1
|
Das S, Catalano L, Geerts Y. Gas Release as an Efficient Strategy to Tune Mechanical Properties and Thermoresponsiveness of Dynamic Molecular Crystals. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401317. [PMID: 38624188 DOI: 10.1002/smll.202401317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/26/2024] [Indexed: 04/17/2024]
Abstract
Dynamic molecular crystals combining multiple and finely tunable functionalities are attracting and an increasing attention due to their potential applications in a broad range of fields as efficient energy transducers and stimuli-responsive materials. In this context, a multicomponent organic salt, piperazinium trifluoroacetate (PZTFA), endowed with an unusual multidimensional responsive landscape is reported. Crystals of the salt undergo smooth plastic deformation under mechanical stress and thermo-induced jumping. Furthermore, via controlled crystal bending and release of trifluoroacetic acid from the lattice, which is anticipated from the design of the material, both the mechanical response and the thermoresponsive behavior are efficiently tuned while partially preserving the crystallinity of the system. In particular, mechanical deformation hampers guest release and hence the macroscopic jumping effect, while trifluoroacetic acid release stiffens the crystals. These complex adaptive responses establish a new crystal engineering strategy to gain further control over dynamic organic crystals.
Collapse
Affiliation(s)
- Susobhan Das
- Laboratoire de Chimie des Polymères, Université Libre de Bruxelles (ULB), Brussels, 1050, Belgium
| | - Luca Catalano
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, 41125, Italy
| | - Yves Geerts
- Laboratoire de Chimie des Polymères, Université Libre de Bruxelles (ULB), Brussels, 1050, Belgium
- International Solvay Institutes of Physics and Chemistry, Université Libre de Bruxelles (ULB), Brussels, 1050, Belgium
| |
Collapse
|
2
|
Pham-Tran VNP, Moffat JGD, Marczenko KM. Polymorph driven diversification of photosalient responses in a zinc(II) coordination complex. Chem Commun (Camb) 2024; 60:7890-7893. [PMID: 38979940 DOI: 10.1039/d4cc01593b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
A novel crystallographic form of a Zn(II) coordination complex [Zn(4-ohbz)2(4-nvp)2] (1-Form-III) (H4-ohbz = 4-hydroxybenzoic acid and 4-nvp = (E)-4-(1-naphthylvinyl)pyridine), undergoes a solid-state photochemical [2+2] cycloaddition reaction accompanied by a moderate photosalient effect, whereby single-crystals show cracking and splitting. This UV-induced cycloaddition accompanies a single-crystal to single-crystal transformation, allowing for continuous monitoring of the unit cell parameters. The new polymorph represents an intermediate form of the two previously reported crystallographic forms of [Zn(4-ohbz)2(4-nvp)2], and provides novel insight into moderating the magnitude of photosalient responses across polymorphic materials.
Collapse
Affiliation(s)
- Victoria N P Pham-Tran
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada.
| | - James G D Moffat
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada.
| | - Katherine M Marczenko
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada.
| |
Collapse
|
3
|
Yu C, Jiang X, Al-Handawi MB, Naumov P, Li L, Yu Q, Wang G. Bending, Twisting, and Propulsion of Photoreactive Crystals by Controlled Gas Release. Angew Chem Int Ed Engl 2024; 63:e202403397. [PMID: 38530916 DOI: 10.1002/anie.202403397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 03/28/2024]
Abstract
The rapid release of gas by a chemical reaction to generate momentum is one of the most fundamental ways to elicit motion that could be used to sustain and control the motility of objects. We report that hollow crystals of a three-dimensional supramolecular metal complex that releases gas by photolysis can propel themselves or other objects and advance in space when suspended in mother solution. In needle-like regular crystals, the reaction occurs mainly on the surface and results in the formation of cracks that evolve due to internal pressure; the expansion on the cracked surface of the crystal results in bending, twisting, or coiling of the crystal. In hollow crystals, gas accumulates inside their cavities and emanates preferentially from the recess at the crystal terminus, propelling the crystals to undergo directional photomechanical motion through the mother solution. The motility of the object which can be controlled externally to perform work delineates the concept of "crystal microbots", realized by photoreactive organic crystals capable of prolonged directional motion for actuation or delivery. Within the prospects, we envisage the development of a plethora of light-weight, efficient, autonomously operating robots based on organic crystals with high work capacity where motion over large distances can be attained due to the large volume of latent gas generated from a small volume of the crystalline solid.
Collapse
Affiliation(s)
- Chunjiao Yu
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong, 266071, China
| | - Xiaofan Jiang
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong, 266071, China
| | - Marieh B Al-Handawi
- Smart Materials Lab, New York University Abu Dhabi, PO Box, 129188, Abu Dhabi, United Arab Emirates
| | - Panče Naumov
- Smart Materials Lab, New York University Abu Dhabi, PO Box, 129188, Abu Dhabi, United Arab Emirates
- Center for Smart Engineering Materials, New York University Abu Dhabi, PO Box, 129188, Abu Dhabi, United Arab Emirates
- Research Center for Environment and Materials, Macedonian Academy of Sciences and Arts, Bul. Krste Misirkov 2, MK-1000, Skopje, Macedonia
- Molecular Design Institute, Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003, USA
| | - Liang Li
- Smart Materials Lab, New York University Abu Dhabi, PO Box, 129188, Abu Dhabi, United Arab Emirates
- Department of Sciences and Engineering, Sorbonne University Abu Dhabi, PO Box, 38044, Abu Dhabi, United Arab Emirates
| | - Qi Yu
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong, 266071, China
| | - Guoming Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong, 266071, China
| |
Collapse
|
4
|
Ghate PP, Hanson KM, Lam K, Al-Kaysi RO, Bardeen CJ. Generating Stable Nitrogen Bubble Layers on Poly(methyl methacrylate) Films by Photolysis of 2-Azidoanthracene. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:4054-4062. [PMID: 38353460 DOI: 10.1021/acs.langmuir.3c02869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
2-Azidoanthracene (2N3-AN) can act as a photochemical source of N2 gas when dissolved in an optically transparent polymer such as poly(methyl methacrylate) (PMMA). Irradiation at 365 or 405 nm of a 150 μm-thick polymer film submerged in water causes the rapid appearance of a surface layer of bubbles. The rapid appearance of surface bubbles cannot be explained by normal diffusion of N2 through the polymer and likely results from internal gas pressure buildup during the reaction. For an azide concentration of 0.1 M and a light intensity of 140 mW/cm2, the yield of gas bubbles is calculated to be approximately 40%. The dynamics of bubble growth depend on the surface morphology, light intensity, and 2N3-AN concentration. A combination of nanoscale surface roughness, high azide concentration, and high light intensity is required to attain the threshold N2 gas density necessary for rapid, high-yield bubble formation. The N2 bubbles adhered to the PMMA surface and survived for days under water. The ability to generate stable gas bubbles "on demand" using light permits the demonstration of photoinduced flotation and patterned bubble arrays.
Collapse
Affiliation(s)
- Pranaya P Ghate
- Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, California 92521, United States
| | - Kerry M Hanson
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, United States
| | - Kevin Lam
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, United States
| | - Rabih O Al-Kaysi
- College of Science and Health Professions-3124, King Saud bin Abdulaziz University for Health Sciences, and King Abdullah International Medical Research Center (Nanomedicine), Ministry of National Guard Health Affairs, Riyadh 11426, Kingdom of Saudi Arabia
| | - Christopher J Bardeen
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, United States
| |
Collapse
|
5
|
Ahmed N, Kavikarage JPK, Judkins DF, Mendis WD, Merugu R, Krause JA, Ault BS, Gudmundsdottir AD. Unraveling the Solid-State Photoreactivity of Carbonylbis(4,1-Phenylene)dicarbonazidate with Laser Flash Photolysis. J Phys Chem A 2023; 127:9705-9716. [PMID: 37939705 DOI: 10.1021/acs.jpca.3c04867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Solid-state photoreactions are generally controlled by the rigid and ordered nature of crystals. Herein, the solution and solid-state photoreactivities of carbonylbis(4,1-phenylene)dicarbonazidate (1) were investigated to elucidate the solid-state reaction mechanism. Irradiation of 1 in methanol yielded primarily the corresponding amine, whereas irradiation in the solid state gave a mixture of photoproducts. Laser flash photolysis in methanol showed the formation of the triplet ketone (TK) of 1 (τ ∼ 99 ns), which decayed to triplet nitrene 31N (τ ∼ 464 ns), as assigned by comparison to its calculated spectrum. Laser flash photolysis of a nanocrystalline suspension and diffuse reflectance laser flash photolysis also revealed the formation of TK of 1 (τ ∼ 106 ns) and 31N (τ ∼ 806 ns). Electron spin resonance spectroscopy and phosphorescence measurements further verified the formation of 31N and the TK of 1, respectively. In methanol, 31N decays by H atom abstraction. However, in the solid state, 31N is sufficiently long lived to thermally populate its singlet configuration (11N). Insertion of 11N into the phenyl ring to produce oxazolone competes with 31N cleavage to form a radical pair. Notably, 1 did not exhibit photodynamic behavior, likely because the photoreaction occurs only on the crystal surfaces.
Collapse
Affiliation(s)
- Noha Ahmed
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221-0172, United States
| | - Janaka P K Kavikarage
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221-0172, United States
| | - DeAnte F Judkins
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221-0172, United States
| | - W Dinindu Mendis
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221-0172, United States
| | - Rajkumar Merugu
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221-0172, United States
| | - Jeanette A Krause
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221-0172, United States
| | - Bruce S Ault
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221-0172, United States
| | - Anna D Gudmundsdottir
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221-0172, United States
| |
Collapse
|
6
|
Borchers T, Topić F, Arhangelskis M, Vainauskas J, Titi HM, Bushuyev OS, Barrett CJ, Friščić T. Three-in-One: Dye-Volatile Cocrystals Exhibiting Intensity-Dependent Photochromic, Photomechanical, and Photocarving Response. J Am Chem Soc 2023; 145. [PMID: 37924293 PMCID: PMC10655124 DOI: 10.1021/jacs.3c07060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 11/06/2023]
Abstract
Cocrystallization of a cis-azobenzene dye with volatile molecules, such as pyrazine and dioxane, leads to materials that exhibit at least three different light-intensity-dependent responses upon irradiation with low-power visible light. The halogen-bond-driven assembly of the dye cis-(p-iodoperfluorophenyl)azobenzene with volatile halogen bond acceptors produces cocrystals whose light-induced behavior varies significantly depending on the intensity of the light applied. Low-intensity (<1 mW·cm-2) light irradiation leads to a color change associated with low levels of cis → trans isomerization. Irradiation at higher intensities (150 mW·mm-2) produces photomechanical bending, caused by more extensive isomerization of the dye. At still higher irradiation intensities (2.25 W·mm-2) the cocrystals undergo cold photocarving; i.e., they can be cut and written on with micrometer precision using laser light without a major thermal effect. Real-time Raman spectroscopy shows that this novel photochemical behavior differs from what would be expected from thermal energy input alone. Overall, this work introduces a rational blueprint, based on supramolecular chemistry in the solid state, for new types of crystalline light-responsive materials, which not only respond to being exposed to light but also change their response based on the light intensity.
Collapse
Affiliation(s)
- Tristan
H. Borchers
- Department
of Chemistry, McGill University, Montreal H3A 0B8, Canada
- School
of Chemistry, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Filip Topić
- Department
of Chemistry, McGill University, Montreal H3A 0B8, Canada
| | | | - Jogirdas Vainauskas
- Department
of Chemistry, McGill University, Montreal H3A 0B8, Canada
- School
of Chemistry, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Hatem M. Titi
- Department
of Chemistry, McGill University, Montreal H3A 0B8, Canada
| | | | | | - Tomislav Friščić
- Department
of Chemistry, McGill University, Montreal H3A 0B8, Canada
- School
of Chemistry, University of Birmingham, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
7
|
Marr ZY, Thapa Magar R, Fournier B, Benedict JB, Rack JJ. Photocrystallography of [Ru(bpy) 2(dmso) 2] 2+ reveals an O-bonded metastable state. Chem Sci 2023; 14:7279-7284. [PMID: 37416725 PMCID: PMC10321476 DOI: 10.1039/d3sc01526b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/06/2023] [Indexed: 07/08/2023] Open
Abstract
We report the first instance of observing the phototriggered isomerization of dmso ligands on a bis sulfoxide complex, [Ru(bpy)2(dmso)2], in the crystalline solid state. The solid-state UV-vis spectrum of the crystal demonstrates an increase in optical density around 550 nm after irradiation, which is consistent with the solution isomerization results. Digital images of the crystal before and after irradiation display a notable color change (pale orange to red) and cleavage occurs along planes, (1̄01) and (100), during irradiation. Single crystal X-ray diffraction data also confirms that isomerization is occurring throughout the lattice and a structure that contains a mix of the S,S and O,O/S,O isomer was attained from a crystal irradiated ex situ. In situ irradiation XRD studies reveal that the percentage of the O-bonded isomer increases as a function of 405 nm exposure time.
Collapse
Affiliation(s)
- Zoe Y Marr
- Department of Chemistry, The State University of New York at Buffalo Buffalo NY 14260 USA
| | - Rajani Thapa Magar
- Department of Chemistry and Chemical Biology, University of New Mexico Albuquerque NM 87131-001 USA
| | - Bertrand Fournier
- Institut Galien Paris-Saclay, CNRS UMR 8612, Université Paris-Saclay 91400 Orsay France
- Université Paris-Saclay, CentraleSupélec, CNRS, Laboratoire SPMS 91190 Gif-sur-Yvette France
| | - Jason B Benedict
- Department of Chemistry, The State University of New York at Buffalo Buffalo NY 14260 USA
| | - Jeffrey J Rack
- Department of Chemistry and Chemical Biology, University of New Mexico Albuquerque NM 87131-001 USA
| |
Collapse
|
8
|
Hipwell VM, Meyer AR, Garcia-Garibay MA. Exceptionally Long Lifetimes of Strongly Entangled Acyl-Trityl Radical Pairs Photochemically Generated in Crystalline Trityl Ketones. J Am Chem Soc 2023; 145:1342-1348. [PMID: 36598840 DOI: 10.1021/jacs.2c11787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Triplet acyl-alkyl radical pairs generated by pulsed laser excitation within the constraints of their nanocrystalline ketone precursors were recently introduced as a potential platform for the robust and repeated instantiation of spin qubit pairs for applications in quantum information science. Here, we report the transient spectroscopy of a series of nanocrystalline trityl-alkyl and trityl-aryl ketones capable of generating correlated triplet radical pairs with persistent triphenylmethyl radicals forced to remain within bonding distances of highly reactive acyl radicals. Whereas triplet trityl-acyl radical pairs decay by competing product-forming decarbonylation and intersystem crossing, triplet trityl-benzoyl radical pairs have lifetimes of up to ca. 4 ms and exclusively regenerate the starting ketone. We propose that these long lifetimes are the result of the short inter-radical distances and the colinear orientation of the two singly occupied orbitals, which are expected to result in large singlet-triplet energy gaps, large zero-field splitting parameters, and a poor geometry for spin-obit coupling. Ketones generating trityl-benzoyl radical pairs demonstrate promising performance along multiple dimensions that are crucial for quantum information science.
Collapse
Affiliation(s)
- Vince M Hipwell
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90024-1569, United States
| | - Alana Rose Meyer
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90024-1569, United States
| | - Miguel A Garcia-Garibay
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90024-1569, United States
| |
Collapse
|
9
|
Electrically conductive hybrid organic crystals as flexible optical waveguides. Nat Commun 2022; 13:7874. [PMID: 36550106 PMCID: PMC9780324 DOI: 10.1038/s41467-022-35432-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Hybrid materials capitalize on the properties of individual materials to attain a specific combination of performance assets that is not available with the individual components alone. We describe a straightforward approach to preparation of sandwich-type hybrid dynamic materials that combine metals as electrically conductive components and polymers as bending, momentum-inducing components with flexible organic crystals as mechanically compliant and optically transducive medium. The resulting hybrid materials are conductive to both electricity and light, while they also respond to changes in temperature by deformation. Depending on the metal, their conductivity ranges from 7.9 to 21.0 S µm‒1. The elements respond rapidly to temperature by curling or uncurling in about 0.2 s, which in one typical case corresponds to exceedingly fast deformation and recovery rates of 2187.5° s‒1 and 1458.3° s‒1, respectively. In cyclic operation mode, their conductivity decreases less than 1% after 10,000 thermal cycles. The mechanothermal robustness and dual functionality favors these materials as candidates for a variety of applications in organic-based optics and electronics, and expands the prospects of application of organic crystals beyond the natural limits of their dynamic performance.
Collapse
|
10
|
Nunez Avila AG, Deschênes-Simard B, Arnold JE, Morency M, Chartrand D, Maris T, Berger G, Day GM, Hanessian S, Wuest JD. Surprising Chemistry of 6-Azidotetrazolo[5,1- a]phthalazine: What a Purported Natural Product Reveals about the Polymorphism of Explosives. J Org Chem 2022; 87:6680-6694. [PMID: 35504046 DOI: 10.1021/acs.joc.2c00369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
6-Azidotetrazolo[5,1-a]phthalazine (ATPH) is a nitrogen-rich compound of surprisingly broad interest. It is purported to be a natural product, yet it is closely related to substances developed as explosives and is highly polymorphic despite having a nearly planar structure with little flexibility. Seven solid forms of ATPH have been characterized by single-crystal X-ray diffraction. The structures show diverse patterns of molecular organization, including both stacked sheets and herringbone packing. In all cases, N···N and C-H···N interactions play key roles in ensuring molecular cohesion. The high polymorphism of ATPH appears to arise in part from the ability of virtually every atom of nitrogen and hydrogen in the molecule to take part in close N···N and C-H···N contacts. As a result, adjacent molecules can adopt many different relative orientations that are energetically similar, thereby generating a polymorphic landscape with an unusually high density of potential structures. This landscape has been explored in detail by the computational prediction of crystal structures. Studying ATPH has provided insights into the field of energetic materials, where access to multiple polymorphs can be used to improve performance and clarify how it depends on molecular packing. In addition, our work with ATPH shows how valuable insights into molecular crystallization, often gleaned from statistical analyses of structural databases, can also come from in-depth empirical and theoretical studies of single compounds that show distinctive behavior.
Collapse
Affiliation(s)
| | | | - Joseph E Arnold
- School of Chemistry, University of Southampton, University Road, Southampton SO17 1BJ, U.K
| | - Mathieu Morency
- Département de Chimie, Université de Montréal, Montréal, Québec H2V 0B3, Canada
| | - Daniel Chartrand
- Département de Chimie, Université de Montréal, Montréal, Québec H2V 0B3, Canada
| | - Thierry Maris
- Département de Chimie, Université de Montréal, Montréal, Québec H2V 0B3, Canada
| | - Gilles Berger
- Microbiologie, Chimie bioorganique et macromoléculaire, Faculté de Pharmacie, Université libre de Bruxelles (ULB), Boulevard du Triomphe, Bruxelles 1050, Belgium
| | - Graeme M Day
- School of Chemistry, University of Southampton, University Road, Southampton SO17 1BJ, U.K
| | - Stephen Hanessian
- Département de Chimie, Université de Montréal, Montréal, Québec H2V 0B3, Canada
| | - James D Wuest
- Département de Chimie, Université de Montréal, Montréal, Québec H2V 0B3, Canada
| |
Collapse
|
11
|
Tong F, Qu DH. Engineering Shapes and Sizes of Molecular Crystals to Achieve Versatile Photomechanical Behaviors. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:4793-4801. [PMID: 35404608 DOI: 10.1021/acs.langmuir.2c00414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Photomechanical molecular crystals, which can directly convert light energy to mechanical energy and do mechanical work at different scales, are promising for future photoactuators. However, one of the bottlenecks in this area is how to harness the crystal shapes and sizes to achieve desired photomechanical motions and behaviors for versatile functionalities. To date, numerous techniques and strategies have been explored and developed to overcome this obstacle. In this perspective, we will summarize the progress recently made on the crystal shape and size engineering platform. Then we briefly touch on possible applications of photomechanical molecular crystals by introducing some built photoresponsive implementations. Finally, we will identify some fundamental challenges and suggestions for future applications.
Collapse
Affiliation(s)
- Fei Tong
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, The People's Republic of China
| | - Da-Hui Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, The People's Republic of China
| |
Collapse
|
12
|
Chang TY, Adrion DM, Meyer AR, Lopez SA, Garcia-Garibay MA. A Green Chemistry Approach toward the Stereospecific Synthesis of Densely Functionalized Cyclopropanes via the Solid-State Photodenitrogenation of Crystalline 1-Pyrazolines. J Org Chem 2022; 87:2277-2288. [PMID: 35041410 DOI: 10.1021/acs.joc.1c01808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The cyclopropane ring features prominently in active pharmaceuticals, and this has spurred the development of synthetic methodologies that effectively incorporate this highly strained motif into such molecules. As such, elegant solutions to prepare densely functionalized cyclopropanes, particularly ones embedded within the core of complex structures, have become increasingly sought-after. Here we report the stereospecific synthesis of a set of cyclopropanes with vicinal quaternary stereocenters via the solvent-free solid-state photodenitrogenation of crystalline 1-pyrazolines. Density functional theory calculations at the M062X/6-31+G(d,p) level of theory were used to determine the origin of regioselectivity for the synthesis of the 1-pyrazolines; favorable in-phase frontier molecular orbital interactions are responsible for the observation of a single pyrazoline regioisomer. It was also shown that the loss of N2 may take place via a highly selective solid-state thermal reaction. Scalability of the solid-state photoreaction is enabled through aqueous nanocrystalline suspensions, making this method a "greener" alternative to effectively facilitate the construction of cyclopropane-containing molecular scaffolds.
Collapse
Affiliation(s)
- Trevor Y Chang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Daniel M Adrion
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Alana Rose Meyer
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Steven A Lopez
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Miguel A Garcia-Garibay
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
13
|
Ye Y, Hao H, Xie C. Photomechanical crystalline materials: new developments, property tuning and applications. CrystEngComm 2022. [DOI: 10.1039/d2ce00203e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This highlight gives an overview of the mechanism development, property tuning and application exploration of photomechanical crystalline materials.
Collapse
Affiliation(s)
- Yang Ye
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, China
| | - Hongxun Hao
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, China
- National Collaborative Innovation Center of Chemistry Science and Engineering, Tianjin 300072, China
| | - Chuang Xie
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, China
- National Collaborative Innovation Center of Chemistry Science and Engineering, Tianjin 300072, China
| |
Collapse
|
14
|
Wei X, Li B, Yang Z, Zhong R, Wang Y, Chen Y, Ding Z, Men G, Yang Z, Zhang H, Yang B, Xu W, Jiang S. Programmable photoresponsive materials based on a single molecule via distinct topochemical reactions. Chem Sci 2021; 12:15588-15595. [PMID: 35003588 PMCID: PMC8654046 DOI: 10.1039/d1sc04053g] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 11/11/2021] [Indexed: 11/21/2022] Open
Abstract
Engineering the preorganization of photoactive units remains a big challenge in solid-state photochemistry research. It is of not only theoretical importance in the construction of topochemical reactions but also technological significance in the fabrication of advanced materials. Here, a cyanostilbene derivative, (Z)-2-(3,5-bis(trifluoromethyl)phenyl)-3-(naphthalen-2-yl) acrylonitrile (BNA), was crystallized into two polymorphs under different conditions. The two crystals, BNA-α and BNA-β, have totally different intra-π-dimer and inter-π-dimer hierarchical architectures on the basis of a very simple monomer, which provides them with distinct reactivities, functions and photoresponsive properties. Firstly, two different types of solid-state [2 + 2] photocycloaddition reaction: (i) a typical olefin-olefin cycloaddition reaction within the symmetric π-dimers of BNA-α and (ii) an unusual olefin-aromatic ring cycloaddition reaction within the offset π-dimers of BNA-β have been observed, respectively. Secondly, the crystal of BNA-α can be bent to 90° without any fracture, exhibiting outstanding flexibility upon UV irradiation, while the reversible photocycloaddition/thermal cleavage process (below 100 °C) accompanied by unique fluorescence changes can be achieved in the crystal of BNA-β. Finally, micro-scale photoactuators and light-writable anti-counterfeiting materials have been successfully fabricated. This work paves a simple way to construct smart materials through a bottom-up way that is realized by manipulating hierarchical architectures in the solid state.
Collapse
Affiliation(s)
- Xiao Wei
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Bao Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Zhiqiang Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Ronglin Zhong
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Yufei Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Yanan Chen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Zeyang Ding
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Guangwen Men
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Zairan Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Houyu Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Bing Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Weiqing Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Shimei Jiang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| |
Collapse
|
15
|
Devi L, Pokhriyal A, Shekhar S, Kant R, Mukherjee S, Rastogi N. Organo‐photocatalytic Synthesis of 6‐
β
‐Disubstituted Phenanthridines from
α
‐Diazo‐
β‐
Keto Compounds and Vinyl Azides. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Lalita Devi
- Medicinal & Process Chemistry Division CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173 Lucknow 226031 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Ayushi Pokhriyal
- Medicinal & Process Chemistry Division CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173 Lucknow 226031 India
| | - Shashi Shekhar
- Department of Chemistry Indian Institute of Science Education and Research Bhopal Bhopal 462066 Madhya Pradesh India
| | - Ruchir Kant
- Biochemistry & Structural Biology Division CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173 Lucknow 226031 India
| | - Saptarshi Mukherjee
- Department of Chemistry Indian Institute of Science Education and Research Bhopal Bhopal 462066 Madhya Pradesh India
| | - Namrata Rastogi
- Medicinal & Process Chemistry Division CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173 Lucknow 226031 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
16
|
Michalchuk AAL, Boldyreva EV, Belenguer AM, Emmerling F, Boldyrev VV. Tribochemistry, Mechanical Alloying, Mechanochemistry: What is in a Name? Front Chem 2021; 9:685789. [PMID: 34164379 PMCID: PMC8216082 DOI: 10.3389/fchem.2021.685789] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/03/2021] [Indexed: 02/05/2023] Open
Abstract
Over the decades, the application of mechanical force to influence chemical reactions has been called by various names: mechanochemistry, tribochemistry, mechanical alloying, to name but a few. The evolution of these terms has largely mirrored the understanding of the field. But what is meant by these terms, why have they evolved, and does it really matter how a process is called? Which parameters should be defined to describe unambiguously the experimental conditions such that others can reproduce the results, or to allow a meaningful comparison between processes explored under different conditions? Can the information on the process be encoded in a clear, concise, and self-explanatory way? We address these questions in this Opinion contribution, which we hope will spark timely and constructive discussion across the international mechanochemical community.
Collapse
Affiliation(s)
| | - Elena V. Boldyreva
- Novosibirsk State University, Novosibirsk, Russia
- Boreskov Institute of Catalysis SB RAS, Novosibirsk, Russia
| | - Ana M. Belenguer
- Yusef Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | | | - Vladimir V. Boldyrev
- Novosibirsk State University, Novosibirsk, Russia
- Voevodski Institute of Chemical Kinetics and Combustion SB RAS, Novosibirsk, Russia
| |
Collapse
|
17
|
Chen Y, Jing B, Chang Z, Gong J. Desolvation induced crystal jumping: reversible hydration and dehydration of a spironolactone–saccharin cocrystal with water as the jumping-mate. CrystEngComm 2021. [DOI: 10.1039/d1ce00830g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We present a spironolactone–saccharin cocrystal hydrate as the first example of a crystal that jumps without changes in either the lattice parameter or the molecular conformation to highlight the unique advantages of the jumping-mate strategy.
Collapse
Affiliation(s)
- Yifu Chen
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Weijin Road 92, Tianjin, 300072, P.R. China
- Collaborative Innovation Center of Chemistry Science and Engineering, Weijin Road 92, Tianjin, P.R. China
| | - Bo Jing
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Weijin Road 92, Tianjin, 300072, P.R. China
- Collaborative Innovation Center of Chemistry Science and Engineering, Weijin Road 92, Tianjin, P.R. China
| | - Zewei Chang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Weijin Road 92, Tianjin, 300072, P.R. China
- Collaborative Innovation Center of Chemistry Science and Engineering, Weijin Road 92, Tianjin, P.R. China
| | - Junbo Gong
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Weijin Road 92, Tianjin, 300072, P.R. China
- Collaborative Innovation Center of Chemistry Science and Engineering, Weijin Road 92, Tianjin, P.R. China
| |
Collapse
|
18
|
Das A, Wang CH, Van Trieste GP, Sun CJ, Chen YS, Reibenspies JH, Powers DC. In Crystallo Snapshots of Rh 2-Catalyzed C-H Amination. J Am Chem Soc 2020; 142:19862-19867. [PMID: 33179914 DOI: 10.1021/jacs.0c09842] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
While X-ray crystallography routinely provides structural characterization of kinetically stable pre-catalysts and intermediates, elucidation of the structures of transient reactive intermediates, which are intimately engaged in bond-breaking and -making during catalysis, is generally not possible. Here, we demonstrate in crystallo synthesis of Rh2 nitrenoids that participate in catalytic C-H amination, and we characterize these transient intermediates as triplet adducts of Rh2. Further, we observe the impact of coordinating substrate, which is present in excess during catalysis, on the structure of transient Rh2 nitrenoids. By providing structural characterization of authentic C-H functionalization intermediates, and not kinetically stabilized model complexes, these experiments provide the opportunity to define critical structure-activity relationships.
Collapse
Affiliation(s)
- Anuvab Das
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Chen-Hao Wang
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Gerard P Van Trieste
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Cheng-Jun Sun
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Yu-Sheng Chen
- ChemMatCARS, University of Chicago, Argonne, Illinois 60439, United States
| | - Joseph H Reibenspies
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - David C Powers
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|