1
|
Zhao ZH, Han BL, Su HF, Guo QL, Wang WX, Zhuo JQ, Guo YN, Liu JL, Luo GG, Cui P, Sun D. Buckling cluster-based H-bonded icosahedral capsules and their propagation to a robust zeolite-like supramolecular framework. Nat Commun 2024; 15:9401. [PMID: 39477935 PMCID: PMC11525653 DOI: 10.1038/s41467-024-53640-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/16/2024] [Indexed: 11/02/2024] Open
Abstract
Hydrogen-bonded assembly of multiple components into well-defined icosahedral capsules akin to virus capsids has been elusive. In parallel, constructing robust zeolitic-like cluster-based supramolecular frameworks (CSFs) without any coordination covalent bonding linkages remains challenging. Herein, we report a cluster-based pseudoicosahedral H-bonded capsule Cu60, which is buckled by the self-organization of judiciously designed constituent copper clusters and anions. The spontaneous formation of the icosahedron in the solid state takes advantage of 48 charge-assisted CH···F hydrogen bonds between cationic clusters and anions (PF6-), and is highly sensitive to the surface protective ligands on the clusters with minor structural modification inhibiting its formation. Most excitingly, an extended three-periodic robust zeolitic-like CSF, is constructed by edge-sharing the resultant icosahedrons. The perpendicular channels of the CSF feature unusual 3D orthogonal double-helical patterns. The CSF material not only keeps its single-crystal character in the desolvated phase, but also exhibits excellent chemical and thermal stabilities as well as long-lived phosphorescence emission.
Collapse
Affiliation(s)
- Zhan-Hua Zhao
- College of Materials Science and Engineering, Huaqiao University, Xiamen, PR China
| | - Bao-Liang Han
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan, PR China
| | - Hai-Feng Su
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, PR China
| | - Qi-Lin Guo
- College of Materials Science and Engineering, Huaqiao University, Xiamen, PR China
| | - Wen-Xin Wang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan, PR China
| | - Jing-Qiu Zhuo
- College of Materials Science and Engineering, Huaqiao University, Xiamen, PR China
| | - Yong-Nan Guo
- College of Materials Science and Engineering, Huaqiao University, Xiamen, PR China
| | - Jia-Long Liu
- College of Materials Science and Engineering, Huaqiao University, Xiamen, PR China
| | - Geng-Geng Luo
- College of Materials Science and Engineering, Huaqiao University, Xiamen, PR China.
| | - Ping Cui
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan, PR China
| | - Di Sun
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan, PR China.
| |
Collapse
|
2
|
Kim S, Kim H, Lee C, Park I, Kim Y, Moon D, Shim JH, Ryu S, Park SS. Au 25 Cluster-Based Atomically Precise Coordination Frameworks and Emission Engineering through Lattice Symmetry. ACS NANO 2024; 18:29036-29044. [PMID: 39388359 DOI: 10.1021/acsnano.4c10096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The atomically precise metal nanoclusters (NCs) have attracted significant attention due to their superatomic behavior originating from the quantum confinement effect. This behavior makes these materials suitable for various photoluminescence-based applications, including chemical sensing, bioimaging, and phototherapy, owing to their intriguing optical properties. Especially, the manipulation of inter- or intracluster interaction through cluster-assembled materials (CAMs) presents significant pathways for modifying the photophysical properties of NCs. Herein, two distinct CAMs, Au25-Zn-Hex and Au25-Zn-Rod, were synthesized via forming a coordination bond between [Au25(p-HMBA)18]- (p-H2MBA = 4-mercaptobenzoic acid) and Zn2+. Au25-Zn-Rod exhibited a 6-fold higher luminescence intensity in the near-infrared region compared to Au25-Zn-Hex, attributed to synergistic inter- and intracluster interactions that induce exciton delocalization and structure rigidification at the atomic scale. This study highlights the potential of diverse lattice symmetries in cluster-based frameworks for tuning the photophysical properties, contributing to a deeper understanding of the structure-property relationship in Au NCs.
Collapse
Affiliation(s)
- Sinhyeop Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Hyesun Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Changhoon Lee
- Mak Planck POSTECH Center for Complex Phase of Materials, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Ina Park
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Younghoon Kim
- Graduate School of Semiconductor Materials and Devices Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Dohyun Moon
- Beamline Department, Pohang Accelerator Laboratory, Pohang 37673, Republic of Korea
| | - Ji Hoon Shim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Sunmin Ryu
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University, Seoul 03722, Republic of Korea
| | - Sarah S Park
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
3
|
Li H, Wu Y, Xu Z, Wang Y. Controllable Preparation of a Cu NCs@Zn-MOF Hybrid with Dual Emission Induced by an Ion Exchange Strategy for the Detection of Explosives. ACS Sens 2024; 9:4701-4710. [PMID: 39174875 DOI: 10.1021/acssensors.4c01093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
The precise synthesis of Cu NCs is a highly desirable and controllable route for the preparation of desired structures and properties, which facilitates the rational design of valuable probes for fluorescence sensing and the understanding of structure-property relationships. Herein, an ion-exchange strategy combined with a bottom-up synthetic approach was utilized in the synthesis process of Cu NCs for the first time, which achieved the controllable synthesis of Cu NCs and in situ anchoring of Cu NCs on the support material HPU-14. The as-prepared Cu NCs@HPU-14-4h not only had a good peroxidase-like property but also exhibited stable dual-emitting fluorescence at 470 and 620 nm. Notably, the peroxidase-like property endowed Cu NCs@HPU-14-4h with the capability of highly sensitive colorimetric detection of H2O2 in a linear concentration from 0.1 to 140 μM (detection limit of 86.7 nM), and a change in the fluorescent color from red to blue could be observed by the naked eye. Furthermore, due to the large overlap between the absorption of 2,4,6-trinitrophenol (TNP) and the excitation band of Cu NCs@HPU-14-4h, TNP could also be detected from 27 types of analogs and common ions with a limit of detection of 68 nM. Finally, a portable hydrogel probe with efficient wipe sampling was fabricated by polyvinyl alcohol (PVA) comprising Cu NCs@HPU-14-4h with the aim of on-site visualization of different explosives. Consequently, the current study not only provides a new idea for the precise synthesis of Cu NCs and their controllable anchoring on support materials but also offers an effective method for predicting H2O2 and TNP.
Collapse
Affiliation(s)
- Huijun Li
- Department of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Yingying Wu
- Department of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Zhouqing Xu
- Department of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Yan Wang
- State Collaborative Innovation Center of Coal Work Safety and Clean-Efficiency Utilization, Henan Polytechnic University, Jiaozuo 454000, China
- Henan Provincial Research Center for Early Warning and Emergency Engineering of Combustion and Explosion Power Disaster, Henan Polytechnic University, Jiaozuo 454000, China
| |
Collapse
|
4
|
Zheng W, Wang Z, Chen W, Zhang M, Li H, Yang G, Xu Q, Qiao X, Tan D, Zhang J, Qiu J, Qian G, Fan X. Unlocking high photosensitivity direct laser writing and observing atomic clustering in glass. Nat Commun 2024; 15:8366. [PMID: 39333548 PMCID: PMC11437194 DOI: 10.1038/s41467-024-52628-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 09/17/2024] [Indexed: 09/29/2024] Open
Abstract
The direct laser writing (DLW) of photoluminescent metal clusters is inspiring intensive research in functional glasses. However, understanding the influence of the host structure on cluster formation and visualizing DLW-induced clusters at the atomic scale remains challenging. In this work, we develop a highly photosensitive fluorophosphate glass through fluorine incorporation. The addition of fluorine establishes a conducive environment for Ag+ ions before DLW and enhances the availability of reducing agents and diffusion pathways during DLW. These advantages facilitate the formation of Ag clusters under low-energy single-pulsed DLW. Increasing laser energy results in a combination of Ag clusters and glasses defect, forming a dot + ring photoluminescent pattern. Atom probe tomography (APT), a technique capable of mapping the elemental spatial distribution and identifying clustering, is employed to gain more information on laser-induced clusters. Comparison of APT results between samples without and with DLW reveals the formation of Ag clusters after laser writing. The design concept and characterization enrich the understanding of Ag cluster behavior in glasses. This knowledge opens the possibility of rational design of clusters confined in glasses and inspires their synthesis for various applications.
Collapse
Affiliation(s)
- Wenyan Zheng
- State Key Laboratory of Silicon Materials & School of Materials Science and Engineering, Zhejiang University, Hangzhou, China
| | - Zhuo Wang
- State Key Laboratory of Modern Optical Instrumentation College of Optical Science and Engineering, Zhejiang University, Hangzhou, China
| | - Weilin Chen
- State Key Laboratory of Silicon Materials & School of Materials Science and Engineering, Zhejiang University, Hangzhou, China
| | - Mengchao Zhang
- School of Materials Science and Engineering, Shanghai University, Shanghai, China
| | - Hui Li
- School of Materials Science and Engineering, Shanghai University, Shanghai, China
| | - Guang Yang
- School of Materials Science and Engineering, Shanghai University, Shanghai, China
| | - Qiang Xu
- Ocean Academy, Zhejiang University, Zhoushan, China
| | - Xvsheng Qiao
- State Key Laboratory of Silicon Materials & School of Materials Science and Engineering, Zhejiang University, Hangzhou, China.
| | - Dezhi Tan
- State Key Laboratory of Silicon Materials & School of Materials Science and Engineering, Zhejiang University, Hangzhou, China.
- Zhejiang Lab, Hangzhou, China.
| | - Junjie Zhang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, China
| | - Jianrong Qiu
- State Key Laboratory of Modern Optical Instrumentation College of Optical Science and Engineering, Zhejiang University, Hangzhou, China
| | - Guodong Qian
- State Key Laboratory of Silicon Materials & School of Materials Science and Engineering, Zhejiang University, Hangzhou, China
| | - Xianping Fan
- State Key Laboratory of Silicon Materials & School of Materials Science and Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
DeJesus JF, Jacob SI, Phung QM, Mimura K, Aramaki Y, Ooi T, Nambo M, Crudden CM. If the Crown Fits: Sterically Demanding N-Heterocyclic Carbene Promotes the Formation of Au 8Pt Nanoclusters. J Am Chem Soc 2024; 146:23806-23813. [PMID: 39141005 DOI: 10.1021/jacs.4c04873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
While N-heterocyclic carbenes (NHCs) have recently been shown to be effective ligands for gold nanoclusters, very few examples of heterometallic clusters incorporating nongroup 11 metals are known. We present herein an Au-Pt NHC cluster featuring a crown-shaped [Au8Pt(NHC)8]2+ core, produced in high yield without the need for chromatographic purification. The method was largely independent of the substitution pattern of the NHC backbone; however, bulky wingtip groups were needed for clean conversion to the Au8Pt cluster. Clusters were characterized using single crystal X-ray diffraction, multinuclear nuclear magnetic resonance, electrospray ionization mass spectroscopy, and ultraviolet-visible spectroscopy, and electrochemical features of the cluster are also presented. A detailed analysis of the in-progress reaction mixture by ESI-MS supports the direct involvement of Au-H species as intermediates in cluster formation. These studies further demonstrate that NHC wingtip sterics play a key part in determining the nature of the initial cluster species, providing critical information for the generation of new NHC-stabilized nanoclusters.
Collapse
Affiliation(s)
- Joseph F DeJesus
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya 464-8601, Japan
| | - Samuel I Jacob
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya 464-8601, Japan
| | - Quan Manh Phung
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya 464-8601, Japan
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Koichi Mimura
- Department of Earth and Environmental Sciences, Graduate School of Environmental Studies, Nagoya University, Nagoya 464-8602, Japan
| | - Yoshitaka Aramaki
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya 464-8601, Japan
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Takashi Ooi
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya 464-8601, Japan
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Masakazu Nambo
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya 464-8601, Japan
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Cathleen M Crudden
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya 464-8601, Japan
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario K7L 3N6, Canada
- Carbon to Metal Coating Institute, Queen's University, 90 Bader Lane, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
6
|
Li Q, Gao W, Wang Z, Liu W, Fu Y, Wang X, Tan LL, Shang L, Yang YW. Guest-Induced Helical Superstructure from a Gold Nanocluster-Based Supramolecular Organic Framework Enables Efficient Catalysis. ACS NANO 2024; 18:22548-22559. [PMID: 39110641 DOI: 10.1021/acsnano.4c08337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Mimicking hierarchical assembly in nature to exploit atomically precise artificial systems with complex structures and versatile functions remains a long-standing challenge. Herein, we report two single-crystal supramolecular organic frameworks (MSOF-4 and MSOF-5) based on custom-designed atomically precise gold nanoclusters Au11(4-Mpy)3(PPh3)7, showing distinct and intriguing host-guest adaptation behaviors toward 1-/2-bromopropane (BPR) isomers. MSOF-4 exhibits sev topology and cylindrical channels with 4-mercaptopyridine (4-Mpy) ligands matching well with guest 1-BPR. Due to the confinement effect, solid MSOF-4 undergoes significant structural change upon selective adsorption of 1-BPR vapor over 2-BPR, resulting in strong near-infrared fluorescence. Single-crystal X-ray diffraction reveals that Au11(4-Mpy)3(PPh3)7 in MSOF-4 transforms into Au11Br3(PPh3)7 upon ligand exchange with 1-BPR, resulting in 1-BPR@MSOF-6 single crystals with a rarely reported helical assembly structure. Significantly, the double-helical structure of MSOF-6 facilitates efficient catalysis of the electron transfer (ET) reaction, resulting in a nearly 6 times increase of catalytic rates compared with MSOF-4. In sharp contrast, solid MSOF-5 possesses chb topology and cage-type channels with narrow windows, showing excellent selective physical adsorption toward 1-BPR vapor but a nonfluorescent feature upon guest adsorption. Our results demonstrate a powerful strategy for developing advanced assemblies with high-order complexity and engineering their functions in atomic precision.
Collapse
Affiliation(s)
- Qiang Li
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Wenxing Gao
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Zijian Wang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Wenfeng Liu
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Yu Fu
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Xin Wang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin Univeersity, 2699 Qianjin Street ,Changchun 130012, P. R. China
| | - Li-Li Tan
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Li Shang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Ying-Wei Yang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin Univeersity, 2699 Qianjin Street ,Changchun 130012, P. R. China
| |
Collapse
|
7
|
Tang S, Song T, Cai X, Ding W, Zhu Y. Nitrate electroreduction to ammonia catalysed by atomically precise Au 28Cu 12 clusters. Chem Commun (Camb) 2024; 60:7785-7788. [PMID: 38978463 DOI: 10.1039/d4cc02085e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
A novel bimetal cluster [Au28Cu12(SR)24](PPh4)4 (SR = 2,4-dichlorothiophenol) has been successfully synthesized, which can be viewed as a Au4@Au24 core and four trimeric Cu3(SR)6 staples. Compared to monometallic Au28(TBBT)20 and Cu28(CHT)18(PPh3)3 clusters, the [Au28Cu12(C6H4Cl2S)24](PPh4)4 cluster has much higher catalytic efficiency for nitrate electroreduction to ammonia.
Collapse
Affiliation(s)
- Shisi Tang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China.
| | - Tongxin Song
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China.
| | - Xiao Cai
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China.
| | - Weiping Ding
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China.
| | - Yan Zhu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
8
|
Li S, Li NN, Dong XY, Zang SQ, Mak TCW. Chemical Flexibility of Atomically Precise Metal Clusters. Chem Rev 2024; 124:7262-7378. [PMID: 38696258 DOI: 10.1021/acs.chemrev.3c00896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
Ligand-protected metal clusters possess hybrid properties that seamlessly combine an inorganic core with an organic ligand shell, imparting them exceptional chemical flexibility and unlocking remarkable application potential in diverse fields. Leveraging chemical flexibility to expand the library of available materials and stimulate the development of new functionalities is becoming an increasingly pressing requirement. This Review focuses on the origin of chemical flexibility from the structural analysis, including intra-cluster bonding, inter-cluster interactions, cluster-environments interactions, metal-to-ligand ratios, and thermodynamic effects. In the introduction, we briefly outline the development of metal clusters and explain the differences and commonalities of M(I)/M(I/0) coinage metal clusters. Additionally, we distinguish the bonding characteristics of metal atoms in the inorganic core, which give rise to their distinct chemical flexibility. Section 2 delves into the structural analysis, bonding categories, and thermodynamic theories related to metal clusters. In the following sections 3 to 7, we primarily elucidate the mechanisms that trigger chemical flexibility, the dynamic processes in transformation, the resultant alterations in structure, and the ensuing modifications in physical-chemical properties. Section 8 presents the notable applications that have emerged from utilizing metal clusters and their assemblies. Finally, in section 9, we discuss future challenges and opportunities within this area.
Collapse
Affiliation(s)
- Si Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Na-Na Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Xi-Yan Dong
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Shuang-Quan Zang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Thomas C W Mak
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, SAR 999077, China
| |
Collapse
|
9
|
Kim JS, Park N, Kwak SJ, Jeon Y, Lee G, Kim Y, Lee WB, Park J. Structure Effects of Ligands in Gold-Ligand Complexes for Controlled Formation of Gold Nanoclusters. ACS NANO 2024; 18:14244-14254. [PMID: 38758709 DOI: 10.1021/acsnano.3c12695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2024]
Abstract
Metal nanoclusters (NCs) are a special class of nanoparticles composed of a precise number of metal atoms and ligands. Because the proportion of ligands to metal atoms is high in metal NCs, the ligand type determines the physical properties of metal NCs. Furthermore, ligands presumably govern the entire formation process of the metal NCs. However, their roles in the synthesis, especially as factors in the uniformity of metal NCs, are not understood. It is because the synthetic procedure of metal NCs is highly convoluted. The synthesis is initiated by the formation of various metal-ligand complexes, which have different numbers of atoms and ligands, resulting in different coordinations of metal. Moreover, these complexes, as actual precursors to metal NCs, undergo sequential transformations into a series of intermediate NCs before the formation of the desired NCs. Thus, to resolve the complicated synthesis of metal NCs and achieve their uniformity, it is important to investigate the reactivity of the complexes. Herein, we utilize a combination of mass spectrometry, density functional theory, and electrochemical measurements to understand the ligand effects on the reactivity of AuI-thiolate complexes toward the reductive formation of Au NCs. We discover that the stability of the complexes can be increased by either van der Waals interactions induced by the long carbon chain of ligands or by non-thiol functional groups in the ligands, which additionally coordinate with AuI in the complexes. Such structural effects of thiol ligands determine the reduction reactivity of the complexes and the amount of NaBH4 required for the controlled synthesis of the Au NCs.
Collapse
Affiliation(s)
- Ji Soo Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul National University, Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of Korea
| | - Namjun Park
- School of Chemical and Biological Engineering, and Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of Korea
| | - Seung Jae Kwak
- School of Chemical and Biological Engineering, and Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of Korea
| | - Yonggoon Jeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul National University, Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of Korea
| | - Gyuhan Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul National University, Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of Korea
| | - Younhwa Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul National University, Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of Korea
| | - Won Bo Lee
- School of Chemical and Biological Engineering, and Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of Korea
| | - Jungwon Park
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul National University, Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of Korea
- Institute of Engineering Research, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
- Advanced Institute of Convergence Technology, Seoul National University, Suwon-si, Gyeonggi-do 16229, Republic of Korea
| |
Collapse
|
10
|
Fujiwara Y, Ito S, Koyasu K, Tsukuda T. Gas-Phase Structures of [Au 21(SR) 14] - and [Au 17(SR) 10] - with Eight Electrons: Can They Support an Icosahedral Au 13 Core? J Phys Chem A 2024; 128:3119-3125. [PMID: 38626761 DOI: 10.1021/acs.jpca.4c00548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
A prototypical thiolate (RS)-protected gold cluster [Au25(SR)18]- has high stability due to specific geometric and electronic structures: an icosahedral (Ih) Au13 core with a closed electronic shell containing eight electrons is completely protected by six units of Au2(SR)3. Nevertheless, collisional excitation of [Au25(SR)18]- in a vacuum induces the sequential release of Au4(SR)4 to form [Au21(SR)14]- and [Au17(SR)10]- both containing eight electrons. To answer a naive question of whether these fragments bear an Ih Au13(8e) core, the geometrical structures of [Au21(SC3H7)14]- and [Au17(SC3H7)10]- in the gas phase were examined by the combination of anion photoelectron spectroscopy and density functional theory (DFT) calculation of simplified models of [Au21(SCH3)14]- and [Au17(SCH3)10]-. We concluded that [Au21(SC3H7)14]- retains a slightly distorted Ih Au13(8e) core, while [Au17(SC3H7)10]- has an amorphous Au13 core composed of triangular Au3, tetrahedral Au4, and prolate Au7 units. DFT calculations on putative species [Au19(SCH3)12]- and [Au18(SCH3)11]- suggested that the Ih Au13(8e) core undergoes dramatic structural deformation due to mechanical stress from μ2 ligation of only one RS.
Collapse
Affiliation(s)
- Yuki Fujiwara
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shun Ito
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kiichirou Koyasu
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tatsuya Tsukuda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
11
|
Yadav HOS. Three-body interaction of gold nanoparticles: the role of solvent density and ligand shell orientation. Phys Chem Chem Phys 2024; 26:11558-11569. [PMID: 38533797 DOI: 10.1039/d3cp06334h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Molecular dynamics simulations are used to study the effective interactions of alkanethiol passivated gold nanoparticles in supercritical ethane at two- and three-particle levels with different solvent densities. Effective interaction is calculated as the potential of mean force (PMF) between two nanoparticles, and the three-body effect is estimated as the difference in PMFs calculated at the two- and three-particle levels. The variation in the three-body effect is examined as a function of solvent density. It is found that effective interaction, which is completely repulsive at very high solvent concentrations, progressively turns attractive as solvent density declines. On the other hand, the three-body effect turns out to be repulsive and increases exponentially with decreasing solvent density. Further, the structure of the ligand shell is analyzed as a function of nanoparticle separation, and its relationship with the three-body effect is investigated. It is observed that the three-body effect arises when the ligand shell begins to deform due to van der Waals repulsion between ligand shells. The study provides a deep insight into good understanding of the solvent evaporation-assisted nanoparticle self-assembly and can aid in experiments.
Collapse
Affiliation(s)
- Hari O S Yadav
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
12
|
Liu L, Zheng SJ, Chen H, Cai J, Zang SQ. Tandem Nitrate-to-Ammonia Conversion on Atomically Precise Silver Nanocluster/MXene Electrocatalyst. Angew Chem Int Ed Engl 2024; 63:e202316910. [PMID: 38179795 DOI: 10.1002/anie.202316910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/06/2024]
Abstract
Electrocatalytic reduction of nitrate (NO3 RR) to synthesize ammonia (NH3 ) provides a competitive manner for carbon neutrality and decentralized NH3 synthesis. Atomically precise nanoclusters, as an advantageous platform for investigating the NO3 RR mechanisms and actual active sites, remain largely underexplored due to the poor stability. Herein, we report a (NH4 )9 [Ag9 (mba)9 ] nanoclusters (Ag9 NCs) loaded on Ti3 C2 MXene (Ag9 /MXene) for highly efficient NO3 RR performance towards ambient NH3 synthesis with improved stability in neutral medium. The composite structure of MXene and Ag9 NCs enables a tandem catalysis process for nitrate reduction, significantly increasing the selectivity and FE of NH3 . Besides, compared with individual Ag9 NCs, Ag9 /MXene has better stability with the current density performed no decay after 108 hours of reaction. This work provides a strategy for improving the catalytic activity and stability of atomically precise metal NCs, expanding the mechanism research and application of metal NCs.
Collapse
Affiliation(s)
- Lin Liu
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Su-Jun Zheng
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Hong Chen
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Jinmeng Cai
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Shuang-Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
13
|
Hu Y, Zhang Q, Zhou J, Guo S, Xu J, Zheng H, Yang Y. Supramolecularly Dimeric Assemble of Planar Cu 13 Clusters Controlled by the Length of Spacers of Diphosphine. Inorg Chem 2023; 62:21091-21100. [PMID: 38079613 DOI: 10.1021/acs.inorgchem.3c02992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
The controlled formation of dimeric clusters is challenging. Three copper(I) clusters, labeled as {Cu13[o-Ph(C≡C)2]6(L)4}(ClO4), were synthesized by using three different ligands, including 1,4-bis(diphenylphosphino)butane (dppb), 1,5-bis(diphenylphosphino)pentane (dpppe), and bis(diphenylphosphino)hexane (dpph). By increasing the flexibility of alkyl spacers in the diphosphine ligands, the relative positions of the phenyl rings could be optimized to achieve efficient packing with maximized intercluster interactions. In the crystal structures, cluster 1 with dppb ligands did not display interlocked structures. In contrast, cluster 2 with dpppe ligands formed supramolecularly interlocked polymers through weak π-π interactions and C-H···π interactions, while cluster 3 employing dpph ligands formed supramolecularly interlocked dimers with strong π-π interactions and C-H···π interactions. The supramolecular dimer of 3 was also evidenced by analyses through electrospray ionization mass spectrometry and transmission electron microscopy. Density functional theory calculation was used to understand the electronic structure and transitions. Supramolecularly interlocked polymers/dimers with rigid structures exhibited higher quantum efficiency. The solution of these clusters demonstrated remarkable aggregation-induced emission enhancements. This study presents unique examples of planar luminescent copper clusters, featuring the first serial dialkynyl-protected cluster. It underlines the importance of ligand flexibility in creating supramolecular cluster dimers.
Collapse
Affiliation(s)
- Yun Hu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Qian Zhang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Jie Zhou
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Shan Guo
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Jia Xu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Hao Zheng
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Yang Yang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| |
Collapse
|
14
|
Cao W, Yakimov A, Qian X, Li J, Peng X, Kong X, Copéret C. Surface Sites and Ligation in Amine-capped CdSe Nanocrystals. Angew Chem Int Ed Engl 2023; 62:e202312713. [PMID: 37869935 DOI: 10.1002/anie.202312713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 10/24/2023]
Abstract
Converting colloidal nanocrystals (NCs) into devices for various applications is facilitated by designing and controlling their surface properties. One key strategy for tailoring surface properties is thus to choose tailored surface ligands. In that context, amines have been universally used, with the goal to improve NCs synthesis, processing and performances. However, understanding the nature of surface sites in amine-capped NCs remains challenging, due to the complex surface compositions as well as surface ligands dynamic. Here, we investigate both surface sites and amine ligation in CdSe NCs by combining advanced NMR spectroscopy and computational modelling. Notably, dynamic nuclear polarization (DNP) enhanced 113 Cd and 77 Se 1D NMR helps to identify both bulk and surface sites of NCs, while 113 Cd 2D NMR spectroscopy enables to resolve amines terminated sites on both Se-rich and nonpolar surfaces. In addition to directly bonding to surface sites, amines are shown to also interact through hydrogen-bonding with absorbed water as revealed by 15 N NMR, augmented with computations. The characterization methodology developed for this work provides unique molecular-level insight into the surface sites of a range of amine-capped CdSe NCs, and paves the way to identify structure-function relationships and rational approaches towards colloidal NCs with tailored properties.
Collapse
Affiliation(s)
- Weicheng Cao
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093, Zürich, Switzerland
- Department of Chemistry, Key Laboratory of Excited-State Materials of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Alexander Yakimov
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093, Zürich, Switzerland
| | - Xudong Qian
- Department of Chemistry, Key Laboratory of Excited-State Materials of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Jiongzhao Li
- Department of Chemistry, Key Laboratory of Excited-State Materials of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Xiaogang Peng
- Department of Chemistry, Key Laboratory of Excited-State Materials of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Xueqian Kong
- Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
- Department of Chemistry, Key Laboratory of Excited-State Materials of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Christophe Copéret
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093, Zürich, Switzerland
| |
Collapse
|
15
|
Epple M, Rotello VM, Dawson K. The Why and How of Ultrasmall Nanoparticles. Acc Chem Res 2023; 56:3369-3378. [PMID: 37966025 DOI: 10.1021/acs.accounts.3c00459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
ConspectusIn this Account, we describe our research into ultrasmall nanoparticles, including their unique properties, and outline some of the new opportunities they offer. We will summarize our perspective on the current state of the field and highlight what we see as key questions that remain to be solved. First, there are several nanostructure size-scale regimes, with qualitatively distinct functional biological attributes. Broadly generalized, larger particles (e.g., larger than 300 nm) tend to be more efficiently swept away by the first line of the immune system (for example macrophages). In the "middle-sized" regime (20-300 nm), nanoparticle surfaces and shapes can be recognized by energy-dependent cellular reorganizations, then organized locally in a spatial and temporally coherent way. That energy is gated and made available by specific cellular recognition processes. The relationship between particle surface design, endogenously derived nonspecific biomolecular corona, and architectural features recognized by the cell is complex and only purposefully and very precisely designed nanoparticle architectures are able to navigate to specific targets. At sufficiently small sizes (<10 nm including the ligand shell, associated with a core diameter of a few nm at most) we enter the "quasi-molecular regime" in which the endogenous biomolecular environment exchanges so rapidly with the ultrasmall particle surface that larger scale cellular and immune recognition events are often greatly simplified. As an example, ultrasmall particles can penetrate cellular and biological barriers within tissue architectures via passive diffusion, in much the same way as small molecule drugs do. An intriguing question arises: what happens at the interface of cellular recognition and ultrasmall quasi-molecular size regimes? Succinctly put, ultrasmall conjugates can evade defense mechanisms driven by larger scale cellular nanoscale recognition, enabling them to flexibly exploit molecular interaction motifs to interact with specific targets. Numerous advances in control of architecture that take advantage of these phenomena have taken place or are underway. For instance, syntheses can now be sufficiently controlled that it is possible to make nanoparticles of a few hundreds of atoms or metalloid clusters of several tens of atoms that can be characterized by single crystal X-ray structure analysis. While the synthesis of atomically precise clusters in organic solvents presents challenges, water-based syntheses of ultrasmall nanoparticles can be upscaled and lead to well-defined particle populations. The surface of ultrasmall nanoparticles can be covalently modified with a wide variety of ligands to control the interactions of these particles with biosystems, as well as drugs and fluorophores. And, in contrast to larger particles, many advanced molecular analytical and separation tools can be applied to understand their structure. For example, NMR spectroscopy allows us to obtain a detailed image of the particle surface and the attached ligands. These are considerable advantages that allow further elaboration of the level of architectural control and characterization of the ultrasmall structures required to access novel functional regimes and outcomes. The ultrasmall nanoparticle regime has a unique status and provides a potentially very interesting direction for development.
Collapse
Affiliation(s)
- Matthias Epple
- Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstrasse 5-7, 45117 Essen, Germany
| | - Vincent M Rotello
- Charles A. Goessmann Professor of Chemistry and University Distinguished Professor, Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01002, United States
| | - Kenneth Dawson
- UCD School of Chemistry, Science Centre South, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
16
|
Li Y, Stec GJ, Thorarinsdottir AE, McGillicuddy RD, Zheng SL, Mason JA. The role of metal accessibility on carbon dioxide electroreduction in atomically precise nanoclusters. Chem Sci 2023; 14:12283-12291. [PMID: 37969596 PMCID: PMC10631301 DOI: 10.1039/d3sc04085b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 10/09/2023] [Indexed: 11/17/2023] Open
Abstract
Atomically precise nanoclusters (NCs) can be designed with high faradaic efficiency for the electrochemical reduction of CO2 to CO (FECO) and provide useful model systems for studying the metal-catalysed CO2 reduction reaction (CO2RR). While size-dependent trends are commonly evoked, the effect of NC size on catalytic activity is often convoluted by other factors such as changes to surface structure, ligand density, and electronic structure, which makes it challenging to establish rigorous structure-property relationships. Herein, we report a detailed investigation of a series of NCs [AunAg46-n(C[triple bond, length as m-dash]CR)24Cl4(PPh3)2, Au24Ag20(C[triple bond, length as m-dash]CR)24Cl2, and Au43(C[triple bond, length as m-dash]CR)20/Au42Ag1(C[triple bond, length as m-dash]CR)20] with similar sizes and core structures but different ligand packing densities to investigate how the number of accessible metal sites impacts CO2RR activity and selectivity. We develop a simple method to determine the number of CO2-accessible sites for a given NC then use this to probe relationships between surface accessibility and CO2RR performance for atomically precise NC catalysts. Specifically, the NCs with the highest number of accessible metal sites [Au43(C[triple bond, length as m-dash]CR)20 and Au42Ag1(C[triple bond, length as m-dash]CR)20] feature a FECO of >90% at -0.57 V vs. the reversible hydrogen electrode (RHE), while NCs with lower numbers of accessible metal sites have a reduced FECO. In addition, CO2RR studies performed on other Au-alkynyl NCs that span a wider range of sizes further support the relationship between FECO and the number of accessible metal sites, regardless of NC size. This work establishes a generalizable approach to evaluating the potential of atomically precise NCs for electrocatalysis.
Collapse
Affiliation(s)
- Yingwei Li
- Department of Chemistry & Chemical Biology, Harvard University 12 Oxford Street Cambridge Massachusetts 02138 USA
| | - Grant J Stec
- Department of Chemistry & Chemical Biology, Harvard University 12 Oxford Street Cambridge Massachusetts 02138 USA
| | - Agnes E Thorarinsdottir
- Department of Chemistry & Chemical Biology, Harvard University 12 Oxford Street Cambridge Massachusetts 02138 USA
| | - Ryan D McGillicuddy
- Department of Chemistry & Chemical Biology, Harvard University 12 Oxford Street Cambridge Massachusetts 02138 USA
| | - Shao-Liang Zheng
- Department of Chemistry & Chemical Biology, Harvard University 12 Oxford Street Cambridge Massachusetts 02138 USA
| | - Jarad A Mason
- Department of Chemistry & Chemical Biology, Harvard University 12 Oxford Street Cambridge Massachusetts 02138 USA
| |
Collapse
|
17
|
Burlec AF, Corciova A, Boev M, Batir-Marin D, Mircea C, Cioanca O, Danila G, Danila M, Bucur AF, Hancianu M. Current Overview of Metal Nanoparticles' Synthesis, Characterization, and Biomedical Applications, with a Focus on Silver and Gold Nanoparticles. Pharmaceuticals (Basel) 2023; 16:1410. [PMID: 37895881 PMCID: PMC10610223 DOI: 10.3390/ph16101410] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/23/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
Metal nanoparticles (NPs) have garnered considerable attention, due to their unique physicochemical properties, that render them promising candidates for various applications in medicine and industry. This article offers a comprehensive overview of the most recent advancements in the manufacturing, characterization, and biomedical utilization of metal NPs, with a primary focus on silver and gold NPs. Their potential as effective anticancer, anti-inflammatory, and antimicrobial agents, drug delivery systems, and imaging agents in the diagnosis and treatment of a variety of disorders is reviewed. Moreover, their translation to therapeutic settings, and the issue of their inclusion in clinical trials, are assessed in light of over 30 clinical investigations that concentrate on administering either silver or gold NPs in conditions ranging from nosocomial infections to different types of cancers. This paper aims not only to examine the biocompatibility of nanomaterials but also to emphasize potential challenges that may limit their safe integration into healthcare practices. More than 100 nanomedicines are currently on the market, which justifies ongoing study into the use of nanomaterials in medicine. Overall, the present review aims to highlight the potential of silver and gold NPs as innovative and effective therapeutics in the field of biomedicine, citing some of their most relevant current applications.
Collapse
Affiliation(s)
- Ana Flavia Burlec
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania; (A.F.B.); (A.C.); (C.M.); (O.C.); (M.H.)
| | - Andreia Corciova
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania; (A.F.B.); (A.C.); (C.M.); (O.C.); (M.H.)
| | - Monica Boev
- Research Centre in the Medical-Pharmaceutical Field, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 800008 Galati, Romania; (G.D.); (M.D.); (A.F.B.)
| | - Denisa Batir-Marin
- Research Centre in the Medical-Pharmaceutical Field, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 800008 Galati, Romania; (G.D.); (M.D.); (A.F.B.)
| | - Cornelia Mircea
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania; (A.F.B.); (A.C.); (C.M.); (O.C.); (M.H.)
| | - Oana Cioanca
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania; (A.F.B.); (A.C.); (C.M.); (O.C.); (M.H.)
| | - Gabriela Danila
- Research Centre in the Medical-Pharmaceutical Field, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 800008 Galati, Romania; (G.D.); (M.D.); (A.F.B.)
| | - Marius Danila
- Research Centre in the Medical-Pharmaceutical Field, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 800008 Galati, Romania; (G.D.); (M.D.); (A.F.B.)
| | - Anca Florentina Bucur
- Research Centre in the Medical-Pharmaceutical Field, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 800008 Galati, Romania; (G.D.); (M.D.); (A.F.B.)
| | - Monica Hancianu
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania; (A.F.B.); (A.C.); (C.M.); (O.C.); (M.H.)
| |
Collapse
|
18
|
Basu S, Perić Bakulić M, Sanader Maršić Ž, Bonačić-Koutecký V, Amdursky N. Excitation-Dependent Fluorescence with Excitation-Selective Circularly Polarized Luminescence from Hierarchically Organized Atomic Nanoclusters. ACS NANO 2023; 17:16644-16655. [PMID: 37638669 DOI: 10.1021/acsnano.3c02846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Nanometer-scaled objects are known to have dimension-related properties, but sometimes the assembly of such objects can lead to the emergence of other properties. Here, we show the assembly of atomically precise gold nanoclusters into large fibrillar structures that are featuring excitation-dependent luminescence with an excitation-selective circularly polarized luminescence (CPL), even though all components are achiral. The origin of CPL in the assembly of atomic clusters has been attributed to the hierarchical organization of atomic clusters into fibrillar structures, mediated via a hydrogen bonding interaction with a surfactant. We follow the assembly process both experimentally and computationally showing the advance in the structural formation along with its chiroptical electronic properties, i.e., circular dichroism (CD) and CPL. Our study here can assist in the rational design of materials featuring chiroptical properties, thus leading to a controlled CPL activity.
Collapse
Affiliation(s)
- Srestha Basu
- Schulich Faculty of Chemistry, Technion─Israel Institute of Technology, Haifa 3200003, Israel
| | - Martina Perić Bakulić
- Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000 Split, Croatia
- Center of Excellence for Science and Technology-Integration of Mediterranean Region (STIM) at Interdisciplinary Center for Advanced Sciences and Technology (ICAST), University of Split, Poljička cesta 35, 21000 Split, Croatia
| | - Željka Sanader Maršić
- Center of Excellence for Science and Technology-Integration of Mediterranean Region (STIM) at Interdisciplinary Center for Advanced Sciences and Technology (ICAST), University of Split, Poljička cesta 35, 21000 Split, Croatia
- Faculty of Science, University of Split, Ruđera Boškovića 33, 21000 Split, Croatia
| | - Vlasta Bonačić-Koutecký
- Center of Excellence for Science and Technology-Integration of Mediterranean Region (STIM) at Interdisciplinary Center for Advanced Sciences and Technology (ICAST), University of Split, Poljička cesta 35, 21000 Split, Croatia
- Chemistry Department, Humboldt University of Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany
| | - Nadav Amdursky
- Schulich Faculty of Chemistry, Technion─Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
19
|
Liu X, Peng F, Li G, Diao K. Dynamic Metal Nanoclusters: A Review on Accurate Crystal Structures. Molecules 2023; 28:5306. [PMID: 37513180 PMCID: PMC10383162 DOI: 10.3390/molecules28145306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Dynamic metal nanoclusters have garnered widespread attention due to their unique properties and potential applications in various fields. Researchers have been dedicated to developing new synthesis methods and strategies to control the morphologies, compositions, and structures of metal nanoclusters. Through optimized synthesis methods, it is possible to prepare clusters with precise sizes and shapes, providing a solid foundation for subsequent research. Accurate determination of their crystal structures is crucial for understanding their behavior and designing custom functional materials. Dynamic metal nanoclusters also demonstrate potential applications in catalysis and optoelectronics. By manipulating the sizes, compositions, and surface structures of the clusters, efficient catalysts and optoelectronic materials can be designed and synthesized for various chemical reactions and energy conversion processes. This review summarizes the research progress in the synthesis methods, crystal structure characterization, and potential applications of dynamic metal nanoclusters. Various nanoclusters composed of different metal elements are introduced, and their potential applications in catalysis, optics, electronics, and energy storage are discussed. Additionally, the important role of dynamic metal nanoclusters in materials science and nanotechnology is explored, along with an overview of the future directions and challenges in this field.
Collapse
Affiliation(s)
- Xiang Liu
- Hunan Drug Inspection Center, Hunan Institute for Drug Control, Changsha 410013, China;
| | - Fan Peng
- Public Course Teaching Department, Changsha Health Vocational College, Changsha 410013, China;
| | - Gao Li
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Kai Diao
- College of Mathematics and Physics, Chengdu University of Technology, Chengdu 610059, China
| |
Collapse
|
20
|
Horita Y, Ishimi M, Negishi Y. Anion-templated silver nanoclusters: precise synthesis and geometric structure. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2023; 24:2203832. [PMID: 37251258 PMCID: PMC10215029 DOI: 10.1080/14686996.2023.2203832] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/28/2023] [Accepted: 04/12/2023] [Indexed: 05/28/2023]
Abstract
Metal nanoclusters (NCs) are gaining much attention in nanoscale materials research because they exhibit size-specific physicochemical properties that are not observed in the corresponding bulk metals. Among them, silver (Ag) NCs can be precisely synthesized not only as pure Ag NCs but also as anion-templated Ag NCs. For anion-templated Ag NCs, we can expect the following capabilities: 1) size and shape control by regulating the central anion (anion template); 2) stabilization by adjusting the charge interaction between the central anion and surrounding Ag atoms; and 3) functionalization by selecting the type of central anion. In this review, we summarize the synthesis methods and influences of the central anion on the geometric structure of anion-templated Ag NCs, which include halide ions, chalcogenide ions, oxoanions, polyoxometalate, or hydride/deuteride as the central anion. This summary provides a reference for the current state of anion-templated Ag NCs, which may promote the development of anion-templated Ag NCs with novel geometric structures and physicochemical properties.
Collapse
Affiliation(s)
- Yusuke Horita
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Shinjuku-ku, Japan
| | - Mai Ishimi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Shinjuku-ku, Japan
| | - Yuichi Negishi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Shinjuku-ku, Japan
- Research Institute for Science & Technology, Tokyo University of Science, Shinjuku-ku, Japan
| |
Collapse
|
21
|
Jia T, Guan ZJ, Zhang C, Zhu XZ, Chen YX, Zhang Q, Yang Y, Sun D. Eight-Electron Superatomic Cu 31 Nanocluster with Chiral Kernel and NIR-II Emission. J Am Chem Soc 2023; 145:10355-10363. [PMID: 37104621 DOI: 10.1021/jacs.3c02215] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Owing to the inherent instability caused by the low Cu(I)/Cu(0) half-cell reduction potential, Cu(0)-containing copper nanoclusters are quite uncommon in comparison to their Ag and Au congeners. Here, a novel eight-electron superatomic copper nanocluster [Cu31(4-MeO-PhC≡C)21(dppe)3](ClO4)2 (Cu31, dppe = 1,2-bis(diphenylphosphino)ethane) is presented with total structural characterization. The structural determination reveals that Cu31 features an inherent chiral metal core arising from the helical arrangement of two sets of three Cu2 units encircling the icosahedral Cu13 core, which is further shielded by 4-MeO-PhC≡C- and dppe ligands. Cu31 is the first copper nanocluster carrying eight free electrons, which is further corroborated by electrospray ionization mass spectrometry, X-ray photoelectron spectroscopy and density functional theory calculations. Interestingly, Cu31 demonstrates the first near-infrared (750-950 nm, NIR-I) window absorption and the second near-infrared (1000-1700 nm, NIR-II) window emission, which is exceptional in the copper nanocluster family and endows it with great potential in biological applications. Of note, the 4-methoxy groups providing close contacts with neighboring clusters are crucial for the cluster formation and crystallization, while 2-methoxyphenylacetylene leads only to copper hydride clusters, Cu6H or Cu32H14. This research not only showcases a new member of copper superatoms but also exemplifies that copper nanoclusters, which are nonluminous in the visible range may emit luminescence in the deep NIR region.
Collapse
Affiliation(s)
- Tao Jia
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, People's Republic of China
| | - Zong-Jie Guan
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Chengkai Zhang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, People's Republic of China
| | - Xiao-Zhao Zhu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, People's Republic of China
| | - Yun-Xin Chen
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, People's Republic of China
| | - Qian Zhang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, People's Republic of China
| | - Yang Yang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, People's Republic of China
| | - Di Sun
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, People's Republic of China
| |
Collapse
|
22
|
Ai L, Pei Y, Song Z, Yong X, Song H, Liu G, Nie M, Waterhouse GIN, Yan X, Lu S. Ligand-Triggered Self-Assembly of Flexible Carbon Dot Nanoribbons for Optoelectronic Memristor Devices and Neuromorphic Computing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207688. [PMID: 36807578 PMCID: PMC10131856 DOI: 10.1002/advs.202207688] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Indexed: 05/19/2023]
Abstract
Carbon dots (CDs) are widely utilized in sensing, energy storage, and catalysis due to their excellent optical, electrical and semiconducting properties. However, attempts to optimize their optoelectronic performance through high-order manipulation have met with little success to date. In this study, through efficient packing of individual CDs in two-dimensions, the synthesis of flexible CDs ribbons is demonstrated technically. Electron microscopies and molecular dynamics simulations, show the assembly of CDs into ribbons results from the tripartite balance of π-π attractions, hydrogen bonding, and halogen bonding forces provided by the superficial ligands. The obtained ribbons are flexible and show excellent stability against UV irradiation and heating. CDs ribbons offer outstanding performance as active layer material in transparent flexible memristors, with the developed devices providing excellent data storage, retention capabilities, and fast optoelectronic responses. A memristor device with a thickness of 8 µm shows good data retention capability even after 104 cycles of bending. Furthermore, the device functions effectively as a neuromorphic computing system with integrated storage and computation capabilities, with the response speed of the device being less than 5.5 ns. These properties create an optoelectronic memristor with rapid Chinese character learning capability. This work lays the foundation for wearable artificial intelligence.
Collapse
Affiliation(s)
- Lin Ai
- Green Catalysis Center, and College of ChemistryZhengzhou UniversityZhengzhou450000China
| | - Yifei Pei
- Key Laboratory of Brain‐Like Neuromorphic Devices and Systems of Hebei ProvinceCollege of Physics Science & TechnologyHebei UniversityBaoding071002China
| | - Ziqi Song
- Green Catalysis Center, and College of ChemistryZhengzhou UniversityZhengzhou450000China
| | - Xue Yong
- Department of ChemistryUniversity of SheffieldSheffieldS3 7HFUK
| | - Haoqiang Song
- Green Catalysis Center, and College of ChemistryZhengzhou UniversityZhengzhou450000China
| | - Gongjie Liu
- Key Laboratory of Brain‐Like Neuromorphic Devices and Systems of Hebei ProvinceCollege of Physics Science & TechnologyHebei UniversityBaoding071002China
| | - Mingjun Nie
- Green Catalysis Center, and College of ChemistryZhengzhou UniversityZhengzhou450000China
| | | | - Xiaobing Yan
- Key Laboratory of Brain‐Like Neuromorphic Devices and Systems of Hebei ProvinceCollege of Physics Science & TechnologyHebei UniversityBaoding071002China
| | - Siyu Lu
- Green Catalysis Center, and College of ChemistryZhengzhou UniversityZhengzhou450000China
| |
Collapse
|
23
|
Tang J, Liu C, Zhu C, Sun K, Wang H, Yin W, Xu C, Li Y, Wang W, Wang L, Wu R, Liu C, Huang J. High-nuclearity and thiol protected core-shell [Cu 75(S-Adm) 32] 2+: distorted octahedra fixed to Cu 15 core via strong cuprophilic interactions. NANOSCALE 2023; 15:2843-2848. [PMID: 36688503 DOI: 10.1039/d2nr05921e] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Atomically precise nanoclusters have a critical role in understanding the structure-property relationships at the atomic level. Copper nanoclusters have attracted considerable attention, but the synthesis is limited because of susceptibility to oxidation. Herein, we developed a reduction speed controlling method to synthesize [Cu75(S-Adm)32]2+ (HS-Adm: 1-Adamantanethiol) nanocluster and reveal the key steps in the nucleation process. Cu75 was first observed and characterized with the following features: (i) composed of a face-centered cubic Cu15 kernel and a Cu60 caged shell including 12 distorted octahedra. (ii) The observation of the shortest Cu-Cu bond (2.166(7) Å) in the Cu nanoclusters, which could result from the distortion of the octahedron. (iii) The sole μ3-S mode of S, which plays two roles as a vertex and bridge atom to connect Cu atoms. This work presents a unique nanoball Cu nanocluster with strong cuprophilic interaction and provides a novel method to expand the family of Cu nanoclusters as well.
Collapse
Affiliation(s)
- Jie Tang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chong Liu
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Chenyu Zhu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Keju Sun
- College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - He Wang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Wen Yin
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Chuting Xu
- Center for Advanced Mass Spectrometry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yang Li
- Center for Advanced Mass Spectrometry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Weiguo Wang
- Center for Advanced Mass Spectrometry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Li Wang
- Laboratory of High-Resolution Mass Spectrometry Technologies, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Renan Wu
- Laboratory of High-Resolution Mass Spectrometry Technologies, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Chao Liu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Jiahui Huang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
24
|
Zhou M, Li K, Wang P, Zhou H, Jin S, Pei Y, Zhu M. Overall structure of Au 12Ag 60(S- c-C 6H 11) 31Br 9(Dppp) 6: achieving a stronger assembly of icosahedral M 13 units. NANOSCALE 2023; 15:2633-2641. [PMID: 36692214 DOI: 10.1039/d2nr06613k] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Precise atomically assembled nanoclusters provide a great platform to elucidate the evolution of the assembly of building blocks. Herein, a large icosahedral (M13)-based silver-gold alloy nanocluster [Au12Ag60(S-c-C6H11)31Br9(Dppp)6]Br2 (dppp = 1,3-bis(diphenylphosphino)propane) is reported. Structurally, Au12Ag60 consists of an Au12Ag40 kernel, which is viewed as the interpenetration of ten twisted complete icosahedrons (M13) and two missing icosahedrons (M12), and this is surrounded by a complex metal-organic shell. Benefiting from the extra doping of eight to twelve Au atoms, the octameric assembly was increased to a twelve-mer assembly. The time-dependent density functional theory (TDDFT) method with a Tamm-Dancoff approximation (TDA) was performed to investigate the difference in the optical properties of Au12Ag60 and Au8Ag57. The results indicate that the difference in the amount of Au atoms results in different optical properties. Furthermore, transient absorption spectroscopy (TA) was also performed, revealing that a twelve-mer assembly greatly enhances the excited-state lifetime. The [Au12Ag60(S-c-C6H11)31Br9(Dppp)6]Br2 alloy nanocluster has provided a breakthrough in the number of icosahedral M13 assemblies, i.e., achieving a twelve-mer assembly, helping to elucidate the fusion growth of M13-based assembled nanoclusters as well as their geometric/electronic structure correlations, which will promote further research on the assembly of M13 nano-building blocks, especially on their optical properties.
Collapse
Affiliation(s)
- Manman Zhou
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of MOE, Xiangtan University, Xiangtan, Hunan 411105, China.
- Institutes of Physical Science and Information Technology and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China.
| | - Kang Li
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of MOE, Xiangtan University, Xiangtan, Hunan 411105, China.
| | - Pu Wang
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of MOE, Xiangtan University, Xiangtan, Hunan 411105, China.
| | - Huimin Zhou
- Institutes of Physical Science and Information Technology and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China.
| | - Shan Jin
- Institutes of Physical Science and Information Technology and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China.
| | - Yong Pei
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of MOE, Xiangtan University, Xiangtan, Hunan 411105, China.
| | - Manzhou Zhu
- Institutes of Physical Science and Information Technology and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China.
| |
Collapse
|
25
|
Lin X, Tang J, Zhu C, Wang L, Yang Y, Wu R, Fan H, Liu C, Huang J. Solvent-mediated precipitating synthesis and optical properties of polyhydrido Cu 13 nanoclusters with four vertex-sharing tetrahedrons. Chem Sci 2023; 14:994-1002. [PMID: 36755712 PMCID: PMC9890966 DOI: 10.1039/d2sc06099j] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Structurally defined metal nanoclusters facilitate mechanism studies and promote functional applications. However, precisely constructing copper nanoclusters remains a long-standing challenge in nanoscience. Developing new efficient synthetic strategies for Cu nanoclusters is highly desirable. Here, we propose a solvent-mediated precipitating synthesis (SMPS) to prepare Cu13H10(SR)3(PPh3)7 nanoclusters (H-SR = 2-chloro-4-fluorobenzenethiol). The obtained Cu13 nanoclusters are high purity and high yield (39.5%, based on Cu atom), proving the superiority of the SMPS method. The Cu13 nanoclusters were comprehensively studied via a series of characterizations. Single crystal X-ray crystallography shows that the Cu13 nanoclusters contain a threefold symmetry axis and the Cu13 kernel is protected by a monolayer of ligands, including PPh3 and thiolates. Unprecedentedly, the aesthetic Cu13 kernel is composed of four vertex-sharing tetrahedrons, rather than the common icosahedral or cuboctahedral M13. The intramolecular π⋯π interactions between thiolates and PPh3 on the surface contribute to the stable configuration. Furthermore, electrospray ionization mass spectrometry (ESI-MS) and nuclear magnetic resonance (NMR) revealed the existence of ten hydrides, including four types of hydrides. Density functional theory (DFT) calculations without simplifying the ligands simulated the location of the 10 hydrides in the crystal structure. Additionally, the steady-state ultraviolet-visible absorption and fluorescence spectra of the Cu13 nanoclusters exhibit unique optical absorbance and photoluminescence. The ultrafast relaxation dynamics were also studied via transient absorption spectroscopy, and the three decay components are attributed to the relaxation pathways of internal conversion, structural relaxation and radiative relaxation. This work provides not only a novel SMPS strategy to efficiently synthesize Cu13 nanoclusters, but also a better insight into the structural characteristics and optical properties of the Cu nanoclusters.
Collapse
Affiliation(s)
- Xinzhang Lin
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Jie Tang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Chenyu Zhu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Li Wang
- Laboratory of High-Resolution Mass Spectrometry Technologies, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Yang Yang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Ren'an Wu
- Laboratory of High-Resolution Mass Spectrometry Technologies, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Hongjun Fan
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Chao Liu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Jiahui Huang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| |
Collapse
|
26
|
Zanetti-Polzi L, Charchar P, Yarovsky I, Corni S. Origins of the pH-Responsive Photoluminescence of Peptide-Functionalized Au Nanoclusters. ACS NANO 2022; 16:20129-20140. [PMID: 36300936 DOI: 10.1021/acsnano.2c04335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Ultrasmall peptide-protected gold nanoclusters are a promising class of bioresponsive material exhibiting pH-sensitive photoluminescence. We present a theoretical insight into the effect peptide-ligand environment has on pH-responsive fluorescence, with the aim of enhancing the rational design of gold nanoclusters for bioapplications. Employing a hybrid quantum/classical computational methodology, we systematically calculate deprotonation free energies of N-terminal cysteine amine groups in proximity to the inherently fluorescent core of Au25(Peptide)18 nanoclusters. We find that subtle changes in hexapeptide sequence alter the electrostatic environment and significantly shift the conventional N-terminal amine pKa expected for amino acids free-in-solution. Our findings provide an insight into how the deprotonation equilibrium of N-terminal amine and side chain carboxyl groups cooperatively respond to solution pH changes, explaining the experimentally observed, yet elusive, pH-responsive fluorescence of peptide-functionalized Au25 clusters.
Collapse
Affiliation(s)
- Laura Zanetti-Polzi
- Istituto di Nanoscienze, Consiglio Nazionale delle Ricerche CNR-NANO, 41125Modena, Italy
| | | | - Irene Yarovsky
- School of Engineering, RMIT University, Victoria3001, Australia
| | - Stefano Corni
- Istituto di Nanoscienze, Consiglio Nazionale delle Ricerche CNR-NANO, 41125Modena, Italy
- Dipartimento di Scienze Chimiche, Università di Padova, 35131Padova, Italy
| |
Collapse
|
27
|
Bao Y, Wu X, Yin B, Kang X, Lin Z, Deng H, Yu H, Jin S, Chen S, Zhu M. Structured copper-hydride nanoclusters provide insight into the surface-vacancy-defect to non-defect structural evolution. Chem Sci 2022; 13:14357-14365. [PMID: 36545150 PMCID: PMC9749112 DOI: 10.1039/d2sc03239b] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 11/20/2022] [Indexed: 11/22/2022] Open
Abstract
Exploring the structural evolution of clusters with similar sizes and atom numbers induced by the removal or addition of a few atoms contributes to a deep understanding of structure-property relationships. Herein, three well-characterized copper-hydride nanoclusters that provide insight into the surface-vacancy-defect to non-defect structural evolution were reported. A surface-defective copper hydride nanocluster [Cu28(S-c-C6H11)18(PPh2Py)3H8]2+ (Cu28-PPh2Py for short) with only one C 1 symmetry axis was synthesized using a one-pot method under mild conditions, and its structure was determined. Through ligand regulation, a 29th copper atom was inserted into the surface vacancy site to give two non-defective copper hydride nanoclusters, namely [Cu29(SAdm)15Cl3(P(Ph-Cl)3)4H10]+ (Cu29-P(Ph-Cl)3 for short) with one C 3 symmetry axis and (Cu29(S-c-C6H11)18(P(Ph-pMe)3)4H10)+ (Cu29-P(Ph-Me)3 for short) with four C 3 symmetry axes. The optimized structures show that the 10 hydrides cap four triangular and all six square-planar structures of the cuboctahedral Cu13 core of Cu29-P(Ph-Me)3, while the 10 hydrides cap four triangular and six square-planar structures of the anti-cuboctahedral Cu13 core of Cu29-P(Ph-Cl)3, with the eight hydrides in Cu28-PPh2Py capping four triangular and four square planar-structures of its anti-cuboctahedral Cu13 core. Cluster stability was found to increase sequentially from Cu28-PPh2Py to Cu29-P(Ph-Cl)3 and then to Cu29-P(Ph-Me)3, which indicates that stability is affected by the overall structure of the cluster. Structural adjustments to the metal core, shell, and core-shell bonding model, in moving from Cu28-PPh2Py to Cu29-P(Ph-Cl)3 and then to Cu29-P(Ph-Me)3, enable the structural evolution and mechanism responsible for their physicochemical properties to be understood and provide valuable insight into the structures of surface vacancies in copper nanoclusters and structure-property relationships.
Collapse
Affiliation(s)
- Yizheng Bao
- Institutes of Physical Science and Information Technology, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui UniversityHefeiAnhui 230601China
| | - Xiaohang Wu
- Institutes of Physical Science and Information Technology, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui UniversityHefeiAnhui 230601China
| | - Bing Yin
- Institutes of Physical Science and Information Technology, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui UniversityHefeiAnhui 230601China
| | - Xi Kang
- Institutes of Physical Science and Information Technology, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui UniversityHefeiAnhui 230601China
| | - Zidong Lin
- Institutes of Physical Science and Information Technology, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui UniversityHefeiAnhui 230601China
| | - Huijuan Deng
- Institutes of Physical Science and Information Technology, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui UniversityHefeiAnhui 230601China
| | - Haizhu Yu
- Institutes of Physical Science and Information Technology, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui UniversityHefeiAnhui 230601China
| | - Shan Jin
- Institutes of Physical Science and Information Technology, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui UniversityHefeiAnhui 230601China
| | - Shuang Chen
- Institutes of Physical Science and Information Technology, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui UniversityHefeiAnhui 230601China
| | - Manzhou Zhu
- Institutes of Physical Science and Information Technology, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui UniversityHefeiAnhui 230601China
| |
Collapse
|
28
|
Li H, Wang P, Zhu C, Zhang W, Zhou M, Zhang S, Zhang C, Yun Y, Kang X, Pei Y, Zhu M. Triple-Helical Self-Assembly of Atomically Precise Nanoclusters. J Am Chem Soc 2022; 144:23205-23213. [DOI: 10.1021/jacs.2c11341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Hao Li
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, Anhui, China
| | - Pu Wang
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Xiangtan 411105, Hunan, P. R. China
| | - Chen Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, Anhui, China
| | - Wei Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Meng Zhou
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - San Zhang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Chunfeng Zhang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Yapei Yun
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, Anhui, China
| | - Xi Kang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, Anhui, China
| | - Yong Pei
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Xiangtan 411105, Hunan, P. R. China
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, Anhui, China
| |
Collapse
|
29
|
Hu F, Luyang HW, He RL, Guan ZJ, Yuan SF, Wang QM. Face-Centered Cubic Silver Nanoclusters Consolidated with Tetradentate Formamidinate Ligands. J Am Chem Soc 2022; 144:19365-19371. [PMID: 36227067 DOI: 10.1021/jacs.2c07018] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Growing attention has been paid to nanoclusters with face-centered cubic (fcc) metal kernels, due to its structural similarity to bulk metals. We demonstrate that the use of tetradentate formamidinate ligands facilitate the construction of two fcc silver nanoclusters: [Ag52(5-F-dpf)16Cl4](SbF6)2 (Ag52, 5-F-Hdpf = N,N'-di(5-fluoro-2-pyridinyl)formamidine) and [Ag53(5-Me-dpf)18](NO3)5 (Ag53, 5-Me-Hdpf = N,N'-di(5-methyl-2-pyridinyl)formamidine). Single-crystal X-ray structural analysis revealed that the silver atoms in both clusters are in a layer-by-layer arrangement, which can be viewed as a portion of the fcc packing of silver. The nitrogen donors of amidinate ligands selectively passivate the {111} facets. All silver atoms are involved in the fcc packing, that is, no staple motifs are observed due to the linear arrangement of the four N donors of the dpf ligands. The characteristic optical absorption bands of Ag52 and Ag53 have been studied with a time-dependent density functional theory. This work provides a facile access to assembling atomically precise fcc-type nanoclusters and shows the prospect of amidinates as protecting ligands in synthesizing metal nanoclusters.
Collapse
Affiliation(s)
- Feng Hu
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing 100084, P. R. China
| | - Heng-Wang Luyang
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing 100084, P. R. China
| | - Rui-Lin He
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing 100084, P. R. China
| | - Zong-Jie Guan
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing 100084, P. R. China
| | - Shang-Fu Yuan
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing 100084, P. R. China.,College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, P. R. China
| | - Quan-Ming Wang
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
30
|
Li Y, Zang QX, Dong XY, Wang ZY, Luo P, Luo XM, Zang SQ. Atomically Precise Enantiopure Bimetallic Janus Clusters. ACS CENTRAL SCIENCE 2022; 8:1258-1264. [PMID: 36188341 PMCID: PMC9523771 DOI: 10.1021/acscentsci.2c00754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Indexed: 05/15/2023]
Abstract
Asymmetric bimetallic Janus nanocrystals with a side-by-side interface have unique properties and important applications. However, understanding their fundamental issues, including their formation mechanism, interfacial linkage, and related properties, remains challenging, as does the preparation of enantiopure samples. Atomically precise Janus bimetal nanoclusters would unequivocally resolve these issues, yet they have not been realized. Here, based on Au and transition metals (Cu/Cd), and employing an S/P biligand strategy, we prepare and structurally resolve four Janus nanoclusters, including racemate 6e Au 8 /Cu 4 , 6e R -/ S-Au 8 /Cu 4 enantiomers, and 2e racemate Au 3 /Cd. Their interfacial linkage is unambiguously resolved at the atomic level, superatomic orbital splitting emerges, and unique molecule-like electronic transitions and chiroptical properties are present; more importantly, the dipolar distribution of bicomponents leads to a maximum dipole moment of up to 45 D, which drives the formation of 1D nanowires through self-assembly. This work provides a fundamental knowledge of intermetallic nanomaterials and an avenue for the synthesis of Janus nanoclusters.
Collapse
Affiliation(s)
- Yao Li
- Henan
Key Laboratory of Crystalline Molecular Functional Materials, Henan
International Joint Laboratory of Tumor Theranostical Cluster Materials,
Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, People’s Republic
of China
| | - Qiu-Xu Zang
- Henan
Key Laboratory of Crystalline Molecular Functional Materials, Henan
International Joint Laboratory of Tumor Theranostical Cluster Materials,
Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, People’s Republic
of China
| | - Xi-Yan Dong
- Henan
Key Laboratory of Crystalline Molecular Functional Materials, Henan
International Joint Laboratory of Tumor Theranostical Cluster Materials,
Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, People’s Republic
of China
- College
of Chemistry and Chemical Engineering, Henan
Polytechnic University, Jiaozuo 454000, People’s Republic
of China
| | - Zhao-Yang Wang
- Henan
Key Laboratory of Crystalline Molecular Functional Materials, Henan
International Joint Laboratory of Tumor Theranostical Cluster Materials,
Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, People’s Republic
of China
| | - Peng Luo
- Henan
Key Laboratory of Crystalline Molecular Functional Materials, Henan
International Joint Laboratory of Tumor Theranostical Cluster Materials,
Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, People’s Republic
of China
- College
of Chemistry and Chemical Engineering, Henan
Polytechnic University, Jiaozuo 454000, People’s Republic
of China
| | - Xi-Ming Luo
- Henan
Key Laboratory of Crystalline Molecular Functional Materials, Henan
International Joint Laboratory of Tumor Theranostical Cluster Materials,
Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, People’s Republic
of China
| | - Shuang-Quan Zang
- Henan
Key Laboratory of Crystalline Molecular Functional Materials, Henan
International Joint Laboratory of Tumor Theranostical Cluster Materials,
Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, People’s Republic
of China
| |
Collapse
|
31
|
Si WD, Sheng K, Zhang C, Wang Z, Zhang SS, Dou JM, Feng L, Gao ZY, Tung CH, Sun D. Bicarbonate insertion triggered self-assembly of chiral octa-gold nanoclusters into helical superstructures in the crystalline state. Chem Sci 2022; 13:10523-10531. [PMID: 36277632 PMCID: PMC9473528 DOI: 10.1039/d2sc03463h] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/12/2022] [Indexed: 11/21/2022] Open
Abstract
Constructing atomically precise helical superstructures of high order is an extensively pursued subject for unique aesthetic features and underlying applications. However, the construction of cluster-based helixes of well-defined architectures comes with a huge challenge owing to their intrinsic complexity in geometric structures and synthetic processes. Herein, we report a pair of unique P- and M-single stranded helical superstructures spontaneously assembled from R- and S-Au8c individual nanoclusters, respectively, upon selecting chiral BINAP (2,2'-bis(diphenylphosphino)-1,1'-binaphthalene) and hydrophilic o-H2MBA (o-mercaptobenzoic acid) as protective ligands to induce chirality and facilitate the formation of helixes. Structural analysis reveals that the chirality of the Au8c individual nanoclusters is derived from the homochiral ligands and the inherently chiral Au8 metallic kernel, which was further corroborated by experimental and computational investigations. More importantly, driven by the O-H⋯O interactions between (HCO3 -)2 dimers and achiral o-HMBA- ligands, R/S-Au8c individual nanoclusters can assemble into helical superstructures in a highly ordered crystal packing. Electrospray ionization (ESI) and collision-induced dissociation (CID) mass spectrometry of Au8c confirm the hydrogen-bonded dimer of Au8c individual nanoclusters in solution, illustrating that the insertion of (HCO3 -)2 dimers plays a crucial role in the assembly of helical superstructures in the crystalline state. This work not only demonstrates an effective strategy to construct cluster-based helical superstructures at the atomic level, but also provides visual and reliable experimental evidence for understanding the formation mechanism of helical superstructures.
Collapse
Affiliation(s)
- Wei-Dan Si
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 P. R. China
| | - Kai Sheng
- School of Aeronautics, Shandong Jiaotong University Ji'nan 250037 People's Republic of China
| | - Chengkai Zhang
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 P. R. China
| | - Zhi Wang
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 P. R. China
| | - Shan-Shan Zhang
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 P. R. China
| | - Jian-Min Dou
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University Liaocheng 252000 People's Republic of China
| | - Lei Feng
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 P. R. China
| | - Zhi-Yong Gao
- School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang 453007 Henan People's Republic of China
| | - Chen-Ho Tung
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 P. R. China
| | - Di Sun
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 P. R. China
| |
Collapse
|
32
|
Cai X, Li G, Hu W, Zhu Y. Catalytic Conversion of CO 2 over Atomically Precise Gold-Based Cluster Catalysts. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02595] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiao Cai
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P.R. China
| | - Guangjun Li
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P.R. China
| | - Weigang Hu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P.R. China
| | - Yan Zhu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P.R. China
| |
Collapse
|
33
|
Sharma NK, Vishwakarma J, Rai S, Alomar TS, AlMasoud N, Bhattarai A. Green Route Synthesis and Characterization Techniques of Silver Nanoparticles and Their Biological Adeptness. ACS OMEGA 2022; 7:27004-27020. [PMID: 35967040 PMCID: PMC9366950 DOI: 10.1021/acsomega.2c01400] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/13/2022] [Indexed: 05/13/2023]
Abstract
The development of the most reliable and green techniques for nanoparticle synthesis is an emerging step in the area of green nanotechnology. Many conventional approaches used for nanoparticle (NP) synthesis are expensive, deadly, and nonenvironmental. In this new era of nanotechnology, to overcome such concerns, natural sources which work as capping and reducing agents, including bacteria, fungi, biopolymers, and plants, are suitable candidates for synthesizing AgNPs. The surface morphology and applications of AgNPs are significantly pretentious to the experimental conditions by which they are synthesized. Available scattered information on the synthesis of AgNPs comprises the influence of altered constraints and characterization methods such as FTIR, UV-vis, DLS, SEM, TEM, XRD, EDX, etc. and their properties and applications. This review focuses on all the above-mentioned natural sources that have been used for AgNP synthesis recently. The green routes to synthesize AgNPs have established effective applications in various areas, including biosensors, magnetic resonance imaging (MRI), cancer treatment, surface-enhanced Raman spectroscopy (SERS), antimicrobial agents, drug delivery, gene therapy, DNA analysis, etc. The existing boundaries and prospects for metal nanoparticle synthesis by the green route are also discussed herein.
Collapse
Affiliation(s)
- Nitin Kumar Sharma
- Department
of Chemical Engineering, Indian Institute
of Technology, Kanpur 208016, India
- Shri
Maneklal M. Patel Institute of Sciences and Research, Kadi Sarva Vishwavidyalaya, Gandhinagar 382023, India
| | - Jyotsna Vishwakarma
- K. B.
Pharmacy Institute of Education and Research, Kadi Sarva Vishwavidyalaya, Gandhinagar 382023, India
| | - Summi Rai
- Department
of Chemistry, Mahendra Morang Adarsh Multiple Campus, Tribhuvan University, Biratnagar 56613, Nepal
| | - Taghrid S. Alomar
- Department
of Chemistry, College of Science, Princess
Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Najla AlMasoud
- Department
of Chemistry, College of Science, Princess
Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Ajaya Bhattarai
- Department
of Chemistry, Mahendra Morang Adarsh Multiple Campus, Tribhuvan University, Biratnagar 56613, Nepal
- or
| |
Collapse
|
34
|
Gunawardene PN, Martin J, Wong JM, Ding Z, Corrigan JF, Workentin MS. Controlling the Structure, Properties and Surface Reactivity of Clickable Azide‐Functionalized Au
25
(SR)
18
Nanocluster Platforms Through Regioisomeric Ligand Modifications. Angew Chem Int Ed Engl 2022; 61:e202205194. [DOI: 10.1002/anie.202205194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Praveen N. Gunawardene
- Department of Chemistry and Centre for Advanced Materials and Biomaterials Research Western University London Ontario N6A 5B7 Canada
| | - Julia Martin
- Department of Chemistry and Centre for Advanced Materials and Biomaterials Research Western University London Ontario N6A 5B7 Canada
| | - Jonathan M. Wong
- Department of Chemistry and Centre for Advanced Materials and Biomaterials Research Western University London Ontario N6A 5B7 Canada
| | - Zhifeng Ding
- Department of Chemistry and Centre for Advanced Materials and Biomaterials Research Western University London Ontario N6A 5B7 Canada
| | - John F. Corrigan
- Department of Chemistry and Centre for Advanced Materials and Biomaterials Research Western University London Ontario N6A 5B7 Canada
| | - Mark S. Workentin
- Department of Chemistry and Centre for Advanced Materials and Biomaterials Research Western University London Ontario N6A 5B7 Canada
| |
Collapse
|
35
|
Gunawardene PN, Martin J, Wong JM, Ding Z, Corrigan JF, Workentin MS. Controlling the Structure, Properties and Surface Reactivity of Clickable Azide‐Functionalized Au
25
(SR)
18
Nanocluster Platforms Through Regioisomeric Ligand Modifications. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Praveen N. Gunawardene
- Department of Chemistry and Centre for Advanced Materials and Biomaterials Research Western University London Ontario N6A 5B7 Canada
| | - Julia Martin
- Department of Chemistry and Centre for Advanced Materials and Biomaterials Research Western University London Ontario N6A 5B7 Canada
| | - Jonathan M. Wong
- Department of Chemistry and Centre for Advanced Materials and Biomaterials Research Western University London Ontario N6A 5B7 Canada
| | - Zhifeng Ding
- Department of Chemistry and Centre for Advanced Materials and Biomaterials Research Western University London Ontario N6A 5B7 Canada
| | - John F. Corrigan
- Department of Chemistry and Centre for Advanced Materials and Biomaterials Research Western University London Ontario N6A 5B7 Canada
| | - Mark S. Workentin
- Department of Chemistry and Centre for Advanced Materials and Biomaterials Research Western University London Ontario N6A 5B7 Canada
| |
Collapse
|
36
|
Yang J, Xie S, Zhang H, Xu W, Dong A, Tang Y. Synthesis of silica-stabilized Ag 44 clusters aided by a designed mercaptosilane ligand. Chem Commun (Camb) 2022; 58:6849-6852. [PMID: 35616577 DOI: 10.1039/d2cc02505a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The novel and precise design of both a microscopic ligand and macroscopic structure has been demonstrated to improve the stability and potential optical applications of Ag44 clusters. The ligand with designed silane substituents on its thiophenol enabled the synthesized [Ag44(SPhSi(OEt)3)30](PPh4)4 clusters to maintain UV-vis absorption for 13 h when heated at 60 °C in air and be readily coated with silica shells via a one-pot reverse microemulsion method. This composite structure overcomes the issue that non-luminescent Ag44 clusters cannot be applied in photothermal and photoacoustic imaging due to their instability.
Collapse
Affiliation(s)
- Jinyu Yang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai 200433, China.
| | - Shoudong Xie
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai 200433, China.
| | - Hui Zhang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai 200433, China.
| | - Wenhao Xu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai 200433, China.
| | - Angang Dong
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai 200433, China.
| | - Yun Tang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai 200433, China.
| |
Collapse
|
37
|
Yuan SF, Liu WD, Liu CY, Guan ZJ, Wang QM. Nitrogen Donor Protection for Atomically Precise Metal Nanoclusters. Chemistry 2022; 28:e202104445. [PMID: 35218267 DOI: 10.1002/chem.202104445] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Indexed: 12/21/2022]
Abstract
Surface organic ligands are critical in dictating the structures and properties of atomically precise metal nanoclusters. In contrast to the conventionally used thiolate, phosphine and alkynyl ligands, nitrogen donor ligands have not been used in the protection for well-defined metal nanoclusters until recently. This review focuses on recent developments in atomically precise metal nanoclusters stabilized by different types of nitrogen donor ligands, in which the synthesis, total structure determination and various properties are covered. We hope that this review will provide insights into the rational design of N donor-protected metal nanoclusters in terms of structural and functional modulation.
Collapse
Affiliation(s)
- Shang-Fu Yuan
- Department of Chemistry Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing, 100084, P. R. China.,College of Chemistry and Materials Science and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, P. R. China
| | - Wen-Di Liu
- Department of Chemistry Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing, 100084, P. R. China
| | - Chun-Yu Liu
- Department of Chemistry Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing, 100084, P. R. China
| | - Zong-Jie Guan
- Department of Chemistry Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing, 100084, P. R. China
| | - Quan-Ming Wang
- Department of Chemistry Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
38
|
Ma XH, Si Y, Luo LL, Wang ZY, Zang SQ, Mak TCW. Directional Doping and Cocrystallizing an Open-Shell Ag 39 Superatom via Precursor Engineering. ACS NANO 2022; 16:5507-5514. [PMID: 35353504 DOI: 10.1021/acsnano.1c09911] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Metal precursors employed in the bottom-up synthesis of metal nanoclusters (NCs) are of great importance in directing their composition and geometrical structure. In this work, a silver nanocluster co-protected by phosphine and thiolate, namely, [Ag39(PFBT)24(TPP)8]2- (Ag39, PFBT = pentafluorobenzenethiol, TPP = triphenylphosphine), was isolated and structurally characterized. It adopts a three-layered Ag13@Ag18@Ag8S24P8 core-shell structure. The Ag13@Ag18 kernel is unusual in multilayer noble metal NCs. By introducing a copper precursor in the synthesis, a bimetallic nanocluster [Ag37Cu2(PFBT)24(TPP)8]2- (Ag37Cu2) with an identical structure to Ag39 apart from two outer Ag atoms being substituted by Cu atoms was obtained. Astoundingly, the Cu precursor used in the synthesis was found to be critical in determining the final structure. The alteration of the Cu precursor led to the cocrystallization of the above alloy nanocluster with a Ag14 nanocluster, namely, [Ag37Cu2(PFBT)24(TPP)8]2-·[Ag14(PFBT)6(TPP)8] (Ag37Cu2·Ag14). The electronic structure analyzed by theoretical calculation reveals that Ag39 is a 17-electron open-shell superatom. The optical absorption of Ag39, Ag37Cu2, and Ag37Cu2·Ag14 was compared and studied in detail. This work not only enriches the family of alloy metallic nanoclusters but also provides a metal NC-based cocrystal platform for in-depth study of its crystal growth and photophysical property.
Collapse
Affiliation(s)
- Xiao-Hong Ma
- Green Catalysis Center and Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, College of Chemistry, Zhengzhou 450001, China
| | - Yubing Si
- Green Catalysis Center and Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, College of Chemistry, Zhengzhou 450001, China
| | - Lan-Lan Luo
- Green Catalysis Center and Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, College of Chemistry, Zhengzhou 450001, China
| | - Zhao-Yang Wang
- Green Catalysis Center and Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, College of Chemistry, Zhengzhou 450001, China
| | - Shuang-Quan Zang
- Green Catalysis Center and Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, College of Chemistry, Zhengzhou 450001, China
| | - Thomas C W Mak
- Green Catalysis Center and Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, College of Chemistry, Zhengzhou 450001, China
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR 999077, China
| |
Collapse
|
39
|
Song Y, Li Y, Zhou M, Li H, Xu T, Zhou C, Ke F, Huo D, Wan Y, Jie J, Xu WW, Zhu M, Jin R. Atomic structure of a seed-sized gold nanoprism. Nat Commun 2022; 13:1235. [PMID: 35264573 PMCID: PMC8907178 DOI: 10.1038/s41467-022-28829-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 02/07/2022] [Indexed: 11/18/2022] Open
Abstract
The growth of nanoparticles along one or two directions leads to anisotropic nanoparticles, but the nucleation (i.e., the formation of small seeds of specific shape) has long been elusive. Here, we show the total structure of a seed-sized Au56 nanoprism, in which the side Au{100} facets are surrounded by bridging thiolates, whereas the top/bottom {111} facets are capped by phosphine ligands at the corners and Br− at the center. The bromide has been proved to be the key to effectively stabilize the Au{111} to fulfill a complete face-centered-cubic core. In femtosecond electron dynamics analysis, the non-evolution of transient absorption spectra of Au56 is similar to that of larger-sized gold nanoclusters (n > 100), which is ascribed to the completeness of the prismatic Au56 core and an effective electron relaxation pathway created by the stronger Au-Au bonds inside. This work provides some insights for the understanding of plasmonic nanoprism formation. The formation pathway of shape-anisotropic nanoparticles is difficult to characterize and not well understood. The authors synthesize a prismatic-shaped Au56 nanocluster as possible seed of a prismatic nanoparticle and characterize the structure and ligand bonding motifs, providing insight into the formation and surface protection mechanisms.
Collapse
Affiliation(s)
- Yongbo Song
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui University, Hefei, Anhui, 230601, China. .,School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, Anhui, 230032, China.
| | - Yingwei Li
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Meng Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Hao Li
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui University, Hefei, Anhui, 230601, China
| | - Tingting Xu
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Chuanjun Zhou
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui University, Hefei, Anhui, 230601, China
| | - Feng Ke
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui University, Hefei, Anhui, 230601, China
| | - Dayujia Huo
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Yan Wan
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Jialong Jie
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Wen Wu Xu
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, China
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui University, Hefei, Anhui, 230601, China.
| | - Rongchao Jin
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
40
|
Kolay S, Bain D, Maity S, Devi A, Patra A, Antoine R. Self-Assembled Metal Nanoclusters: Driving Forces and Structural Correlation with Optical Properties. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:544. [PMID: 35159891 PMCID: PMC8838213 DOI: 10.3390/nano12030544] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 02/05/2023]
Abstract
Studies on self-assembly of metal nanoclusters (MNCs) are an emerging field of research owing to their significant optical properties and potential applications in many areas. Fabricating the desired self-assembly structure for specific implementation has always been challenging in nanotechnology. The building blocks organize themselves into a hierarchical structure with a high order of directional control in the self-assembly process. An overview of the recent achievements in the self-assembly chemistry of MNCs is summarized in this review article. Here, we investigate the underlying mechanism for the self-assembly structures, and analysis reveals that van der Waals forces, electrostatic interaction, metallophilic interaction, and amphiphilicity are the crucial parameters. In addition, we discuss the principles of template-mediated interaction and the effect of external stimuli on assembly formation in detail. We also focus on the structural correlation of the assemblies with their photophysical properties. A deep perception of the self-assembly mechanism and the degree of interactions on the excited state dynamics is provided for the future synthesis of customizable MNCs with promising applications.
Collapse
Affiliation(s)
- Sarita Kolay
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India; (S.K.); (S.M.)
| | - Dipankar Bain
- Energy and Environment Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, India; (D.B.); (A.D.)
| | - Subarna Maity
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India; (S.K.); (S.M.)
| | - Aarti Devi
- Energy and Environment Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, India; (D.B.); (A.D.)
| | - Amitava Patra
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India; (S.K.); (S.M.)
- Energy and Environment Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, India; (D.B.); (A.D.)
| | - Rodolphe Antoine
- CNRS, Institut Lumière Matière UMR 5306, Univ Lyon, Université Claude Bernard Lyon 1, F-69100 Villeurbanne, France
| |
Collapse
|
41
|
Korath Shivan S, Maier A, Scheele M. Emergent properties in supercrystals of atomically precise nanoclusters and colloidal nanocrystals. Chem Commun (Camb) 2022; 58:6998-7017. [DOI: 10.1039/d2cc00778a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We provide a comprehensive account of the optical, electrical and mechanical properties that result from the self-assembly of colloidal nanocrystals or atomically precise nanoclusters into crystalline arrays with long-range order....
Collapse
|
42
|
Basu S, Paul A, Antoine R. Controlling the Chemistry of Nanoclusters: From Atomic Precision to Controlled Assembly. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 12:62. [PMID: 35010012 PMCID: PMC8746821 DOI: 10.3390/nano12010062] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/16/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
Metal nanoclusters have gained prominence in nanomaterials sciences, owing to their atomic precision, structural regularity, and unique chemical composition. Additionally, the ligands stabilizing the clusters provide great opportunities for linking the clusters in higher order dimensions, eventually leading to the formation of a repertoire of nanoarchitectures. This makes the chemistry of atomic clusters worth exploring. In this mini review, we aim to focus on the chemistry of nanoclusters. Firstly, we summarize the important strategies developed so far for the synthesis of atomic clusters. For each synthetic strategy, we highlight the chemistry governing the formation of nanoclusters. Next, we discuss the key techniques in the purification and separation of nanoclusters, as the chemical purity of clusters is deemed important for their further chemical processing. Thereafter which we provide an account of the chemical reactions of nanoclusters. Then, we summarize the chemical routes to the spatial organization of atomic clusters, highlighting the importance of assembly formation from an application point of view. Finally, we raise some fundamentally important questions with regard to the chemistry of atomic clusters, which, if addressed, may broaden the scope of research pertaining to atomic clusters.
Collapse
Affiliation(s)
- Srestha Basu
- Schulich Faculty of Chemistry, Technion—Israel Institute of Technology, Haifa 3200003, Israel;
| | - Anumita Paul
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Rodolphe Antoine
- Institut Lumière Matière UMR 5306, Univ Lyon, Université Claude Bernard Lyon 1, CNRS, F-69100 Villeurbanne, France
| |
Collapse
|
43
|
Mahendranath A, Mondal B, Sugi KS, Pradeep T. Direct imaging of lattice planes in atomically precise noble metal cluster crystals using a conventional transmission electron microscope. Chem Commun (Camb) 2021; 58:1906-1909. [PMID: 34842250 DOI: 10.1039/d1cc05643c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Imaging finer structural details of atomically precise noble metal cluster crystals has been difficult with electron microscopy, owing to their extreme beam sensitivity. Here we present a simple method whereby lattice planes in single crystals of nanoclusters can be observed using a conventional transmission electron microscope, enabling further expansion of cluster research.
Collapse
Affiliation(s)
- Ananthu Mahendranath
- DST Unit of Nanoscience and Thematic Unit of Excellence, Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India. .,Centre of Excellence on Molecular Materials and Functions, Indian Institute of Technology Madras, Chennai, 600036, India.,Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Biswajit Mondal
- DST Unit of Nanoscience and Thematic Unit of Excellence, Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India. .,Centre of Excellence on Molecular Materials and Functions, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Korath Shivan Sugi
- DST Unit of Nanoscience and Thematic Unit of Excellence, Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India. .,Centre of Excellence on Molecular Materials and Functions, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Thalappil Pradeep
- DST Unit of Nanoscience and Thematic Unit of Excellence, Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India. .,Centre of Excellence on Molecular Materials and Functions, Indian Institute of Technology Madras, Chennai, 600036, India
| |
Collapse
|
44
|
Qin Z, Wang J, Sharma S, Malola S, Wu K, Häkkinen H, Li G. Photo-Induced Cluster-to-Cluster Transformation of [Au 37-xAg x(PPh 3) 13Cl 10] 3+ into [Au 25-yAg y(PPh 3) 10Cl 8] +: Fragmentation of a Trimer of 8-Electron Superatoms by Light. J Phys Chem Lett 2021; 12:10920-10926. [PMID: 34734733 DOI: 10.1021/acs.jpclett.1c02863] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We present the photoinduced size/structure transformation of [Au37-xAgx(PPh3)13Cl10]3+ (M37) into [Au25-yAgy(PPh3)10Cl8]+ (M25) cluster. Single-crystal X-ray diffraction revealed that M37 has a tri-icosahedron M36 metal core assembled via the fusion of three Au7Ag6 icosahedrons in a cyclic fashion and that the M36 core is further protected by phosphine and chloride ligands. The M37 cluster is found to be highly sensitive toward ambient light, and the M37 → M25 transition is observed with 530 nm irradiation, monitored by time-dependent UV-vis spectroscopy, electrospray ionization mass spectrometry (ESI-MS), and femtosecond transient absorption spectroscopy. Linear-response time-dependent DFT calculations indicated that the strong absorption of the M37 cluster close to 500 nm induces an antibonding-type configuration in the induced electron density within the plane of the three 8-electron systems, possibly promoting dissociation of one of the 8-electron superatoms. This theoretical result supports the experimental observation of the sensitivity of the M37 → M25 transition to 530 nm irradiation.
Collapse
Affiliation(s)
- Zhaoxian Qin
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junhui Wang
- State Key Laboratory of Molecular Reaction Dynamics and Dynamics Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 Liaoning, China
| | - Sachil Sharma
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China
| | - Sami Malola
- Departments of Physics and Chemistry, Nanoscience Center, University of Jyväskylä, FI-40014 Jyväskylä, Finland
| | - Kaifeng Wu
- State Key Laboratory of Molecular Reaction Dynamics and Dynamics Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 Liaoning, China
| | - Hannu Häkkinen
- Departments of Physics and Chemistry, Nanoscience Center, University of Jyväskylä, FI-40014 Jyväskylä, Finland
| | - Gao Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
45
|
Cesari C, Funaioli T, Berti B, Femoni C, Iapalucci MC, Vivaldi FM, Zacchini S. Atomically Precise Ni-Pd Alloy Carbonyl Nanoclusters: Synthesis, Total Structure, Electrochemistry, Spectroelectrochemistry, and Electrochemical Impedance Spectroscopy. Inorg Chem 2021; 60:16713-16725. [PMID: 34672566 PMCID: PMC8564757 DOI: 10.1021/acs.inorgchem.1c02582] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Indexed: 12/28/2022]
Abstract
The molecular nanocluster [Ni36-xPd5+x(CO)46]6- (x = 0.41) (16-) was obtained from the reaction of [NMe3(CH2Ph)]2[Ni6(CO)12] with 0.8 molar equivalent of [Pd(CH3CN)4][BF4]2 in tetrahydrofuran (thf). In contrast, [Ni37-xPd7+x(CO)48]6- (x = 0.69) (26-) and [HNi37-xPd7+x(CO)48]5- (x = 0.53) (35-) were obtained from the reactions of [NBu4]2[Ni6(CO)12] with 0.9-1.0 molar equivalent of [Pd(CH3CN)4][BF4]2 in thf. After workup, 35- was extracted in acetone, whereas 26- was soluble in CH3CN. The total structures of 16-, 26-, and 35- were determined with atomic precision by single-crystal X-ray diffraction. Their metal cores adopted cubic close packed structures and displayed both substitutional and compositional disorder, in light of the fact that some positions could be occupied by either Ni or Pd. The redox behavior of these new Ni-Pd molecular alloy nanoclusters was investigated by cyclic voltammetry and in situ infrared spectroelectrochemistry. All three compounds 16-, 26-, and 35- displayed several reversible redox processes and behaved as electron sinks and molecular nanocapacitors. Moreover, to gain insight into the factors that affect the current-potential profiles, cyclic voltammograms were recorded at both Pt and glassy carbon working electrodes and electrochemical impedance spectroscopy experiments performed for the first time on molecular carbonyl nanoclusters.
Collapse
Affiliation(s)
- Cristiana Cesari
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Tiziana Funaioli
- Dipartimento
di Chimica e Chimica Industriale, Università
di Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| | - Beatrice Berti
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Cristina Femoni
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Maria Carmela Iapalucci
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Federico Maria Vivaldi
- Dipartimento
di Chimica e Chimica Industriale, Università
di Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| | - Stefano Zacchini
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| |
Collapse
|
46
|
Li Y, Zhou M, Jin R. Programmable Metal Nanoclusters with Atomic Precision. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006591. [PMID: 33984169 DOI: 10.1002/adma.202006591] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/26/2020] [Indexed: 06/12/2023]
Abstract
With the recent establishment of atomically precise nanochemistry, capabilities toward programmable control over the nanoparticle size and structure are being developed. Advances in the synthesis of atomically precise nanoclusters (NCs, 1-3 nm) have been made in recent years, and more importantly, their total structures (core plus ligands) have been mapped out by X-ray crystallography. These ultrasmall Au nanoparticles exhibit strong quantum-confinement effect, manifested in their optical absorption properties. With the advantage of atomic precision, gold-thiolate nanoclusters (Aun (SR)m ) are revealed to contain an inner kernel, Au-S interface (motifs), and surface ligand (-R) shell. Programming the atomic packing into various crystallographic structures of the metal kernel can be achieved, which plays a significant role in determining the optical properties and the energy gap (Eg ) of NCs. When the size increases, a general trend is observed for NCs with fcc or decahedral kernels, whereas those NCs with icosahedral kernels deviate from the general trend by showing comparably smaller Eg . Comparisons are also made to further demonstrate the more decisive role of the kernel structure over surface motifs based on isomeric Au NCs and NC series with evolving kernel or motif structures. Finally, future perspectives are discussed.
Collapse
Affiliation(s)
- Yingwei Li
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Meng Zhou
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Rongchao Jin
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| |
Collapse
|
47
|
Chen T, Yang S, Li Q, Song Y, Li G, Chai J, Zhu M. A double helical 4H assembly pattern with secondary hierarchical complexity in an Ag 70 nanocluster crystal. NANOSCALE HORIZONS 2021; 6:913-917. [PMID: 34486633 DOI: 10.1039/d1nh00332a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The hierarchical assemblies of well-defined structural nanoclusters can help to better understand those of biologically important molecules such as DNA and proteins. Herein, we disclose the synthesis and characterization of a new silver nanocluster, that is Ag70(SR)42(PPh3)5 (Ag70-TPP). Directed by the ligands, Ag70-TPP nanoclusters undergo self-hierarchical assembly into a highly space-efficient complex secondary structure of a double helical 4H (DH4H) close packing pattern. The chirality of Ag70-TPP, and the van der Waals forces interactions between the ligands are believed to drive its DH4H arrangement, and the observed interlocking of the phosphine ligands of adjacent Ag70-TPP nanoclusters also contributed. Overall, this work has yielded important and unprecedented insights into the internal structure and crystallographic arrangement of nanoclusters.
Collapse
Affiliation(s)
- Tao Chen
- School of Physics and Materials Science, Institute of Physical Science and Information Technology, Anhui Key Laboratory of Information Materials and Devices, Anhui University, Hefei, Anhui, 230601, People's Republic of China.
| | - Sha Yang
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601, China.
| | - Qinzhen Li
- School of Physics and Materials Science, Institute of Physical Science and Information Technology, Anhui Key Laboratory of Information Materials and Devices, Anhui University, Hefei, Anhui, 230601, People's Republic of China.
| | - Yongbo Song
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601, China.
| | - Guang Li
- School of Physics and Materials Science, Institute of Physical Science and Information Technology, Anhui Key Laboratory of Information Materials and Devices, Anhui University, Hefei, Anhui, 230601, People's Republic of China.
| | - Jinsong Chai
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601, China.
| | - Manzhou Zhu
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601, China.
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601, China.
| |
Collapse
|
48
|
Abstract
Significant progress has been made in both fields of atomically precise metal nanoclusters (NCs) and metal-organic frameworks (MOFs) in recent years. A promising direction is to integrate these two classes of materials for creating unique composites with improved properties for catalysis and other applications. NCs incorporated with MOFs exhibit an optimized catalytic performance in many catalytic reactions, in which MOFs play a vital supporting role or as cocatalysts. In this Perspective, we first provide a brief summary of the methods that have been developed for the preparation of NCs/MOF composites and the characteristics of these strategies are analyzed. Following that, some recent works are highlighted to demonstrate the crucial role of MOF matrices in the enhancement of NCs catalytic properties. Finally, we outline some potentially important aspects for future work. This Perspective is in hopes of stimulating more interest in the research on the integration of NCs with MOFs toward functional materials.
Collapse
Affiliation(s)
- Lianshun Luo
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Rongchao Jin
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| |
Collapse
|
49
|
Hu F, Guan ZJ, Yang G, Wang JQ, Li JJ, Yuan SF, Liang GJ, Wang QM. Molecular Gold Nanocluster Au 156 Showing Metallic Electron Dynamics. J Am Chem Soc 2021; 143:17059-17067. [PMID: 34609874 DOI: 10.1021/jacs.1c06716] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The boundary between molecular and metallic gold nanoclusters is of special interest. The difficulty in obtaining atomically precise nanoclusters larger than 2 nm limits the determination of such a boundary. The synthesis and total structural determination of the largest all-alkynyl-protected gold nanocluster (Ph4P)6[Au156(C≡CR)60] (R = 4-CF3C6H4-) (Au156) are reported. It presents an ideal platform for studying the relationship between the structure and the metallic nature. Au156 has a rod shape with the length and width of the kernel being 2.38 and 2.04 nm, respectively. The cluster contains a concentric Au126 core structure (Au46@Au50@Au30) protected by 30 linear RC≡C-Au-C≡CR staple motifs. It is interesting that Au156 displays multiple excitonic peaks in the steady-state absorption spectrum (molecular) and pump-power-dependent excited-state dynamics as revealed in the transient absorption spectrum (metallic), which indicates that Au156 is a critical crossover cluster for the transition from molecular to metallic state. Au156 is the smallest-sized gold nanocluster showing metal-like electron dynamics, and it is recognized that the cluster shape is one of the important factors determining the molecular or metallic nature of a gold nanocluster.
Collapse
Affiliation(s)
- Feng Hu
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing 100084, P.R. China
| | - Zong-Jie Guan
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing 100084, P.R. China
| | - Gaoyuan Yang
- Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Hubei University of Arts and Science, Xiangyang 441053, P.R. China
| | - Jia-Qi Wang
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing 100084, P.R. China
| | - Jiao-Jiao Li
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing 100084, P.R. China
| | - Shang-Fu Yuan
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing 100084, P.R. China
| | - Gui-Jie Liang
- Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Hubei University of Arts and Science, Xiangyang 441053, P.R. China
| | - Quan-Ming Wang
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing 100084, P.R. China
| |
Collapse
|
50
|
Cao YD, Hao HP, Liu HS, Yin D, Wang ML, Gao GG, Fan LL, Liu H. A 20-core copper(I) nanocluster as electron-hole recombination inhibitor on TiO 2 nanosheets for enhancing photocatalytic H 2 evolution. NANOSCALE 2021; 13:16182-16188. [PMID: 34545898 DOI: 10.1039/d1nr04683g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
For the design of atom-precise copper nanoclusters, besides the exploration of their aesthetic cage-like architectures, their structural modulation and potential applications are being extensively explored. Herein, an atom-precise 20-core copper(I)-alkynyl nanocluster (UJN-Cu20) protected by ethinyloestradiol ligands issynthesized. By virtue of outer-shell hydroxyl groups, UJN-Cu20 could be uniformly modified on the surface of TiO2 nanosheets via hydrogen bonding interactions, thus forming an efficient nanocomposite photocatalyst for hydrogen evolution. By constructing a Z-scheme heterojunction, the photocatalytic hydrogen evolution activity of the nanocomposite (13 mmol g-1 h-1) significantly improved as compared to that of TiO2 nanosheets (0.4 mmol g-1 h-1). As a narrow bandgap cocatalyst, UJN-Cu20 is confirmed to effectively inhibit the electron-hole recombination on the surface of the TiO2 nanosheet, which provides a new concept for the design of copper cluster-assisted effective photocatalysts.
Collapse
Affiliation(s)
- Yun-Dong Cao
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, P. R. China.
| | - Hui-Ping Hao
- College of Pharmacy, Jiamusi University, Jiamusi 154007, P. R. China
| | - Hua-Shi Liu
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, P. R. China.
| | - Di Yin
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, P. R. China.
| | - Ming-Liang Wang
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, P. R. China.
| | - Guang-Gang Gao
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, P. R. China.
| | - Lin-Lin Fan
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, P. R. China.
| | - Hong Liu
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, P. R. China.
| |
Collapse
|