1
|
Zhang X, Ni W, Yue X, Wang Z, Zhang Z, Wang K, Dai W, Fu X. Synergistic effect between sulfur vacancies and S-scheme heterojunctions in WO 3/V S-Zn 3In 2S 6 for enhanced photocatalytic CO 2 reduction in H 2O vapor. J Colloid Interface Sci 2025; 678:233-245. [PMID: 39243723 DOI: 10.1016/j.jcis.2024.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/25/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
Converting CO2 into CO, CH4, and other hydrocarbons using solar energy presents a viable approach for addressing energy shortages. In this study, photocatalysts with S-deficient WO3/Zn3In2S6 (WO3/VS-ZIS) S-scheme heterojunctions have been successfully synthesized. Under UV-vis light irradiation, 20 %WO3/VS-ZIS demonstrated significantly improved CO2 reduction activity and CH4 selectivity. Detailed characterization and density functional theory (DFT) calculations reveal that the enhanced performance is due to the synergistic optimization of the S-scheme heterojunction and sulfur vacancies (VS) for CO2 reduction. The presence of VS aids in the adsorption and activation of CO2 and enhances the separation of charge carriers. The 2D/2D S-scheme heterostructure assembled with WO3 nanosheets not only accelerates the migration and separation of photoexcited charge carriers but also improves the adsorption of H2O and the formation of VS, thereby increasing the adsorption and activation of CO2 and facilitating the protonation of CO* to produce CH4. This study clarifies the synergistic effect of VS and S-scheme heterostructures in improving photocatalytic performance, offering valuable insights into the photoactivation process of CO2 at VS in S-scheme heterojunctions.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Key Laboratory of Eco-materials Advanced Technology, Fuzhou University, Fuzhou 350108, PR China
| | - Wenkang Ni
- Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Key Laboratory of Eco-materials Advanced Technology, Fuzhou University, Fuzhou 350108, PR China
| | - Xuanyu Yue
- Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Key Laboratory of Eco-materials Advanced Technology, Fuzhou University, Fuzhou 350108, PR China
| | - Zhijie Wang
- Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Key Laboratory of Eco-materials Advanced Technology, Fuzhou University, Fuzhou 350108, PR China
| | - Zizhong Zhang
- Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Key Laboratory of Eco-materials Advanced Technology, Fuzhou University, Fuzhou 350108, PR China; Qingyuan Innovation Laboratory, Quanzhou 362801, PR China
| | - Ke Wang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Wenxin Dai
- Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Key Laboratory of Eco-materials Advanced Technology, Fuzhou University, Fuzhou 350108, PR China; Qingyuan Innovation Laboratory, Quanzhou 362801, PR China.
| | - Xianzhi Fu
- Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Key Laboratory of Eco-materials Advanced Technology, Fuzhou University, Fuzhou 350108, PR China.
| |
Collapse
|
2
|
Xiong H, Ji X, Mao K, Dong Y, Cai L, Chen A, Chen Y, Hu C, Ma J, Wan J, Long R, Song L, Xiong Y. Light-Driven Reverse Water Gas Shift Reaction with 1000-H Stability on High-Entropy Alloy Catalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409689. [PMID: 39279322 DOI: 10.1002/adma.202409689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/22/2024] [Indexed: 09/18/2024]
Abstract
Highly stable and active catalysts are of significant importance and a longstanding challenge for a number of industrial chemical transformations. Here, motivated by the principle of the high entropy-stabilized structure, high-entropy alloy-loaded porous TiO2 as an efficient and sintering-resistant catalyst for the light-driven reverse water gas‒shift reaction without external heating is synthesized. The optimized CoNiCuPdRu/TiO2 catalyst exhibits a long-term stability of 1000 h (1.23 mol gmetal -1 h-1 CO production rate, >99% high selectivity). In situ characterizations confirm that the slow diffusion effect of high-entropy alloys endows the catalyst with excellent structural stability. The CO adsorption measurements and theoretical calculations consolidate that the hydrogen surface coverage weakens CO adsorption on the catalyst surface. Two major problems of catalyst deactivation - sintering and poisoning, are handled in one case, which synergistically enable unparalleled stability. This work provides new guidance for the rational design of ultradurable harsh-condition operation catalysts for industrial catalysis.
Collapse
Affiliation(s)
- Hailong Xiong
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovative Center of Chemistry for Energy Materials (iChEM), Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Anhui Engineering Research Center of Carbon Neutrality, The Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241002, China
| | - Xiaomin Ji
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovative Center of Chemistry for Energy Materials (iChEM), Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Keke Mao
- School of Energy and Environment Science, Anhui University of Technology, Maanshan, Anhui, 243032, China
| | - Yueyue Dong
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovative Center of Chemistry for Energy Materials (iChEM), Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Lihua Cai
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovative Center of Chemistry for Energy Materials (iChEM), Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Aobo Chen
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovative Center of Chemistry for Energy Materials (iChEM), Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yihong Chen
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovative Center of Chemistry for Energy Materials (iChEM), Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Canyu Hu
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovative Center of Chemistry for Energy Materials (iChEM), Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jun Ma
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovative Center of Chemistry for Energy Materials (iChEM), Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jun Wan
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovative Center of Chemistry for Energy Materials (iChEM), Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Ran Long
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovative Center of Chemistry for Energy Materials (iChEM), Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Li Song
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovative Center of Chemistry for Energy Materials (iChEM), Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yujie Xiong
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovative Center of Chemistry for Energy Materials (iChEM), Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Anhui Engineering Research Center of Carbon Neutrality, The Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241002, China
| |
Collapse
|
3
|
Leybo D, Etim UJ, Monai M, Bare SR, Zhong Z, Vogt C. Metal-support interactions in metal oxide-supported atomic, cluster, and nanoparticle catalysis. Chem Soc Rev 2024; 53:10450-10490. [PMID: 39356078 PMCID: PMC11445804 DOI: 10.1039/d4cs00527a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Indexed: 10/03/2024]
Abstract
Supported metal catalysts are essential to a plethora of processes in the chemical industry. The overall performance of these catalysts depends strongly on the interaction of adsorbates at the atomic level, which can be manipulated and controlled by the different constituents of the active material (i.e., support and active metal). The description of catalyst activity and the relationship between active constituent and the support, or metal-support interactions (MSI), in heterogeneous (thermo)catalysts is a complex phenomenon with multivariate (dependent and independent) contributions that are difficult to disentangle, both experimentally and theoretically. So-called "strong metal-support interactions" have been reported for several decades and summarized in excellent review articles. However, in recent years, there has been a proliferation of new findings related to atomically dispersed metal sites, metal oxide defects, and, for example, the generation and evolution of MSI under reaction conditions, which has led to the designation of (sub)classifications of MSI deserving to be critically and systematically evaluated. These include dynamic restructuring under alternating redox and reaction conditions, adsorbate-induced MSI, and evidence of strong interactions in oxide-supported metal oxide catalysts. Here, we review recent literature on MSI in oxide-supported metal particles to provide an up-to-date understanding of the underlying physicochemical principles that dominate the observed effects in supported metal atomic, cluster, and nanoparticle catalysts. Critical evaluation of different subclassifications of MSI is provided, along with discussions on the formation mechanisms, theoretical and characterization advances, and tuning strategies to manipulate catalytic reaction performance. We also provide a perspective on the future of the field, and we discuss the analysis of different MSI effects on catalysis quantitatively.
Collapse
Affiliation(s)
- Denis Leybo
- Schulich Faculty of Chemistry, and Resnick Sustainability Center for Catalysis, Technion, Israel Institute of Technology, Technion City, Haifa 32000, Israel.
| | - Ubong J Etim
- Department of Chemical Engineering and Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion (MATEC), Guangdong Technion Israel Institute of Technology (GTIIT), 241 Daxue Road, Shantou, 515063, China
| | - Matteo Monai
- Inorganic Chemistry and Catalysis group, Institute for Sustainable and Circular Chemistry, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Simon R Bare
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Ziyi Zhong
- Department of Chemical Engineering and Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion (MATEC), Guangdong Technion Israel Institute of Technology (GTIIT), 241 Daxue Road, Shantou, 515063, China
| | - Charlotte Vogt
- Schulich Faculty of Chemistry, and Resnick Sustainability Center for Catalysis, Technion, Israel Institute of Technology, Technion City, Haifa 32000, Israel.
| |
Collapse
|
4
|
Araújo TP, Mitchell S, Pérez-Ramírez J. Design Principles of Catalytic Materials for CO 2 Hydrogenation to Methanol. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2409322. [PMID: 39300859 DOI: 10.1002/adma.202409322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/02/2024] [Indexed: 09/22/2024]
Abstract
Heterogeneous catalysts are essential for thermocatalytic CO2 hydrogenation to methanol, a key route for sustainable production of this vital platform chemical and energy carrier. The primary catalyst families studied include copper-based, indium oxide-based, and mixed zinc-zirconium oxides-based materials. Despite significant progress in their design, research is often compartmentalized, lacking a holistic overview needed to surpass current performance limits. This perspective introduces generalized design principles for catalytic materials in CO2-to-methanol conversion, illustrating how complex architectures with improved functionality can be assembled from simple components (e.g., active phases, supports, and promoters). After reviewing basic concepts in CO2-based methanol synthesis, engineering principles are explored, building in complexity from single to binary and ternary systems. As active nanostructures are complex and strongly depend on their reaction environment, recent progress in operando characterization techniques and machine learning approaches is examined. Finally, common design rules centered around symbiotic interfaces integrating acid-base and redox functions and their role in performance optimization are identified, pinpointing important future directions in catalyst design for CO2 hydrogenation to methanol.
Collapse
Affiliation(s)
- Thaylan Pinheiro Araújo
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, Zurich, 8093, Switzerland
| | - Sharon Mitchell
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, Zurich, 8093, Switzerland
| | - Javier Pérez-Ramírez
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, Zurich, 8093, Switzerland
| |
Collapse
|
5
|
Singh R, Wang L, Huang J. In-Situ Characterization Techniques for Mechanism Studies of CO 2 Hydrogenation. Chempluschem 2024; 89:e202300511. [PMID: 38853143 DOI: 10.1002/cplu.202300511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/01/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
The paramount concerns of global warming, fossil fuel depletion, and energy crises have prompted the need of hydrocarbons productions via CO2 conversion. In order to achieve global carbon neutrality, much attention needs to be diverted towards CO2 management. Catalytic hydrogenation of CO2 is an exciting opportunity to curb the increasing CO2 and produce value-added products. However, the comprehensive understanding of CO2 hydrogenation is still a matter of discussion due to its complex reaction mechanism and involvement of various species. This review comprehensively discusses three processes: reverse water gas shift (RWGS) reaction, modified Fischer Tropsch synthesis (MFTS), and methanol-mediated route (MeOH) for CO2 hydrogenation to hydrocarbons. Along with analysing the reaction pathways, it is also very important to understand the real-time evolvement of catalytic process and reaction intermediates by employing in-situ characterization techniques under actual reaction conditions. Subsequently, in second part of this review, we provided a systematic analysis of advancements in in-situ techniques aimed to monitor the evolution of catalysts during CO2 reduction process. The section also highlights the key components of in-situ cells, their working principles, and applications in identifying reaction mechanisms for CO2 hydrogenation. Finally, by reviewing respective achievements in the field, we identify key gaps and present some future directions for CO2 hydrogenation and in-situ studies.
Collapse
Affiliation(s)
- Rasmeet Singh
- Laboratory for Catalysis Engineering, School of Chemical and Biomolecular Engineering, The University of Sydney, Camperdown, New South Wales, 2006, Australia
| | - Lizhuo Wang
- Laboratory for Catalysis Engineering, School of Chemical and Biomolecular Engineering, The University of Sydney, Camperdown, New South Wales, 2006, Australia
| | - Jun Huang
- Laboratory for Catalysis Engineering, School of Chemical and Biomolecular Engineering, The University of Sydney, Camperdown, New South Wales, 2006, Australia
| |
Collapse
|
6
|
Zhao H, Liu X, Zeng C, Liu W, Tan L. Thermochemical CO 2 Reduction to Methanol over Metal-Based Single-Atom Catalysts (SACs): Outlook and Challenges for Developments. J Am Chem Soc 2024; 146:23649-23662. [PMID: 39162361 DOI: 10.1021/jacs.4c08523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
The conversion of thermodynamically inert CO2 into methanol holds immense promise for addressing the pressing environmental and energy challenges of our time. This article offers a succinct overview of the development of single-atom catalysts (SACs) for thermochemical hydrogenation of CO2 to methanol, encompassing research advancements, advantages, potential hurdles, and other essential aspects related to these catalysts. Our aim of this work is to provide a deeper understanding of the intricacies of the catalytic structures of the single-atom sites and their unique structure-activity relationships in catalyzing the conversion of CO2 to methanol. We also present insights into the optimal design of SACs, drawing from our own research and those of fellow scientists. This research thrust is poised to contribute significantly to the development of next-generation SACs, which are crucial in advancing the sustainable production of methanol from CO2.
Collapse
Affiliation(s)
- Huibo Zhao
- Institute of Molecular Catalysis and In Situ/Operando Studies, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 637371, Singapore
| | - Xiaochen Liu
- Institute of Molecular Catalysis and In Situ/Operando Studies, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Chunyang Zeng
- Petroleum and Chemical Industry Federation, Beijing 100723, P. R. China
| | - Wen Liu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 637371, Singapore
| | - Li Tan
- Institute of Molecular Catalysis and In Situ/Operando Studies, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| |
Collapse
|
7
|
Cui W, Wang F, Wang X, Li Y, Wang X, Shi Y, Song S, Zhang H. Designing Dual-Site Catalysts for Selectively Converting CO 2 into Methanol. Angew Chem Int Ed Engl 2024; 63:e202407733. [PMID: 38735859 DOI: 10.1002/anie.202407733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/14/2024]
Abstract
The variability of CO2 hydrogenation reaction demands new potential strategies to regulate the fine structure of the catalysts for optimizing the reaction pathways. Herein, we report a dual-site strategy to boost the catalytic efficiency of CO2-to-methanol conversion. A new descriptor, τ, was initially established for screening the promising candidates with low-temperature activation capability of CO2, and sequentially a high-performance catalyst was fabricated centred with oxophilic Mo single atoms, who was further decorated with Pt nanoparticles. In CO2 hydrogenation, the obtained dual-site catalysts possess a remarkably-improved methanol generation rate (0.27 mmol gcat. -1 h-1). For comparison, the singe-site Mo and Pt-based catalysts can only produce ethanol and formate acid at a relatively low reaction rate (0.11 mmol gcat. -1 h-1 for ethanol and 0.034 mmol gcat. -1 h-1 for formate acid), respectively. Mechanism studies indicate that the introduction of Pt species could create an active hydrogen-rich environment, leading to the alterations of the adsorption configuration and conversion pathways of the *OCH2 intermediates on Mo sites. As a result, the catalytic selectivity was successfully switched.
Collapse
Affiliation(s)
- Wenjie Cui
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Fei Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Xiao Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yuou Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Xiaomei Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yi Shi
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Shuyan Song
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
8
|
An H, Mu X, Tan G, Su P, Liu L, Song N, Bai S, Yan CH, Tang Y. A Coordination-Derived Cerium-Based Amorphous-Crystalline Heterostructure with High Electrocatalytic Oxygen Evolution Activity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311505. [PMID: 38433398 DOI: 10.1002/smll.202311505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/23/2024] [Indexed: 03/05/2024]
Abstract
The rational design of heterogeneous catalysts is crucial for achieving optimal physicochemical properties and high electrochemical activity. However, the development of new amorphous-crystalline heterostructures is significantly more challenging than that of the existing crystalline-crystalline heterostructures. To overcome these issues, a coordination-assisted strategy that can help fabricate an amorphous NiO/crystalline NiCeOx (a-NiO/c-NiCeOx) heterostructure is reported herein. The coordination geometry of the organic ligands plays a pivotal role in permitting the formation of coordination polymers with high Ni contents. This consequently provides an opportunity for enabling the supersaturation of Ni in the NiCeOx structure during annealing, leading to the endogenous spillover of Ni from the depths of NiCeOx to its surface. The resulting heterostructure, featuring strongly coupled amorphous NiO and crystalline NiCeOx, exhibits harmonious interactions in addition to low overpotentials and high catalytic stability in the oxygen evolution reaction (OER). Theoretical calculations prove that the amorphous-crystalline interfaces facilitate charge transfer, which plays a critical role in regulating the local electron density of the Ni sites, thereby promoting the adsorption of oxygen-based intermediates on the Ni sites and lowering the dissociation-related energy barriers. Overall, this study underscores the potential of coordinating different metal ions at the molecular level to advance amorphous-crystalline heterostructure design.
Collapse
Affiliation(s)
- Haiyan An
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Xijiao Mu
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Guoying Tan
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Pingru Su
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Liangliang Liu
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Nan Song
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Shiqiang Bai
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Chun-Hua Yan
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Yu Tang
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
- State Key Laboratory of Baiyunobo Rare Earth Resource Researches and Comprehensive Utilization, Baotou Research Institute of Rare Earths, Baotou, 014030, P. R. China
| |
Collapse
|
9
|
Voccia M, Kapse S, Sayago-Carro R, Gómez-Cerezo N, Fernández-García M, Kubacka A, Viñes F, Illas F. Atomic and Electronic Structures of Co-Doped In 2O 3 from Experiment and Theory. ACS APPLIED MATERIALS & INTERFACES 2024; 16:30157-30165. [PMID: 38808921 PMCID: PMC11181267 DOI: 10.1021/acsami.4c05727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/08/2024] [Accepted: 05/16/2024] [Indexed: 05/30/2024]
Abstract
The synthesis and properties of stoichiometric, reduced, and Co-doped In2O3 are described in the light of several experimental techniques, including X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), ultraviolet (UV)-visible spectroscopy, porosimetry, and density functional theory (DFT) methods on appropriate models. DFT-based calculations provide an accurate prediction of the atomic and electronic structure of these systems. The computed lattice parameter is linearly correlated with the experimental result in the Co concentration ranging from 1.0 to 5.0%. For higher Co concentrations, the theoretical-experimental analysis of the results indicates that the dopant is likely to be preferentially present at surface sites. The analysis of the electronic structure supports the experimental assignment of Co2+ for the doped material. Experiments and theory find that the presence of Co has a limited effect on the material band gap.
Collapse
Affiliation(s)
- Maria Voccia
- Departament
de Ciència de Materials i Química Física &
Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Samadhan Kapse
- Departament
de Ciència de Materials i Química Física &
Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Rocío Sayago-Carro
- Consejo
Superior de Investigaciones Científicas, Instituto de Catálisis y Petroloquímica, Campus Cantoblanco, Madrid 28049, Spain
| | - Natividad Gómez-Cerezo
- Consejo
Superior de Investigaciones Científicas, Instituto de Catálisis y Petroloquímica, Campus Cantoblanco, Madrid 28049, Spain
| | - Marcos Fernández-García
- Consejo
Superior de Investigaciones Científicas, Instituto de Catálisis y Petroloquímica, Campus Cantoblanco, Madrid 28049, Spain
| | - Anna Kubacka
- Consejo
Superior de Investigaciones Científicas, Instituto de Catálisis y Petroloquímica, Campus Cantoblanco, Madrid 28049, Spain
| | - Francesc Viñes
- Departament
de Ciència de Materials i Química Física &
Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Francesc Illas
- Departament
de Ciència de Materials i Química Física &
Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1-11, 08028 Barcelona, Spain
| |
Collapse
|
10
|
Liu Y, Wang P, Xie L, Xia Y, Zhan S, Hu W, Li Y. Electronic Metal-Support Interactions Boost *OOH Intermediate Generation in Cu/In 2Se 3 for Electrochemical H 2O 2 Production. Angew Chem Int Ed Engl 2024; 63:e202319470. [PMID: 38566301 DOI: 10.1002/anie.202319470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 04/04/2024]
Abstract
Two-electron oxygen reduction reaction (2e- ORR) is a promising method for the synthesis of hydrogen peroxide (H2O2). However, high energy barriers for the generation of key *OOH intermediates hinder the process of 2e- ORR. Herein, we prepared a copper-supported indium selenide catalyst (Cu/In2Se3) to enhance the selectivity and yield of 2e- ORR by employing an electronic metal-support interactions (EMSIs) strategy. EMSIs-induced charge rearrangement between metallic Cu and In2Se3 is conducive to *OOH intermediate generation, promoting H2O2 production. Theoretical investigations reveal that the inclusion of Cu significantly lowers the energy barrier of the 2e- ORR intermediate and impedes the 4e- ORR pathway, thus favoring the formation of H2O2. The concentration of H2O2 produced by Cu/In2Se3 is ~2 times than In2Se3, and Cu/In2Se3 shows promising applications in antibiotic degradation. This research presents a valuable approach for the future utilization of EMSIs in 2e- ORR.
Collapse
Affiliation(s)
- Yuepeng Liu
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, 300072, Tianjin, P. R. China
| | - Pengfei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, 300350, Tianjin, P. R. China
| | - Liangbo Xie
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, 300072, Tianjin, P. R. China
| | - Yuguo Xia
- School of Chemistry and Chemical Engineering, Shandong University, 250100, Jinan, P. R. China
| | - Sihui Zhan
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, 300350, Tianjin, P. R. China
| | - Wenping Hu
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, 300072, Tianjin, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 300072, Tianjin, P. R. China
| | - Yi Li
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, 300072, Tianjin, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 300072, Tianjin, P. R. China
| |
Collapse
|
11
|
Ling LL, Guan X, Liu X, Lei XM, Lin Z, Jiang HL. Promoted hydrogenation of CO 2 to methanol over single-atom Cu sites with Na +-decorated microenvironment. Natl Sci Rev 2024; 11:nwae114. [PMID: 38712324 PMCID: PMC11073544 DOI: 10.1093/nsr/nwae114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/26/2024] [Accepted: 03/21/2024] [Indexed: 05/08/2024] Open
Abstract
Although single-atom Cu sites exhibit high efficiency in CO2 hydrogenation to methanol, they are prone to forming Cu nanoparticles due to reduction and aggregation under reaction conditions, especially at high temperatures. Herein, single-atom Cu sites stabilized by adjacent Na+ ions have been successfully constructed within a metal-organic framework (MOF)-based catalyst, namely MOF-808-NaCu. It is found that the electrostatic interaction between the Na+ and Hδ- species plays a pivotal role in upholding the atomic dispersion of Cu in MOF-808-NaCu during CO2 hydrogenation, even at temperatures of up to 275°C. This exceptional stabilization effect endows the catalyst with excellent activity (306 g·kgcat-1·h-1), high selectivity to methanol (93%) and long-term stability at elevated reaction temperatures, far surpassing the counterpart in the absence of Na+ (denoted as MOF-808-Cu). This work develops an effective strategy for the fabrication of stable single-atom sites for advanced catalysis by creating an alkali-decorated microenvironment in close proximity.
Collapse
Affiliation(s)
- Li-Li Ling
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Xinyu Guan
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Xiaoshuo Liu
- School of Energy and Power Engineering, North China Electric Power University, Baoding 071003, China
- School of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Xiao-Mei Lei
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Zhongyuan Lin
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Hai-Long Jiang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
12
|
Wang M, Zheng L, Wang G, Cui J, Guan GL, Miao YT, Wu JF, Gao P, Yang F, Ling Y, Luo X, Zhang Q, Fu G, Cheng K, Wang Y. Spinel Nanostructures for the Hydrogenation of CO 2 to Methanol and Hydrocarbon Chemicals. J Am Chem Soc 2024; 146:14528-14538. [PMID: 38742912 DOI: 10.1021/jacs.4c00981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Composite oxides have been widely applied in the hydrogenation of CO/CO2 to methanol or as the component of bifunctional oxide-zeolite for the synthesis of hydrocarbon chemicals. However, it is still challenging to disentangle the stepwise formation mechanism of CH3OH at working conditions and selectively convert CO2 to hydrocarbon chemicals with narrow distribution. Here, we investigate the reaction network of the hydrogenation of CO2 to methanol over a series of spinel oxides (AB2O4), among which the Zn-based nanostructures offer superior performance in methanol synthesis. Through a series of (quasi) in situ spectroscopic characterizations, we evidence that the dissociation of H2 tends to follow a heterolytic pathway and that hydrogenation ability can be regulated by the combination of Zn with Ga or Al. The coordinatively unsaturated metal sites over ZnAl2Ox and ZnGa2Ox originating from oxygen vacancies (OVs) are evidenced to be responsible for the dissociative adsorption and activation of CO2. The evolution of the reaction intermediates, including both carbonaceous and hydrogen species at high temperatures and pressures over the spinel oxides, has been experimentally elaborated at the atomic level. With the integration of a series of zeolites or zeotypes, high selectivities of hydrocarbon chemicals with narrow distributions can be directly produced from CO2 and H2, offering a promising route for CO2 utilization.
Collapse
Affiliation(s)
- Mengheng Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Lanling Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Genyuan Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jiale Cui
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Gui-Ling Guan
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, Gansu China
| | - Yu-Ting Miao
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, Gansu China
| | - Jian-Feng Wu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, Gansu China
| | - Pan Gao
- State Key Laboratory of Catalysis, National Laboratory for Clean Energys, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| | - Fan Yang
- School of Physical Science and Technology, Center for Transformative Science, ShanghaiTech University, Shanghai 201210, China
| | - Yunjian Ling
- School of Physical Science and Technology, Center for Transformative Science, ShanghaiTech University, Shanghai 201210, China
| | - Xiangxue Luo
- School of Physical Science and Technology, Center for Transformative Science, ShanghaiTech University, Shanghai 201210, China
| | - Qinghong Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Gang Fu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Kang Cheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Ye Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
13
|
Shao Z, Zhu Q, Wang X, Wang J, Wu X, Yao X, Wu YA, Huang K, Feng S. Strongly-Interacted NiSe 2/NiFe 2O 4 Architectures Built Through Selective Atomic Migration as Catalysts for the Oxygen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310266. [PMID: 38098346 DOI: 10.1002/smll.202310266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/05/2023] [Indexed: 12/22/2023]
Abstract
The interactions between the catalyst and support are widely used in many important catalytic reactions but the construction of strong interaction with definite microenvironments to understand the structure-activity relationship is still challenging. Here, strongly-interacted composites are prepared via selective exsolution of active NiSe2 from the host matrix of NiFe2O4 (S-NiSe2/NiFe2O4) taking advantage of the differences of migration energy, in which the NiSe2 possessed both high dispersion and small size. The characteristics of spatially resolved scanning transmission X-ray microscopy (STXM) coupled with analytical Mössbauer spectra for the surface and bulk electronic structures unveiled that this strongly interacted composite triggered more charge transfers from the NiSe2 to the host of NiFe2O4 while stabilizing the inherent atomic coordination of NiFe2O4. The obtained S-NiSe2/NiFe2O4 exhibits overpotentials of 290 mV at 10 mA cm-2 for oxygen evolution reaction (OER). This strategy is general and can be extended to other supported catalysts, providing a powerful tool for modulating the catalytic performance of strongly-interacted composites.
Collapse
Affiliation(s)
- Zhiyu Shao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun, 130012, P. R. China
| | - Qian Zhu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun, 130012, P. R. China
| | - Xiyang Wang
- Department of Mechanical and Mechatronics Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Jian Wang
- Canadian Light Source, Saskatoon, SK, S7N 2V3, Canada
| | - Xiaofeng Wu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun, 130012, P. R. China
| | - Xiangdong Yao
- School of Environment and Sciences, and Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan Campus, Queensland, 4111, Australia
| | - Yimin A Wu
- Department of Mechanical and Mechatronics Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Keke Huang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun, 130012, P. R. China
| | - Shouhua Feng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun, 130012, P. R. China
| |
Collapse
|
14
|
Wu S, Li X, Liu J, Wu H, Xu H, Bai W, Mao L, Shi X. Effective Photocatalytic Ethanol Reforming into High-Value-Added Multicarbon Compound Coupled with H 2 Production Over Pt-S 3 Sites at Pt SA-ZnIn 2S 4 Interface. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307386. [PMID: 38084447 DOI: 10.1002/smll.202307386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/28/2023] [Indexed: 12/22/2023]
Abstract
Selective photocatalytic production of high-value acetaldehyde concurrently with H2 from bioethanol is an appealing approach to meet the urgent environment and energy issues. However, the difficult ethanol dehydrogenation and insufficient active sites for proton reduction within the catalysts, and the long spatial distance between these two sites always restrict their catalytic activity. Here, guided by the strong metal-substrate interaction effect, an atomic-level catalyst design strategy to construct Pt-S3 single atom on ZnIn2S4 nanosheets (PtSA-ZIS) is demonstrated. As active center with optimized H adsorption energy to facilitate H2 evolution reaction, the unique Pt single atom also donates electrons to its neighboring S atoms with electron-enriched sites formed to activate the O─H bond in *CH3CHOH and promote the desorption of *CH3CHO. Thus, the synergy between Pt single atom and ZIS together will reduce the energy barrier for the ethanol oxidization to acetaldehyde, and also narrow the spatial distance for proton mass transfer. These features enable PtSA-ZIS photocatalyst to produce acetaldehyde with a selectivity of ≈100%, which will spontaneously transform into 1,1-diethoxyethane via acetalization to avoid volatilization. Meanwhile, a remarkable H2 evolution rate (184.4 µmol h-1) is achieved with a high apparent quantum efficiency of 10.50% at 400 nm.
Collapse
Affiliation(s)
- Shiting Wu
- New Energy Materials Research Center, College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, P. R. China
| | - Xiaohui Li
- Department of Applied Chemistry, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China
| | - Jiaqi Liu
- New Energy Materials Research Center, College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, P. R. China
| | - Hanfeng Wu
- New Energy Materials Research Center, College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, P. R. China
| | - Hanshuai Xu
- Department of Applied Chemistry, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China
| | - Wangfeng Bai
- New Energy Materials Research Center, College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, P. R. China
| | - Liang Mao
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou, 221116, P. R. China
| | - Xiaowei Shi
- Department of Applied Chemistry, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China
| |
Collapse
|
15
|
Pinheiro Araújo T, Giannakakis G, Morales-Vidal J, Agrachev M, Ruiz-Bernal Z, Preikschas P, Zou T, Krumeich F, Willi PO, Stark WJ, Grass RN, Jeschke G, Mitchell S, López N, Pérez-Ramírez J. Low-nuclearity CuZn ensembles on ZnZrO x catalyze methanol synthesis from CO 2. Nat Commun 2024; 15:3101. [PMID: 38600146 PMCID: PMC11006684 DOI: 10.1038/s41467-024-47447-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 03/27/2024] [Indexed: 04/12/2024] Open
Abstract
Metal promotion could unlock high performance in zinc-zirconium catalysts, ZnZrOx, for CO2 hydrogenation to methanol. Still, with most efforts devoted to costly palladium, the optimal metal choice and necessary atomic-level architecture remain unclear. Herein, we investigate the promotion of ZnZrOx catalysts with small amounts (0.5 mol%) of diverse hydrogenation metals (Re, Co, Au, Ni, Rh, Ag, Ir, Ru, Pt, Pd, and Cu) prepared via a standardized flame spray pyrolysis approach. Cu emerges as the most effective promoter, doubling methanol productivity. Operando X-ray absorption, infrared, and electron paramagnetic resonance spectroscopic analyses and density functional theory simulations reveal that Cu0 species form Zn-rich low-nuclearity CuZn clusters on the ZrO2 surface during reaction, which correlates with the generation of oxygen vacancies in their vicinity. Mechanistic studies demonstrate that this catalytic ensemble promotes the rapid hydrogenation of intermediate formate into methanol while effectively suppressing CO production, showcasing the potential of low-nuclearity metal ensembles in CO2-based methanol synthesis.
Collapse
Affiliation(s)
- Thaylan Pinheiro Araújo
- Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland
| | - Georgios Giannakakis
- Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland
| | - Jordi Morales-Vidal
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Mikhail Agrachev
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 2, 8093, Zurich, Switzerland
| | - Zaira Ruiz-Bernal
- Department of Inorganic Chemistry and Materials Institute (IUMA), Faculty of Sciences, University of Alicante, Ap. 99, E-03080, Alicante, Spain
| | - Phil Preikschas
- Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland
| | - Tangsheng Zou
- Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland
| | - Frank Krumeich
- Laboratory of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland
| | - Patrik O Willi
- Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland
| | - Wendelin J Stark
- Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland
| | - Robert N Grass
- Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland
| | - Gunnar Jeschke
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 2, 8093, Zurich, Switzerland
| | - Sharon Mitchell
- Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland
| | - Núria López
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Javier Pérez-Ramírez
- Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland.
| |
Collapse
|
16
|
Pei C, Chen S, Fu D, Zhao ZJ, Gong J. Structured Catalysts and Catalytic Processes: Transport and Reaction Perspectives. Chem Rev 2024; 124:2955-3012. [PMID: 38478971 DOI: 10.1021/acs.chemrev.3c00081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
The structure of catalysts determines the performance of catalytic processes. Intrinsically, the electronic and geometric structures influence the interaction between active species and the surface of the catalyst, which subsequently regulates the adsorption, reaction, and desorption behaviors. In recent decades, the development of catalysts with complex structures, including bulk, interfacial, encapsulated, and atomically dispersed structures, can potentially affect the electronic and geometric structures of catalysts and lead to further control of the transport and reaction of molecules. This review describes comprehensive understandings on the influence of electronic and geometric properties and complex catalyst structures on the performance of relevant heterogeneous catalytic processes, especially for the transport and reaction over structured catalysts for the conversions of light alkanes and small molecules. The recent research progress of the electronic and geometric properties over the active sites, specifically for theoretical descriptors developed in the recent decades, is discussed at the atomic level. The designs and properties of catalysts with specific structures are summarized. The transport phenomena and reactions over structured catalysts for the conversions of light alkanes and small molecules are analyzed. At the end of this review, we present our perspectives on the challenges for the further development of structured catalysts and heterogeneous catalytic processes.
Collapse
Affiliation(s)
- Chunlei Pei
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Sai Chen
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Donglong Fu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Zhi-Jian Zhao
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Jinlong Gong
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
- National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin 300350, China
| |
Collapse
|
17
|
Dostagir NMD, Tomuschat CR, Oshiro K, Gao M, Hasegawa JY, Fukuoka A, Shrotri A. Mitigating the Poisoning Effect of Formate during CO 2 Hydrogenation to Methanol over Co-Containing Dual-Atom Oxide Catalysts. JACS AU 2024; 4:1048-1058. [PMID: 38559712 PMCID: PMC10976564 DOI: 10.1021/jacsau.3c00789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 04/04/2024]
Abstract
During the hydrogenation of CO2 to methanol over mixed-oxide catalysts, the strong adsorption of CO2 and formate poses a barrier for H2 dissociation, limiting methanol selectivity and productivity. Here we show that by using Co-containing dual-atom oxide catalysts, the poisoning effect can be countered by separating the site for H2 dissociation and the adsorption of intermediates. We synthesized a Co- and In-doped ZrO2 catalyst (Co-In-ZrO2) containing atomically dispersed Co and In species. Catalyst characterization showed that Co and In atoms were atomically dispersed and were in proximity to each other owing to a random distribution. During the CO2 hydrogenation reaction, the Co atom was responsible for the adsorption of CO2 and formate species, while the nearby In atoms promoted the hydrogenation of adsorbed intermediates. The cooperative effect increased the methanol selectivity to 86% over the dual-atom catalyst, and methanol productivity increased 2-fold in comparison to single-atom catalysts. This cooperative effect was extended to Co-Zn and Co-Ga doped ZrO2 catalysts. This work presents a different approach to designing mixed-oxide catalysts for CO2 hydrogenation based on the preferential adsorption of substrates and intermediates instead of promoting H2 dissociation to mitigate the poisonous effects of substrates and intermediates.
Collapse
Affiliation(s)
- Nazmul
Hasan MD Dostagir
- Institute
for Catalysis, Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| | - Carlo Robert Tomuschat
- Institute
for Catalysis, Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
- Department
of Chemistry, TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Kai Oshiro
- Graduate
School of Chemical Sciences and Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Min Gao
- Institute
for Chemical Reaction Design and Discovery, Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| | - Jun-ya Hasegawa
- Institute
for Catalysis, Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
- Interdisciplinary
Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology, Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Atsushi Fukuoka
- Institute
for Catalysis, Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| | - Abhijit Shrotri
- Institute
for Catalysis, Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| |
Collapse
|
18
|
Cheng J, Xie J, Xi Y, Wu X, Zhang R, Mao Z, Yang H, Li Z, Li C. Selective Upcycling of Polyethylene Terephthalate towards High-valued Oxygenated Chemical Methyl p-Methyl Benzoate using a Cu/ZrO 2 Catalyst. Angew Chem Int Ed Engl 2024; 63:e202319896. [PMID: 38197522 DOI: 10.1002/anie.202319896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/11/2024]
Abstract
Upgrading of polyethylene terephthalate (PET) waste into valuable oxygenated molecules is a fascinating process, yet it remains challenging. Herein, we developed a two-step strategy involving methanolysis of PET to dimethyl terephthalate (DMT), followed by hydrogenation of DMT to produce the high-valued chemical methyl p-methyl benzoate (MMB) using a fixed-bed reactor and a Cu/ZrO2 catalyst. Interestingly, we discovered the phase structure of ZrO2 significantly regulates the selectivity of products. Cu supported on monoclinic ZrO2 (5 %Cu/m-ZrO2 ) exhibits an exceptional selectivity of 86 % for conversion of DMT to MMB, while Cu supported on tetragonal ZrO2 (5 %Cu/t-ZrO2 ) predominantly produces p-xylene (PX) with selectivity of 75 %. The superior selectivity of MMB over Cu/m-ZrO2 can be attributed to the weaker acid sites present on m-ZrO2 compared to t-ZrO2 . This weak acidity of m-ZrO2 leads to a moderate adsorption capability of MMB, and facilitating its desorption. Furthermore, DFT calculations reveal Cu/m-ZrO2 catalyst shows a higher effective energy barrier for cleavage of second C-O bond compared to Cu/t-ZrO2 catalyst; this distinction ensures the high selectivity of MMB. This catalyst not only presents an approach for upgrading of PET waste into fine chemicals but also offers a strategy for controlling the primary product in a multistep hydrogenation reaction.
Collapse
Affiliation(s)
- Jianian Cheng
- Key Laboratory of Advanced Catalysis, Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Jin Xie
- Key Laboratory of Advanced Catalysis, Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Yongjie Xi
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000 Gansu, China
| | - Xiaojing Wu
- Key Laboratory of Advanced Catalysis, Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Ruihui Zhang
- Key Laboratory of Advanced Catalysis, Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Zhihe Mao
- Key Laboratory of Advanced Catalysis, Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Hongfang Yang
- Key Laboratory of Advanced Catalysis, Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Zelong Li
- Key Laboratory of Advanced Catalysis, Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Can Li
- Key Laboratory of Advanced Catalysis, Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian, Liaoning, 116023, China
| |
Collapse
|
19
|
Wang J, Li R, Zhang G, Dong C, Fan Y, Yang S, Chen M, Guo X, Mu R, Ning Y, Li M, Fu Q, Bao X. Confinement-Induced Indium Oxide Nanolayers Formed on Oxide Support for Enhanced CO 2 Hydrogenation Reaction. J Am Chem Soc 2024; 146:5523-5531. [PMID: 38367215 DOI: 10.1021/jacs.3c13355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2024]
Abstract
An enclosed nanospace often shows a significant confinement effect on chemistry within its inner cavity, while whether an open space can have this effect remains elusive. Here, we show that the open surface of TiO2 creates a confined environment for In2O3 which drives spontaneous transformation of free In2O3 nanoparticles in physical contact with TiO2 nanoparticles into In oxide (InOx) nanolayers covering onto the TiO2 surface during CO2 hydrogenation to CO. The formed InOx nanolayers are easy to create surface oxygen vacancies but are against over-reduction to metallic In in the H2-rich atmospheres, which thus show significantly enhanced activity and stability in comparison with the pure In2O3 catalyst. The formation of interfacial In-O-Ti bonding is identified to drive the In2O3 dispersion and stabilize the metastable InOx layers. The InOx overlayers with distinct chemistry from their free counterpart can be confined on various oxide surfaces, demonstrating the important confinement effect at oxide/oxide interfaces.
Collapse
Affiliation(s)
- Jianyang Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Rongtan Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Guanghui Zhang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Cui Dong
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yamei Fan
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Shuangli Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
| | - Mingshu Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
| | - Xinwen Guo
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Rentao Mu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yanxiao Ning
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Mingrun Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Qiang Fu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xinhe Bao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
20
|
Yang C, Ma S, Liu Y, Wang L, Yuan D, Shao WP, Zhang L, Yang F, Lin T, Ding H, He H, Liu ZP, Cao Y, Zhu Y, Bao X. Homolytic H 2 dissociation for enhanced hydrogenation catalysis on oxides. Nat Commun 2024; 15:540. [PMID: 38225230 PMCID: PMC10789776 DOI: 10.1038/s41467-024-44711-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 01/02/2024] [Indexed: 01/17/2024] Open
Abstract
The limited surface coverage and activity of active hydrides on oxide surfaces pose challenges for efficient hydrogenation reactions. Herein, we quantitatively distinguish the long-puzzling homolytic dissociation of hydrogen from the heterolytic pathway on Ga2O3, that is useful for enhancing hydrogenation ability of oxides. By combining transient kinetic analysis with infrared and mass spectroscopies, we identify the catalytic role of coordinatively unsaturated Ga3+ in homolytic H2 dissociation, which is formed in-situ during the initial heterolytic dissociation. This site facilitates easy hydrogen dissociation at low temperatures, resulting in a high hydride coverage on Ga2O3 (H/surface Ga3+ ratio of 1.6 and H/OH ratio of 5.6). The effectiveness of homolytic dissociation is governed by the Ga-Ga distance, which is strongly influenced by the initial coordination of Ga3+. Consequently, by tuning the coordination of active Ga3+ species as well as the coverage and activity of hydrides, we achieve enhanced hydrogenation of CO2 to CO, methanol or light olefins by 4-6 times.
Collapse
Affiliation(s)
- Chengsheng Yang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200438, China
| | - Sicong Ma
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Yongmei Liu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200438, China
| | - Lihua Wang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Desheng Yuan
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200438, China
| | - Wei-Peng Shao
- School of Physical Science and Technology, Shanghai Tech University, Shanghai, 201210, China
| | - Lunjia Zhang
- School of Physical Science and Technology, Shanghai Tech University, Shanghai, 201210, China
| | - Fan Yang
- School of Physical Science and Technology, Shanghai Tech University, Shanghai, 201210, China
| | - Tiejun Lin
- Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Hongxin Ding
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200438, China
| | - Heyong He
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200438, China
| | - Zhi-Pan Liu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200438, China
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yong Cao
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200438, China
| | - Yifeng Zhu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200438, China.
| | - Xinhe Bao
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200438, China.
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| |
Collapse
|
21
|
He Y, Li Y, Lei M, Polo-Garzon F, Perez-Aguilar J, Bare SR, Formo E, Kim H, Daemen L, Cheng Y, Hong K, Chi M, Jiang DE, Wu Z. Significant Roles of Surface Hydrides in Enhancing the Performance of Cu/BaTiO 2.8 H 0.2 Catalyst for CO 2 Hydrogenation to Methanol. Angew Chem Int Ed Engl 2024; 63:e202313389. [PMID: 37906130 DOI: 10.1002/anie.202313389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/24/2023] [Accepted: 10/31/2023] [Indexed: 11/02/2023]
Abstract
Tuning the anionic site of catalyst supports can impact reaction pathways by creating active sites on the support or influencing metal-support interactions when using supported metal nanoparticles. This study focuses on CO2 hydrogenation over supported Cu nanoparticles, revealing a 3-fold increase in methanol yield when replacing oxygen anions with hydrides in the perovskite support (Cu/BaTiO2.8 H0.2 yields ~146 mg/h/gCu vs. Cu/BaTiO3 yields ~50 mg/h/gCu). The contrast suggests that significant roles are played by the support hydrides in the reaction. Temperature programmed reaction and isotopic labelling studies indicate that BaTiO2.8 H0.2 surface hydride species follow a Mars van Krevelen mechanism in CO2 hydrogenation, promoting methanol production. High-pressure steady-state isotopic transient kinetic analysis (SSITKA) studies suggest that Cu/BaTiO2.8 H0.2 possesses both a higher density and more active and selective sites for methanol production compared to Cu/BaTiO3 . An operando high-pressure diffuse reflectance infrared spectroscopy (DRIFTS)-SSITKA study shows that formate species are the major surface intermediates over both catalysts, and the subsequent hydrogenation steps of formate are likely rate-limiting. However, the catalytic reactivity of Cu/BaTiO2.8 H0.2 towards the formate species is much higher than Cu/BaTiO3 , likely due to the altered electronic structure of interface Cu sites by the hydrides in the support as validated by density functional theory (DFT) calculations.
Collapse
Affiliation(s)
- Yang He
- Chemical Sciences Division and Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN-37831, USA
| | - Yuanyuan Li
- Chemical Sciences Division and Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN-37831, USA
| | - Ming Lei
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN-37235, USA
| | - Felipe Polo-Garzon
- Chemical Sciences Division and Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN-37831, USA
| | - Jorge Perez-Aguilar
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA-94025, USA
| | - Simon R Bare
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA-94025, USA
| | - Eric Formo
- Georgia Electron Microscopy, University of Georgia, Athens, GA-30602, USA
| | - Hwangsun Kim
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN-37831, USA
| | - Luke Daemen
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN-37831, USA
| | - Yongqiang Cheng
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN-37831, USA
| | - Kunlun Hong
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN-37831, USA
| | - Miaofang Chi
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN-37831, USA
| | - De-En Jiang
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN-37235, USA
| | - Zili Wu
- Chemical Sciences Division and Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN-37831, USA
| |
Collapse
|
22
|
Yang Y, Guo M, Zhao F. Cr 2 O 3 Promoted In 2 O 3 Catalysts for CO 2 Hydrogenation to Methanol. Chemphyschem 2024; 25:e202300530. [PMID: 37867156 DOI: 10.1002/cphc.202300530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/16/2023] [Accepted: 10/16/2023] [Indexed: 10/24/2023]
Abstract
Cr2 O3 was applied to study the modification of In2 O3 based catalysts for CO2 hydrogenation to methanol reaction. Combined with X-ray diffraction (XRD), scanning transmission electron microscopy (STEM), X-ray photoelectron spectroscopy (XPS), etc., the structure of the catalysts was characterized. The reaction performances for CO2 hydrogenation to methanol were evaluated on a stainless-steel fix-bed reactor. The results showed that solid solutions were formed for the Cr2 O3 promoted In2 O3 catalysts. The important role of electronic interaction between Cr2 O3 and In2 O3 was revealed in the hydrogenation reaction. In1.25 Cr0.75 O3 sample exhibited the highest methanol yield, which was 2.8 times higher than that of pure In2 O3 . No deactivation was observed for In1.25 Cr0.75 O3 sample during the 50 hours of reaction. The improved catalytic performance may be due to the formation of the solid solutions and the highest amount of oxygen vacancies.
Collapse
Affiliation(s)
- Yuying Yang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan, 430074, China
| | - Meng Guo
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan, 430074, China
| | - Fuzhen Zhao
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan, 430074, China
| |
Collapse
|
23
|
Redekop EA, Cordero-Lanzac T, Salusso D, Pokle A, Oien-Odegaard S, Sunding MF, Diplas S, Negri C, Borfecchia E, Bordiga S, Olsbye U. Zn Redistribution and Volatility in ZnZrO x Catalysts for CO 2 Hydrogenation. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2023; 35:10434-10445. [PMID: 38162044 PMCID: PMC10753788 DOI: 10.1021/acs.chemmater.3c01632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/21/2023] [Accepted: 11/21/2023] [Indexed: 01/03/2024]
Abstract
ZnO-ZrO2 mixed oxide (ZnZrOx) catalysts are widely studied as selective catalysts for CO2 hydrogenation into methanol at high-temperature conditions (300-350 °C) that are preferred for the subsequent in situ zeolite-catalyzed conversion of methanol into hydrocarbons in a tandem process. Zn, a key ingredient of these mixed oxide catalysts, is known to volatilize from ZnO under high-temperature conditions, but little is known about Zn mobility and volatility in mixed oxides. Here, an array of ex situ and in situ characterization techniques (scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDX), transmission electron microscopy (TEM), powder X-ray diffraction (PXRD), X-ray absorption spectroscopy (XAS), X-ray photoelectron spectroscopy (XPS), Infrared (IR)) was used to reveal that Zn2+ species are mobile between the solid solution phase with ZrO2 and segregated and/or embedded ZnO clusters. Upon reductive heat treatments, partially reversible ZnO cluster growth was observed above 250 °C and eventual Zn evaporation above 550 °C. Extensive Zn evaporation leads to catalyst deactivation and methanol selectivity decline in CO2 hydrogenation. These findings extend the fundamental knowledge of Zn-containing mixed oxide catalysts and are highly relevant for the CO2-to-hydrocarbon process optimization.
Collapse
Affiliation(s)
- Evgeniy A. Redekop
- Centre
for Materials Science and Nanotechnology (SMN), Department of Chemistry, University of Oslo, N-0315 Oslo, Norway
| | - Tomas Cordero-Lanzac
- Centre
for Materials Science and Nanotechnology (SMN), Department of Chemistry, University of Oslo, N-0315 Oslo, Norway
| | - Davide Salusso
- Department
of Chemistry, NIS Center and INSTM Reference Center, University of Turin, Via P. Giuria 7, 10125 Turin, Italy
| | - Anuj Pokle
- Centre
for Materials Science and Nanotechnology (SMN), Department of Physics, University of Oslo, N-0315 Oslo, Norway
| | - Sigurd Oien-Odegaard
- Centre
for Materials Science and Nanotechnology (SMN), Department of Chemistry, University of Oslo, N-0315 Oslo, Norway
| | | | - Spyros Diplas
- Materials
Physics Oslo, SINTEF Industry, Forskningsveien 1, NO-0373 Oslo, Norway
| | - Chiara Negri
- Centre
for Materials Science and Nanotechnology (SMN), Department of Chemistry, University of Oslo, N-0315 Oslo, Norway
| | - Elisa Borfecchia
- Department
of Chemistry, NIS Center and INSTM Reference Center, University of Turin, Via P. Giuria 7, 10125 Turin, Italy
| | - Silvia Bordiga
- Department
of Chemistry, NIS Center and INSTM Reference Center, University of Turin, Via P. Giuria 7, 10125 Turin, Italy
| | - Unni Olsbye
- Centre
for Materials Science and Nanotechnology (SMN), Department of Chemistry, University of Oslo, N-0315 Oslo, Norway
| |
Collapse
|
24
|
Liu L, Mezari B, Kosinov N, Hensen EJM. Al Promotion of In 2O 3 for CO 2 Hydrogenation to Methanol. ACS Catal 2023; 13:15730-15745. [PMID: 38125979 PMCID: PMC10728901 DOI: 10.1021/acscatal.3c04620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/06/2023] [Accepted: 11/06/2023] [Indexed: 12/23/2023]
Abstract
In2O3 is a promising catalyst for the hydrogenation of CO2 to methanol, relevant to renewable energy storage in chemicals. Herein, we investigated the promoting role of Al on In2O3 using flame spray pyrolysis to prepare a series of In2O3-Al2O3 samples in a single step (0-20 mol % Al). Al promoted the methanol yield, with an optimum being observed at an Al content of 5 mol %. Extensive characterization showed that Al can dope into the In2O3 lattice (maximum ∼ 1.2 mol %), leading to the formation of more oxygen vacancies involved in CO2 adsorption and methanol formation. The rest of Al is present as small Al2O3 domains at the In2O3 surface, blocking the active sites for CO2 hydrogenation and contributing to higher CO selectivity. At higher Al content (≥10 mol % Al), the particle size of In2O3 decreases due to the stabilizing effect of Al2O3. Nevertheless, these smaller particles are prone to sintering during CO2 hydrogenation since they appear to be more easily reduced. These findings show subtle effects of a structural promoter such as Al on the reducibility and texture of In2O3 as a CO2 hydrogenation catalyst.
Collapse
Affiliation(s)
- Liang Liu
- Laboratory of Inorganic Materials
and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Brahim Mezari
- Laboratory of Inorganic Materials
and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Nikolay Kosinov
- Laboratory of Inorganic Materials
and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Emiel J. M. Hensen
- Laboratory of Inorganic Materials
and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
25
|
Lu Z, Xu Y, Zhang Z, Sun J, Ding X, Sun W, Tu W, Zhou Y, Yao Y, Ozin GA, Wang L, Zou Z. Wettability Engineering of Solar Methanol Synthesis. J Am Chem Soc 2023; 145:26052-26060. [PMID: 37982690 DOI: 10.1021/jacs.3c07349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Engineering the wettability of surfaces with hydrophobic organics has myriad applications in heterogeneous catalysis and the large-scale chemical industry; however, the mechanisms behind may surpass the proverbial hydrophobic kinetic benefits. Herein, the well-studied In2O3 methanol synthesis photocatalyst has been used as an archetype platform for a hydrophobic treatment to enhance its performance. With this strategy, the modified samples facilitated the tuning of a wide range of methanol production rates and selectivity, which were optimized at 1436 μmol gcat-1 h-1 and 61%, respectively. Based on in situ DRIFTS and temperature-programmed desorption-mass spectrometry, the surface-decorated alkylsilane coating on In2O3 not only kinetically enhanced the methanol synthesis by repelling the produced polar molecules but also donated surface active H to facilitate the subsequent hydrogenation reaction. Such a wettability design strategy seems to have universal applicability, judged by its success with other CO2 hydrogenation catalysts, including Fe2O3, CeO2, ZrO2, and Co3O4. Based on the discovered kinetic and mechanistic benefits, the enhanced hydrogenation ability enabled by hydrophobic alkyl groups unleashes the potential of the surface organic chemistry modification strategy for other important catalytic hydrogenation reactions.
Collapse
Affiliation(s)
- Zhe Lu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, P. R. China
| | - Yangfan Xu
- Solar Fuels Group, Department of Chemistry, University of Toronto, 80 St. George Street, 10, Toronto, Ontario M5S 3H6, Canada
| | - Zeshu Zhang
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, P. R. China
| | - Junchuan Sun
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, P. R. China
| | - Xue Ding
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, P. R. China
| | - Wei Sun
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Wenguang Tu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, P. R. China
| | - Yong Zhou
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, P. R. China
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing 210093, P. R. China
| | - Yingfang Yao
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, P. R. China
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing 210093, P. R. China
| | - Geoffrey A Ozin
- Solar Fuels Group, Department of Chemistry, University of Toronto, 80 St. George Street, 10, Toronto, Ontario M5S 3H6, Canada
| | - Lu Wang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, P. R. China
| | - Zhigang Zou
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, P. R. China
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing 210093, P. R. China
| |
Collapse
|
26
|
Luo A, Chang H, Gao F, Liu Y, He H, Cao Y. Towards maximizing the In 2O 3/ m-ZrO 2 interfaces for CO 2-to-methanol hydrogenation. Chem Commun (Camb) 2023; 59:12747-12750. [PMID: 37807889 DOI: 10.1039/d3cc04260j] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Through chelating-assisted impregnation with diethylenetriamine-pentaacetic acid (DTPA), we developed an efficient and durable CO2 hydrogenation catalyst, In15/m-ZrO2-DTPA, featuring improved In2O3 reducibility and interfacial Zr-O-In structures. Benefiting from its distinct CO2 activation and hydrogenation ability, In15/m-ZrO2-DTPA exhibited remarkable CO2-to-methanol catalytic activity, achieving up to 91% selectivity at 260 °C and 5.0 MPa, with consistent conversion maintained over 400 hours.
Collapse
Affiliation(s)
- Alin Luo
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200433, China.
| | - Haohao Chang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200433, China.
| | - Feifan Gao
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200433, China.
| | - Yongmei Liu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200433, China.
| | - Heyong He
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200433, China.
| | - Yong Cao
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200433, China.
| |
Collapse
|
27
|
Araújo TP, Morales-Vidal J, Giannakakis G, Mondelli C, Eliasson H, Erni R, Stewart JA, Mitchell S, López N, Pérez-Ramírez J. Reaction-Induced Metal-Metal Oxide Interactions in Pd-In 2 O 3 /ZrO 2 Catalysts Drive Selective and Stable CO 2 Hydrogenation to Methanol. Angew Chem Int Ed Engl 2023; 62:e202306563. [PMID: 37395462 DOI: 10.1002/anie.202306563] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/04/2023]
Abstract
Ternary Pd-In2 O3 /ZrO2 catalysts exhibit technological potential for CO2 -based methanol synthesis, but developing scalable systems and comprehending complex dynamic behaviors of the active phase, promoter, and carrier are key for achieving high productivity. Here, we show that the structure of Pd-In2 O3 /ZrO2 systems prepared by wet impregnation evolves under CO2 hydrogenation conditions into a selective and stable architecture, independent of the order of addition of Pd and In phases on the zirconia carrier. Detailed operando characterization and simulations reveal a rapid restructuring driven by the metal-metal oxide interaction energetics. The proximity of InPdx alloy particles decorated by InOx layers in the resulting architecture prevents performance losses associated with Pd sintering. The findings highlight the crucial role of reaction-induced restructuring in complex CO2 hydrogenation catalysts and offer insights into the optimal integration of acid-base and redox functions for practical implementation.
Collapse
Affiliation(s)
- Thaylan Pinheiro Araújo
- Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland
| | - Jordi Morales-Vidal
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
- Universitat Rovira i Virgili, Av. Catalunya 35, 43002, Tarragona, Spain
| | - Georgios Giannakakis
- Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland
| | - Cecilia Mondelli
- Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland
| | - Henrik Eliasson
- Electron Microscopy Center, Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600, Dübendorf, Switzerland
| | - Rolf Erni
- Electron Microscopy Center, Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600, Dübendorf, Switzerland
| | - Joseph A Stewart
- TotalEnergies OneTech Belgium, Zone Industrielle Feluy C, 7181, Seneffe, Belgium
| | - Sharon Mitchell
- Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland
| | - Núria López
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Javier Pérez-Ramírez
- Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland
| |
Collapse
|
28
|
Zhou S, Ma W, Anjum U, Kosari M, Xi S, Kozlov SM, Zeng HC. Strained few-layer MoS 2 with atomic copper and selectively exposed in-plane sulfur vacancies for CO 2 hydrogenation to methanol. Nat Commun 2023; 14:5872. [PMID: 37735457 PMCID: PMC10514200 DOI: 10.1038/s41467-023-41362-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 08/28/2023] [Indexed: 09/23/2023] Open
Abstract
In-plane sulfur vacancies (Sv) in molybdenum disulfide (MoS2) were newly unveiled for CO2 hydrogenation to methanol, whereas edge Sv were found to facilitate methane formation. Thus, selective exposure and activation of basal plane is crucial for methanol synthesis. Here, we report a mesoporous silica-encapsulated MoS2 catalysts with fullerene-like structure and atomic copper (Cu/MoS2@SiO2). The main approach is based on a physically constrained topologic conversion of molybdenum dioxide (MoO2) to MoS2 within silica. The spherical curvature enables the generation of strain and Sv in inert basal plane. More importantly, fullerene-like structure of few-layer MoS2 can selectively expose in-plane Sv and reduce the exposure of edge Sv. After promotion by atomic copper, the resultant Cu/MoS2@SiO2 exhibits stable specific methanol yield of 6.11 molMeOH molMo-1 h-1 with methanol selectivity of 72.5% at 260 °C, much superior to its counterparts lacking the fullerene-like structure and copper decoration. The reaction mechanism and promoting role of copper are investigated by in-situ DRIFTS and in-situ XAS. Theoretical calculations demonstrate that the compressive strain facilitates Sv formation and CO2 hydrogenation, while tensile strain accelerates the regeneration of active sites, rationalizing the critical role of strain.
Collapse
Affiliation(s)
- Shenghui Zhou
- Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, Singapore, 119260, Singapore
- The Cambridge Centre for Advanced Research and Education in Singapore, 1 CREATE Way, Singapore, 138602, Singapore
| | - Wenrui Ma
- Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, Singapore, 119260, Singapore
| | - Uzma Anjum
- Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, Singapore, 119260, Singapore
| | - Mohammadreza Kosari
- Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, Singapore, 119260, Singapore
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore, 627833, Singapore
| | - Shibo Xi
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore, 627833, Singapore
| | - Sergey M Kozlov
- Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, Singapore, 119260, Singapore.
| | - Hua Chun Zeng
- Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, Singapore, 119260, Singapore.
- The Cambridge Centre for Advanced Research and Education in Singapore, 1 CREATE Way, Singapore, 138602, Singapore.
| |
Collapse
|
29
|
Li X, Zhang P, Yang C, Wang Z, Song X, Wang T, Gong J. Fast-Response Nickel-Promoted Indium Oxide Catalysts for Carbon Dioxide Hydrogenation from Intermittent Solar Hydrogen. Angew Chem Int Ed Engl 2023; 62:e202301901. [PMID: 37395563 DOI: 10.1002/anie.202301901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/10/2023] [Accepted: 07/03/2023] [Indexed: 07/04/2023]
Abstract
Construction of a "net-zero-emission" system through CO2 hydrogenation to methanol with solar energy is an eco-friendly way to mitigate the greenhouse effect. Traditional CO2 hydrogenation demands centralized mass production for cost reduction with mass water electrolysis for hydrogen supply. To achieve continuous reaction with intermittent and fluctuating flow of H2 on a small-scale for distributed application scenarios, modulating the catalyst interface environment and chemical adsorption capacity to adapt fluctuating reaction conditions is highly desired. This paper describes a distributed clean CO2 utilization system in which the surface structure of catalysts is carefully regulated. The Ni catalyst with unsaturated electrons loaded on In2 O3 can reduce the dissociation energy of H2 to overcome the slow response of intermittent H2 supply, exhibiting a faster response (12 min) than bare oxide catalysts (42 min). Moreover, the introduction of Ni enhances the sensitivity of the catalyst to hydrogen, yielding a Ni/In2 O3 catalyst with a good performance at lower H2 concentrations with a 15 times adaptability for wider hydrogen fluctuation range than In2 O3 , greatly reducing the negative impact of unstable H2 supplies derived from renewable energies.
Collapse
Affiliation(s)
- Xianghong Li
- School of Chemical Engineering & Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science & Engineering (Tianjin), Tianjin, 300072, China
- Haihe Laboratory of Sustainable Chemical Transformation, Tianjin, 300192, China
| | - Peng Zhang
- School of Chemical Engineering & Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science & Engineering (Tianjin), Tianjin, 300072, China
- Haihe Laboratory of Sustainable Chemical Transformation, Tianjin, 300192, China
| | - Chengsheng Yang
- School of Chemical Engineering & Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science & Engineering (Tianjin), Tianjin, 300072, China
- Haihe Laboratory of Sustainable Chemical Transformation, Tianjin, 300192, China
| | - Zhongyan Wang
- School of Chemical Engineering & Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science & Engineering (Tianjin), Tianjin, 300072, China
- Haihe Laboratory of Sustainable Chemical Transformation, Tianjin, 300192, China
| | - Xiwen Song
- School of Chemical Engineering & Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science & Engineering (Tianjin), Tianjin, 300072, China
- Haihe Laboratory of Sustainable Chemical Transformation, Tianjin, 300192, China
| | - Tuo Wang
- School of Chemical Engineering & Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science & Engineering (Tianjin), Tianjin, 300072, China
- Haihe Laboratory of Sustainable Chemical Transformation, Tianjin, 300192, China
| | - Jinlong Gong
- School of Chemical Engineering & Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science & Engineering (Tianjin), Tianjin, 300072, China
- Haihe Laboratory of Sustainable Chemical Transformation, Tianjin, 300192, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, (China)
| |
Collapse
|
30
|
Dong C, Mu R, Li R, Wang J, Song T, Qu Z, Fu Q, Bao X. Disentangling Local Interfacial Confinement and Remote Spillover Effects in Oxide-Oxide Interactions. J Am Chem Soc 2023; 145:17056-17065. [PMID: 37493082 DOI: 10.1021/jacs.3c02483] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Supported oxides are widely used in many important catalytic reactions, in which the interaction between the oxide catalyst and oxide support is critical but still remains elusive. Here, we construct a chemically bonded oxide-oxide interface by chemical deposition of Co3O4 onto ZnO powder (Co3O4/ZnO), in which complete reduction of Co3O4 to Co0 has been strongly impeded. It was revealed that the local interfacial confinement effect between Co oxide and the ZnO support helps to maintain a metastable CoOx state in CO2 hydrogenation reaction, producing 93% CO. In contrast, a physically contacted oxide-oxide interface was formed by mechanically mixing Co3O4 and ZnO powders (Co3O4-ZnO), in which reduction of Co3O4 to Co0 was significantly promoted, demonstrating a quick increase of CO2 conversion to 45% and a high selectivity toward CH4 (92%) in the CO2 hydrogenation reaction. This interface effect is ascribed to unusual remote spillover of dissociated hydrogen species from ZnO nanoparticles to the neighboring Co oxide nanoparticles. This work clearly illustrates the equally important but opposite local and remote effects at the oxide-oxide interfaces. The distinct oxide-oxide interactions contribute to many diverse interface phenomena in oxide-oxide catalytic systems.
Collapse
Affiliation(s)
- Cui Dong
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Rentao Mu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Rongtan Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianyang Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Tongyuan Song
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenping Qu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Qiang Fu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xinhe Bao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
31
|
Cheng Z, Wu Z, Chen J, Fang Y, Lin S, Zhang J, Xiang S, Zhou Y, Zhang Z. Mo 2 N-ZrO 2 Heterostructure Engineering in Freestanding Carbon Nanofibers for Upgrading Cycling Stability and Energy Efficiency of Li-CO 2 Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2301685. [PMID: 37010021 DOI: 10.1002/smll.202301685] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Indexed: 06/19/2023]
Abstract
Li-CO2 batteries have attracted considerable attention for their advantages of CO2 fixation and high energy density. However, the sluggish dynamics of CO2 reduction/evolution reactions restrict the practical application of Li-CO2 batteries. Herein, a dual-functional Mo2 N-ZrO2 heterostructure engineering in conductive freestanding carbon nanofibers (Mo2 N-ZrO2 @NCNF) is reported. The integration of Mo2 N-ZrO2 heterostructure in porous carbons provides the opportunity to simultaneously accelerate electron transport, boost CO2 conversion, and stabilize intermediate discharge product Li2 C2 O4 . Benefiting from the synchronous advantages, the Mo2 N-ZrO2 @NCNF catalyst endows the Li-CO2 batteries with excellent cycle stability, good rate capability, and high energy efficiency even under high current densities. The designed cathodes exhibit an ultrahigh energy efficiency of 89.8% and a low charging voltage below 3.3 V with a potential gap of 0.32 V. Remarkably, stable operation over 400 cycles can be achieved even at high current densities of 50 µA cm-2 . This work provides valuable guidance for developing multifunctional heterostructured catalysts to upgrade longevity and energy efficiency of Li-CO2 batteries.
Collapse
Affiliation(s)
- Zhibin Cheng
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Ziyuan Wu
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Jiazhen Chen
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Yanlong Fang
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Si Lin
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Jindan Zhang
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Shengchang Xiang
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Yao Zhou
- Advanced Research Institute of Multidisciplinary Science, and School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Zhangjing Zhang
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| |
Collapse
|
32
|
Xie T, Ding J, Shang X, Zhang X, Zhong Q. Effective synergies in indium oxide loaded with zirconia mixed with silicoaluminophosphate molecular sieve number 34 catalysts for carbon dioxide hydrogenation to lower olefins. J Colloid Interface Sci 2023; 635:148-158. [PMID: 36584615 DOI: 10.1016/j.jcis.2022.12.086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/13/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
Tandem catalysts consisting of metal oxides and zeolites have been widely studied for catalytic carbon dioxide (CO2) hydrogenation to lower olefins, while the synergies of two components and their influence on the catalytic performance are still unclear. In this study, the composite catalysts composed of indium oxide loaded with zirconia (In2O3/ZrO2) and silicoaluminophosphate molecular sieve number 34 (SAPO-34) are developed. Performance results indicate that the synergies between these two components can promote CO2 hydrogenation. Further characterizations reveal that the chabazite (CHA) structure and acid sites in the SAPO-34 are destroyed when preparing In-Zr/SAPO by powder milling (In-Zr/SAPO-M) because of the excessive proximity of two components, which inhibits the activation of CO2 and hydrogen (H2), thus resulting in much higher methane selectivity than the catalysts prepared by granule stacking (In-Zr/SAPO-G). Proper granule integration manner promotes tandem reaction, thus enhancing CO2 hydrogenation to lower olefins, which can provide a practicable strategy to improve catalytic performance and the selectivity of the target products.
Collapse
Affiliation(s)
- Tian Xie
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Jie Ding
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China.
| | - Xiaofang Shang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Xiaoqiao Zhang
- Research Institute of Petroleum Processing, SINOPEC, Beijing 100083, PR China
| | - Qin Zhong
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China.
| |
Collapse
|
33
|
Cai D, Cai Y, Tan KB, Zhan G. Recent Advances of Indium Oxide-Based Catalysts for CO 2 Hydrogenation to Methanol: Experimental and Theoretical. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2803. [PMID: 37049097 PMCID: PMC10095753 DOI: 10.3390/ma16072803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
Methanol synthesis from the hydrogenation of carbon dioxide (CO2) with green H2 has been proven as a promising method for CO2 utilization. Among the various catalysts, indium oxide (In2O3)-based catalysts received tremendous research interest due to the excellent methanol selectivity with appreciable CO2 conversion. Herein, the recent experimental and theoretical studies on In2O3-based catalysts for thermochemical CO2 hydrogenation to methanol were systematically reviewed. It can be found that a variety of steps, such as the synthesis method and pretreatment conditions, were taken to promote the formation of oxygen vacancies on the In2O3 surface, which can inhibit side reactions to ensure the highly selective conversion of CO2 into methanol. The catalytic mechanism involving the formate pathway or carboxyl pathway over In2O3 was comprehensively explored by kinetic studies, in situ and ex situ characterizations, and density functional theory calculations, mostly demonstrating that the formate pathway was extremely significant for methanol production. Additionally, based on the cognition of the In2O3 active site and the reaction path of CO2 hydrogenation over In2O3, strategies were adopted to improve the catalytic performance, including (i) metal doping to enhance the adsorption and dissociation of hydrogen, improve the ability of hydrogen spillover, and form a special metal-In2O3 interface, and (ii) hybrid with other metal oxides to improve the dispersion of In2O3, enhance CO2 adsorption capacity, and stabilize the key intermediates. Lastly, some suggestions in future research were proposed to enhance the catalytic activity of In2O3-based catalysts for methanol production. The present review is helpful for researchers to have an explicit version of the research status of In2O3-based catalysts for CO2 hydrogenation to methanol and the design direction of next-generation catalysts.
Collapse
|
34
|
Zhang P, Na W, Zuo J, Wen J, Huang Z, Huang H, Gao W, Qi X, Zheng M, Wang H. CO2 hydrogenation to methanol over hydrothermally synthesized Inx-Zry catalysts. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.112977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
35
|
Rui N, Wang X, Deng K, Moncada J, Rosales R, Zhang F, Xu W, Waluyo I, Hunt A, Stavitski E, Senanayake SD, Liu P, Rodriguez JA. Atomic Structural Origin of the High Methanol Selectivity over In 2O 3–Metal Interfaces: Metal–Support Interactions and the Formation of a InO x Overlayer in Ru/In 2O 3 Catalysts during CO 2 Hydrogenation. ACS Catal 2023. [DOI: 10.1021/acscatal.2c06029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Affiliation(s)
- Ning Rui
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Xuelong Wang
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Kaixi Deng
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Jorge Moncada
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Rina Rosales
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Feng Zhang
- Materials Science and Chemical Engineering Department, Stony Brook University, Stony Brook, New York 11794, United States
| | - Wenqian Xu
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Iradwikanari Waluyo
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Adrian Hunt
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Eli Stavitski
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Sanjaya D. Senanayake
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Ping Liu
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - José A. Rodriguez
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
- Materials Science and Chemical Engineering Department, Stony Brook University, Stony Brook, New York 11794, United States
| |
Collapse
|
36
|
Cui WG, Zhang Q, Zhou L, Wei ZC, Yu L, Dai JJ, Zhang H, Hu TL. Hybrid MOF Template-Directed Construction of Hollow-Structured In 2 O 3 @ZrO 2 Heterostructure for Enhancing Hydrogenation of CO 2 to Methanol. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2204914. [PMID: 36372548 DOI: 10.1002/smll.202204914] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/09/2022] [Indexed: 06/16/2023]
Abstract
Direct hydrogenation of CO2 to methanol using green hydrogen has emerged as a promising method for carbon neutrality, but qualifying catalysts represent a grand challenge. In2 O3 /ZrO2 catalyst has been extensively applied in methanol synthesis due to its superior activity; however, the electronic effect by strong oxides-support interactions between In2 O3 and ZrO2 at the In2 O3 /ZrO2 interface is poorly understood. In this work, abundant In2 O3 /ZrO2 heterointerfaces are engineered in a hollow-structured In2 O3 @ZrO2 heterostructure through a facile pyrolysis of a hybrid metal-organic framework precursor MIL-68@UiO-66. Owing to well-defined In2 O3 /ZrO2 heterointerfaces, the resultant In2 O3 @ZrO2 exhibits superior activity and stability toward CO2 hydrogenation to methanol, which can afford a high methanol selectivity of 84.6% at a conversion of 10.4% at 290 °C, and 3.0 MPa with a methanol space-time yield of up to 0.29 gMeOH gcat -1 h-1 . Extensive characterization demonstrates that there is a strong correlation between the strong electronic In2 O3 -ZrO2 interaction and catalytic selectivity. At In2 O3 /ZrO2 heterointerfaces, the electron tends to transfer from ZrO2 to In2 O3 surface, which facilitates H2 dissociation and the hydrogenation of formate (HCOO*) and methoxy (CH3 O*) species to methanol. This study provides an insight into the In2 O3 -based catalysts and offers appealing opportunities for developing heterostructured CO2 hydrogenation catalysts with excellent activity.
Collapse
Affiliation(s)
- Wen-Gang Cui
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Qiang Zhang
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Lei Zhou
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Zheng-Chang Wei
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Lei Yu
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Jing-Jing Dai
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Hongbo Zhang
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Tong-Liang Hu
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| |
Collapse
|
37
|
Song X, Yang C, Li X, Wang Z, Pei C, Zhao ZJ, Gong J. On the Role of Hydroxyl Groups on Cu/Al 2O 3 in CO 2 Hydrogenation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiwen Song
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin300072, China
| | - Chengsheng Yang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin300072, China
| | - Xianghong Li
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin300072, China
| | - Zhongyan Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin300072, China
| | - Chunlei Pei
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin300072, China
| | - Zhi-Jian Zhao
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin300072, China
| | - Jinlong Gong
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou350207, China
| |
Collapse
|
38
|
The Co-In2O3 interaction concerning the effect of amorphous Co metal on CO2 hydrogenation to methanol. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
39
|
Ma H, Wang X, Jin R, Tan T, Zhou X, Fang R, Shen Y, Dong F, Sun Y. Promote hydroxyl radical and key intermediates formation for deep toluene mineralization via unique electron transfer channel. J Colloid Interface Sci 2022; 630:704-713. [DOI: 10.1016/j.jcis.2022.10.160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/23/2022] [Accepted: 10/30/2022] [Indexed: 11/05/2022]
|
40
|
Tian D, Men Y, Liu S, Wang J, Li Z, Qin K, Shi T, An W. Engineering crystal phases of oxides in tandem catalysts for high-efficiency production of light olefins from CO2 hydrogenation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
41
|
Investigation of In Promotion on Cu/ZrO2 Catalysts and Application in CO2 Hydrogenation to Methanol. Catal Letters 2022. [DOI: 10.1007/s10562-022-04191-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
42
|
Shen C, Sun K, Zou R, Wu Q, Mei D, Liu CJ. CO 2 Hydrogenation to Methanol on Indium Oxide-Supported Rhenium Catalysts: The Effects of Size. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chenyang Shen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin300350, China
- Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University, Tianjin300072, China
| | - Kaihang Sun
- School of Chemical Engineering and Technology, Tianjin University, Tianjin300350, China
| | - Rui Zou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin300350, China
- Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University, Tianjin300072, China
| | - Qinglei Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin300350, China
- Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University, Tianjin300072, China
| | - Donghai Mei
- School of Environmental Science and Engineering, Tiangong University, Tianjin300387, China
| | - Chang-jun Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin300350, China
- Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University, Tianjin300072, China
| |
Collapse
|
43
|
Pinheiro Araújo T, Mondelli C, Agrachev M, Zou T, Willi PO, Engel KM, Grass RN, Stark WJ, Safonova OV, Jeschke G, Mitchell S, Pérez-Ramírez J. Flame-made ternary Pd-In2O3-ZrO2 catalyst with enhanced oxygen vacancy generation for CO2 hydrogenation to methanol. Nat Commun 2022; 13:5610. [PMID: 36153333 PMCID: PMC9509363 DOI: 10.1038/s41467-022-33391-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/15/2022] [Indexed: 11/28/2022] Open
Abstract
Palladium promotion and deposition on monoclinic zirconia are effective strategies to boost the performance of bulk In2O3 in CO2-to-methanol and could unlock superior reactivity if well integrated into a single catalytic system. However, harnessing synergic effects of the individual components is crucial and very challenging as it requires precise control over their assembly. Herein, we present ternary Pd-In2O3-ZrO2 catalysts prepared by flame spray pyrolysis (FSP) with remarkable methanol productivity and improved metal utilization, surpassing their binary counterparts. Unlike established impregnation and co-precipitation methods, FSP produces materials combining low-nuclearity palladium species associated with In2O3 monolayers highly dispersed on the ZrO2 carrier, whose surface partially transforms from a tetragonal into a monoclinic-like structure upon reaction. A pioneering protocol developed to quantify oxygen vacancies using in situ electron paramagnetic resonance spectroscopy reveals their enhanced generation because of this unique catalyst architecture, thereby rationalizing its high and sustained methanol productivity. Assembling multicomponent catalysts to harness synergic effects is challenging. Now, flame spray pyrolysis permits the synthesis of ternary Pd-In2O3-ZrO2 catalysts with an optimal architecture and an enriched density of oxygen vacancies for maximal performance in CO2-based methanol synthesis.
Collapse
|
44
|
Yu J, Zeng Y, Lin W, Lu X. Hydrogenation of CO 2 to methanol over In-doped m-ZrO 2: a DFT investigation into the oxygen vacancy size-dependent reaction mechanism. Phys Chem Chem Phys 2022; 24:23182-23194. [PMID: 36129075 DOI: 10.1039/d2cp02788g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Selective methanol synthesis via CO2 hydrogenation has been thoroughly investigated over defective In-doped m-ZrO2 using density functional theory (DFT). Three types of oxygen vacancies (Ovs) generated either at the top layer (O1_v and O4_v) or at the subsurface layer (O2_v) are chosen as surface models due to low Ov formation energy. Surface morphology reveals that O1_v has smaller oxygen vacancy size than O4_v. Compared with perfect In@m-ZrO2, indium on both O1_v and O4_v is partially reduced, whereas the Bader charge of In on O2_v remains almost the same. Our calculations show that CO2 is moderate in adsorption energy (∼-0.8 eV) for all investigated surface models, which facilitates the formate pathway for both O1_v and O4_v. O2_v is not directly involved in CO2 methanolization but could readily transform into O1_v once CO2/H2 feed gas is introduced. Based on the results, the synthesis of methanol from CO2 hydrogenation turns out to exhibit conspicuous vacancy size-dependency for both O1_v and O4_v. The reaction mechanism for small-sized O1_v is controlled by both the vacancy size effect and surface reducibility effect. Thus, H2COO* favors direct C-O bond cleavage (c-mechanism) before further hydrogenation to methanol, which is similar to the defective In2O3. The vacancy size effect is more competitive than the surface reducibility effect for large-sized O4_v. Therefore, H2COO* prefers protonation to H2COOH before C-O bond cleavage (p-mechanism) which is similar to the ZnO-ZrO2 solid solution. Furthermore, we also determined that stable-CH3O*, which is too stable to be hydrogenated, originates from the O1_v surface. In contrast, CH3O* with similar configuration is allowed to be further converted to methanol on O4_v. Overall, our findings offer a new perspective towards how reaction mechanisms are determined by the size of oxygen vacancies.
Collapse
Affiliation(s)
- Jie Yu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistryand Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China.
| | - Yabing Zeng
- College of Chemistry, Fuzhou University, Fuzhou 350108, Fujian, China.
| | - Wei Lin
- College of Chemistry, Fuzhou University, Fuzhou 350108, Fujian, China. .,Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen University, Xiamen 361005, Fujian, China
| | - Xin Lu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistryand Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China. .,Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen University, Xiamen 361005, Fujian, China
| |
Collapse
|
45
|
Zhao H, Yu R, Ma S, Xu K, Chen Y, Jiang K, Fang Y, Zhu C, Liu X, Tang Y, Wu L, Wu Y, Jiang Q, He P, Liu Z, Tan L. The role of Cu1–O3 species in single-atom Cu/ZrO2 catalyst for CO2 hydrogenation. Nat Catal 2022. [DOI: 10.1038/s41929-022-00840-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
46
|
Wei W, Wei Z, Li R, Li Z, Shi R, Ouyang S, Qi Y, Philips DL, Yuan H. Subsurface oxygen defects electronically interacting with active sites on In 2O 3 for enhanced photothermocatalytic CO 2 reduction. Nat Commun 2022; 13:3199. [PMID: 35680908 PMCID: PMC9184511 DOI: 10.1038/s41467-022-30958-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 05/23/2022] [Indexed: 11/08/2022] Open
Abstract
Oxygen defects play an important role in many catalytic reactions. Increasing surface oxygen defects can be done through reduction treatment. However, excessive reduction blocks electron channels and deactivates the catalyst surface due to electron-trapped effects by subsurface oxygen defects. How to effectively extract electrons from subsurface oxygen defects which cannot directly interact with reactants is challenging and remains elusive. Here, we report a metallic In-embedded In2O3 nanoflake catalyst over which the turnover frequency of CO2 reduction into CO increases by a factor of 866 (7615 h-1) and 376 (2990 h-1) at the same light intensity and reaction temperature, respectively, compared to In2O3. Under electron-delocalization effect of O-In-(O)Vo-In-In structural units at the interface, the electrons in the subsurface oxygen defects are extracted and gather at surface active sites. This improves the electronic coupling with CO2 and stabilizes intermediate. The study opens up new insights for exquisite electronic manipulation of oxygen defects.
Collapse
Affiliation(s)
- Weiqin Wei
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Zhen Wei
- Department of Chemistry, University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Ruizhe Li
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Zhenhua Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| | - Run Shi
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| | - Shuxin Ouyang
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China.
| | - Yuhang Qi
- Chemical Engineering Institute, Hebei University of Technology, 300131, Tianjin, China
| | - David Lee Philips
- Department of Chemistry, University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Hong Yuan
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| |
Collapse
|
47
|
Jiang F, Jiang F, Wang S, Xu Y, Liu B, Liu X. Catalytic Activity for CO2 Hydrogenation is Linearly Dependent on Generated Oxygen Vacancies over CeO2‐Supported Pd Catalysts. ChemCatChem 2022. [DOI: 10.1002/cctc.202200422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Feng Jiang
- Jiangnan University Department of Chemical Engineering No. 1800 Lihu Avenue 214122 Wuxi CHINA
| | - Feng Jiang
- Jiangnan University Department of Chemical Engineering CHINA
| | - Shanshan Wang
- Jiangnan University Department of Chemical Engineering CHINA
| | - Yuebing Xu
- Jiangnan University Department of Chemical Engineering CHINA
| | - Bing Liu
- Jiangnan University Department of Chemical Engineering CHINA
| | - Xiaohao Liu
- Jiangnan University School of Chemical and Material Engineering No. 1800 Lihu Avenue 214122 Wuxi CHINA
| |
Collapse
|
48
|
Yang Q, Kondratenko VA, Petrov SA, Doronkin DE, Saraçi E, Lund H, Arinchtein A, Kraehnert R, Skrypnik AS, Matvienko AA, Kondratenko EV. Identifying Performance Descriptors in CO 2 Hydrogenation over Iron-Based Catalysts Promoted with Alkali Metals. Angew Chem Int Ed Engl 2022; 61:e202116517. [PMID: 35244964 PMCID: PMC9314630 DOI: 10.1002/anie.202116517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Indexed: 11/06/2022]
Abstract
Alkali metal promoters have been widely employed for preparation of heterogeneous catalysts used in many industrially important reactions. However, the fundamentals of their effects are usually difficult to access. Herein, we unravel mechanistic and kinetic aspects of the role of alkali metals in CO2 hydrogenation over Fe-based catalysts through state-of-the-art characterization techniques, spatially resolved steady-state and transient kinetic analyses. The promoters affect electronic properties of iron in iron carbides. These carbide characteristics determine catalyst ability to activate H2 , CO and CO2 . The Allen scale electronegativity of alkali metal promoter was successfully correlated with the rates of CO2 hydrogenation to higher hydrocarbons and CH4 as well as with the rate constants of individual steps of CO or CO2 activation. The derived knowledge can be valuable for designing and preparing catalysts applied in other reactions where such promoters are also used.
Collapse
Affiliation(s)
- Qingxin Yang
- Leibniz-Institut für Katalyse e. V.Albert-Einstein-Str. 29a18059RostockGermany
| | - Vita A. Kondratenko
- Leibniz-Institut für Katalyse e. V.Albert-Einstein-Str. 29a18059RostockGermany
| | - Sergey A. Petrov
- Institute of Solid-State Chemistry and MechanochemistryKutateladze Str. 18630128NovosibirskRussia
| | - Dmitry E. Doronkin
- Institute of Catalysis Research and Technology (IKFT)Karlsruhe Institute of TechnologyHerrmann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Erisa Saraçi
- Institute of Catalysis Research and Technology (IKFT)Karlsruhe Institute of TechnologyHerrmann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Henrik Lund
- Leibniz-Institut für Katalyse e. V.Albert-Einstein-Str. 29a18059RostockGermany
| | - Aleks Arinchtein
- Department of ChemistryTechnische Universität BerlinStrasse des 17. Juni 12410623BerlinGermany
| | - Ralph Kraehnert
- Department of ChemistryTechnische Universität BerlinStrasse des 17. Juni 12410623BerlinGermany
| | - Andrey S. Skrypnik
- Leibniz-Institut für Katalyse e. V.Albert-Einstein-Str. 29a18059RostockGermany
- Institute of Solid-State Chemistry and MechanochemistryKutateladze Str. 18630128NovosibirskRussia
- Novosibirsk State UniversityPirogova Str. 1630090NovosibirskRussia
| | - Alexander A. Matvienko
- Institute of Solid-State Chemistry and MechanochemistryKutateladze Str. 18630128NovosibirskRussia
- Novosibirsk State UniversityPirogova Str. 1630090NovosibirskRussia
| | | |
Collapse
|
49
|
Luo N, Nie W, Mu J, Liu S, Li M, Zhang J, Gao Z, Fan F, Wang F. Low-Work Function Metals Boost Selective and Fast Scission of Methanol C–H Bonds. ACS Catal 2022. [DOI: 10.1021/acscatal.1c06005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nengchao Luo
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Wei Nie
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junju Mu
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Shiyang Liu
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingrun Li
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jian Zhang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zhuyan Gao
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fengtao Fan
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Feng Wang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
50
|
He ZH, Wu BT, Xia Y, Yang SY, Wang ZY, Wang K, Wang W, Yang Y, Liu ZT. CO2 oxidative dehydrogenation of n-butane to butadiene over CrOx supported on CeZr solid solution. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|