1
|
Dong Y, Shi Y, Chen S, Guo C, Zheng D, Gou H, Wan S, Ye C. Low blue-hazard white-light emission based on color-tunable triplet-triplet annihilation upconversion. J Colloid Interface Sci 2025; 677:504-512. [PMID: 39154443 DOI: 10.1016/j.jcis.2024.08.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/29/2024] [Accepted: 08/11/2024] [Indexed: 08/20/2024]
Abstract
The commonly used artificial light sources, such as fluorescent lamps and white light-emitting diodes, often have a high ratio of blue light emission, which poses potential blue light hazards, especially one of the main culprits leading to eye diseases. Therefore, developing novel white lighting sources with low blue-hazard is highly appreciated. In this work, an air-stable and color-tunable triplet-triplet annihilation upconversion (TTA-UC) mechanism was proposed to realize the low blue-hazard white-light emission. The proposed design was composed of three primary RGB colors from the annihilator (9,10-diphenylanthracene, DPA), the laser excitation source, and the photosensitizer (palladium (II) octaetylporphyrin, PdOEP), respectively. The introduction of oil-in-water (o/w) microemulsion can effectively block the potential oxygen-induced triplet-quenching and benefit high UC efficiency. Moreover, either raising ambient temperatures or adding isobutanol can activate the UC process to yield white-light emission. Notably, the white-light emission with a Commission Internationale de l'Eclairage (CIE) coordinate of (0.33, 0.33) as well as a low ratio of blue emission (14.2 %) was achieved at an ambient temperature of 42 °C. Therefore, the proposed air-stable TTA-UC mechanism can significantly lower the blue-hazard and provide a novel solution for applications in lighting and display.
Collapse
Affiliation(s)
- Yuxiang Dong
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Yizhong Shi
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Shuoran Chen
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Cheng Guo
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Daoyuan Zheng
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Haodong Gou
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Shigang Wan
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Changqing Ye
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China.
| |
Collapse
|
2
|
Mulyadi C, Uji M, Parmar B, Orihashi K, Yanai N. Triplet-Triplet Annihilation-Based Photon Upconversion with a Macrocyclic Parallel Dimer. PRECISION CHEMISTRY 2024; 2:539-544. [PMID: 39483270 PMCID: PMC11522992 DOI: 10.1021/prechem.4c00050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/02/2024] [Accepted: 09/10/2024] [Indexed: 11/03/2024]
Abstract
The integration of multiple chromophore units into a single molecule is expected to improve the performance of photon upconversion based on triplet-triplet annihilation (TTA-UC) that can convert low energy photons to higher energy photons at low excitation intensity. In this study, a macrocyclic parallel dimer of 9,10-diphenylanthracene (DPA) with a precisely parallel orientation, named MPD-2, is synthesized, and its TTA-UC properties are investigated. MPD-2 shows a green-to-blue TTA-UC emission in the presence of a triplet sensitizer, platinum octaethylporphyrin (PtOEP). Compared to monomeric DPA, MPD-2 results in an enhancement of the spin statistical factor of TTA and a decrease in the excitation light intensity due to the intramolecular TTA process. The obtained structure-property relationship provides important information for the further improvement of TTA-UC properties.
Collapse
Affiliation(s)
- Catherine
H. Mulyadi
- Department
of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Masanori Uji
- Department
of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Bhavesh Parmar
- Department
of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kana Orihashi
- Department
of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Nobuhiro Yanai
- Department
of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- CREST,
JST, Honcho 4-1-8, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
3
|
Chen S, Huang B, Tian J, Zhang W. Advancements of Porphyrin-Derived Nanomaterials for Antibacterial Photodynamic Therapy and Biofilm Eradication. Adv Healthc Mater 2024; 13:e2401211. [PMID: 39073000 DOI: 10.1002/adhm.202401211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/17/2024] [Indexed: 07/30/2024]
Abstract
The threat posed by antibiotic-resistant bacteria and the challenge of biofilm formation has highlighted the inadequacies of conventional antibacterial therapies, leading to increased interest in antibacterial photodynamic therapy (aPDT) in recent years. This approach offers advantages such as minimal invasiveness, low systemic toxicity, and notable effectiveness against drug-resistant bacterial strains. Porphyrins and their derivatives, known for their high molar extinction coefficients and singlet oxygen quantum yields, have emerged as crucial photosensitizers in aPDT. However, their practical application is hindered by challenges such as poor water solubility and aggregation-induced quenching. To address these limitations, extensive research has focused on the development of porphyrin-based nanomaterials for aPDT, enhancing the efficacy of photodynamic sterilization and broadening the range of antimicrobial activity. This review provides an overview of various porphyrin-based nanomaterials utilized in aPDT and biofilm eradication in recent years, including porphyrin-loaded inorganic nanoparticles, porphyrin-based polymer assemblies, supramolecular assemblies, metal-organic frameworks (MOFs), and covalent organic frameworks (COFs). Additionally, insights into the prospects of aPDT is offered, highlighting its potential for practical implementation.
Collapse
Affiliation(s)
- Suwen Chen
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Baoxuan Huang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jia Tian
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
4
|
Lin CY, Hsu CH, Hung CM, Wu CC, Liu YH, Shi EHC, Lin TH, Hu YC, Hung WY, Wong KT, Chou PT. Entropy-driven charge-transfer complexation yields thermally activated delayed fluorescence and highly efficient OLEDs. Nat Chem 2024; 16:98-106. [PMID: 37884666 DOI: 10.1038/s41557-023-01357-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 09/27/2023] [Indexed: 10/28/2023]
Abstract
Exciplex-forming systems that display thermally activated delayed fluorescence are widely used for fabricating organic light-emitting diodes. However, their further development can be hindered through a lack of structural and thermodynamic characterization. Here we report the generation of inclusion complexes between a cage-like, macrocyclic, electron-accepting host (A) and various N-methyl-indolocarbazole-based electron-donating guests (D), which exhibit exciplex-like thermally activated delayed fluorescence via a through-space electron-transfer process. The D/A cocrystals are fully resolved by X-ray analyses, and UV-visible titration data show their formation to be an endothermic and entropy-driven process. Moreover, their emission can be fine-tuned through the molecular orbitals of the donor. Organic light-emitting diodes were fabricated using one of the D/A systems, and the maximum external quantum efficiency measured was 15.2%. An external quantum efficiency of 10.3% was maintained under a luminance of 1,000 cd m-2. The results show the potential of adopting inclusion complexation to better understand the relationships between the structure, formation thermodynamics and properties of exciplexes.
Collapse
Affiliation(s)
- Chun-Yen Lin
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Chao-Hsien Hsu
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Chieh-Ming Hung
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Chi-Chi Wu
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Yi-Hung Liu
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | | | - Tse-Hung Lin
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Yuan-Cheng Hu
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Wen-Yi Hung
- Institute of Optoelectronic Sciences, National Taiwan Ocean University, Keelung, Taiwan
| | - Ken-Tsung Wong
- Department of Chemistry, National Taiwan University, Taipei, Taiwan.
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan.
| | - Pi-Tai Chou
- Department of Chemistry, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
5
|
Jiang S, Wang S, Zhao Z, Ma D. A ratiometric fluorescent probe for the detection of biological thiols based on a new supramolecular design. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 303:123167. [PMID: 37487288 DOI: 10.1016/j.saa.2023.123167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/21/2023] [Accepted: 07/16/2023] [Indexed: 07/26/2023]
Abstract
A new ratiometric fluorescent probe is designed and prepared based on the concept of supramolecular encapsulation and dye competition. This supramolecular probe is based on two commercially-available dyes, one common guest and a simple-to-synthesize host. Fluorescence spectroscopy confirms that the supramolecular probe is capable of detecting thiols quantitatively with a broad linear region in phosphate buffered saline or fetal bovine serum. Mechanistic study shows a reaction between thiol specie and the guest to alter the distribution of encapsulated dyes. The supramolecular probes are demonstrated to quantitatively detect extracellular biological thiols by plate reader, which shows it keeps its effectiveness in complex buffered systems.
Collapse
Affiliation(s)
- Siyang Jiang
- School of Pharmaceutical Engineering & Institute for Advanced Studies, Taizhou University, Jiaojiang 318000, Zhejiang, China; Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Shuyi Wang
- School of Pharmaceutical Engineering & Institute for Advanced Studies, Taizhou University, Jiaojiang 318000, Zhejiang, China; Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Zizhen Zhao
- School of Pharmaceutical Engineering & Institute for Advanced Studies, Taizhou University, Jiaojiang 318000, Zhejiang, China; Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Da Ma
- School of Pharmaceutical Engineering & Institute for Advanced Studies, Taizhou University, Jiaojiang 318000, Zhejiang, China.
| |
Collapse
|
6
|
Sengupta A, Roy G, Likhar AR, Asthana D. A supramolecular assembly-based strategy towards the generation and amplification of photon up-conversion and circularly polarized luminescence. NANOSCALE 2023; 15:18999-19015. [PMID: 37991436 DOI: 10.1039/d3nr04184k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
For the molecular properties in which energy transfer/migration is determinantal, such as triplet-triplet annihilation-based photon up-conversion (TTAUC), the overall performance is largely affected by the intermolecular distance and relative molecular orientations. In such scenarios, tools that may steer the intermolecular interactions and provide control over molecular organisation in the bulk, become most valuable. Often these non-covalent interactions, found predominantly in supramolecular assemblies, enable pre-programming of the molecular network in the assembled structures. In other words, by employing supramolecular chemistry principles, an arrangement where molecular units are arranged in a desired fashion, very much like a Lego toy, could be achieved. This leads to enhanced energy transfer from one molecule to other. In recent past, chiral luminescent systems have attracted huge attention for producing circularly polarized luminescence (CPL). In such systems, chirality is a necessary requirement. Chirality induction/transfer through supramolecular interactions has been known for a long time. It was realized recently that it may help in the generation and amplification of CPL signals as well. In this review article we have discussed the applicability of self-/co-assembly processes for achieving maximum TTA-UC and CPL in various molecular systems.
Collapse
Affiliation(s)
- Alisha Sengupta
- Department of Chemistry, Ashoka University, Sonipat, Haryana 131029, India.
| | - Gargee Roy
- Department of Chemistry, Ashoka University, Sonipat, Haryana 131029, India.
| | | | - Deepak Asthana
- Department of Chemistry, Ashoka University, Sonipat, Haryana 131029, India.
| |
Collapse
|
7
|
Duan XF, Zhou LP, Li HR, Hu SJ, Zheng W, Xu X, Zhang R, Chen X, Guo XQ, Sun QF. Excited-Multimer Mediated Supramolecular Upconversion on Multicomponent Lanthanide-Organic Assemblies. J Am Chem Soc 2023; 145:23121-23130. [PMID: 37844009 DOI: 10.1021/jacs.3c06775] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Upconversion (UC) is a fascinating anti-Stokes-like optical process with promising applications in diverse fields. However, known UC mechanisms are mainly based on direct energy transfer between metal ions, which constrains the designability and tunability of the structures and properties. Here, we synthesize two types of Ln8L12-type (Ln for lanthanide ion; L for organic ligand L1 or L2R/S) lanthanide-organic complexes with assembly induced excited-multimer states. The Yb8(L2R/S)12 assembly exhibits upconverted multimer green fluorescence under 980 nm excitation through a cooperative sensitization process. Furthermore, upconverted red emission from Eu3+ on the heterometallic (Yb/Eu)8L12 assemblies is also realized via excited-multimer mediated energy relay. Our findings demonstrate a new strategy for designing UC materials, which is crucial for exploiting photofunctions of multicomponent lanthanide-organic complexes.
Collapse
Affiliation(s)
- Xiao-Fang Duan
- State Key Laboratory of Structural Chemistry, CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Li-Peng Zhou
- State Key Laboratory of Structural Chemistry, CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Hao-Ran Li
- State Key Laboratory of Structural Chemistry, CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Shao-Jun Hu
- State Key Laboratory of Structural Chemistry, CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Wei Zheng
- State Key Laboratory of Structural Chemistry, CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Xin Xu
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, P. R. China
| | - Ruiling Zhang
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, P. R. China
| | - Xueyuan Chen
- State Key Laboratory of Structural Chemistry, CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiao-Qing Guo
- State Key Laboratory of Structural Chemistry, CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Qing-Fu Sun
- State Key Laboratory of Structural Chemistry, CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
8
|
Li X, Huang C, Fan Y, Bai Z, An BL, Xu J, Zheng W, Bai YL. Boosting Solid-State Luminescence of Thiazolothiazole Viologen by Incorporating Metal Halide Clusters to Hinder π-Stacking. ACS APPLIED MATERIALS & INTERFACES 2023; 15:46022-46030. [PMID: 37729492 DOI: 10.1021/acsami.3c09484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
A new strategy is developed herein to improve the solid fluorescence of thiazolothiazole viologen by using the ZnCl42- cluster as a scaffold to hinder π-stacking. Importantly, the Cl···H bonds are formed in the solid state to sustain the framework and can be automatically dissociated when dissolved in H2O, thus having no impact on the strong emission in aqueous solution. As such, the first case of organic-inorganic viologen-zinc halide named 4PV·ZnCl4 was designed and synthesized, and a significant increase in photoluminescence quantum yield (ΦF) is realized from 4PV·2Br (ΦF = 0%) to 4PV·ZnCl4 (ΦF = 27.0%) in solid and from 97% to 98% in H2O. 4PV·ZnCl4 also displays pH stimuli-responsive naked-eye chromic behavior and photoluminescence with different coloring states and intensities. The multifunctional performance of 4PV·ZnCl4 provides a prerequisite for carrying different information, expanding their promising application in multilevel information encryption.
Collapse
Affiliation(s)
- Xuyi Li
- NEST LAB, Department of Chemistry, College of Science, Shanghai University, 99 Shangda Rd, Shanghai 200444, China
| | - Chen Huang
- NEST LAB, Department of Chemistry, College of Science, Shanghai University, 99 Shangda Rd, Shanghai 200444, China
| | - Yu Fan
- NEST LAB, Department of Chemistry, College of Science, Shanghai University, 99 Shangda Rd, Shanghai 200444, China
| | - Zhiang Bai
- NEST LAB, Department of Chemistry, College of Science, Shanghai University, 99 Shangda Rd, Shanghai 200444, China
| | - Bao-Li An
- NEST LAB, Department of Chemistry, College of Science, Shanghai University, 99 Shangda Rd, Shanghai 200444, China
| | - Jiaqiang Xu
- NEST LAB, Department of Chemistry, College of Science, Shanghai University, 99 Shangda Rd, Shanghai 200444, China
| | - Weiwei Zheng
- Department of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Yue-Ling Bai
- NEST LAB, Department of Chemistry, College of Science, Shanghai University, 99 Shangda Rd, Shanghai 200444, China
| |
Collapse
|
9
|
Feng Y, Qi S, Yu X, Zhang X, Zhu H, Yu G. Supramolecular Modulation of Tumor Microenvironment through Pillar[5]arene-Based Host-Guest Recognition to Synergize Cancer Immunotherapy. J Am Chem Soc 2023; 145:18789-18799. [PMID: 37535445 DOI: 10.1021/jacs.3c03031] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Despite the tremendous breakthrough of immunotherapy, the low response rate and resistance of immune checkpoint inhibitors (ICIs) toward solid tumors occur frequently. A highly hypoxic tumor microenvironment (TME) provides tumor cells with high concentrations of HIF-1α and polyamines to evade immune cell destruction. Reprogramming of an immunogenic TME has exhibited a brilliant future to boost immunotherapeutic performances. Herein, a supramolecular nanomedicine (TAPP) is developed on the basis of host-guest molecular recognition and metal coordination, showing the capability to remodel the immunosuppressive TME. Tamoxifen (Tmx) and Fe3+ are encapsulated into TAPP to achieve the combination of chemotherapy and chemodynamic therapy (CDT). Tmx directly downregulates HIF-1α, and a pillar[5]arene-based macrocyclic host successfully eliminates polyamines in tumors. Enhanced immunogenic cell death is achieved by Tmx and Fe3+, and the therapeutic efficacy is further synergized by immune checkpoint blockade (ICB) therapy. This supramolecular reprogramming modality encourages cytotoxic T lymphocyte infiltration, achieving pre-eminent immune response and long-term tumor suppression.
Collapse
Affiliation(s)
- Yunxuan Feng
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, P. R. China
| | - Shaolong Qi
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, P. R. China
| | - Xinyang Yu
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, P. R. China
| | - Xueyan Zhang
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, P. R. China
| | - Huangtianzhi Zhu
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Guocan Yu
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
10
|
Garci A, Abid S, David AHG, Jones LO, Azad CS, Ovalle M, Brown PJ, Stern CL, Zhao X, Malaisrie L, Schatz GC, Young RM, Wasielewski MR, Stoddart JF. Exciplex Emission and Förster Resonance Energy Transfer in Polycyclic Aromatic Hydrocarbon-Based Bischromophoric Cyclophanes and Homo[2]catenanes. J Am Chem Soc 2023; 145:18391-18401. [PMID: 37565777 DOI: 10.1021/jacs.3c04213] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Energy transfer and exciplex emission are not only crucial photophysical processes in many living organisms but also important for the development of smart photonic materials. We report, herein, the rationally designed synthesis and characterization of two highly charged bischromophoric homo[2]catenanes and one cyclophane incorporating a combination of polycyclic aromatic hydrocarbons, i.e., anthracene, pyrene, and perylene, which are intrinsically capable of supporting energy transfer and exciplex formation. The possible coconformations of the homo[2]catenanes, on account of their dynamic behavior, have been probed by Density Functional Theory calculations. The unique photophysical properties of these exotic molecules have been explored by steady-state and time-resolved absorption and fluorescence spectroscopies. The tetracationic pyrene-perylene cyclophane system exhibits emission emanating from a highly efficient Förster resonance energy transfer (FRET) mechanism which occurs in 48 ps, while the octacationic homo[2]catenane displays a weak exciplex photoluminescence following extremely fast (<0.3 ps) exciplex formation. The in-depth fundamental understanding of these photophysical processes involved in the fluorescence of bischromophoric cyclophanes and homo[2]catenanes paves the way for their use in future bioapplications and photonic devices.
Collapse
Affiliation(s)
- Amine Garci
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Seifallah Abid
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Arthur H G David
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Leighton O Jones
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Chandra S Azad
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Marco Ovalle
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Paige J Brown
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Institute for Sustainability and Energy at Northwestern, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Charlotte L Stern
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Xingang Zhao
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Luke Malaisrie
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - George C Schatz
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Ryan M Young
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Institute for Sustainability and Energy at Northwestern, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Michael R Wasielewski
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Institute for Sustainability and Energy at Northwestern, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - J Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| |
Collapse
|
11
|
Brotherton AR, Shibu A, Meadows JC, Sayresmith NA, Brown CE, Ledezma AM, Schmedake TA, Walter MG. Leveraging Coupled Solvatofluorochromism and Fluorescence Quenching in Nitrophenyl-Containing Thiazolothiazoles for Efficient Organic Vapor Sensing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023:e2205729. [PMID: 37186373 DOI: 10.1002/advs.202205729] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/26/2023] [Indexed: 05/17/2023]
Abstract
Solvatofluorochromic molecules provide strikingly high fluorescent outputs to monitor a wide range of biological, environmental, or materials-related sensing processes. Here, thiazolo[5,4-d]thiazole (TTz) fluorophores equipped with simple alkylamino and nitrophenyl substituents for solid-state, high-performance chemo-responsive sensing applications are reported. Nitroaromatic substituents are known to strongly quench dye fluorescence, however, the TTz core subtly modulates intramolecular charge transfer (ICT) enabling strong, locally excited-state fluorescence in non-polar conditions. In polar media, a planar ICT excited-state shows near complete quenching, enabling a twisted excited-state emission to be observed. These unique fluorescent properties (spectral shifts of 0.13 - 0.87 eV and large transition dipole moments Δµ = 20.4 - 21.3 D) are leveraged to develop highly sought-after chemo-responsive, organic vapor optical sensors. The sensors are developed by embedding the TTz fluorophores within a poly(styrene-isoprene-styrene) block copolymer to form fluorescent dye/polymer composites (ΦF = 70 - 97%). The composites respond reversibly to a comprehensive list of organic solvents and show low vapor concentration sensing (e.g., 0.04% solvent saturation vapor pressure of THF - 66 ppm). The composite films can distinguish between solvent vapors with near complete fluorescent quenching observed when exposed to their saturated solvent vapor pressures, making this an extremely promising material for optical chemo-responsive sensing.
Collapse
Affiliation(s)
- Andrew R Brotherton
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Abhishek Shibu
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Jared C Meadows
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Nickolas A Sayresmith
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Chloe E Brown
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Ana Montoya Ledezma
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Thomas A Schmedake
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Michael G Walter
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| |
Collapse
|
12
|
Chen H, Roy I, Myong MS, Seale JSW, Cai K, Jiao Y, Liu W, Song B, Zhang L, Zhao X, Feng Y, Liu F, Young RM, Wasielewski MR, Stoddart JF. Triplet-Triplet Annihilation Upconversion in a Porphyrinic Molecular Container. J Am Chem Soc 2023; 145:10061-10070. [PMID: 37098077 DOI: 10.1021/jacs.2c13846] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Triplet-triplet annihilation-based molecular photon upconversion (TTA-UC) is a photophysical phenomenon that can yield high-energy emitting photons from low-energy incident light. TTA-UC is believed to fuse two triplet excitons into a singlet exciton through several consecutive energy-conversion processes. When organic aromatic dyes─i.e., sensitizers and annihilators─are used in TTA-UC, intermolecular distances, as well as relative orientations between the two chromophores, are important in an attempt to attain high upconversion efficiencies. Herein, we demonstrate a host-guest strategy─e.g., a cage-like molecular container incorporating two porphyrinic sensitizers and encapsulating two perylene emitters inside its cavity─to harness photon upconversion. Central to this design is tailoring the cavity size (9.6-10.4 Å) of the molecular container so that it can host two annihilators with a suitable [π···π] distance (3.2-3.5 Å). The formation of a complex with a host:guest ratio of 1:2 between a porphyrinic molecular container and perylene was confirmed by NMR spectroscopy, mass spectrometry, and isothermal titration calorimetry (ITC) as well as by DFT calculations. We have obtained TTA-UC yielding blue emission at 470 nm when the complex is excited with low-energy photons. This proof-of-concept demonstrates that TTA-UC can take place in one supermolecule by bringing together the sensitizers and annihilators. Our investigations open up some new opportunities for addressing several issues associated with supramolecular photon upconversion, such as sample concentrations, molecular aggregation, and penetration depths, which have relevance to biological imaging applications.
Collapse
Affiliation(s)
- Hongliang Chen
- Department of Chemistry, Stoddart Institute of Molecular Science, Zhejiang University, Hangzhou 310027, China
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| | - Indranil Roy
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Michele S Myong
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - James S W Seale
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Kang Cai
- College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300072, China
| | - Yang Jiao
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Wenqi Liu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Bo Song
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Long Zhang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Xingang Zhao
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Yuanning Feng
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Fangjun Liu
- Department of Chemistry, Stoddart Institute of Molecular Science, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| | - Ryan M Young
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Michael R Wasielewski
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - J Fraser Stoddart
- Department of Chemistry, Stoddart Institute of Molecular Science, Zhejiang University, Hangzhou 310027, China
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
13
|
Sun JD, Liu Y, Zhao Z, Yu SB, Qi QY, Zhou W, Wang H, Hu K, Zhang DW, Li ZT. Host-guest binding of tetracationic cyclophanes to photodynamic agents inhibits posttreatment phototoxicity and maintains antitumour efficacy. RSC Med Chem 2023; 14:563-572. [PMID: 36970143 PMCID: PMC10034117 DOI: 10.1039/d2md00463a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
In the past two decades, photodynamic therapy (PDT) has become an effective method for the treatment of cancer. However, the posttreatment residue of photodynamic agents (PDAs) causes long-term skin phototoxicity. Here, we apply naphthalene-derived, box-like tetracationic cyclophanes, named NpBoxes, to bind to clinically used porphyrin-based PDAs to alleviate their posttreatment phototoxicity by reducing their free content in skin tissues and 1O2 quantum yield. We show that one of the cyclophanes, 2,6-NpBox, could include the PDAs to efficiently suppress their photosensitivity for the generation of reactive oxygen species. A tumour-bearing mouse model study revealed that, when Photofrin, the most widely used PDA in clinic, was administrated at a dose corresponding to the clinical one, 2,6-NpBox of the same dose could significantly suppress its posttreatment phototoxicity on the skin induced by simulated sunlight irradiation, without imposing a negative influence on its PDT efficacy.
Collapse
Affiliation(s)
- Jian-Da Sun
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University 2205 Songhu Road Shanghai 200438 China
| | - Yamin Liu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University 2205 Songhu Road Shanghai 200438 China
| | - Zijian Zhao
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University 2205 Songhu Road Shanghai 200438 China
| | - Shang-Bo Yu
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Qiao-Yan Qi
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Wei Zhou
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University 2205 Songhu Road Shanghai 200438 China
| | - Hui Wang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University 2205 Songhu Road Shanghai 200438 China
| | - Ke Hu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University 2205 Songhu Road Shanghai 200438 China
| | - Dan-Wei Zhang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University 2205 Songhu Road Shanghai 200438 China
| | - Zhan-Ting Li
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University 2205 Songhu Road Shanghai 200438 China
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| |
Collapse
|
14
|
Wu C, Xing Z, Yang S, Li Z, Zhou W. Nanoreactors for photocatalysis. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Xie Y, Sun G, Mandl GA, Maurizio SL, Chen J, Capobianco JA, Sun L. Upconversion Luminescence through Cooperative and Energy-Transfer Mechanisms in Yb 3+ -Metal-Organic Frameworks. Angew Chem Int Ed Engl 2023; 62:e202216269. [PMID: 36437239 DOI: 10.1002/anie.202216269] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022]
Abstract
Lanthanide-doped metal-organic frameworks (Ln-MOFs) have versatile luminescence properties, however it is challenging to achieve lanthanide-based upconversion luminescence in these materials. Here, 1,3,5-benzenetricarboxylic acid (BTC) and trivalent Yb3+ ions were used to generate crystalline Yb-BTC MOF 1D-microrods with upconversion luminescence under near infrared excitation via cooperative luminescence. Subsequently, the Yb-BTC MOFs were doped with a variety of different lanthanides to evaluate the potential for Yb3+ -based upconversion and energy transfer. Yb-BTC MOFs doped with Er3+ , Ho3+ , Tb3+ , and Eu3+ ions exhibit both the cooperative luminescence from Yb3+ and the characteristic emission bands of these ions under 980 nm irradiation. In contrast, only the 497 nm upconversion emission band from Yb3+ is observed in the MOFs doped with Tm3+ , Pr3+ , Sm3+ , and Dy3+ . The effects of different dopants on the efficiency of cooperative luminescence were established and will provide guidance for the exploitation of Ln-MOFs exhibiting upconversion.
Collapse
Affiliation(s)
- Yao Xie
- Department of Physics, College of Sciences, Shanghai University, 200444, Shanghai, China.,Department of Chemistry, College of Sciences, Shanghai University, 200444, Shanghai, China
| | - Guotao Sun
- School of Materials Science and Engineering, Shanghai University, 200444, Shanghai, China
| | - Gabrielle A Mandl
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University, H4B 1R6, Montreal, QC, Canada
| | - Steven L Maurizio
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University, H4B 1R6, Montreal, QC, Canada
| | - Jiabo Chen
- Department of Chemistry, College of Sciences, Shanghai University, 200444, Shanghai, China
| | - John A Capobianco
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University, H4B 1R6, Montreal, QC, Canada
| | - Lining Sun
- Department of Physics, College of Sciences, Shanghai University, 200444, Shanghai, China.,Department of Chemistry, College of Sciences, Shanghai University, 200444, Shanghai, China
| |
Collapse
|
16
|
Nakadai Y, Tsuchiya S, Uehara M, Umezawa S, Motoki R, Umezawa H, Ikoma T, Yui T. Photon Upconversion with a Low Threshold Excitation Intensity in Plain Water. J Phys Chem B 2022; 126:8245-8250. [PMID: 36215413 DOI: 10.1021/acs.jpcb.2c04109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A triplet-triplet annihilation-based photon upconversion (TTA-UC) system with a low threshold excitation intensity (Ith) in plain water was developed. Water-soluble anionic porphyrin (PdTPPS4-) and diphenylanthracene (DCDPA2-) derivatives were used as light absorbers and emitter molecules, respectively, and no additives such as surfactants were required. The phosphorescence emission from PdTPPS4- under an excitation wavelength of 528 nm was quenched by DCDPA2-, resulting in triplet energy transfer, whereas fluorescence from DCDPA2- was observed in a short wavelength region (400-500 nm). Three independent emission studies utilizing different excitation light sources validated the TTA-UC process in a simple aqueous solution. TTA occurred after the triplet energy transfer, according to the time profiles of phosphorescence and fluorescence detected following pulse laser excitation. The Ith for TTA-UC was estimated to be lower than 6 mW cm-2, although it could not be exactly determined due to the sensitivity limit of the experimental setup. The upper limit of Ith for the aqueous solution of DCDPA2- and PdTPPS4- is the smallest value obtained to date for aqueous systems and comparable to that of high-performance TTA-UC systems in organic solutions.
Collapse
Affiliation(s)
- Yuki Nakadai
- Department of Materials Science and Technology, Faculty of Engineering, Niigata University, 8050 Ikarashi-2, Niigata950-2181, Japan
| | - Shuta Tsuchiya
- Graduate School of Science and Technology, Niigata University, 8050 Ikarashi-2, Niigata950-2181, Japan
| | - Masumi Uehara
- Department of Materials Science and Technology, Faculty of Engineering, Niigata University, 8050 Ikarashi-2, Niigata950-2181, Japan
| | - Sena Umezawa
- Department of Materials Science and Technology, Faculty of Engineering, Niigata University, 8050 Ikarashi-2, Niigata950-2181, Japan
| | - Reina Motoki
- Department of Materials Science and Technology, Faculty of Engineering, Niigata University, 8050 Ikarashi-2, Niigata950-2181, Japan
| | - Hibiki Umezawa
- Department of Materials Science and Technology, Faculty of Engineering, Niigata University, 8050 Ikarashi-2, Niigata950-2181, Japan
| | - Tadaaki Ikoma
- Graduate School of Science and Technology, Niigata University, 8050 Ikarashi-2, Niigata950-2181, Japan
| | - Tatsuto Yui
- Department of Materials Science and Technology, Faculty of Engineering, Niigata University, 8050 Ikarashi-2, Niigata950-2181, Japan
| |
Collapse
|
17
|
Dong X, Dai X, Li G, Zhang Y, Xu X, Liu Y. Conformationally Confined Emissive Cationic Macrocycle with Photocontrolled Organelle-Specific Translocation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201962. [PMID: 35713271 PMCID: PMC9376817 DOI: 10.1002/advs.202201962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/10/2022] [Indexed: 06/15/2023]
Abstract
The optimization of molecular conformation and aggregation modes is of great significance in creation of new luminescent materials for biochemical research and medical diagnostics. Herein, a highly emissive macrocycle (1) is reported, which is constructed by the cyclization reaction of triphenylamine with benzyl bromide and exhibits very distinctive photophysical performance both in aqueous solution and the solid state. Structural analysis reveals that the 1 can form self-interpenetrated complex and emit bright yellow fluorescence in the crystal lattice. The distorted yet symmetrical structure can endow 1 with unique two-photon absorption property upon excitation by near-infrared light. Also, 1 can be utilized as an efficient photosensitizer to produce singlet oxygen (1 O2 ) both in inanimate milieu and under cellular environment. More intriguingly, due to the strong association of 1 with negatively charged biomacromolecules, organelle-specific migration is achieved from lysosome to nucleus during the 1 O2 -induced cell apoptosis process. To be envisaged, this conformationally confined cationic macrocycle with photocontrolled lysosome-to-nucleus translocation may provide a feasible approach for in situ identifying different biospecies and monitoring physiological events at subcellular level.
Collapse
Affiliation(s)
- Xiaoyun Dong
- College of ChemistryState Key Laboratory of Elemento‐Organic ChemistryNankai UniversityTianjin300071P. R. China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192P. R. China
| | - Xianyin Dai
- College of ChemistryState Key Laboratory of Elemento‐Organic ChemistryNankai UniversityTianjin300071P. R. China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192P. R. China
| | - Guorong Li
- College of ChemistryState Key Laboratory of Elemento‐Organic ChemistryNankai UniversityTianjin300071P. R. China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192P. R. China
| | - Ying‐Ming Zhang
- College of ChemistryState Key Laboratory of Elemento‐Organic ChemistryNankai UniversityTianjin300071P. R. China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192P. R. China
| | - Xiufang Xu
- College of ChemistryState Key Laboratory of Elemento‐Organic ChemistryNankai UniversityTianjin300071P. R. China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192P. R. China
| | - Yu Liu
- College of ChemistryState Key Laboratory of Elemento‐Organic ChemistryNankai UniversityTianjin300071P. R. China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192P. R. China
| |
Collapse
|
18
|
Knighton RC, Soro LK, Thor W, Strub JM, Cianférani S, Mély Y, Lenertz M, Wong KL, Platas-Iglesias C, Przybilla F, Charbonnière LJ. Upconversion in a d-f [RuYb 3] Supramolecular Assembly. J Am Chem Soc 2022; 144:13356-13365. [PMID: 35771602 DOI: 10.1021/jacs.2c05037] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have prepared a hetero-tetrametallic assembly consisting of three ytterbium ions coordinated to a central [Ru(bpm)3]2+ (bpm = 2,2'-bipyrimidine) motif. Irradiation into the absorption band of the peripheral ytterbium ions at 980 nm engenders emission of the 3MLCT state of the central [Ru(bpm)3]2+ core at 636 nm, which represents the first example of f → d molecular upconversion (UC). Time-resolved measurements reveal a slow rise of the UC emission, which was modeled with a mathematical treatment of the observed kinetics according to a cooperative photosensitization mechanism using a virtual Yb centered doubly excited state followed by energy transfer to the Ru centered 1MLCT state.
Collapse
Affiliation(s)
- Richard C Knighton
- Equipe de Synthèse Pour L'Analyse (SynPA), Institut Pluridisciplinaire Hubert Curien (IPHC), UMR 7178, CNRS, Université de Strasbourg, ECPM, 25 rue Becquerel, 67087 Strasbourg Cedex, France
| | - Lohona K Soro
- Equipe de Synthèse Pour L'Analyse (SynPA), Institut Pluridisciplinaire Hubert Curien (IPHC), UMR 7178, CNRS, Université de Strasbourg, ECPM, 25 rue Becquerel, 67087 Strasbourg Cedex, France
| | - Waygen Thor
- Equipe de Synthèse Pour L'Analyse (SynPA), Institut Pluridisciplinaire Hubert Curien (IPHC), UMR 7178, CNRS, Université de Strasbourg, ECPM, 25 rue Becquerel, 67087 Strasbourg Cedex, France.,Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong SAR, China
| | - Jean-Marc Strub
- Laboratoire de Spectrometrie de Masse Bio-Organique, IPHC, UMR 7178, CNRS-Université de Strasbourg, ECPM, 25, rue Becquerel, 67087 Strasbourg, France
| | - Sarah Cianférani
- Laboratoire de Spectrometrie de Masse Bio-Organique, IPHC, UMR 7178, CNRS-Université de Strasbourg, ECPM, 25, rue Becquerel, 67087 Strasbourg, France
| | - Yves Mély
- Laboratoire de Bioimagerie et Pathologies, CNRS UMR 7021, Faculté de Pharmacie CS60024 74, Route du Rhin, 67401 Illkirch-Graffenstaden, France
| | - Marc Lenertz
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504, CNRS/Université de Strasbourg, 23 rue du Lœss, BP 43, 67034 Strasbourg Cedex 2, France
| | - Ka-Leung Wong
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong SAR, China
| | - Carlos Platas-Iglesias
- Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química, Universidade da Coruña, Campus da Zapateira-Rúa da Fraga 10, 15008 A Coruña, Spain
| | - Frédéric Przybilla
- Laboratoire de Bioimagerie et Pathologies, CNRS UMR 7021, Faculté de Pharmacie CS60024 74, Route du Rhin, 67401 Illkirch-Graffenstaden, France
| | - Loïc J Charbonnière
- Equipe de Synthèse Pour L'Analyse (SynPA), Institut Pluridisciplinaire Hubert Curien (IPHC), UMR 7178, CNRS, Université de Strasbourg, ECPM, 25 rue Becquerel, 67087 Strasbourg Cedex, France
| |
Collapse
|
19
|
Roy I, David AHG, Das PJ, Pe DJ, Stoddart JF. Fluorescent cyclophanes and their applications. Chem Soc Rev 2022; 51:5557-5605. [PMID: 35704949 DOI: 10.1039/d0cs00352b] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
With the serendipitous discovery of crown ethers by Pedersen more than half a century ago and the subsequent introduction of host-guest chemistry and supramolecular chemistry by Cram and Lehn, respectively, followed by the design and synthesis of wholly synthetic cyclophanes-in particular, fluorescent cyclophanes, having rich structural characteristics and functions-have been the focus of considerable research activity during the past few decades. Cyclophanes with remarkable emissive properties have been investigated continuously over the years and employed in numerous applications across the field of science and technology. In this Review, we feature the recent developments in the chemistry of fluorescent cyclophanes, along with their design and synthesis. Their host-guest chemistry and applications related to their structure and properties are highlighted.
Collapse
Affiliation(s)
- Indranil Roy
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA.
| | - Arthur H G David
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA.
| | - Partha Jyoti Das
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA.
| | - David J Pe
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA.
| | - J Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA. .,School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.,Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310021, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center Hangzhou, 311215, China
| |
Collapse
|
20
|
Xiao T, James TD, Borovkov V, Castellano RK, Deng C. Editorial: Suprastars of Chemistry. Front Chem 2022; 10:932508. [PMID: 35734441 PMCID: PMC9207770 DOI: 10.3389/fchem.2022.932508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/24/2022] [Indexed: 11/25/2022] Open
Affiliation(s)
- Tangxin Xiao
- School of Petrochemical Engineering, Changzhou University, Changzhou, China
- *Correspondence: Tangxin Xiao, ; Tony D. James, ; Victor Borovkov, ; Ronald K. Castellano, ; Chao Deng,
| | - Tony D. James
- Department of Chemistry, University of Bath, Bath, United Kingdom
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China
- *Correspondence: Tangxin Xiao, ; Tony D. James, ; Victor Borovkov, ; Ronald K. Castellano, ; Chao Deng,
| | - Victor Borovkov
- Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, Tallinn, Estonia
- *Correspondence: Tangxin Xiao, ; Tony D. James, ; Victor Borovkov, ; Ronald K. Castellano, ; Chao Deng,
| | - Ronald K. Castellano
- Department of Chemistry, University of Florida, Gainesville, FL, United States
- *Correspondence: Tangxin Xiao, ; Tony D. James, ; Victor Borovkov, ; Ronald K. Castellano, ; Chao Deng,
| | - Chao Deng
- College of Chemistry, Chemical Engineering, and Materials Science, Soochow University, Suzhou, China
- *Correspondence: Tangxin Xiao, ; Tony D. James, ; Victor Borovkov, ; Ronald K. Castellano, ; Chao Deng,
| |
Collapse
|
21
|
Se-sensitized NIR hot band absorption photosensitizer for anti-Stokes excitation deep photodynamic therapy. Sci China Chem 2022. [DOI: 10.1007/s11426-021-1179-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
22
|
Knighton RC, Soro LK, Francés‐Soriano L, Rodríguez‐Rodríguez A, Pilet G, Lenertz M, Platas‐Iglesias C, Hildebrandt N, Charbonnière LJ. Cooperative Luminescence and Cooperative Sensitisation Upconversion of Lanthanide Complexes in Solution. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Richard C. Knighton
- Equipe de synthèse pour l'analyse (SynPA) Institut Pluridisciplaire Hubert Curien (IPHC) UMR 7178 CNRS/Université de Strasbourg, ECPM 25 rue Becquerel 67087 Strasbourg cedex France
| | - Lohona K. Soro
- Equipe de synthèse pour l'analyse (SynPA) Institut Pluridisciplaire Hubert Curien (IPHC) UMR 7178 CNRS/Université de Strasbourg, ECPM 25 rue Becquerel 67087 Strasbourg cedex France
| | - Laura Francés‐Soriano
- nanoFRET.com Laboratoire COBRA (Chimie Organique, Bioorganique, Réactivite et Analyse) Université de Rouen Normandie, CNRS INSA 76821 Mont Saint-Aignan France
| | - Aurora Rodríguez‐Rodríguez
- Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química Universidade da Coruña Campus da Zapateira-Rúa da Fraga 10 15008 A Coruña Spain
| | - Guillaume Pilet
- Laboratoire des Multimatériaux et Interfaces (LMI) UMR 5615 CNRS Université Claude Bernard Lyon 1 Avenue du 11 novembre 1918 69622 Villeurbanne cedex France
| | - Marc Lenertz
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS) UMR 7504 CNRS/Université de Strasbourg 23 rue du Lœss, BP 43 67034 Strasbourg Cedex 2 France
| | - Carlos Platas‐Iglesias
- Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química Universidade da Coruña Campus da Zapateira-Rúa da Fraga 10 15008 A Coruña Spain
| | - Niko Hildebrandt
- nanoFRET.com Laboratoire COBRA (Chimie Organique, Bioorganique, Réactivite et Analyse) Université de Rouen Normandie, CNRS INSA 76821 Mont Saint-Aignan France
- Université Paris-Saclay 91190 Gif-sur-Yvette France
| | - Loïc J. Charbonnière
- Equipe de synthèse pour l'analyse (SynPA) Institut Pluridisciplaire Hubert Curien (IPHC) UMR 7178 CNRS/Université de Strasbourg, ECPM 25 rue Becquerel 67087 Strasbourg cedex France
| |
Collapse
|
23
|
Bai R, Zhang H, Yang X, Zhao J, Wang Y, Zhang Z, Yan X. Supramolecular polymer networks crosslinked by crown ether-based host-guest recognition: dynamic materials with tailored mechanical properties in bulk. Polym Chem 2022. [DOI: 10.1039/d1py01536b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Supramolecular polymer networks (SPNs) based on host-guest recognition have attracted much research attention to develop smart supramolecular materials. However, these researches mainly focus on SPNs in solution or in gel...
Collapse
|
24
|
Charbonnière LJ, Knighton RC, Soro LK, Francés-Soriano L, Rodríguez-Rodríguez A, Pilet G, Lenertz M, Platas-Iglesias C, Hildebrandt N. Cooperative Luminescence and Cooperative Sensitisation Upconversion of Lanthanide Complexes in Solution. Angew Chem Int Ed Engl 2021; 61:e202113114. [PMID: 34748678 DOI: 10.1002/anie.202113114] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/05/2021] [Indexed: 11/11/2022]
Abstract
Upconversion nanoparticles have led to various breakthrough applications in solar energy conversion, imaging, and biomedicine. One key impediment is the facilitation of such processes at the molecular scale in solution where quenching effects are much more pronounced. In this work, molecular solution-state cooperative luminescence (CL) upconversion arising from a Yb excited state is explored and the mechanistic origin behind cooperative sensitisation (CS) upconversion in Yb/ Tb systems is investigated. Counterintuitively, the best UC performances were obtained for Yb/Tb ratios close to parity, resulting in the brightest molecular upconversion complexes with a quantum yield of 2.8 × 10-6 at a low laser power density of 2.86 W/cm2.
Collapse
Affiliation(s)
- Loic Joanny Charbonnière
- CNRS, IPHC, UMR 7178 UdS, Equipe de synthèse pour l'analyse, ECPM, 25 rue Becquerel, 67087, Strasbourg cedex, FRANCE
| | | | - Lohona K Soro
- CNRS: Centre National de la Recherche Scientifique, IPHC, FRANCE
| | | | | | | | - Marc Lenertz
- CNRS: Centre National de la Recherche Scientifique, IPCMS, FRANCE
| | | | | |
Collapse
|
25
|
Liu W, Tan Y, Jones LO, Song B, Guo QH, Zhang L, Qiu Y, Feng Y, Chen XY, Schatz GC, Stoddart JF. PCage: Fluorescent Molecular Temples for Binding Sugars in Water. J Am Chem Soc 2021; 143:15688-15700. [PMID: 34505510 DOI: 10.1021/jacs.1c06333] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The development of synthetic receptors that recognize carbohydrates in water with high selectivity and specificity is challenging on account of their structural complexity and strong hydrophilicity. Here, we report on the design and synthesis of two pyrene-based, temple-shaped receptors for the recognition of a range of common sugars in water. These receptors rely on the use of two parallel pyrene panels, which serve as roofs and floors, capable of forming multiple [C-H···π] interactions with the axially oriented C-H bonds on glycopyranosyl rings in the carbohydrate-based substrates. In addition, eight polarized pyridinium C-H bonds, projecting from the roofs and floors of the temple receptors toward the binding cavities, form [C-H···O] hydrogen bonds, with the equatorially oriented OH groups on the sugars located inside the hydrophobic cavities. Four para-xylylene pillars play a crucial role in controlling the distance between the roof and floor. These temple receptors are highly selective for the binding of glucose and its derivatives. Furthermore, they show enhanced fluorescence upon binding with glucose in water, a property which is useful for glucose-sensing in aqueous solution.
Collapse
Affiliation(s)
- Wenqi Liu
- Department of Chemistry, 2145 Sheridan Road, Northwestern University, Evanston, Illinois 60208, United States
| | - Yu Tan
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Leighton O Jones
- Department of Chemistry, 2145 Sheridan Road, Northwestern University, Evanston, Illinois 60208, United States
| | - Bo Song
- Department of Chemistry, 2145 Sheridan Road, Northwestern University, Evanston, Illinois 60208, United States
| | - Qing-Hui Guo
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| | - Long Zhang
- Department of Chemistry, 2145 Sheridan Road, Northwestern University, Evanston, Illinois 60208, United States
| | - Yunyan Qiu
- Department of Chemistry, 2145 Sheridan Road, Northwestern University, Evanston, Illinois 60208, United States
| | - Yuanning Feng
- Department of Chemistry, 2145 Sheridan Road, Northwestern University, Evanston, Illinois 60208, United States
| | - Xiao-Yang Chen
- Department of Chemistry, 2145 Sheridan Road, Northwestern University, Evanston, Illinois 60208, United States
| | - George C Schatz
- Department of Chemistry, 2145 Sheridan Road, Northwestern University, Evanston, Illinois 60208, United States
| | - J Fraser Stoddart
- Department of Chemistry, 2145 Sheridan Road, Northwestern University, Evanston, Illinois 60208, United States.,School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.,Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| |
Collapse
|
26
|
Roy I, Goswami S, Young RM, Schlesinger I, Mian MR, Enciso AE, Zhang X, Hornick JE, Farha OK, Wasielewski MR, Hupp JT, Stoddart JF. Photon Upconversion in a Glowing Metal–Organic Framework. J Am Chem Soc 2021; 143:5053-5059. [DOI: 10.1021/jacs.1c00298] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - J. Fraser Stoddart
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|