr) with
an alkyl bromide (RBr) has been analyzed using in situ LED-19F NMR spectroscopy. Four components (light, [ArBr],
[Ni], [Ir]) are found to control the rate of ArBr consumption, but
not the product selectivity, while two components ([(TMS)3SiH], [RBr]) independently control the product selectivity, but not
the rate. A major resting state of nickel has been identified as ArNiII(L)Br, and 13C-isotopic entrainment is used to
show that the complex undergoes Ir-photocatalyzed conversion to products
(Ar-R, Ar-H, Ar-solvent) in competition with the release of ArBr.
A range of competing absorption and quenching effects lead to complex
correlations between the Ir and Ni catalyst loadings and the reaction
rate. Differences in the Ir/Ni Beer–Lambert absorption profiles
allow the rate to be increased by the use of a shorter-wavelength
light source without compromising the selectivity. A minimal kinetic
model for the process allows simulation of the reaction and provides
insights for optimization of these processes in the laboratory.
Collapse
Affiliation(s)
- Yael Ben-Tal
- EaStChem, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, U.K
| | - Guy C Lloyd-Jones
- EaStChem, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, U.K
| |
Collapse
|
31
|
Almansa A, Jardel D, Massip S, Tassaing T, Schatz C, Domergue J, Molton F, Duboc C, Vincent JM. Dual Photoredox Ni/Benzophenone Catalysis: A Study of the Ni II Precatalyst Photoreduction Step. J Org Chem 2022; 87:11172-11184. [PMID: 35946789 DOI: 10.1021/acs.joc.2c01467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The combination of NiIIX2 salts with a bipyridine-type ligand and aromatic carbonyl-based chromophores has emerged as a benchmark precatalytic system to efficiently conduct cross-couplings mediated by light. Mechanistic studies have led to two scenarios in which Ni0 is proposed as the catalytic species. Nonetheless, in none of these studies has a NiII to Ni0 photoreduction been evidenced. By exploiting UV-visible, nuclear magnetic resonance, resonance Raman, electron paramagnetic resonance, and dynamic light scattering spectroscopies and also transmission electron microscopy, we report that, when photolyzed by UVA in alcohols, the structurally defined [NiII2(μ-OH2)(dtbbpy)2(BPCO2)4] complex 1 integrating a benzophenone chromophore is reduced into a diamagnetic NiI dimer of the general formula [NiI2(dtbbpy)2(BPCO2)2]. In marked contrast, in THF, photolysis led to the fast formation of Ni0, which accumulates in the form of metallic ultrathin Ni nanosheets characterized by a mean size of ∼100 nm and a surface plasmon resonance at 505 nm. Finally, it is shown that 1 combined with UVA irradiation catalyzes cross-couplings, that is, C(sp3)-H arylation of THF and O-arylation of methanol. These results are discussed in light of the mechanisms proposed for these cross-couplings with a focus on the oxidation state of the catalytic species.
Collapse
Affiliation(s)
- Axel Almansa
- Institut des Sciences Moléculaires (ISM), CNRS UMR 5255, Univ. Bordeaux, 33405 Talence, France
| | - Damien Jardel
- Institut des Sciences Moléculaires (ISM), CNRS UMR 5255, Univ. Bordeaux, 33405 Talence, France
| | - Stéphane Massip
- European Institute of Chemistry and Biology (IECB), Univ. Bordeaux, 33600 Pessac, France
| | - Thierry Tassaing
- Institut des Sciences Moléculaires (ISM), CNRS UMR 5255, Univ. Bordeaux, 33405 Talence, France
| | - Christophe Schatz
- Laboratoire de Chimie des Polymères Organiques (LCPO), CNRS UMR 5629, Univ. Bordeaux, 33607 Pessac Cedex, France
| | - Jérémy Domergue
- Département de Chimie Moléculaire (DCM) CNRS UMR 5250, Univ. Grenoble Alpes, F-38000 Grenoble, France
| | - Florian Molton
- Département de Chimie Moléculaire (DCM) CNRS UMR 5250, Univ. Grenoble Alpes, F-38000 Grenoble, France
| | - Carole Duboc
- Département de Chimie Moléculaire (DCM) CNRS UMR 5250, Univ. Grenoble Alpes, F-38000 Grenoble, France
| | - Jean-Marc Vincent
- Institut des Sciences Moléculaires (ISM), CNRS UMR 5255, Univ. Bordeaux, 33405 Talence, France
| |
Collapse
|
32
|
Liu W, Liu C, Wang M, Kong W. Modular Synthesis of Multifunctionalized CF 3-Allenes through Selective Activation of Saturated Hydrocarbons. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Wenfeng Liu
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, P. R. China
| | - Chuhan Liu
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, P. R. China
| | - Minyan Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Wangqing Kong
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|
33
|
Cauley AN, Ramirez A, Barhate CL, Donnell AF, Khandelwal P, Sezen-Edmonds M, Sherwood TC, Sloane JL, Cavallaro CL, Simmons EM. Ni/Photoredox-Catalyzed C(sp 2)-C(sp 3) Cross-Coupling of Alkyl Pinacolboronates and (Hetero)Aryl Bromides. Org Lett 2022; 24:5663-5668. [PMID: 35920644 DOI: 10.1021/acs.orglett.2c01942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Utilizing quinoline as a mild, catalytic additive, broadly applicable conditions for the Ni/photoredox-catalyzed C(sp2)-C(sp3) cross-coupling of (hetero)aryl bromides and alkyl pinacolboronate esters were developed, which can be applied to both batch and flow reactions. In addition to primary benzylic nucleophiles, both stabilized and nonstabilized secondary alkyl boronic esters are effective coupling partners. Density functional theory calculations suggest that alkyl radical generation occurs from an alkyl-B(pin)-quinoline complex, which may proceed via an energy transfer process.
Collapse
Affiliation(s)
- Anthony N Cauley
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States.,Small Molecule Drug Discovery, Bristol Myers Squibb, Princeton, New Jersey 08543, United States
| | - Antonio Ramirez
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| | - Chandan L Barhate
- Small Molecule Drug Discovery, Bristol Myers Squibb, Princeton, New Jersey 08543, United States
| | - Andrew F Donnell
- Small Molecule Drug Discovery, Bristol Myers Squibb, Princeton, New Jersey 08543, United States
| | - Purnima Khandelwal
- Small Molecule Drug Discovery, Bristol Myers Squibb, Princeton, New Jersey 08543, United States
| | - Melda Sezen-Edmonds
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| | - Trevor C Sherwood
- Small Molecule Drug Discovery, Bristol Myers Squibb, Princeton, New Jersey 08543, United States
| | - Jack L Sloane
- Small Molecule Drug Discovery, Bristol Myers Squibb, Princeton, New Jersey 08543, United States
| | - Cullen L Cavallaro
- Small Molecule Drug Discovery, Bristol Myers Squibb, Princeton, New Jersey 08543, United States
| | - Eric M Simmons
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| |
Collapse
|
34
|
Liu K, Studer A. Formal β-C-H Arylation of Aldehydes and Ketones by Cooperative Nickel and Photoredox Catalysis. Angew Chem Int Ed Engl 2022; 61:e202206533. [PMID: 35656716 PMCID: PMC9400853 DOI: 10.1002/anie.202206533] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Indexed: 01/19/2023]
Abstract
α-C-H-functionalization of ketones and aldehydes has been intensively explored in organic synthesis. The functionalization of unactivated β-C-H bonds in such carbonyl compounds is less well investigated and developing a general method for their β-C-H arylation remains challenging. Herein we report a method that uses cooperative nickel and photoredox catalysis for the formal β-C-H arylation of aldehydes and ketones with (hetero)aryl bromides. The method features mild conditions, remarkable scope and wide functional group tolerance. Importantly, the introduced synthetic strategy also allows the β-alkenylation, β-alkynylation and β-acylation of aldehydes under similar conditions. Mechanistic studies revealed that this transformation proceeds through a single electron oxidation/Ni-mediated coupling/reductive elimination cascade.
Collapse
Affiliation(s)
- Kun Liu
- Organisch-Chemisches InstitutWestfälische Wilhelms-UniversitätCorrensstraße 4048149MünsterGermany
| | - Armido Studer
- Organisch-Chemisches InstitutWestfälische Wilhelms-UniversitätCorrensstraße 4048149MünsterGermany
| |
Collapse
|
35
|
Liu K, Studer A. Formal β‐C‐H Arylation of Aldehydes and Ketones by Cooperative Nickel and Photoredox Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kun Liu
- Westfälische Wilhelms-Universität Münster: Westfalische Wilhelms-Universitat Munster Chemistry and pharmacy GERMANY
| | - Armido Studer
- Westfalische Wilhelms-Universitat Munster Organisch-Chemisches Institut Corrensstrasse 40 48149 Münster GERMANY
| |
Collapse
|
36
|
Gong Y, Su L, Zhu Z, Ye Y, Gong H. Nickel-Catalyzed Thermal Redox Functionalization of C(sp 3 )-H Bonds with Carbon Electrophiles. Angew Chem Int Ed Engl 2022; 61:e202201662. [PMID: 35293093 DOI: 10.1002/anie.202201662] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Indexed: 12/12/2022]
Abstract
C(sp3 )-H bond coupling with carbon electrophiles remains rarely explored under thermo-driven hydrogen atom transfer (HAT) conditions due to the challenge of integrating oxidation and reduction in a single operation. We report here a Ni-catalyzed arylation and alkylation of C(sp3 )-H bonds with organohalides to forge C(sp3 )-C bonds by merging economical Zn and tBuOOtBu (DTBP) as the external reductant and oxidant. The mild and easy-to-operate protocol enables facile carbofunctionalization of N-/O-α- and cyclohexane C-H bonds, and preparation of a few intermediates of bioactive compounds and drug derivatives. Preliminary mechanistic studies implied addition of an alkyl radical to a NiII salt.
Collapse
Affiliation(s)
- Yuxin Gong
- Center for Supramolecular Chemistry and Catalysis, College of Sciences, Shanghai University, Shanghai, 200444, China
| | - Lei Su
- Center for Supramolecular Chemistry and Catalysis, College of Sciences, Shanghai University, Shanghai, 200444, China
| | - Zhaodong Zhu
- Center for Supramolecular Chemistry and Catalysis, College of Sciences, Shanghai University, Shanghai, 200444, China
| | - Yang Ye
- Center for Supramolecular Chemistry and Catalysis, College of Sciences, Shanghai University, Shanghai, 200444, China
| | - Hegui Gong
- Center for Supramolecular Chemistry and Catalysis, College of Sciences, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
37
|
Shu X, Zhong D, Lin Y, Qin X, Huo H. Modular Access to Chiral α-(Hetero)aryl Amines via Ni/Photoredox-Catalyzed Enantioselective Cross-Coupling. J Am Chem Soc 2022; 144:8797-8806. [PMID: 35503417 DOI: 10.1021/jacs.2c02795] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Chiral α-aryl N-heterocycles are commonly found in natural products, pharmaceutical agents, and chiral catalysts but remain challenging to access via asymmetric catalysis. Herein, we report a general and modular approach for the direct enantioselective α-arylation of saturated azacycles and acyclic N-alkyl benzamides via nickel/photoredox dual catalysis. This process exploits the hydrogen atom transfer ability of photoeliminated chlorine radicals to convert azacycles to the corresponding α-amino alkyl radicals that then are coupled with ubiquitous and inexpensive (hetero)aryl chlorides. These coupling reactions require no oxidants or organometallic reagents, feature feedstock starting materials, a broad substrate scope, and high enantioselectivities, and are applicable to late-stage diversification of medicinally relevant complex molecules. Mechanistic studies suggest that the nickel catalyst uncommonly plays multiple roles, accomplishing chlorine radical generation, α-amino radical capture, cross-coupling, and asymmetric induction.
Collapse
Affiliation(s)
- Xiaomin Shu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - De Zhong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yanmei Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiao Qin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Haohua Huo
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
38
|
Duan A, Yu Y, Wang F, Wang X, Wang D. Mechanism and Origin of Stereoselectivity of Ni-Catalyzed Cyclization/Carboxylation of Bromoalkynes with CO 2. J Org Chem 2022; 87:8342-8350. [PMID: 35500133 DOI: 10.1021/acs.joc.2c00161] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Bromoalkynes play important roles in coupling reactions because they can show obvious stereoselectivity to form E- and Z-isomers when substituents are different. However, the origin of the stereoselectivity in the bromoalkynes reaction is still unclear. Density functional theory (DFT) calculations were performed to provide an in-depth study of the reaction mechanism, clarifying the mechanistic details of the main reaction and the origin of the stereoselectivity. By comparing the syn-insertion mechanism of alkynes and the radical pathway, it is indicated that the electrostatic effect caused by the different charge distributions of the reactants is the main reason that Ni(I) species are more prone to syn-insertion of alkynes than Ni(II) species. In addition, the lower reaction energy barrier in the radical pathway suggests that it is more advantageous in terms of kinetics. The bond between Ni(I) species and alkenylation products has two directions to generate products of different configurations, which are the direct stereoselectivity-determining stages. The distortion/interaction analysis shows that the distortion energy mainly affects the product configuration, and the steric hindrance is the main factor controlling the stereoselectivity.
Collapse
Affiliation(s)
- Abing Duan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Yali Yu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Fengqin Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Xueqiang Wang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
39
|
Yuan M, Gutierrez O. Mechanisms, Challenges, and Opportunities of Dual Ni/Photoredox-Catalyzed C(sp 2)-C(sp 3) Cross-Couplings. WILEY INTERDISCIPLINARY REVIEWS. COMPUTATIONAL MOLECULAR SCIENCE 2022; 12:e1573. [PMID: 35664524 PMCID: PMC9162266 DOI: 10.1002/wcms.1573] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/09/2021] [Indexed: 12/28/2022]
Abstract
The merging of photoredox and nickel catalysis has revolutionized the field of C-C cross-coupling. However, in comparison to the development of synthetic methods, detailed mechanistic investigations of these catalytic systems are lagging. To improve the mechanistic understanding, computational tools have emerged as powerful tools to elucidate the factors controlling reactivity and selectivity in these complex catalytic transformations. Based on the reported computational studies, it appears that the mechanistic picture of catalytic systems is not generally applicable, but is rather dependent on the specific choice of substrate, ligands, photocatalysts, etc. Given the complexity of these systems, the need for more accurate computational methods, readily available and user-friendly dynamics simulation tools, and data-driven approaches is clear in order to understand at the molecular level the mechanisms of these transformations. In particular, we anticipate that such improvement of theoretical methods will become crucial to advance the understanding of excited-state properties and dynamics of key species, as well as to enable faster and unbiased exploration of reaction pathways. Further, with greater collaboration between computational, experimental, and spectroscopic communities, the mechanistic investigation of photoredox/Ni dual-catalytic reactions is expected to thrive quickly, facilitating the design of novel catalytic systems and promoting our understanding of the reaction selectivity.
Collapse
|
40
|
Gong Y, Su L, Zhu Z, Ye Y, Gong H. Nickel‐Catalyzed Thermal Redox Functionalization of C(sp
3
)−H Bonds with Carbon Electrophiles**. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yuxin Gong
- Center for Supramolecular Chemistry and Catalysis College of Sciences Shanghai University Shanghai 200444 China
| | - Lei Su
- Center for Supramolecular Chemistry and Catalysis College of Sciences Shanghai University Shanghai 200444 China
| | - Zhaodong Zhu
- Center for Supramolecular Chemistry and Catalysis College of Sciences Shanghai University Shanghai 200444 China
| | - Yang Ye
- Center for Supramolecular Chemistry and Catalysis College of Sciences Shanghai University Shanghai 200444 China
| | - Hegui Gong
- Center for Supramolecular Chemistry and Catalysis College of Sciences Shanghai University Shanghai 200444 China
| |
Collapse
|
41
|
Ting SI, Williams WL, Doyle AG. Oxidative Addition of Aryl Halides to a Ni(I)-Bipyridine Complex. J Am Chem Soc 2022; 144:5575-5582. [PMID: 35298885 DOI: 10.1021/jacs.2c00462] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The oxidative addition of aryl halides to bipyridine- or phenanthroline-ligated nickel(I) is a commonly proposed step in nickel catalysis. However, there is a scarcity of complexes of this type that both are well-defined and undergo oxidative addition with aryl halides, hampering organometallic studies of this process. We report the synthesis of a well-defined Ni(I) complex, [(CO2Etbpy)NiICl]4 (1). Its solution-phase speciation is characterized by a significant population of monomer and a redox equilibrium that can be perturbed by π-acceptors and σ-donors. 1 reacts readily with aryl bromides, and mechanistic studies are consistent with a pathway proceeding through an initial Ni(I) → Ni(III) oxidative addition to form a Ni(III) aryl species. Such a process was demonstrated stoichiometrically for the first time, affording a structurally characterized Ni(III) aryl complex.
Collapse
Affiliation(s)
- Stephen I Ting
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States.,Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Wendy L Williams
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States.,Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Abigail G Doyle
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States.,Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
42
|
Li Y, Shao Q, He H, Zhu C, Xue XS, Xie J. Highly selective synthesis of all-carbon tetrasubstituted alkenes by deoxygenative alkenylation of carboxylic acids. Nat Commun 2022; 13:10. [PMID: 35121730 PMCID: PMC8816943 DOI: 10.1038/s41467-021-27507-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/14/2021] [Indexed: 01/07/2023] Open
Abstract
The synthesis of all-carbon tetrasubstituted olefins under mild reaction conditions is challenging because of the inevitable issues including significant steric hindrance and the uncontrolled Z/E stereoselectivity. In this paper, we report the synthesis of all-carbon tetrasubstituted alkenes from readily available carboxylic acids and alkenyl triflates with the synergistic catalysis of cyclo-octa-1,5-diene(tetramethyl-1,4-benzoquinone)nickel and visible light under an air atmosphere, thus avoiding the need for a glovebox or a Schlenk line. A wide range of aromatic carboxylic acids and cyclic and acyclic alkenyl triflates undergo the C-C coupling process smoothly, forming structurally diverse alkenes stereospecifically in moderate to good yields. The practicality of the method is further illustrated by the late-stage modification of complex molecules, the one pot synthesis and gram-scale applications. This is an important step towards the valuable utilization of carboxylic acids, and it also simplifies the experimental operation of metallophotoredox catalysis with moisture sensitive nickel(0) catalysis. Tetrasubstituted olefins have been explored as chemical synthons and can sometime have useful photophysical properties, but are sometimes difficult to synthesize with high selectivity in mild conditions. Here the authors present a method to make tetrasubstituted olefins via dual photo- and nickel catalysis, without the need for an inert atmosphere.
Collapse
|
43
|
Abstract
The fields of C-H functionalization and photoredox catalysis have garnered enormous interest and utility in the past several decades. Many different scientific disciplines have relied on C-H functionalization and photoredox strategies including natural product synthesis, drug discovery, radiolabeling, bioconjugation, materials, and fine chemical synthesis. In this Review, we highlight the use of photoredox catalysis in C-H functionalization reactions. We separate the review into inorganic/organometallic photoredox catalysts and organic-based photoredox catalytic systems. Further subdivision by reaction class─either sp2 or sp3 C-H functionalization─lends perspective and tactical strategies for use of these methods in synthetic applications.
Collapse
Affiliation(s)
- Natalie Holmberg-Douglas
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - David A Nicewicz
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
44
|
Calogero F, Potenti S, Bassan E, Fermi A, Gualandi A, Monaldi J, Dereli B, Maity B, Cavallo L, Ceroni P, Giorgio Cozzi P. Nickel‐Mediated Enantioselective Photoredox Allylation of Aldehydes with Visible Light. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Francesco Calogero
- Dipartimento di Chimica “Giacomo Ciamician” Alma Mater Studiorum—Università di Bologna Via Selmi 2 40126 Bologna Italy
| | - Simone Potenti
- Dipartimento di Chimica “Giacomo Ciamician” Alma Mater Studiorum—Università di Bologna Via Selmi 2 40126 Bologna Italy
- Laboratorio SMART Scuola Normale Superiore Piazza dei Cavalieri 7 56126 Pisa Italy
| | - Elena Bassan
- Dipartimento di Chimica “Giacomo Ciamician” Alma Mater Studiorum—Università di Bologna Via Selmi 2 40126 Bologna Italy
| | - Andrea Fermi
- Dipartimento di Chimica “Giacomo Ciamician” Alma Mater Studiorum—Università di Bologna Via Selmi 2 40126 Bologna Italy
| | - Andrea Gualandi
- Dipartimento di Chimica “Giacomo Ciamician” Alma Mater Studiorum—Università di Bologna Via Selmi 2 40126 Bologna Italy
| | - Jacopo Monaldi
- Dipartimento di Chimica “Giacomo Ciamician” Alma Mater Studiorum—Università di Bologna Via Selmi 2 40126 Bologna Italy
| | - Busra Dereli
- KAUST Catalysis Center (KCC) Division of Physical Sciences and Engineering King Abdullah University of Science and Technology (KAUST) Thuwal 23955 Saudi Arabia
| | - Bholanath Maity
- KAUST Catalysis Center (KCC) Division of Physical Sciences and Engineering King Abdullah University of Science and Technology (KAUST) Thuwal 23955 Saudi Arabia
| | - Luigi Cavallo
- KAUST Catalysis Center (KCC) Division of Physical Sciences and Engineering King Abdullah University of Science and Technology (KAUST) Thuwal 23955 Saudi Arabia
| | - Paola Ceroni
- Dipartimento di Chimica “Giacomo Ciamician” Alma Mater Studiorum—Università di Bologna Via Selmi 2 40126 Bologna Italy
| | - Pier Giorgio Cozzi
- Dipartimento di Chimica “Giacomo Ciamician” Alma Mater Studiorum—Università di Bologna Via Selmi 2 40126 Bologna Italy
| |
Collapse
|
45
|
Huang HM, Bellotti P, Erchinger JE, Paulisch TO, Glorius F. Radical Carbonyl Umpolung Arylation via Dual Nickel Catalysis. J Am Chem Soc 2022; 144:1899-1909. [PMID: 35041782 DOI: 10.1021/jacs.1c12199] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The formation of carbon-carbon bonds lies at the heart of synthetic organic chemistry and is widely applied to construct complex drugs, polymers, and materials. Despite its importance, catalytic carbonyl arylation remains comparatively underdeveloped, due to limited scope and functional group tolerance. Herein we disclose an umpolung strategy to achieve radical carbonyl arylation via dual catalysis. This redox-neutral approach provides a complementary method to construct Grignard-type products from (hetero)aryl bromides and aliphatic aldehydes, without the need for pre-functionalization. A sequential activation, hydrogen-atom transfer, and halogen atom transfer process could directly convert aldehydes to the corresponding ketyl-type radicals, which further react with aryl-nickel intermediates in an overall polarity-reversal process. This radical strategy tolerates─among others─acidic functional groups, heteroaryl motifs, and sterically hindered substrates and has been applied in the late-stage modification of drugs and natural products.
Collapse
Affiliation(s)
- Huan-Ming Huang
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Peter Bellotti
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Johannes E Erchinger
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Tiffany O Paulisch
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Frank Glorius
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| |
Collapse
|
46
|
Maia da Silva Santos B, Dos Santos Dupim M, Paula de Souza C, Messias Cardozo T, Gadini Finelli F. DABCO-promoted photocatalytic C-H functionalization of aldehydes. Beilstein J Org Chem 2022; 17:2959-2967. [PMID: 35003372 PMCID: PMC8712972 DOI: 10.3762/bjoc.17.205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/07/2021] [Indexed: 11/29/2022] Open
Abstract
Herein we present a direct application of DABCO, an inexpensive and broadly accessible organic base, as a hydrogen atom transfer (HAT) abstractor in a photocatalytic strategy for aldehyde C–H activation. The acyl radicals generated in this step were arylated with aryl bromides through a well stablished nickel cross-coupling methodology, leading to a variety of interesting aryl ketones in good yields. We also performed computational calculations to shine light in the HAT step energetics and determined an optimized geometry for the transition state, showing that the hydrogen atom transfer between aldehydes and DABCO is a mildly endergonic, yet sufficiently fast step. The same calculations were performed with quinuclidine, for comparison of both catalysts and the differences are discussed.
Collapse
Affiliation(s)
- Bruno Maia da Silva Santos
- Instituto de Pesquisas de Produtos Naturais, Universidade Federal do Rio de Janeiro, 373, Carlos Chagas Ave, Rio de Janeiro RJ, 21941-902, Brazil
| | - Mariana Dos Santos Dupim
- Instituto de Pesquisas de Produtos Naturais, Universidade Federal do Rio de Janeiro, 373, Carlos Chagas Ave, Rio de Janeiro RJ, 21941-902, Brazil
| | - Cauê Paula de Souza
- Instituto de Química, Universidade Federal do Rio de Janeiro 149, Athos da Silveira Ramos Ave, Rio de Janeiro RJ, 21941-909, Brazil
| | - Thiago Messias Cardozo
- Instituto de Química, Universidade Federal do Rio de Janeiro 149, Athos da Silveira Ramos Ave, Rio de Janeiro RJ, 21941-909, Brazil
| | - Fernanda Gadini Finelli
- Instituto de Pesquisas de Produtos Naturais, Universidade Federal do Rio de Janeiro, 373, Carlos Chagas Ave, Rio de Janeiro RJ, 21941-902, Brazil
| |
Collapse
|
47
|
Wang D, Ackermann L. Three-component carboacylation of alkenes via cooperative nickelaphotoredox catalysis. Chem Sci 2022; 13:7256-7263. [PMID: 35799820 PMCID: PMC9214884 DOI: 10.1039/d2sc02277j] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/27/2022] [Indexed: 12/02/2022] Open
Abstract
Various commercially available acyl chlorides, aldehydes, and alkanes were exploited for versatile three-component 1,2-carboacylations of alkenes to forge two vicinal C–C bonds through the cooperative action of nickel and sodium decatungstate catalysis. A wealth of ketones with high levels of structural complexity was rapidly obtained via direct functionalization of C(sp2)/C(sp3)–H bonds in a modular manner. Furthermore, a regioselective late-stage modification of natural products showcased the practical utility of the strategy, generally featuring high resource economy and ample substrate scope. Various commercially available acyl chlorides, aldehydes, and alkanes were exploited for versatile three-component 1,2-carboacylations of alkenes to forge two vicinal C–C bonds through the cooperative action of nickel and sodium decatungstate catalysis.![]()
Collapse
Affiliation(s)
- Dingyi Wang
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable Chemistry, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable Chemistry, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), Germany
| |
Collapse
|
48
|
Li LH, Wei HZ, Wei Y, Shi M. The Morita–Baylis–Hillman reaction for non-electron-deficient olefins enabled by photoredox catalysis. Chem Sci 2022; 13:1478-1483. [PMID: 35222932 PMCID: PMC8809420 DOI: 10.1039/d1sc06784b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 12/17/2021] [Indexed: 12/12/2022] Open
Abstract
A strategy for overcoming the limitation of the Morita–Baylis–Hillman (MBH) reaction, which is only applicable to electron-deficient olefins, has been achieved via visible-light induced photoredox catalysis in this report.
Collapse
Affiliation(s)
- Long-Hai Li
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Hao-Zhao Wei
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yin Wei
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Min Shi
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
49
|
Cozzi PG, Calogero F, Potenti S, Bassan E, Fermi A, Gualandi A, Monaldi J, Dereli B, Maity B, Cavallo L, Ceroni P. Nickel Mediated Enantioselective Photoredox Allylation of Aldehydes with Visible Light. Angew Chem Int Ed Engl 2021; 61:e202114981. [PMID: 34937125 DOI: 10.1002/anie.202114981] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Indexed: 11/11/2022]
Abstract
Here we report a practical, highly enantioselective photoredox allylation of aldehydes mediated by chiral nickel complexes with commercially available allyl acetate as the allylating agent. The methodology allows the clean stereoselective allylation of aldehydes in good to excellent yields and up to 93% e.e. using a catalytic amount of NiCl 2 (glyme) in the presence of the chiral aminoindanol-derived bis(oxazoline) as the chiral ligand. The photoredox system is constituted by the organic dye 3DPAFIPN and a Hantzsch's ester as the sacrificial reductant. The reaction proceeds under visible light irradiation (blue LEDs, 456 nm) at 8-12 °C with excellent stereoselectivities. Compared to other published procedures, no metal reductants (such as Zn or Mn), additives (e.g. CuI) or air-sensitive Ni(COD) 2 are necessary for this reaction. Accurate DFT calculations and photophysical experiments have clarified the mechanistic picture of this stereoselective allylation reaction showing a key role played by Hantzsch's ester for the turnover of the catalyst.
Collapse
Affiliation(s)
- Pier Giorgio Cozzi
- Universita di Bologna, Dipartimento di chimica, Via Selmi 2, 40126, Bologna, ITALY
| | - Francesco Calogero
- Università degli Studi di Bologna: Universita di Bologna, Dipartimento di Chimica Giacomo CIamician, ITALY
| | - Simone Potenti
- Università di Bologna: Universita di Bologna, Dipartimento di Chimica Giacomo CIamician, ITALY
| | - Elena Bassan
- Università di Bologna: Universita di Bologna, Dipartimento di Chimica Giacomo Ciamician, ITALY
| | - Andrea Fermi
- Università di Bologna: Universita di Bologna, Dipartimento di Chimica Giacomo Ciamician, ITALY
| | - Andrea Gualandi
- Università di Bologna: Universita di Bologna, Dipartimento di CHimica Gicacomo Ciamician, ITALY
| | - Jacopo Monaldi
- Università di Bologna: Universita di Bologna, Dipartimento di Chimica Giacomo Ciamician, ITALY
| | - Busra Dereli
- King Abdullah University of Science and Technology, KAUST Catalysis Center, SAUDI ARABIA
| | - Bholanath Maity
- King Abdullah University of Science and Technology, Kaust Catalysis Center, SAUDI ARABIA
| | - Luigi Cavallo
- King Abdullah University of Science and Technology, Kaust Catalysis Center, SAUDI ARABIA
| | - Paola Ceroni
- Università di Bologna: Universita di Bologna, Dipartimento di CHimica Giacomo Ciamician, ITALY
| |
Collapse
|
50
|
Dong YJ, Zhu B, Liang YJ, Guan W, Su ZM. Origin and Regioselectivity of Direct Hydrogen Atom Transfer Mechanism of C(sp 3)-H Arylation by [W 10O 32] 4-/Ni Metallaphotoredox Catalysis. Inorg Chem 2021; 60:18706-18714. [PMID: 34823352 DOI: 10.1021/acs.inorgchem.1c02118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Polyoxometalates (POMs) have a broad array of applied platforms with well-characterized catalysis including photocatalysis to achieve aliphatic C(sp3)-H bond functionalization. However, the reaction mechanism of POMs in organic transformation remains unknown due to the complexity of POM structures. Here, a challenging [W10O32]4-/Ni metallaphotoredox-catalyzed C(sp3)-H arylation of alkane has been investigated by density functional theory (DFT) calculations. The calculation revealed that the superficial active center located in bridged oxygen of *[W10O32]4- is responsible for the abstraction of a foreign hydrogen atom and the activation of a C(sp3)-H bond. Furthermore, we discussed this activated process using the direct activation model of the C(sp3)-H σ-bond to deepen our mechanistic understanding of POM mediated C-H bond activation via the hydrogen atom transfer (HAT) pathway. Specifically, comparing three common mechanisms for nickel catalysis inducing by Ni0, NiI, and NiII to construct a C-C bond, the nickel catalytic cycle induced by the NiI active catalyst is profitable in kinetics and thermodynamics. Finally, a radical mechanism merging the ([W10O32]4--*[W10O32]4--[HW10O32]4--[W10O32]4-) decatungstate reductive quenching cycle, ([HW10O32]4--[H2W10O32]4--[HW10O32]4-) electron relay, and (NiI-NiII-NiI-NiIII-NiI) nickel catalytic cycle is proposed to be favorable. We hope that this work would provide a better understanding of the unique catalytic activity of decatungstate anions for the direct functionalization of the C(sp3)-H bond.
Collapse
Affiliation(s)
- Yu-Jiao Dong
- Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Bo Zhu
- Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Yu-Jie Liang
- Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Wei Guan
- Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Zhong-Min Su
- Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China.,College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| |
Collapse
|