1
|
Pezacki AT, Gonciarz RL, Okamura T, Matier CD, Torrente L, Cheng K, Miller SG, Ralle M, Ward NP, DeNicola GM, Renslo AR, Chang CJ. A tandem activity-based sensing and labeling strategy reveals antioxidant response element regulation of labile iron pools. Proc Natl Acad Sci U S A 2024; 121:e2401579121. [PMID: 38968123 PMCID: PMC11252945 DOI: 10.1073/pnas.2401579121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/29/2024] [Indexed: 07/07/2024] Open
Abstract
Iron is an essential element for life owing to its ability to participate in a diverse array of oxidation-reduction reactions. However, misregulation of iron-dependent redox cycling can also produce oxidative stress, contributing to cell growth, proliferation, and death pathways underlying aging, cancer, neurodegeneration, and metabolic diseases. Fluorescent probes that selectively monitor loosely bound Fe(II) ions, termed the labile iron pool, are potentially powerful tools for studies of this metal nutrient; however, the dynamic spatiotemporal nature and potent fluorescence quenching capacity of these bioavailable metal stores pose challenges for their detection. Here, we report a tandem activity-based sensing and labeling strategy that enables imaging of labile iron pools in live cells through enhancement in cellular retention. Iron green-1 fluoromethyl (IG1-FM) reacts selectively with Fe(II) using an endoperoxide trigger to release a quinone methide dye for subsequent attachment to proximal biological nucleophiles, providing a permanent fluorescent stain at sites of elevated labile iron. IG1-FM imaging reveals that degradation of the major iron storage protein ferritin through ferritinophagy expands the labile iron pool, while activation of nuclear factor-erythroid 2-related factor 2 (NRF2) antioxidant response elements (AREs) depletes it. We further show that lung cancer cells with heightened NRF2 activation, and thus lower basal labile iron, have reduced viability when treated with an iron chelator. By connecting labile iron pools and NRF2-ARE activity to a druggable metal-dependent vulnerability in cancer, this work provides a starting point for broader investigations into the roles of transition metal and antioxidant signaling pathways in health and disease.
Collapse
Affiliation(s)
- Aidan T. Pezacki
- Department of Chemistry, University of California, Berkeley, CA94720
| | - Ryan L. Gonciarz
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA94158
| | - Toshitaka Okamura
- Department of Chemistry, University of California, Berkeley, CA94720
| | - Carson D. Matier
- Department of Chemistry, University of California, Berkeley, CA94720
| | - Laura Torrente
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL33612
| | - Ke Cheng
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA94158
| | - Sophia G. Miller
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR97239
| | - Martina Ralle
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR97239
| | - Nathan P. Ward
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL33612
| | - Gina M. DeNicola
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL33612
| | - Adam R. Renslo
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA94158
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA94158
| | - Christopher J. Chang
- Department of Chemistry, University of California, Berkeley, CA94720
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA94720
| |
Collapse
|
2
|
Yan T, Wang X, Liu C, Cai X, Wang Y, Liu X, Rong X, Wang K, Li W, Sheng W, Zhu B. A Carbamoyl Oxime-Based Highly Specific Fluorescent Chemodosimeter for Monitoring Labile Fe 2+ in Food and Living Organisms. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:13341-13347. [PMID: 38830118 DOI: 10.1021/acs.jafc.4c04108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Iron is an essential element in the composition of living organisms and plays a crucial role in a wide range of biological activities. The human body primarily obtains essential iron through the consumption of food. Therefore, it is vital for the health of human body to maintain iron homeostasis. The reducing character of the cellular microenvironment enables Fe2+ to occupy a dominant position within the cell. Hence, there is an urgent need for a simple and sensitive tool that can detect a large amount of Fe2+ in organisms. In this work, a highly specific fluorescent chemodosimeter NPCO ("NP" represents the naphthalimide fluorophore, and "CO" represents the carbamoyl oxime structure) for the detection of Fe2+ with excellent sensitivity (LOD = 82 nM) was constructed by incorporating a novel carbamoyl oxime structure as the recognition group. NPCO can be effectively employed for the detection of Fe2+ in food samples, living cells, and zebrafish. Furthermore, by using soybean sprouts as a model plant, the application of NPCO was expanded to detect Fe2+ in plants. Therefore, NPCO could be used as an excellent assay tool for detecting Fe2+ in organisms and is expected to be an important aid in exploring the mechanism of iron regulation.
Collapse
Affiliation(s)
- Tingyi Yan
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Xin Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Caiyun Liu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Xinyu Cai
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Yao Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Xueting Liu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Xiaodi Rong
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Kun Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Wenzhai Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Wenlong Sheng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Baocun Zhu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| |
Collapse
|
3
|
Huang KB, Wang FY, Lu Y, Yang LM, Long N, Wang SS, Xie Z, Levine M, Zou T, Sessler JL, Liang H. Cu(II) complex that synergistically potentiates cytotoxicity and an antitumor immune response by targeting cellular redox homeostasis. Proc Natl Acad Sci U S A 2024; 121:e2404668121. [PMID: 38833473 PMCID: PMC11181140 DOI: 10.1073/pnas.2404668121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/04/2024] [Indexed: 06/06/2024] Open
Abstract
Developing anticancer drugs with low side effects is an ongoing challenge. Immunogenic cell death (ICD) has received extensive attention as a potential synergistic modality for cancer immunotherapy. However, only a limited set of drugs or treatment modalities can trigger an ICD response and none of them have cytotoxic selectivity. This provides an incentive to explore strategies that might provide more effective ICD inducers free of adverse side effects. Here, we report a metal-based complex (Cu-1) that disrupts cellular redox homeostasis and effectively stimulates an antitumor immune response with high cytotoxic specificity. Upon entering tumor cells, this Cu(II) complex enhances the production of intracellular radical oxidative species while concurrently depleting glutathione (GSH). As the result of heightening cellular oxidative stress, Cu-1 gives rise to a relatively high cytotoxicity to cancer cells, whereas normal cells with low levels of GSH are relatively unaffected. The present Cu(II) complex initiates a potent ferroptosis-dependent ICD response and effectively inhibits in vivo tumor growth in an animal model (c57BL/6 mice challenged with colorectal cancer). This study presents a strategy to develop metal-based drugs that could synergistically potentiate cytotoxic selectivity and promote apoptosis-independent ICD responses through perturbations in redox homeostasis.
Collapse
Affiliation(s)
- Ke-Bin Huang
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin541004, China
| | - Feng-Yang Wang
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin541004, China
| | - Yuan Lu
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin541004, China
| | - Liang-Mei Yang
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin541004, China
| | - Nian Long
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin541004, China
| | - Shan-Shan Wang
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin541004, China
| | - Zhiying Xie
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Science, Sun Yat-Sen University, Guangzhou510006, China
| | - Matthew Levine
- Department of Chemistry, The University of Texas at Austin, Austin, TX78712-1224
| | - Taotao Zou
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Science, Sun Yat-Sen University, Guangzhou510006, China
| | - Jonathan L. Sessler
- Department of Chemistry, The University of Texas at Austin, Austin, TX78712-1224
| | - Hong Liang
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin541004, China
| |
Collapse
|
4
|
Li YJ, Qiu YL, Li MR, Shen M, Zhang F, Shao JJ, Xu XF, Zhang ZL, Zheng SZ. New horizons for the role of RNA N6-methyladenosine modification in hepatocellular carcinoma. Acta Pharmacol Sin 2024; 45:1130-1141. [PMID: 38195693 PMCID: PMC11130213 DOI: 10.1038/s41401-023-01214-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/11/2023] [Indexed: 01/11/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignancy, presenting a formidable challenge to the medical community owing to its intricate pathogenic mechanisms. Although current prevention, surveillance, early detection, diagnosis, and treatment have achieved some success in preventing HCC and controlling overall disease mortality, the imperative to explore novel treatment modalities for HCC remains increasingly urgent. Epigenetic modification has emerged as pivotal factors in the etiology of cancer. Among these, RNA N6-methyladenosine (m6A) modification stands out as one of the most prevalent, abundant, and evolutionarily conserved post-transcriptional alterations in eukaryotes. The literature underscores that the dynamic and reversible nature of m6A modifications orchestrates the intricate regulation of gene expression, thereby exerting a profound influence on cell destinies. Increasing evidence has substantiated conspicuous fluctuations in m6A modification levels throughout the progression of HCC. The deliberate modulation of m6A modification levels through molecular biology and pharmacological interventions has been demonstrated to exert a discernible impact on the pathogenesis of HCC. In this review, we elucidate the multifaceted biological functions of m6A modifications in HCC, and concurrently advancing novel therapeutic strategies for the management of this malignancy.
Collapse
Affiliation(s)
- Yu-Jia Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yang-Ling Qiu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Meng-Ran Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Min Shen
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, China
| | - Feng Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jiang-Juan Shao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xue-Fen Xu
- Department of Pharmacology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zi-Li Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Shi-Zhong Zheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
5
|
Grover K, Koblova A, Pezacki AT, Chang CJ, New EJ. Small-Molecule Fluorescent Probes for Binding- and Activity-Based Sensing of Redox-Active Biological Metals. Chem Rev 2024; 124:5846-5929. [PMID: 38657175 PMCID: PMC11485196 DOI: 10.1021/acs.chemrev.3c00819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Although transition metals constitute less than 0.1% of the total mass within a human body, they have a substantial impact on fundamental biological processes across all kingdoms of life. Indeed, these nutrients play crucial roles in the physiological functions of enzymes, with the redox properties of many of these metals being essential to their activity. At the same time, imbalances in transition metal pools can be detrimental to health. Modern analytical techniques are helping to illuminate the workings of metal homeostasis at a molecular and atomic level, their spatial localization in real time, and the implications of metal dysregulation in disease pathogenesis. Fluorescence microscopy has proven to be one of the most promising non-invasive methods for studying metal pools in biological samples. The accuracy and sensitivity of bioimaging experiments are predominantly determined by the fluorescent metal-responsive sensor, highlighting the importance of rational probe design for such measurements. This review covers activity- and binding-based fluorescent metal sensors that have been applied to cellular studies. We focus on the essential redox-active metals: iron, copper, manganese, cobalt, chromium, and nickel. We aim to encourage further targeted efforts in developing innovative approaches to understanding the biological chemistry of redox-active metals.
Collapse
Affiliation(s)
- Karandeep Grover
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Alla Koblova
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Aidan T. Pezacki
- Department of Chemistry, University of California, Berkeley, Berkeley 94720, CA, USA
| | - Christopher J. Chang
- Department of Chemistry, University of California, Berkeley, Berkeley 94720, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley 94720, CA, USA
| | - Elizabeth J. New
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
- Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
6
|
Jerye K, Lüken H, Steffen A, Schlawis C, Jänsch L, Schulz S, Brönstrup M. Activity-Based Protein Profiling Identifies Protein Disulfide-Isomerases as Target Proteins of the Volatile Salinilactones. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309515. [PMID: 38430530 PMCID: PMC11095149 DOI: 10.1002/advs.202309515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/05/2024] [Indexed: 03/04/2024]
Abstract
The salinilactones, volatile marine natural products secreted from Salinispora arenicola, feature a unique [3.1.0]-lactone ring system and cytotoxic activities through a hitherto unknown mechanism. To find their molecular target, an activity-based protein profiling with a salinilactone-derived probe is applied that disclosed the protein disulfide-isomerases (PDIs) as the dominant mammalian targets of salinilactones, and thioredoxin (TRX1) as secondary target. The inhibition of protein disulfide-isomerase A1 (PDIA1) and TRX1 is confirmed by biochemical assays with recombinant proteins, showing that (1S,5R)-salinilactone B is more potent than its (1R,5S)-configured enantiomer. The salinilactones bound covalently to C53 and C397, the catalytically active cysteines of the isoform PDIA1 according to tandem mass spectrometry. Reactions with a model substrate demonstrated that the cyclopropyl group is opened by an attack of the thiol at C6. Fluorophore labeling experiments showed the cell permeability of a salinilactone-BODIPY (dipyrrometheneboron difluoride) conjugate and its co-localization with PDIs in the endoplasmic reticulum. The study is one of the first to pinpoint a molecular target for a volatile microbial natural product, and it demonstrates that salinilactones can achieve high selectivity despite their small size and intrinsic reactivity.
Collapse
Affiliation(s)
- Karoline Jerye
- Department of Chemical BiologyHelmholtz Centre for Infection ResearchInhoffenstraße 738124BraunschweigGermany
| | - Helko Lüken
- Department of Chemical BiologyHelmholtz Centre for Infection ResearchInhoffenstraße 738124BraunschweigGermany
| | - Anika Steffen
- Department of Cell BiologyHelmholtz Centre for Infection ResearchInhoffenstraße 738124BraunschweigGermany
| | - Christian Schlawis
- Institute of Organic ChemistryTechnische Universität BraunschweigHagenring 3038106BraunschweigGermany
| | - Lothar Jänsch
- Research Group Cellular Proteome ResearchHelmholtz Centre for Infection ResearchInhoffenstraße 738124BraunschweigGermany
| | - Stefan Schulz
- Institute of Organic ChemistryTechnische Universität BraunschweigHagenring 3038106BraunschweigGermany
| | - Mark Brönstrup
- Department of Chemical BiologyHelmholtz Centre for Infection ResearchInhoffenstraße 738124BraunschweigGermany
- Biomolecular Drug Research Center (BMWZ)Leibniz Universität HannoverSchneiderberg 1B30167HannoverGermany
- German Center for Infection ResearchSite Hannover‐BraunschweigInhoffenstraße 738124BraunschweigGermany
| |
Collapse
|
7
|
Pang Q, Tang Z, Luo L. The crosstalk between oncogenic signaling and ferroptosis in cancer. Crit Rev Oncol Hematol 2024; 197:104349. [PMID: 38626848 DOI: 10.1016/j.critrevonc.2024.104349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 03/13/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024] Open
Abstract
Ferroptosis, a novel form of cell death regulation, was identified in 2012. It is characterized by unique features that differentiate it from other types of cell death, including necrosis, apoptosis, autophagy, and pyroptosis. Ferroptosis is defined by an abundance of iron ions and lipid peroxidation, resulting in alterations in subcellular structures, an elevation in reactive oxygen species (ROS), a reduction in glutathione (GSH) levels, and an augmentation in Fe (II) cytokines. Ferroptosis, a regulated process, is controlled by an intricate network of signaling pathways, where multiple stimuli can either enhance or hinder the process. This review primarily examines the defensive mechanisms of ferroptosis and its interaction with the tumor microenvironment. The analysis focuses on the pathways that involve AMPK, p53, NF2, mTOR, System Xc-, Wnt, Hippo, Nrf2, and cGAS-STING. The text discusses the possibilities of employing a combination therapy that targets several pathways for the treatment of cancer. It emphasizes the necessity for additional study in this field.
Collapse
Affiliation(s)
- Qianghu Pang
- The First Clinical College, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Zhirou Tang
- The First Clinical College, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Lianxiang Luo
- The Marine Biomedical Research Institute of Guangdong Zhanjiang,School of Ocean and Tropical Medicine. Guangdong Medical University, Zhanjiang, Guangdong 524023, China.
| |
Collapse
|
8
|
Zhao B, Xu X, Wen X, Liu Q, Dong C, Yang Q, Fan C, Yoon J, Lu Z. Ratiometric Near-Infrared Fluorescent Probe Monitors Ferroptosis in HCC Cells by Imaging HClO in Mitochondria. Anal Chem 2024; 96:5992-6000. [PMID: 38574346 DOI: 10.1021/acs.analchem.4c00328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Hypochlorous acid (HClO) is a typical endogenous ROS produced mainly in mitochondria, and it has strong oxidative properties. Abnormal HClO levels lead to mitochondrial dysfunction, strongly associated with various diseases. It has been shown that HClO shows traces of overexpression in cells of both ferroptosis and hepatocellular carcinoma (HCC). Therefore, visualization of HClO levels during ferroptosis of HCC is important to explore its physiological and pathological roles. So far, there has been no report on the visualization of HClO in ferroptosis of HCC. Thus, we present a ratiometric near-infrared (NIR) fluorescent probe Mito-Rh-S which visualized for the first time the fluctuation of HClO in mitochondria during ferroptosis of HCC. Mito-Rh-S has an ultrafast response rate (2 s) and large emission shift (115 nm). Mito-Rh-S was constructed based on the PET sensing mechanism and thus has a high signal-to-noise ratio. The cell experiments of Mito-Rh-S demonstrated that Fe2+- and erastin-induced ferroptosis in HepG2 cells resulted in elevated levels of mitochondrial HClO and that high concentration levels of Fe2+ and erastin cause severe mitochondrial damage and oxidative stress and had the potential to kill HepG2 cells. By regulating the erastin concentration, erastin induction time, and treatment of the ferroptosis model, Mito-Rh-S can accurately detect the fluctuation of mitochondrial HClO levels during ferroptosis in HCC.
Collapse
Affiliation(s)
- Bo Zhao
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, China
| | - Xionghao Xu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, China
| | - Xin Wen
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, China
| | - Qingqing Liu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, China
| | - Chao Dong
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, China
| | - Qingkun Yang
- Shandong Anshun Pharmaceutical Company, Limited, Laoling, Shandong 253600, China
| | - Chunhua Fan
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, South Korea
| | - Zhengliang Lu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, China
| |
Collapse
|
9
|
Zhang M, Liu Z, Zhou W, Shen M, Mao N, Xu H, Wang Y, Xu Z, Li M, Jiang H, Chen Y, Zhu J, Lin W, Yuan J, Lin Z. Ferrostatin-1 attenuates hypoxic-ischemic brain damage in neonatal rats by inhibiting ferroptosis. Transl Pediatr 2023; 12:1944-1970. [PMID: 38130589 PMCID: PMC10730959 DOI: 10.21037/tp-23-189] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 11/02/2023] [Indexed: 12/23/2023] Open
Abstract
Background Hypoxic-ischemic brain damage (HIBD) is a type of brain damage that is caused by perinatal asphyxia and serious damages the central nervous system. At present, there is no effective drug for the treatment of this disease. Besides, the pathogenesis of HIBD remains elusive. While studies have shown that ferroptosis plays an important role in HIBD, its role and mechanism in HIBD are yet to be fully understood. Methods The HIBD model of neonatal rats was established using the Rice-Vannucci method. A complete medium of PC12 cells was adjusted to a low-sugar medium, and the oxygen-glucose deprivation model was established after continuous hypoxia for 12 h. Laser Doppler blood flow imaging was used to detect the blood flow intensity after modeling. 2,3,5-triphenyl tetrazolium chloride staining was employed to detect ischemic cerebral infarction in rat brain tissue, and hematoxylin and eosin staining and transmission electron microscopy were used to observe brain injury and mitochondrial damage. Immunofluorescence was applied to monitor the expression of GFAP. Real-time quantitative polymerase chain reaction, western blot, and immunofluorescence were utilized to detect the expression of messenger RNA and protein. The level of reactive oxygen species (ROS) in cells was detected using the ROS detection kit. Results The results showed that ferrostatin-1 (Fer-1) significantly alleviated the brain injury caused by hypoxia and ischemia. Fer-1 significantly increased the expression of SLC3A2, SLC7A11, ACSL3, GSS, and GPX4 (P<0.05) and dramatically decreased the expressions of GFAP, ACSL4, TFRC, FHC, FLC, 4-HNE, HIF-1α, and ROS (P<0.05). Conclusions Fer-1 inhibits ferroptosis and alleviates HIBD by potentially targeting the GPX4/ACSL3/ACSL4 axis; however, its specific mechanism warrants further exploration.
Collapse
Affiliation(s)
- Min Zhang
- Department of Pediatrics, the Second School of Medicine, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Perinatal Medicine of Wenzhou, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhiming Liu
- Department of Spinal Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wei Zhou
- Department of Pediatrics, the Second School of Medicine, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Perinatal Medicine of Wenzhou, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ming Shen
- Department of Pediatrics, the Second School of Medicine, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Perinatal Medicine of Wenzhou, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Niping Mao
- Department of Pediatrics, the Second School of Medicine, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Perinatal Medicine of Wenzhou, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hang Xu
- The First School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yanan Wang
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Zidi Xu
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Mopu Li
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Haibin Jiang
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yuetong Chen
- The First School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Jianghu Zhu
- Department of Pediatrics, the Second School of Medicine, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Perinatal Medicine of Wenzhou, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wei Lin
- Department of Pediatrics, the Second School of Medicine, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Perinatal Medicine of Wenzhou, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Junhui Yuan
- Department of Neonatology, Wenling Maternal and Child Health Care Hospital, Wenling, China
| | - Zhenlang Lin
- Department of Pediatrics, the Second School of Medicine, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Perinatal Medicine of Wenzhou, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
10
|
Gonciarz RL, Jiang H, Tram L, Hugelshofer CL, Ekpenyong O, Knemeyer I, Aron AT, Chang CJ, Flygare JA, Collisson EA, Renslo AR. In vivo bioluminescence imaging of labile iron in xenograft models and liver using FeAL-1, an iron-activatable form of D-luciferin. Cell Chem Biol 2023; 30:1468-1477.e6. [PMID: 37820725 PMCID: PMC10841594 DOI: 10.1016/j.chembiol.2023.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 07/21/2023] [Accepted: 09/18/2023] [Indexed: 10/13/2023]
Abstract
Dysregulated iron homeostasis underlies diverse pathologies, from ischemia-reperfusion injury to epithelial-mesenchymal transition and drug-tolerant "persister" cancer cell states. Here, we introduce ferrous iron-activatable luciferin-1 (FeAL-1), a small-molecule probe for bioluminescent imaging of the labile iron pool (LIP) in luciferase-expressing cells and animals. We find that FeAL-1 detects LIP fluctuations in cells after iron supplementation, depletion, or treatment with hepcidin, the master regulator of systemic iron in mammalian physiology. Utilizing FeAL-1 and a dual-luciferase reporter system, we quantify LIP in mouse liver and three different orthotopic pancreatic ductal adenocarcinoma tumors. We observed up to a 10-fold increase in FeAL-1 bioluminescent signal in xenograft tumors as compared to healthy liver, the major organ of iron storage in mammals. Treating mice with hepcidin further elevated hepatic LIP, as predicted. These studies reveal a therapeutic index between tumoral and hepatic LIP and suggest an approach to sensitize tumors toward LIP-activated therapeutics.
Collapse
Affiliation(s)
- Ryan L Gonciarz
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Honglin Jiang
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Linh Tram
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Cedric L Hugelshofer
- Department of Discovery Chemistry, Merck & Co, Inc., South San Francisco, CA 94080, USA
| | - Oscar Ekpenyong
- ADME & Discovery Toxicology, Merck & Co, Inc., South San Francisco, CA 94080, USA
| | - Ian Knemeyer
- ADME & Discovery Toxicology, Merck & Co, Inc., South San Francisco, CA 94080, USA
| | - Allegra T Aron
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80208, USA
| | - Christopher J Chang
- Departments of Chemistry and Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - John A Flygare
- Department of Discovery Chemistry, Merck & Co, Inc., South San Francisco, CA 94080, USA
| | - Eric A Collisson
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Adam R Renslo
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
11
|
Meng J, Du H, Lu J, Wang H. Construction and validation of a predictive nomogram for ferroptosis-related genes in osteosarcoma. J Cancer Res Clin Oncol 2023; 149:14227-14239. [PMID: 37555953 DOI: 10.1007/s00432-023-05225-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 07/28/2023] [Indexed: 08/10/2023]
Abstract
BACKGROUND Ferroptosis is a new type of cellular regulation of necrosis that has attracted great attention in recent years, which is different from the traditional mode of autophagy, apoptosis, and necrosis. Studies suggest that ferroptosis is key to the occurrence and development of tumors. METHODS Here, we investigated the prognostic significance of ferroptosis-related genes (FRGs) in osteosarcoma (OS) using RNA transcriptome data from 88 OS samples collected from the UCSC Xena platform. We defined the OS sample from the UCSC platform as the training cohort and the GEO dataset (GSE21257 and GSE16091) as the validation cohorts. We assessed 73 up-regulated and 63 down-regulated FRGs. We divided patients from the UCSC database into groups at high risk and low risk and built a prognostic risk model to assess prognosis using five FRGs: MT1G, G6PD, ARNTL, BNIP3, and SQLE. RESULTS High-risk OS patients presented a lower survival rate. These results were confirmed in the validation groups. In the training group, the areas under the ROC curves (AUC) were as follows: 0.880 for 1 year, 0.833 for 3 years, and 0.818 for 5 years. In the GSE21257 validation cohort, the AUC were as follows: 0.770 for 1 year, 0.641 for 3 years, and 0.632 for 5 years survival, and in the GSE16091 were 0.729 for 1 year, 0.663 for 3 years, and 0.735 for 5 years survival. CONCLUSIONS These findings suggest that FRGs are associated with the prognosis of osteosarcoma. Moreover, our prognostic risk model can predict overall survival in osteosarcoma. This provides new ideas for the clinical diagnosis and personalized treatment of osteosarcoma.
Collapse
Affiliation(s)
- Jinzhi Meng
- Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Huawei Du
- Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jinfeng Lu
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Hongtao Wang
- Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.
| |
Collapse
|
12
|
Nizam ZM, Stowe AM, Mckinney JK, Ohata J. Iron-sensitive protein conjugates formed with a Wittig reaction precursor in ionic liquid. Chem Commun (Camb) 2023; 59:12160-12163. [PMID: 37743738 DOI: 10.1039/d3cc03825d] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
In this report, formation of protein conjugates with an iron-sensitive enamine linkage is demonstrated through the ionic liquid-based bioconjugation method.
Collapse
Affiliation(s)
- Zeinab M Nizam
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, USA.
| | - Ashton M Stowe
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, USA.
| | - Jada K Mckinney
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, USA.
| | - Jun Ohata
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, USA.
| |
Collapse
|
13
|
Hendricks JM, Doubravsky CE, Wehri E, Li Z, Roberts MA, Deol KK, Lange M, Lasheras-Otero I, Momper JD, Dixon SJ, Bersuker K, Schaletzky J, Olzmann JA. Identification of structurally diverse FSP1 inhibitors that sensitize cancer cells to ferroptosis. Cell Chem Biol 2023; 30:1090-1103.e7. [PMID: 37178691 PMCID: PMC10524360 DOI: 10.1016/j.chembiol.2023.04.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/07/2023] [Accepted: 04/12/2023] [Indexed: 05/15/2023]
Abstract
Ferroptosis is a regulated form of cell death associated with the iron-dependent accumulation of phospholipid hydroperoxides. Inducing ferroptosis is a promising approach to treat therapy-resistant cancer. Ferroptosis suppressor protein 1 (FSP1) promotes ferroptosis resistance in cancer by generating the antioxidant form of coenzyme Q10 (CoQ). Despite the important role of FSP1, few molecular tools exist that target the CoQ-FSP1 pathway. Through a series of chemical screens, we identify several structurally diverse FSP1 inhibitors. The most potent of these compounds, ferroptosis sensitizer 1 (FSEN1), is an uncompetitive inhibitor that acts selectively through on-target inhibition of FSP1 to sensitize cancer cells to ferroptosis. Furthermore, a synthetic lethality screen reveals that FSEN1 synergizes with endoperoxide-containing ferroptosis inducers, including dihydroartemisinin, to trigger ferroptosis. These results provide new tools that catalyze the exploration of FSP1 as a therapeutic target and highlight the value of combinatorial therapeutic regimes targeting FSP1 and additional ferroptosis defense pathways.
Collapse
Affiliation(s)
- Joseph M Hendricks
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Cody E Doubravsky
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Eddie Wehri
- The Henry Wheeler Center for Emerging and Neglected Diseases, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Zhipeng Li
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Melissa A Roberts
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Kirandeep K Deol
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Mike Lange
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Irene Lasheras-Otero
- Cancer Signaling Unit, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), 31008 Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Jeremiah D Momper
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Scott J Dixon
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Kirill Bersuker
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Julia Schaletzky
- The Henry Wheeler Center for Emerging and Neglected Diseases, University of California, Berkeley, Berkeley, CA 94720, USA.
| | - James A Olzmann
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA; Miller Institute for Basic Research in Science, University of California, Berkeley, Berkeley, CA 94720, USA; Chan Zuckerberg Biohub - San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
14
|
Peng XX, Zhang H, Zhang R, Li ZH, Yang ZS, Zhang J, Gao S, Zhang JL. Gallium Triggers Ferroptosis through a Synergistic Mechanism. Angew Chem Int Ed Engl 2023; 62:e202307838. [PMID: 37452698 DOI: 10.1002/anie.202307838] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/14/2023] [Accepted: 07/14/2023] [Indexed: 07/18/2023]
Abstract
The gallium ion (Ga3+ ) has long been believed to disrupt ferric homeostasis in the body by competing with iron cofactors in metalloproteins, ultimately leading to cell death. This study revealed that through an indirect pathway, gallium can trigger ferroptosis, a type of non-apoptotic cell death regulated by iron. This is exemplified by the gallium complex of the salen ligand (Ga-1); we found that Ga-1 acts as an effective anion transporter that can affect the pH gradient and change membrane permeability, leading to mitochondrial dysfunction and the release of ferrous iron from the electron transfer chain (ETC). In addition, Ga-1 also targeted protein disulfide isomerases (PDIs) located in the endoplasmic reticulum (ER) membrane, preventing the repair of the antioxidant glutathione (GSH) system and thus enforcing ferroptosis. Finally, a combination treatment of Ga-1 and dietary polyunsaturated fatty acids (PUFAs), which enhances lipid peroxidation during ferroptosis, showed a synergistic therapeutic effect both in vitro and in vivo. This study provided us with a strategy to synergistically induce Ferroptosis in tumor cells, thereby enhancing the anti-neoplastic effect.
Collapse
Affiliation(s)
- Xin-Xin Peng
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Hang Zhang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Ruijing Zhang
- Spin-X Institute, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Ze-Hao Li
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zi-Shu Yang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Jing Zhang
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Song Gao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Spin-X Institute, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, P. R. China
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Jun-Long Zhang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, P. R. China
| |
Collapse
|
15
|
Zeng F, Nijiati S, Tang L, Ye J, Zhou Z, Chen X. Ferroptosis Detection: From Approaches to Applications. Angew Chem Int Ed Engl 2023; 62:e202300379. [PMID: 36828775 DOI: 10.1002/anie.202300379] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 02/26/2023]
Abstract
Understanding the intricate molecular machinery that governs ferroptosis and leveraging this accumulating knowledge could facilitate disease prevention, diagnosis, treatment, and prognosis. Emerging approaches for the in situ detection of the major regulators and biological events across cellular, tissue, and in living subjects provide a multiscale perspective for studying ferroptosis. Furthermore, advanced applications that integrate ferroptosis detection and the latest technologies hold tremendous promise in ferroptosis research. In this review, we first briefly summarize the mechanisms and key regulators underlying ferroptosis. Ferroptosis detection approaches are then presented to delineate their design, mechanisms of action, and applications. Special interest is placed on advanced ferroptosis applications that integrate multifunctional platforms. Finally, we discuss the prospects and challenges of ferroptosis detection approaches and applications, with the aim of providing a roadmap for the theranostic development of a broad range of ferroptosis-related diseases.
Collapse
Affiliation(s)
- Fantian Zeng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Sureya Nijiati
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Longguang Tang
- Affiliated Gaozhou People's Hospital, Guangdong Medical University, Guangdong, 524023, China
| | - Jinmin Ye
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Zijian Zhou
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| |
Collapse
|
16
|
Frye WJE, Huff LM, González Dalmasy JM, Salazar P, Carter RM, Gensler RT, Esposito D, Robey RW, Ambudkar SV, Gottesman MM. The multidrug resistance transporter P-glycoprotein confers resistance to ferroptosis inducers. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:468-480. [PMID: 37840856 PMCID: PMC10571053 DOI: 10.20517/cdr.2023.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/13/2023] [Accepted: 07/19/2023] [Indexed: 10/17/2023]
Abstract
Aim: Ferroptosis is a non-apoptotic form of cell death caused by lethal lipid peroxidation. Several small molecule ferroptosis inducers (FINs) have been reported, yet little information is available regarding their interaction with the ATP-binding cassette (ABC) transporters P-glycoprotein (P-gp, ABCB1) and ABCG2. We thus sought to characterize the interactions of FINs with P-gp and ABCG2, which may provide information regarding oral bioavailability and brain penetration and predict drug-drug interactions. Methods: Cytotoxicity assays with ferroptosis-sensitive A673 cells transfected to express P-gp or ABCG2 were used to determine the ability of the transporters to confer resistance to FINs; confirmatory studies were performed in OVCAR8 and NCI/ADR-RES cells. The ability of FINs to inhibit P-gp or ABCG2 was determined using the fluorescent substrates rhodamine 123 or purpuin-18, respectively. Results: P-gp overexpression conferred resistance to FIN56 and the erastin derivatives imidazole ketone erastin and piperazine erastin. P-gp-mediated resistance to imidazole ketone erastin and piperazine erastin was also reversed in UO-31 renal cancer cells by CRISPR-mediated knockout of ABCB1. The FINs ML-162, GPX inhibitor 26a, and PACMA31 at 10 µM were able to increase intracellular rhodamine 123 fluorescence over 10-fold in P-gp-expressing MDR-19 cells. GPX inhibitor 26a was able to increase intracellular purpurin-18 fluorescence over 4-fold in ABCG2-expressing R-5 cells. Conclusion: Expression of P-gp may reduce the efficacy of these FINs in cancers that express the transporter and may prevent access to sanctuary sites such as the brain. The ability of some FINs to inhibit P-gp and ABCG2 suggests potential drug-drug interactions.
Collapse
Affiliation(s)
- William J. E. Frye
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- These authors contributed equally to this work
| | - Lyn M. Huff
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- These authors contributed equally to this work
| | - José M. González Dalmasy
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Paula Salazar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rachel M. Carter
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ryan T. Gensler
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dominic Esposito
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc, Frederick, MD 21704, USA
| | - Robert W. Robey
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Suresh V. Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael M. Gottesman
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
17
|
Feng D, Li L, Li D, Wu R, Zhu W, Wang J, Ye L, Han P. Prolyl 4-hydroxylase subunit beta (P4HB) could serve as a prognostic and radiosensitivity biomarker for prostate cancer patients. Eur J Med Res 2023; 28:245. [PMID: 37480146 PMCID: PMC10362756 DOI: 10.1186/s40001-023-01215-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 07/08/2023] [Indexed: 07/23/2023] Open
Abstract
BACKGROUND Prolyl 4-hydroxylase subunit beta (P4HB) has been reported as a suppressor in ferroptosis. However, no known empirical research has focused on exploring relationships between P4HB and prostate cancer (PCa). In this research, we initially examine the function of P4HB in PCa by thorough analysis of numerous databases and proliferation experiment. METHODS We analyzed the correlations of P4HB expression with prognosis, clinical features, mutation genes, tumor heterogeneity, stemness, tumor immune microenvironment and PCa cells using multiple databases and in vitro experiment with R 3.6.3 software and its suitable packages. RESULTS P4HB was significantly upregulated in tumor tissues compared to normal tissues and was closely related to biochemical recurrence-free survival. In terms of clinical correlations, we found that higher P4HB expression was significantly related to older age, higher Gleason score, advanced T stage and residual tumor. Surprisingly, P4HB had highly diagnostic accuracy of radiotherapy resistance (AUC 0.938). TGF beta signaling pathway and dorso ventral axis formation were upregulated in the group of low-expression P4HB. For tumor stemness, P4HB expression was positively related to EREG.EXPss and RNAss, but was negatively associated with ENHss and DNAss with statistical significance. For tumor heterogeneity, P4HB expression was positively related to MATH, but was negatively associated with tumor ploidy and microsatellite instability. For the overall assessment of TME, we observed that P4HB expression was negatively associated with all parameters, including B cells, CD4+ T cells, CD8+ T cells, neutrophils, macrophages, dendritic cells, stromal score, immune score and ESTIMATE score. Spearman analysis showed that P4HB expression was negatively related to TIDE score with statistical significance. In vitro experiment, RT-qPCR and western blot showed that three siRNAs of P4HB were effective on the knockdown of P4HB expression. Furthermore, we observed that the downregulation of P4HB had significant influence on the cell proliferation of six PCa cell lines, including LNCap, C4-2, C4-2B, PC3, DU145 and 22RV1 cells. CONCLUSIONS In this study, we found that P4HB might serve as a prognostic biomarker and predict radiotherapy resistance for PCa patients. Downregulation of P4HB expression could inhibit the cell proliferation of PCa cells.
Collapse
Affiliation(s)
- Dechao Feng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041 Sichuan People’s Republic of China
| | - Li Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041 Sichuan People’s Republic of China
| | - Dengxiong Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041 Sichuan People’s Republic of China
| | - Ruicheng Wu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041 Sichuan People’s Republic of China
| | - Weizhen Zhu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041 Sichuan People’s Republic of China
| | - Jie Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041 Sichuan People’s Republic of China
| | - Luxia Ye
- Department of Public Research Platform, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Ping Han
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041 Sichuan People’s Republic of China
| |
Collapse
|
18
|
Wang H, Qiao C, Guan Q, Wei M, Li Z. Nanoparticle-mediated synergistic anticancer effect of ferroptosis and photodynamic therapy: Novel insights and perspectives. Asian J Pharm Sci 2023; 18:100829. [PMID: 37588992 PMCID: PMC10425855 DOI: 10.1016/j.ajps.2023.100829] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/05/2023] [Accepted: 07/02/2023] [Indexed: 08/18/2023] Open
Abstract
Current antitumor monotherapy has many limitations, highlighting the need for novel synergistic anticancer strategies. Ferroptosis is an iron-dependent form of nonapoptotic cell death that plays a pivotal regulatory role in tumorigenesis and treatment. Photodynamic therapy (PDT) causes irreversible chemical damage to target lesions and is widely used in antitumor therapy. However, PDT's effectiveness is usually hindered by several obstacles, such as hypoxia, excess glutathione (GSH), and tumor resistance. Ferroptosis improves the anticancer efficacy of PDT by increasing oxygen and reactive oxygen species (ROS) or reducing GSH levels, and PDT also enhances ferroptosis induction due to the ROS effect in the tumor microenvironment (TME). Strategies based on nanoparticles (NPs) can subtly exploit the potential synergy of ferroptosis and PDT. This review explores recent advances and current challenges in the landscape of the underlying mechanisms regulating ferroptosis and PDT, as well as nano delivery system-mediated synergistic anticancer activity. These include polymers, biomimetic materials, metal organic frameworks (MOFs), inorganics, and carrier-free NPs. Finally, we highlight future perspectives of this novel emerging paradigm in targeted cancer therapies.
Collapse
Affiliation(s)
- Haiying Wang
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Chu Qiao
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Qiutong Guan
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Minjie Wei
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Zhenhua Li
- School of Pharmacy, China Medical University, Shenyang 110122, China
| |
Collapse
|
19
|
Yang X, Zhang S, Lai M, Ji X, Ye Y, Tang J, Liu X, Zhao M. Fluorescent probes for lighting up ferroptotic cell death: A review. Talanta 2023; 260:124628. [PMID: 37149940 DOI: 10.1016/j.talanta.2023.124628] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/29/2023] [Accepted: 05/01/2023] [Indexed: 05/09/2023]
Abstract
Ferroptosis is a newly discovered form of regulated cellular demise, characterized by the accumulation of intracellular oxidative stress that is dependent on iron. Ferroptosis plays a crucial role not only in the development and treatment of tumors but also in the pathogenesis of neurodegenerative diseases and illnesses related to ischemia-reperfusion injury. This mode of cell death possesses distinctive properties that differentiate it from other forms of cell death, including unique morphological changes at both the cellular and subcellular levels, as well as molecular features that can be detected using specific methods. The use of fluorescent probes has become an invaluable means of detecting ferroptosis, owing to their high sensitivity, real-time in situ monitoring capabilities, and minimal damage to biological samples. This review comprehensively elucidates the physiological mechanisms underlying ferroptosis, while also detailing the development of fluorescent probes capable of detecting ferroptosis-related active species across various cellular compartments, including organelles, the nucleus, and the cell membrane. Additionally, the review explores how the dynamic changes and location of active species from different cellular compartments can influence the ignition and execution of ferroptotic cell death. Finally, we discuss the future challenges and opportunities for imaging ferroptosis. We believe that this review will not only aid in the elucidation of ferroptosis's physiological mechanisms but also facilitate the identification of novel treatment targets and means of accurately diagnosing and treating ferroptosis-related diseases.
Collapse
Affiliation(s)
- Xiaopeng Yang
- Flavors and Fragrance Engineering&Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Shiyi Zhang
- Flavors and Fragrance Engineering&Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Miao Lai
- Flavors and Fragrance Engineering&Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xiaoming Ji
- Flavors and Fragrance Engineering&Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Yong Ye
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.
| | - Jun Tang
- School of Chemistry and Materials Engineering, Xinxiang University, Xinxiang, 453003, China
| | - Xinyuan Liu
- Sanmenxia City Company of Henan Provincial Tobacco Company, Sanmenxia, 472000, China
| | - Mingqin Zhao
- Flavors and Fragrance Engineering&Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450046, China.
| |
Collapse
|
20
|
Zhou R, Qiu L, Zhou L, Geng R, Yang S, Wu J. P4HA1 activates HMGCS1 to promote nasopharyngeal carcinoma ferroptosis resistance and progression. Cell Signal 2023; 105:110609. [PMID: 36702290 DOI: 10.1016/j.cellsig.2023.110609] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/10/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023]
Abstract
Ferroptosis is a novel type of iron-dependent regulatory cell death. To date, the regulatory mechanism of ferroptosis in nasopharyngeal carcinoma (NPC) remains poorly understood. In this study, we found that the prolyl 4-hydroxylase (P4H) subunit P4HA1 protects NPC cells from erastin-induced ferroptosis by activating HMGCS1, a key enzyme in the mevalonate pathway. We also found that the P4HA1/HMGCS1 axis promoted NPC cell proliferation in vitro. In vivo, downregulation of the P4HA1/HMGCS1 axis inhibited the growth of NPC cell xenografts and enhanced the inhibitory effect of erastin on tumor growth. Extracellular matrix (ECM) detachment is an important trigger for ferroptosis. We found that the P4HA1/HMGCS1 axis promoted the ferroptosis resistance and survival of ECM-detached NPC cells. In vivo, downregulation of the P4HA1/HMGCS1 axis inhibited the lung colonization of NPC cells and enhanced the inhibitory effect of erastin on NPC lung metastasis. Moreover, the high expression of P4HA1 predicted a poor prognosis and served as a potential independent prognostic factor in patients with NPC. In conclusion, P4HA1 is a novel molecular marker of NPC ferroptosis resistance and a poor prognosis, and the P4HA1/HMGCS1 axis provides a new target for the treatment of NPC progression.
Collapse
Affiliation(s)
- Rui Zhou
- The Third Affiliated Hospital of Southern Medical University, Department of General Surgery, Guangzhou, China
| | - Lin Qiu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China; Guangzhou Medical University, Guangzhou Women and Children's Medical Center, Department of Hematology and Oncology, Guangzhou, China
| | - Ling Zhou
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Rong Geng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China; Foshan Women and Children Hospital Affiliated to Southern Medical University, Departments of Obstetrics and Gynecology, Foshan, China
| | - Shiping Yang
- Hainan Affiliated Hospital of Hainan Medical University, Department of Radiation Oncology, Haikou, China
| | - Jiangxue Wu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China.
| |
Collapse
|
21
|
Frye WJE, Huff LM, Dalmasy JMG, Salazar P, Carter RM, Gensler RT, Esposito D, Robey RW, Ambudkar SV, Gottesman MM. The Multidrug Resistance Transporter P-glycoprotein Confers Resistance to Ferroptosis Inducers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.23.529736. [PMID: 36945397 PMCID: PMC10028811 DOI: 10.1101/2023.02.23.529736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Ferroptosis is a form of cell death caused by direct or indirect inhibition of glutathione peroxidase 4 that leads to lethal lipid peroxidation. Several small molecule ferroptosis inducers (FINs) have been reported, yet little information is available regarding resistance mechanisms, particularly their interaction with the ATP-binding cassette (ABC) transporters P-glycoprotein (P-gp, ABCB1) and ABCG2. Given the role that ABC transporters play in absorption, distribution, and excretion of many drugs, characterizing these interactions could provide information regarding oral bioavailability and brain penetration and may predict drug-drug interactions. Using ferroptosis-sensitive A673 cells transfected to express P-gp or ABCG2, we found that P-gp overexpression was able to confer resistance to FIN56 and the erastin derivatives imidazole ketone erastin and piperazine erastin. Results were confirmed with OVCAR8-derived NCI/ADR-RES cells that overexpress P-gp, where the P-gp inhibitor valspodar completely inhibited resistance to the FINs. P-gp-mediated resistance to imidazole ketone erastin and piperazine erastin was also reversed in UO-31 renal cancer cells by CRISPR-mediated knockout of ABCB1. At a concentration of 10 μM, the FINs ML-162, GPX inhibitor 26a, and PACMA31 were able to increase intracellular rhodamine 123 fluorescence over 10-fold in P-gp-expressing MDR-19 cells and GPX inhibitor 26a was able to increase intracellular purpurin-18 fluorescence over 4-fold in ABCG2-expressing R-5 cells. Expression of P-gp may reduce the efficacy of these FINs in cancers that express the transporter and may prevent access to sanctuary sites such as the brain. The ability of some FINs to inhibit P-gp and ABCG2 suggests potential drug-drug interactions.
Collapse
Affiliation(s)
- William J E Frye
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Lyn M Huff
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - José M González Dalmasy
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Paula Salazar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Rachel M Carter
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Ryan T Gensler
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Dominic Esposito
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc, Frederick, MD
| | - Robert W Robey
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Michael M Gottesman
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
22
|
Mouawad R, Neamati N. Inhibition of Protein Disulfide Isomerase (PDIA1) Leads to Proteasome-Mediated Degradation of Ubiquitin-like PHD and RING Finger Domain-Containing Protein 1 (UHRF1) and Increased Sensitivity of Glioblastoma Cells to Topoisomerase II Inhibitors. ACS Pharmacol Transl Sci 2022; 6:100-114. [PMID: 36654750 PMCID: PMC9841782 DOI: 10.1021/acsptsci.2c00186] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Indexed: 12/12/2022]
Abstract
Glioblastoma (GBM) is the most aggressive brain tumor, and the prognosis remains poor with current available treatments. PDIA1 is considered a promising therapeutic target in GBM. In this study, we demonstrate that targeting PDIA1 results in increased GBM cell death by topoisomerase II (Top-II) inhibitors resulting in proteasome-mediated degradation of the oncogenic protein UHRF1. Combination of the PDIA1 inhibitor, bepristat-2a, produces strong synergy with doxorubicin, etoposide, and mitoxantrone in GBM and other cancer cell lines. Our bioinformatics analysis of multiple datasets revealed downregulation of UHRF1, upon PDIA1 inhibition. In addition, PDIA1 inhibition results in proteasome-mediated degradation of UHRF1 protein. Interestingly, treatment of GBM cells with bepristat-2a results in increased apoptosis and resistance to ferroptosis. Our findings emphasize the importance of PDIA1 as a therapeutic target in GBM and present a promising new therapeutic approach using Top-II inhibitors for GBM treatment.
Collapse
|
23
|
Zhang D, Li Y, Du C, Sang L, Liu L, Li Y, Wang F, Fan W, Tang P, Zhang S, Chen D, Wang Y, Wang X, Xie X, Jiang Z, Song Y, Guo R. Evidence of pyroptosis and ferroptosis extensively involved in autoimmune diseases at the single-cell transcriptome level. J Transl Med 2022; 20:363. [PMID: 35962439 PMCID: PMC9373312 DOI: 10.1186/s12967-022-03566-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/01/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Approximately 8-9% of the world's population is affected by autoimmune diseases, and yet the mechanism of autoimmunity trigger is largely understudied. Two unique cell death modalities, ferroptosis and pyroptosis, provide a new perspective on the mechanisms leading to autoimmune diseases, and development of new treatment strategies. METHODS Using scRNA-seq datasets, the aberrant trend of ferroptosis and pyroptosis-related genes were analyzed in several representative autoimmune diseases (psoriasis, atopic dermatitis, vitiligo, multiple sclerosis, systemic sclerosis-associated interstitial lung disease, Crohn's disease, and experimental autoimmune orchitis). Cell line models were also assessed using bulk RNA-seq and qPCR. RESULTS A substantial difference was observed between normal and autoimmune disease samples involving ferroptosis and pyroptosis. In the present study, ferroptosis and pyroptosis showed an imbalance in different keratinocyte lineages of psoriatic skinin addition to a unique pyroptosis-sensitive keratinocyte subset in atopic dermatitis (AD) skin. The results also revealed that pyroptosis and ferroptosis are involved in epidermal melanocyte destruction in vitiligo. Aberrant ferroptosis has been detected in multiple sclerosis, systemic sclerosis-associated interstitial lung disease, Crohn's disease, and autoimmune orchitis. Cell line models adopted in the study also identified pro-inflammatory factors that can drive changes in ferroptosis and pyroptosis. CONCLUSION These results provide a unique perspective on the involvement of ferroptosis and pyroptosis in the pathological process of autoimmune diseases at the scRNA-seq level. IFN-γ is a critical inducer of pyroptosis sensitivity, and has been identified in two cell line models.
Collapse
Affiliation(s)
- Danfeng Zhang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yadan Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Academy of Medical Science, Henan Medical College of Zhengzhou University, Zhengzhou, Henan, China
- Laboratory Animal Center, School of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Chunyan Du
- Laboratory Animal Center, School of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Lina Sang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Liu Liu
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yingmei Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Fang Wang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wenjuan Fan
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ping Tang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Sidong Zhang
- Department of Pediatric Hematology and Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dandan Chen
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yanmei Wang
- Department of Hematology, Zhengzhou People's Hospital, Zhengzhou, Henan, China
| | - Xiaoyi Wang
- Department of Pediatric Hematology and Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinsheng Xie
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Zhongxing Jiang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Yongping Song
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Rongqun Guo
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- Academy of Medical Science, Henan Medical College of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
24
|
Guan G, Zhang C, Liu H, Wang Y, Dong Z, Lu C, Nan B, Yue R, Yin X, Zhang X, Song G. Ternary Alloy PtWMn as a Mn Nanoreservoir for High‐Field MRI Monitoring and Highly Selective Ferroptosis Therapy. Angew Chem Int Ed Engl 2022; 61:e202117229. [DOI: 10.1002/anie.202117229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Indexed: 11/12/2022]
Affiliation(s)
- Guoqiang Guan
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Cheng Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Huiyi Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Youjuan Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Zhe Dong
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Chang Lu
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Bin Nan
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Renye Yue
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Xia Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Xiao‐Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Guosheng Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| |
Collapse
|
25
|
Feng B, Wang K, Wang Z, Niu H, Wang G, Chen Y, Zhang H. Mitochondrial-Targeted Ratiometric Fluorescent Probe to Monitor ClO - Induced by Ferroptosis in Living Cells. Front Chem 2022; 10:909670. [PMID: 35755249 PMCID: PMC9218690 DOI: 10.3389/fchem.2022.909670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/02/2022] [Indexed: 11/24/2022] Open
Abstract
Ferroptosis is a type of iron-dependent programmed cell death. Once such kind of death occurs, an individual cell would undergo a series of changes related to reactive oxygen species (ROS) in mitochondria. A mitochondrial-targeted ratiometric fluorescent probe (MBI-OMe) was developed to specifically detect ferroptosis-induced ClO−, whose recognition group is p-methoxyphenol, and the mitochondrial-targeted group is benzimidazole. The fluorescence of MBI-OMe was first quenched by 30 μM of Fe3+, and then MBI-OMe appeared as a ratiometric signal at 477 nm and 392 nm in response to ferroptosis-induced ClO− in living cells. MBI-OMe was successfully used to evaluate changes in ClO− induced by ferroptosis.
Collapse
Affiliation(s)
- Beidou Feng
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China
| | - Kui Wang
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China
| | - Zhe Wang
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China
| | - Huiyu Niu
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China
| | - Ge Wang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Yuehua Chen
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China
| | - Hua Zhang
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China
| |
Collapse
|
26
|
Guan G, Zhang C, Liu H, Wang Y, Dong Z, Lu C, Nan B, Yue R, Yin X, Zhang X, Song G. Ternary Alloy PtWMn as a Mn Nanoreservoir for High‐Field MRI Monitoring and Highly Selective Ferroptosis Therapy. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Guoqiang Guan
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Cheng Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Huiyi Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Youjuan Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Zhe Dong
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Chang Lu
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Bin Nan
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Renye Yue
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Xia Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Xiao‐Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Guosheng Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
| |
Collapse
|
27
|
Siddiqui G, Giannangelo C, De Paoli A, Schuh AK, Heimsch KC, Anderson D, Brown TG, MacRaild CA, Wu J, Wang X, Dong Y, Vennerstrom JL, Becker K, Creek DJ. Peroxide Antimalarial Drugs Target Redox Homeostasis in Plasmodium falciparum Infected Red Blood Cells. ACS Infect Dis 2022; 8:210-226. [PMID: 34985858 PMCID: PMC8762662 DOI: 10.1021/acsinfecdis.1c00550] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
Plasmodium
falciparum causes the
most lethal form of malaria. Peroxide antimalarials based on artemisinin
underpin the frontline treatments for malaria, but artemisinin resistance
is rapidly spreading. Synthetic peroxide antimalarials, known as ozonides,
are in clinical development and offer a potential alternative. Here,
we used chemoproteomics to investigate the protein alkylation targets
of artemisinin and ozonide probes, including an analogue of the ozonide
clinical candidate, artefenomel. We greatly expanded the list of proteins
alkylated by peroxide antimalarials and identified significant enrichment
of redox-related proteins for both artemisinins and ozonides. Disrupted
redox homeostasis was confirmed by dynamic live imaging of the glutathione
redox potential using a genetically encoded redox-sensitive fluorescence-based
biosensor. Targeted liquid chromatography-mass spectrometry (LC-MS)-based
thiol metabolomics also confirmed changes in cellular thiol levels.
This work shows that peroxide antimalarials disproportionately alkylate
proteins involved in redox homeostasis and that disrupted redox processes
are involved in the mechanism of action of these important antimalarials.
Collapse
Affiliation(s)
- Ghizal Siddiqui
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Carlo Giannangelo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Amanda De Paoli
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Anna Katharina Schuh
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Kim C. Heimsch
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Dovile Anderson
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Timothy G. Brown
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Christopher A. MacRaild
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Jianbo Wu
- College of Pharmacy, University of Nebraska Medical Center, 986125 Nebraska Medical Center, Omaha, Nebraska 68198-6125, United States
| | - Xiaofang Wang
- College of Pharmacy, University of Nebraska Medical Center, 986125 Nebraska Medical Center, Omaha, Nebraska 68198-6125, United States
| | - Yuxiang Dong
- College of Pharmacy, University of Nebraska Medical Center, 986125 Nebraska Medical Center, Omaha, Nebraska 68198-6125, United States
| | - Jonathan L. Vennerstrom
- College of Pharmacy, University of Nebraska Medical Center, 986125 Nebraska Medical Center, Omaha, Nebraska 68198-6125, United States
| | - Katja Becker
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Darren J. Creek
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| |
Collapse
|
28
|
Wang X, Zhao Y, Hu Y, Fei Y, Zhao Y, Xue C, Cai K, Li M, Luo Z. Activatable Biomineralized Nanoplatform Remodels the Intracellular Environment of Multidrug-Resistant Tumors for Enhanced Ferroptosis/Apoptosis Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102269. [PMID: 34554637 DOI: 10.1002/smll.202102269] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/22/2021] [Indexed: 06/13/2023]
Abstract
Ferroptosis is a new form of regulated cell death with significant therapeutic prospect, but its application against drug-resistant tumor cells is challenging due to their ability to effuse antitumor agents via p-glycoprotein (P-gp) and anti-lipid peroxidation alkaline intracellular environment. Herein, an amorphous calcium phosphate (ACP)-based nanoplatform is reported for the targeted combinational ferroptosis/apoptosis therapy of drug resistant tumor cells by blocking the MCT4-mediated efflux of lactic acid (LA). The nanoplatform is fabricated through the biomineralization of doxorubicin-Fe2+ (DOX-Fe2+ ) complex and MCT4-inhibiting siRNAs (siMCT4) and can release them to the tumor cytoplasm after the hydrolysis of ACP and dissociation of DOX-Fe2+ in the acidic lysosomes. siMCT4 can inhibit MCT4 expression and force the glycolysis-generated lactic acid (LA) to remain in cytoplasm for rapid acidification. The nanoplatform-induced remodeling of the tumor intracellular environment can not only interrupt the ATP supply required for P-gp-dependent DOX effusion to enhance H2 O2 production, but also increase the overall catalytic efficiency of Fe2+ for the initiation and propagation of lipid peroxidation. These features could act in concert to enhance the efficacy of the combinational ferroptosis/chemotherapy and prolong the survival of tumor-bearing mice. This study may provide new avenues for the treatment of multidrug-resistant tumors.
Collapse
Affiliation(s)
- Xuan Wang
- School of Life Sciences, Chongqing University, Huxi, G75 Lanhai, Chongqing, 400052, China
| | - Yuanyuan Zhao
- School of Life Sciences, Chongqing University, Huxi, G75 Lanhai, Chongqing, 400052, China
| | - Yan Hu
- College of Bioengineering, Chongqing University, Shazheng Road, No. 174, Chongqing, 400044, China
| | - Yang Fei
- School of Life Sciences, Chongqing University, Huxi, G75 Lanhai, Chongqing, 400052, China
| | - Youbo Zhao
- School of Life Sciences, Chongqing University, Huxi, G75 Lanhai, Chongqing, 400052, China
| | - Chencheng Xue
- School of Life Sciences, Chongqing University, Huxi, G75 Lanhai, Chongqing, 400052, China
| | - Kaiyong Cai
- College of Bioengineering, Chongqing University, Shazheng Road, No. 174, Chongqing, 400044, China
| | - Menghuan Li
- School of Life Sciences, Chongqing University, Huxi, G75 Lanhai, Chongqing, 400052, China
| | - Zhong Luo
- School of Life Sciences, Chongqing University, Huxi, G75 Lanhai, Chongqing, 400052, China
| |
Collapse
|
29
|
Zhang Y, Xi K, Fu X, Sun H, Wang H, Yu D, Li Z, Ma Y, Liu X, Huang B, Wang J, Li G, Cui J, Li X, Ni S. Versatile metal-phenolic network nanoparticles for multitargeted combination therapy and magnetic resonance tracing in glioblastoma. Biomaterials 2021; 278:121163. [PMID: 34601197 DOI: 10.1016/j.biomaterials.2021.121163] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 10/20/2022]
Abstract
Glioblastoma multiforme (GBM) is a common malignancy of the central nervous system, but conventional treatments yield unsatisfactory results. Although innovative therapeutic approaches have been developed, they prolong survival by only approximately 5 months. The heterogeneity of GBM renders growth inhibition with a single drug difficult, and exploring combination approaches with multiple targets for the comprehensive treatment of GBM is expected to overcome this limitation. In this study, we designed a biocompatible cRGD/Pt + DOX@GFNPs (RPDGs) nanoformulation to disrupt redox homeostasis in GBM cells and promote the simultaneous occurrence of efficient apoptosis and ferroptosis. Taking advantage of the highly stable Fenton reaction catalytic activity of gallic acid (GA)/Fe2+ nanoparticles in physiological environments, the ability of Pt (IV) to deplete glutathione (GSH) and increase reactive oxygen species (ROS) levels, and the efficient photothermal conversion efficiency of GA/Fe2+ nanoparticles, our synthesized multifunctional and multitargeted RPDGs significantly increased intracellular ROS levels and thus induced ferroptosis. Furthermore, the RPDGs displayed superior photothermal responsiveness and magnetic resonance imaging (MRI) capabilities. These results indicate that RPDGs can not only directly inhibit the growth of tumors but also effectively improve the efficient translocation of conventional chemotherapeutic drugs across the blood-brain barrier, thereby providing a new approach for the comprehensive treatment of GBM.
Collapse
Affiliation(s)
- Yulin Zhang
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Kaiyan Xi
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Xiao Fu
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Haifeng Sun
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Hong Wang
- Radiology Department, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Dexin Yu
- Radiology Department, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Zhiwei Li
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yuan Ma
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Xinjie Liu
- Department of Pediatrics, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, China
| | - Bin Huang
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Jian Wang
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Gang Li
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Jiwei Cui
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Xingang Li
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Shilei Ni
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
30
|
Wang J, Song W, Wang X, Xie Z, Zhang W, Jiang W, Liu S, Hou J, Zhong Y, Xu J, Ran H, Guo D. Tumor-self-targeted "thermoferroptosis-sensitization" magnetic nanodroplets for multimodal imaging-guided tumor-specific therapy. Biomaterials 2021; 277:121100. [PMID: 34492584 DOI: 10.1016/j.biomaterials.2021.121100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/25/2021] [Accepted: 08/25/2021] [Indexed: 01/08/2023]
Abstract
Ferroptosis-based nanomedicine has drawn increasing attention in antitumor therapy because of the advantages of this unconventional mode of apoptosis, but the difficulties of delivery to the tumor site and surface-to-core penetration after arrival seriously hinder further clinical transformation and application. Herein, we propose an unprecedented strategy of injecting magnetic nanodroplets (MNDs) to solve these two longstanding problems. MNDs are nanocarriers that can carry multifunctional drugs and imaging materials. MNDs can effectively accumulate in the tumor site by active tumor targeting (multifunctional drugs) and passive tumor targeting (enhanced permeability and retention effect), allowing diffusion of the MNDs from the surface to the core through mild-temperature magnetic fluid hyperthermia (MHT) under multimodal imaging guidance. Finally, the ferroptosis pathway is activated deep within the tumor site through the drug release. This approach was inspired by the ability of mild-temperature MHT to allow MNDs to quickly pass through the blood vessel-tumor barrier and deeply penetrate the tumor tissue from the surface to the core to amplify the antitumor efficacy of ferroptosis. This strategy is termed as "thermoferroptosis sensitization". Importantly, this behavior can be performed under the guidance of multimodal imaging, making the design of MNDs for cancer therapy safer and more reasonable.
Collapse
Affiliation(s)
- Junrui Wang
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, No. 74 Linjiang Rd, Yuzhong District, Chongqing, 400010, PR China; Chongqing Key Laboratory of Ultrasound Molecular Imaging & Department of Ultrasound, Second Affiliated Hospital of Chongqing Medical University, No. 74 Linjiang Rd, Yuzhong District, Chongqing, 400010, PR China
| | - Weixiang Song
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, No. 74 Linjiang Rd, Yuzhong District, Chongqing, 400010, PR China
| | - Xingyue Wang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & Department of Ultrasound, Second Affiliated Hospital of Chongqing Medical University, No. 74 Linjiang Rd, Yuzhong District, Chongqing, 400010, PR China
| | - Zhuoyan Xie
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & Department of Ultrasound, Second Affiliated Hospital of Chongqing Medical University, No. 74 Linjiang Rd, Yuzhong District, Chongqing, 400010, PR China
| | - Wenli Zhang
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, No. 74 Linjiang Rd, Yuzhong District, Chongqing, 400010, PR China
| | - Weixi Jiang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & Department of Ultrasound, Second Affiliated Hospital of Chongqing Medical University, No. 74 Linjiang Rd, Yuzhong District, Chongqing, 400010, PR China
| | - Shuling Liu
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, No. 74 Linjiang Rd, Yuzhong District, Chongqing, 400010, PR China; Chongqing Key Laboratory of Ultrasound Molecular Imaging & Department of Ultrasound, Second Affiliated Hospital of Chongqing Medical University, No. 74 Linjiang Rd, Yuzhong District, Chongqing, 400010, PR China
| | - Jingxin Hou
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, No. 74 Linjiang Rd, Yuzhong District, Chongqing, 400010, PR China; Chongqing Key Laboratory of Ultrasound Molecular Imaging & Department of Ultrasound, Second Affiliated Hospital of Chongqing Medical University, No. 74 Linjiang Rd, Yuzhong District, Chongqing, 400010, PR China
| | - Yixin Zhong
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, No. 74 Linjiang Rd, Yuzhong District, Chongqing, 400010, PR China; Chongqing Key Laboratory of Ultrasound Molecular Imaging & Department of Ultrasound, Second Affiliated Hospital of Chongqing Medical University, No. 74 Linjiang Rd, Yuzhong District, Chongqing, 400010, PR China
| | - Jie Xu
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, No. 74 Linjiang Rd, Yuzhong District, Chongqing, 400010, PR China
| | - Haitao Ran
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & Department of Ultrasound, Second Affiliated Hospital of Chongqing Medical University, No. 74 Linjiang Rd, Yuzhong District, Chongqing, 400010, PR China
| | - Dajing Guo
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, No. 74 Linjiang Rd, Yuzhong District, Chongqing, 400010, PR China.
| |
Collapse
|
31
|
Xu W, Wu P, Li X, Liu S, Feng L, Xiong H. Two birds with one stone: A highly sensitive near-infrared BODIPY-based fluorescent probe for the simultaneous detection of Fe 2+ and H + in vivo. Talanta 2021; 233:122601. [PMID: 34215089 DOI: 10.1016/j.talanta.2021.122601] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/03/2021] [Accepted: 06/07/2021] [Indexed: 01/20/2023]
Abstract
Ferrous ion (Fe2+) plays an essential role in many physiological and pathological processes, and its cellular metabolism is closely related to acidic pH. However, the lack of multifunctional Fe2+ probes has hindered the further study of Fe2+ in vivo. Herein, we report a dual-responsive near-infrared (NIR) fluorescent probe BODIPY-Fe for the simultaneous of Fe2+ and H+ in vivo by harnessing the N-oxide strategy and photoinduced electron transfer (PeT) mechanism. BODIPY-Fe exhibited NIR fluorescence at 671 nm, rapid response to Fe2+ within 90 s, and high sensitivity of low LOD of 292 nM towards Fe2+. Moreover, BODIPY-Fe could sensitively and selectively detect Fe2+ and H+ in the lysosomes of living cells simultaneously. Notably, BODIPY-Fe was able to noninvasively visualize Fe2+ and H+ in vivo, showing "ON-OFF-ON" NIR fluorescence signal changes. This work demonstrates that BODIPY-Fe has great potential to promote the simultaneous imaging of Fe2+ and H+ in biological systems.
Collapse
Affiliation(s)
- Weijia Xu
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Peng Wu
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiaoxin Li
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Senyao Liu
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Liya Feng
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Hu Xiong
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China.
| |
Collapse
|
32
|
Iuchi K, Takai T, Hisatomi H. Cell Death via Lipid Peroxidation and Protein Aggregation Diseases. BIOLOGY 2021; 10:399. [PMID: 34064409 PMCID: PMC8147787 DOI: 10.3390/biology10050399] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/13/2021] [Accepted: 04/29/2021] [Indexed: 12/16/2022]
Abstract
Lipid peroxidation of cellular membranes is a complicated cellular event, and it is both the cause and result of various diseases, such as ischemia-reperfusion injury, neurodegenerative diseases, and atherosclerosis. Lipid peroxidation causes non-apoptotic cell death, which is associated with cell fate determination: survival or cell death. During the radical chain reaction of lipid peroxidation, various oxidized lipid products accumulate in cells, followed by organelle dysfunction and the induction of non-apoptotic cell death. Highly reactive oxidized products from unsaturated fatty acids are detected under pathological conditions. Pathological protein aggregation is the general cause of these diseases. The cellular response to misfolded proteins is well-known as the unfolded protein response (UPR) and it is partially concomitant with the response to lipid peroxidation. Moreover, the association between protein aggregation and non-apoptotic cell death by lipid peroxidation is attracting attention. The link between lipid peroxidation and protein aggregation is a matter of concern in biomedical fields. Here, we focus on lethal protein aggregation in non-apoptotic cell death via lipid peroxidation. We reviewed the roles of protein aggregation in the initiation and execution of non-apoptotic cell death. We also considered the relationship between protein aggregation and oxidized lipid production. We provide an overview of non-apoptotic cell death with a focus on lipid peroxidation for therapeutic targeting during protein aggregation diseases.
Collapse
Affiliation(s)
- Katsuya Iuchi
- Department of Materials and Life Science, Faculty of Science and Technology, Seikei University, 3-3-1 Kichijojikitamachi, Musashino-shi, Tokyo 180-8633, Japan; (T.T.); (H.H.)
| | | | | |
Collapse
|
33
|
O-GlcNAcylation enhances sensitivity to RSL3-induced ferroptosis via the YAP/TFRC pathway in liver cancer. Cell Death Discov 2021; 7:83. [PMID: 33863873 PMCID: PMC8052337 DOI: 10.1038/s41420-021-00468-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/14/2021] [Accepted: 03/25/2021] [Indexed: 01/06/2023] Open
Abstract
Ferroptosis is a form of regulated cell death characterized by iron-dependent accumulation of lipid hydroperoxides to lethal levels. YAP has been reported to play a pivotal role in controlling ferroptotic death, and the expression of YAP is enhanced and stabilized by O-GlcNAcylation. However, whether O-GlcNAcylation can increase the sensitivity of hepatocellular carcinoma (HCC) cells to ferroptosis remains unknown. In the present study, we found that O-GlcNAcylation increased the sensitivity of HCC cells to ferroptosis via YAP. Moreover, YAP increased the iron concentration in HCC cells through transcriptional elevation of TFRC via its O-GlcNAcylation. With YAP knockdown or YAP-T241 mutation, the increased sensitivity to ferroptosis induced by O-GlcNAcylation was abolished. In addition, the xenograft assay confirmed that O-GlcNAcylation increased ferroptosis sensitivity via TFRC in vivo. In summary, we are the first to find that O-GlcNAcylation can increase ferroptosis sensitivity in HCC cells via YAP/TFRC. Our work will provide a new basis for clinical therapeutic strategies for HCC patients.
Collapse
|
34
|
Chen J, Gonciarz RL, Renslo AR. Expanded scope of Griesbaum co-ozonolysis for the preparation of structurally diverse sensors of ferrous iron. RSC Adv 2021; 11:34338-34342. [PMID: 35497286 PMCID: PMC9042324 DOI: 10.1039/d1ra05932g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/19/2021] [Accepted: 10/11/2021] [Indexed: 11/21/2022] Open
Abstract
Sterically shielded 1,2,4-trioxolanes prepared by Griesbaum co-ozonolysis have been utilized as chemical sensors of ferrous iron in several recently described chemical probes of labile iron. Here we report optimized conditions for co-ozonolysis that proceed efficiently and with high diastereoselectivity across an expanded range of substrates, and should enable a new generation of labile iron probes with altered reaction kinetics and physicochemical properties. Improved, low temperature conditions for Griesbaum co-ozonolysis enables the preparation of structurally diverse 1,2,4-trioxolane-based sensors of ferrous iron for caging of reporters and therapeutic payloads.![]()
Collapse
Affiliation(s)
- Jun Chen
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, 94143, USA
| | - Ryan L. Gonciarz
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, 94143, USA
| | - Adam R. Renslo
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, 94143, USA
| |
Collapse
|