1
|
Zhao G, Chen Y, Cong S, Li L, Wang C, Du X, Liu R, Lu J, Liu Y, Chen G, Zhang S, Zhang L, Rummeli MH, Zou G. Coordination-regulated epitaxial growth for 2D/3D perovskite vertical alignment heterostructure. Sci Bull (Beijing) 2024; 69:3201-3205. [PMID: 39244422 DOI: 10.1016/j.scib.2024.08.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/24/2024] [Accepted: 08/22/2024] [Indexed: 09/09/2024]
Affiliation(s)
- Guoxiang Zhao
- College of Energy, Soochow Institute for Energy and Materials Innovations, and Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215123, China; School of Advanced Energy, Sun Yat-Sen University, Shenzhen 518107, China
| | - Yuan Chen
- College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Shan Cong
- College of Energy, Soochow Institute for Energy and Materials Innovations, and Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215123, China.
| | - Lutao Li
- College of Energy, Soochow Institute for Energy and Materials Innovations, and Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215123, China
| | - Chen Wang
- College of Energy, Soochow Institute for Energy and Materials Innovations, and Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215123, China; College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Xinyu Du
- College of Energy, Soochow Institute for Energy and Materials Innovations, and Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215123, China
| | - Ruirui Liu
- Center for Electron Microscopy, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Jing Lu
- Center for Electron Microscopy, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Yu Liu
- Department of Fundamental Research, Weiqiao Lightweight Research Center at Soochow, Suzhou 215021, China
| | - Gaoyuan Chen
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Sihan Zhang
- College of Energy, Soochow Institute for Energy and Materials Innovations, and Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215123, China
| | - Liya Zhang
- College of Energy, Soochow Institute for Energy and Materials Innovations, and Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215123, China
| | - Mark Hermann Rummeli
- College of Energy, Soochow Institute for Energy and Materials Innovations, and Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215123, China; Institute of Environmental Technology, VSB-Technical University of Ostrava, Ostrava 70833, Czech Republic; Institute for Materials Chemistry, IFW Dresden, Dresden 01069, Germany.
| | - Guifu Zou
- College of Energy, Soochow Institute for Energy and Materials Innovations, and Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215123, China; School of Advanced Energy, Sun Yat-Sen University, Shenzhen 518107, China.
| |
Collapse
|
2
|
Deshpande SS, Saykar NG, Mandal A, Rahane S, Jadhav YA, Upadhyay Kahaly M, Nagy GN, Shinde A, Suresh S, Rondiya SR. Unravelling Structural, Optical, and Band Alignment Properties of Mixed Pb-Sn Metal-Halide Quasi-2D Ruddlesden-Popper Perovskites. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:16180-16189. [PMID: 39069666 DOI: 10.1021/acs.langmuir.4c01278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Lead-tin (Pb-Sn) mixed-halide perovskites show potential for single-junction and tandem solar cells due to their adjustable band gaps, flexible composition, and superior environmental stability compared to three-dimensional (3D) perovskites. However, they have lower power conversion efficiencies. Understanding band alignment and charge carrier dynamics is essential for enhancing photovoltaic performance. In this view, herein we have prepared thin films of mixed Pb-Sn-based two dimensional (2D) Ruddlesden-Popper (RP) perovskites BA2FA(Pb1-xSnx)2I7 using a solution-based method. XRD study revealed the formation of orthorhombic phases for pristine (BA2FAPb2I7) and mixed Pb-Sn perovskite thin films. UV-vis analysis showed that different n = 2 and n = 3 phases are present in the pristine sample. In contrast, Pb-Sn-doped samples showed no signature of other phases with a prominent red-shift in the visible spectral region. Cyclic voltammetry showed peaks for electron transfers at the band edges. Additionally, electrochemical and optical band gap matching was observed, along with decreased peak intensity due to less reactant and altered electrolyte-perovskite interface stability. Density functional theory (DFT) calculations revealed that the reduced band gap is due to the alteration of electrostatic interactions and charge distribution within the lattice upon Sn substitution. Low-temperature PL analysis provided insights into charge carrier dynamics with Sn substitution and suggested the suppression of higher n phases and self-trapped excitons/carriers in mixed Pb-Sn quasi-2D RP perovskite thin films. This study sheds light on the electron transfer phenomena between TiO2 and SnO2 layers by estimating band offsets from valence band maximum (VBM) and conduction band minimum (CBM), which is crucial for future applications in fabricating stable and efficient 2D-Pb-Sn mixed perovskites for optoelectronic applications.
Collapse
Affiliation(s)
- Shatayu S Deshpande
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Nilesh G Saykar
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Animesh Mandal
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Swati Rahane
- Department of Physics, Savitribai Phule University, Pune 411007, India
| | - Yogesh A Jadhav
- Symbiosis Center for Nanoscience and Nanotechnology (SCNN), Symbiosis International (Deemed University) (SIU), Lavale, Pune 412115, Maharashtra, India
| | - M Upadhyay Kahaly
- ELI- ALPS, ELI-HU Non-Profit Ltd., Wolfgang Sandner utca 3, Szeged 6728, Hungary
| | - G N Nagy
- ELI- ALPS, ELI-HU Non-Profit Ltd., Wolfgang Sandner utca 3, Szeged 6728, Hungary
| | - Aparna Shinde
- Department of Experimental Physics, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wrocław 50-370, Poland
| | - Sunil Suresh
- Institute for Material Research (IMO), Hasselt University, Diepenbeek B-3590, Belgium
- IMEC Division IMOMEC - Partner in Solliance, Wetenschapspark 1, Diepenbeek B-3590, Belgium
- EnergyVille, Thor Park 8320, Genk B-3600, Belgium
| | - Sachin R Rondiya
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
3
|
Ma K, Sun J, Dou L. Advances and challenges in molecular engineering of 2D/3D perovskite heterostructures. Chem Commun (Camb) 2024; 60:7824-7842. [PMID: 38963168 DOI: 10.1039/d4cc02299h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Organic-inorganic hybrid perovskites have been intensively studied in past decades due to their outstanding performance in solar cells and other optoelectronic devices. Recently, the emergence of two-dimensional/three-dimensional (2D/3D) heterojunctions have enabled many solar cell devices with >25% power conversion efficiency, driven by advances in our understanding of the structural and photophysical properties of the heterojunctions and our ability to control these properties through organic cation configuration in 2D perovskites. In this feature article, we discuss a fundamental understanding of structural characteristics and the carrier dynamics in the 2D/3D heterojunctions and their impact factors. We further elaborate the design strategies for the molecular configuration of organic cations to achieve thorough management of these properties. Finally, recent advances in 2D/3D heterostructures in solar cells, light-emitting devices and photodetectors are highlighted, which translate fundamental understandings to device applications and also reveal the remaining challenges in ligand design for the next generation of stable devices. Future development prospects and related challenges are also provided, with wide perspectives and insightful thoughts.
Collapse
Affiliation(s)
- Ke Ma
- Global Institute of Future Technology, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| | - Jiaonan Sun
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Hong Kong Institute for Clean Energy (HKICE), City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Letian Dou
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA.
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
4
|
Feng M, Kong L, Chen J, Ma H, Zha C, Zhang L. Band alignment engineering of 2D/3D halide perovskite lateral heterostructures. J Chem Phys 2024; 161:024703. [PMID: 38984962 DOI: 10.1063/5.0214887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 06/25/2024] [Indexed: 07/11/2024] Open
Abstract
Two-dimensional (2D)/three-dimensional (3D) halide perovskite heterostructures have been extensively studied for their ability to combine the outstanding long-term stability of 2D perovskites with the superb optoelectronic properties of 3D perovskites. While current studies mostly focus on vertically stacked 2D/3D perovskite heterostructures, a theoretical understanding regarding the optoelectronic properties of 2D/3D perovskite lateral heterostructures is still lacking. Herein, we construct a series of 2D/3D perovskite lateral heterostructures to study their optoelectronic properties and interfacial charge transfer using density functional theory (DFT) calculations. We find that the band alignments of 2D/3D heterostructures can be regulated by varying the quantum-well thickness of 2D perovskites. Moreover, decreasing the 2D component ratio in 2D/3D heterostructures can be favorable to form type-I band alignment, whereas a large component ratio of 2D perovskites tends to form type-II band alignment. We can improve the amount of charge transfer at the 2D/3D perovskite interfaces and the light absorption of 2D perovskites by increasing quantum-well thickness. These present findings can provide a clear designing principle for achieving 3D/2D perovskite lateral heterostructures with tunable optoelectronic properties.
Collapse
Affiliation(s)
- Mengjia Feng
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 211816, China
| | - Lingkun Kong
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 211816, China
| | - Jinlian Chen
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 211816, China
| | - Huifang Ma
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 211816, China
| | - Chenyang Zha
- Institute of Applied Physics and Materials Engineering, Zhuhai UM Science & Technology Research Institute, University of Macau, Taipa 999078, Macau SAR, China
| | - Linghai Zhang
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
5
|
Jia W, Zhao Q, Zhuang Y, Wei Y, Tian J, Wang C, Qiao J, Shi G, Shang J, Cheng Q, Pang S, Wang K, Rong ZQ, Huang W. Interfacial Rivet to Fill Structural Defects: A Spacer Engineering Gift for 3D Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310444. [PMID: 38100278 DOI: 10.1002/adma.202310444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/03/2023] [Indexed: 12/17/2023]
Abstract
The combination of 2D and 3D perovskites to passivate surfaces or interfaces with a high concentration of defects shows great promise for improving the efficiency of perovskite solar cells (PSCs). Constructing high-quality perovskite film systems by precisely modulating 2D perovskites with good morphologies and growth sites on 3D perovskite films remains a formidable challenge due to the complexity of spacer-engineered surface reactions. In this study, phase-pure 2D (HA)2(MA)n-1PbnI3n+1 perovskites with a controlled number of layers (n) are separated on a large scale and exploited as interface rivets to optimize 3D perovskite films, resulting in tunable film structural defects and grain boundaries. The optimized PSCs system benefits from a reduction in non-radiative recombination, resulting in improved optical performance, higher mobility, and lower trap density. The corresponding device achieves a champion power conversion efficiency (PCE) of more than 25%, especially for voltage (VOC) and fill factor (FF). The quality and uniformity of the perovskite films are further confirmed using large-area devices with an active area of 14 cm2, which exhibits a PCE of more than 21.24%. The high-quality thin-film system based on the 2D perovskites presented herein provides a new perspective for improving the efficiency and stability of PSCs.
Collapse
Affiliation(s)
- Wei Jia
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Qiangqiang Zhao
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
| | - Yan Zhuang
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Yulin Wei
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Juanhua Tian
- Department of Urology, Second Affiliated Hospital of Xi'an Jiaotong University, West Five Road, No. 157, Xi'an, 710004, China
| | - Chenyun Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Jingyuan Qiao
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Guangchao Shi
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Jingzhi Shang
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Qi Cheng
- NCO School, Army Medical University, Shijiazhuang, 050000, China
| | - Shuping Pang
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
| | - Kai Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Zi-Qiang Rong
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| |
Collapse
|
6
|
Singh B, Saykar NG, Kumar BS, Afria D, C. K. S, Rondiya SR. Unraveling Interface-Driven and Loss Mechanism-Centric Phenomena in 3D/2D Halide Perovskites: Prospects for Optoelectronic Applications. ACS OMEGA 2024; 9:10000-10016. [PMID: 38463258 PMCID: PMC10918784 DOI: 10.1021/acsomega.3c08936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 03/12/2024]
Abstract
In recent years, organic-inorganic metal halide perovskite solar cells (PSCs) have attracted considerable interest due to their remarkable and rapidly advancing efficiencies. Over the past decade, PSC efficiencies have significantly approached those of state-of-the-art silicon-based photovoltaics, making them a promising material. Currently, the scientific community widely recognizes the performance of 3D-PSCs and 2D-PSCs individually. However, when both are combined to form a heterostructure, the lattice and charge dynamics at the interface undergo a multitude of mechanisms that affect their performance. The interface between heterostructures facilitates the degradation of PSCs. The degradation pathways can be attributed to lattice distortions, inhomogeneous energy landscapes, interlayer ion migration, nonradiative recombination, and charge accumulation. This Review is dedicated to examining the phenomena that arise at the interface of 3D/2D halide perovskites and their related photophysical properties and loss mechanism processes. We mainly focus on the impact of lattice mismatch, energy level alignment, anomalous carrier dynamics, and loss mechanisms. We propose a "cause-impact-identify-rectify" approach to gain a comprehensive understanding of the ultrafast processes occurring within the material. Finally, we highlight the importance of advanced spectroscopic and imaging techniques in unraveling these intricate mechanisms. This discussion delves into the future possibilities of fabricating 3D/2D heterostructure-based optoelectronic devices, pushing the boundaries of performance across diverse fields. It envisions the creation of devices with unparalleled capabilities, exceeding the limitations of current technologies.
Collapse
Affiliation(s)
- Balpartap Singh
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Nilesh G. Saykar
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Boddeda Sai Kumar
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Dikshant Afria
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Sangeetha C. K.
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Sachin R. Rondiya
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
7
|
Wang CY, Chang HE, Wang CY, Kurioka T, Chen CY, Mark Chang TF, Sone M, Hsu YJ. Manipulation of interfacial charge dynamics for metal-organic frameworks toward advanced photocatalytic applications. NANOSCALE ADVANCES 2024; 6:1039-1058. [PMID: 38356624 PMCID: PMC10866133 DOI: 10.1039/d3na00837a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/15/2023] [Indexed: 02/16/2024]
Abstract
Compared to other known materials, metal-organic frameworks (MOFs) have the highest surface area and the lowest densities; as a result, MOFs are advantageous in numerous technological applications, especially in the area of photocatalysis. Photocatalysis shows tantalizing potential to fulfill global energy demands, reduce greenhouse effects, and resolve environmental contamination problems. To exploit highly active photocatalysts, it is important to determine the fate of photoexcited charge carriers and identify the most decisive charge transfer pathway. Methods to modulate charge dynamics and manipulate carrier behaviors may pave a new avenue for the intelligent design of MOF-based photocatalysts for widespread applications. By summarizing the recent developments in the modulation of interfacial charge dynamics for MOF-based photocatalysts, this minireview can deliver inspiring insights to help researchers harness the merits of MOFs and create versatile photocatalytic systems.
Collapse
Affiliation(s)
- Chien-Yi Wang
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University Hsinchu 300093 Taiwan
| | - Huai-En Chang
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University Hsinchu 300093 Taiwan
| | - Cheng-Yu Wang
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University Hsinchu 300093 Taiwan
| | - Tomoyuki Kurioka
- Institute of Innovative Research, Tokyo Institute of Technology Kanagawa 226-8503 Japan
| | - Chun-Yi Chen
- Institute of Innovative Research, Tokyo Institute of Technology Kanagawa 226-8503 Japan
| | - Tso-Fu Mark Chang
- Institute of Innovative Research, Tokyo Institute of Technology Kanagawa 226-8503 Japan
| | - Masato Sone
- Institute of Innovative Research, Tokyo Institute of Technology Kanagawa 226-8503 Japan
| | - Yung-Jung Hsu
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University Hsinchu 300093 Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University Hsinchu 300093 Taiwan
- International Research Frontiers Initiative, Institute of Innovative Research, Tokyo Institute of Technology Kanagawa 226-8503 Japan
| |
Collapse
|
8
|
Zhang K, Su Z, Shen Y, Cao LX, Zeng XY, Feng SC, Yu Y, Gao X, Tang JX, Li Y. Top-Down Exfoliation Process Constructing 2D/3D Heterojunction toward Ultrapure Blue Perovskite Light-Emitting Diodes. ACS NANO 2024; 18:4570-4578. [PMID: 38277481 DOI: 10.1021/acsnano.3c12433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
3D perovskites with low energy disorder and high ambipolar charge mobility represent a promising solution for efficient and bright light-emitting diodes. However, the challenges of regulating the nanocrystal size to trigger the quantum confinement effect and control the surface trap states to reduce charge loss hinder the applications of 3D perovskites in blue perovskite light-emitting diodes (PeLEDs). In this study, we present a top-down exfoliation method to obtain blue 3D perovskite films with clipped nanocrystals and tunable bandgaps by employing methyl cyanide (MeCN) for post-treatment. In this method, the MeCN solvent exfoliates the surface components of the 3D perovskite grains through a partial dissolution process. Moreover, the dissolved precursor can be further utilized to construct an ingenious 2D/3D heterostructure by incorporating an organic spacer into the MeCN solvent, contributing to efficient defect passivation and improved energy transfer. Consequently, efficient PeLEDs featuring ultrapure blue emission at 478 nm achieve a record external quantum efficiency of 12.3% among their 3D counterparts. This work emphasizes the significance of inducing the quantum confinement effect in 3D perovskites for efficient blue PeLEDs and provides a viable scheme for the in situ regulation of perovskite crystals.
Collapse
Affiliation(s)
- Kai Zhang
- Macao Institute of Materials Science and Engineering (MIMSE), Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa 999078, Macao, People's Republic of China
| | - Zhenhuang Su
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Chinese Academy of Sciences, Shanghai 200241, People's Republic ofChina
| | - Yang Shen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, People's Republic ofChina
| | - Long-Xue Cao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, People's Republic ofChina
| | - Xin-Yi Zeng
- Macao Institute of Materials Science and Engineering (MIMSE), Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa 999078, Macao, People's Republic of China
| | - Shi-Chi Feng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, People's Republic ofChina
| | - Yi Yu
- School of Physics and Electronic Science, East China Normal University, Shanghai 200241, People's Republic ofChina
| | - Xingyu Gao
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Chinese Academy of Sciences, Shanghai 200241, People's Republic ofChina
| | - Jian-Xin Tang
- Macao Institute of Materials Science and Engineering (MIMSE), Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa 999078, Macao, People's Republic of China
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, People's Republic ofChina
| | - Yanqing Li
- School of Physics and Electronic Science, East China Normal University, Shanghai 200241, People's Republic ofChina
| |
Collapse
|
9
|
Griesi A, Faraji M, Kusch G, Khabbazabkenar S, Borreani M, Lauciello S, Schleusener A, Oliver RA, Krahne R, Divitini G. Mapping emission heterogeneity in layered halide perovskites using cathodoluminescence. NANOTECHNOLOGY 2023; 35:105204. [PMID: 38055988 DOI: 10.1088/1361-6528/ad12ec] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/06/2023] [Indexed: 12/08/2023]
Abstract
Recent advancements in the fabrication of layered halide perovskites and their subsequent modification for optoelectronic applications have ushered in a need for innovative characterisation techniques. In particular, heterostructures containing multiple phases and consequently featuring spatially defined optoelectronic properties are very challenging to study. Here, we adopt an approach centered on cathodoluminescence, complemented by scanning electron microscopy coupled with energy-dispersive x-ray spectroscopy analysis. Cathodoluminescence enables assessment of local emission variations by injecting charges with a nanometer-scale electron probe, which we use to investigate emission changes in three different systems: PEA2PbBr4, PEA2PbI4and lateral heterostructures of the two, fabricated via halide substitution. We identify and map different emission bands that can be correlated with local chemical composition and geometry. One emission band is characteristic of bromine-based halide perovskite, while the other originates from iodine-based perovskite. The coexistence of these emissions bands in the halide-substituted sample confirms the formation of lateral heterostructures. To improve the signal quality of the acquired data, we employed multivariate analysis, specifically the non-negative matrix factorization algorithm, on both cathodoluminescence and compositional datasets. The resulting understanding of the halide replacement process and identification of potential synergies in the optical properties will lead to optimised architectures for optoelectronic applications.
Collapse
Affiliation(s)
- Andrea Griesi
- Electron Spectroscopy and Nanoscopy, Istituto Italiano di Tecnologia, Via Morego 30, I-16163 Genova, Italy
| | - Mehrdad Faraji
- Optoelectronics Research Line, Istituto Italiano di Tecnologia, Via Morego 30, I-16163 Genova, Italy
- Dipartimento di Chimica e Chimica Industriale, Università degli Studi di Genova, Via Dodecaneso 31, I-16146 Genova, Italy
| | - Gunnar Kusch
- Department of Materials Science and Metallurgy, Cambridge University, Cambridge CB3 0FS, United Kingdom
| | - Sirous Khabbazabkenar
- Electron Spectroscopy and Nanoscopy, Istituto Italiano di Tecnologia, Via Morego 30, I-16163 Genova, Italy
| | - Martina Borreani
- Optoelectronics Research Line, Istituto Italiano di Tecnologia, Via Morego 30, I-16163 Genova, Italy
| | - Simone Lauciello
- Electron Microscopy Facility, Istituto Italiano di Tecnologia, Via Morego 30, I-16163 Genova, Italy
| | - Alexander Schleusener
- Optoelectronics Research Line, Istituto Italiano di Tecnologia, Via Morego 30, I-16163 Genova, Italy
| | - Rachel A Oliver
- Department of Materials Science and Metallurgy, Cambridge University, Cambridge CB3 0FS, United Kingdom
| | - Roman Krahne
- Optoelectronics Research Line, Istituto Italiano di Tecnologia, Via Morego 30, I-16163 Genova, Italy
| | - Giorgio Divitini
- Electron Spectroscopy and Nanoscopy, Istituto Italiano di Tecnologia, Via Morego 30, I-16163 Genova, Italy
| |
Collapse
|
10
|
Zhang Z, Kim W, Ko MJ, Li Y. Perovskite single-crystal thin films: preparation, surface engineering, and application. NANO CONVERGENCE 2023; 10:23. [PMID: 37212959 PMCID: PMC10203094 DOI: 10.1186/s40580-023-00373-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 05/08/2023] [Indexed: 05/23/2023]
Abstract
Perovskite single-crystal thin films (SCTFs) have emerged as a significant research hotspot in the field of optoelectronic devices owing to their low defect state density, long carrier diffusion length, and high environmental stability. However, the large-area and high-throughput preparation of perovskite SCTFs is limited by significant challenges in terms of reducing surface defects and manufacturing high-performance devices. This review focuses on the advances in the development of perovskite SCTFs with a large area, controlled thickness, and high quality. First, we provide an in-depth analysis of the mechanism and key factors that affect the nucleation and crystallization process and then classify the methods of preparing perovskite SCTFs. Second, the research progress on surface engineering for perovskite SCTFs is introduced. Third, we summarize the applications of perovskite SCTFs in photovoltaics, photodetectors, light-emitting devices, artificial synapse and field-effect transistor. Finally, the development opportunities and challenges in commercializing perovskite SCTFs are discussed.
Collapse
Affiliation(s)
- Zemin Zhang
- Institute of Photoelectronic Thin Film Devices and Technology, Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Engineering Research Center of Thin Film Optoelectronics Technology (MoE), Nankai University, Tianjin, 300350, China
| | - Wooyeon Kim
- Department of Chemical Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Korea
| | - Min Jae Ko
- Department of Chemical Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Korea.
| | - Yuelong Li
- Institute of Photoelectronic Thin Film Devices and Technology, Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Engineering Research Center of Thin Film Optoelectronics Technology (MoE), Nankai University, Tianjin, 300350, China.
| |
Collapse
|
11
|
Wu P, Wang S, Heo JH, Liu H, Chen X, Li X, Zhang F. Mixed Cations Enabled Combined Bulk and Interfacial Passivation for Efficient and Stable Perovskite Solar Cells. NANO-MICRO LETTERS 2023; 15:114. [PMID: 37121936 PMCID: PMC10149427 DOI: 10.1007/s40820-023-01085-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 05/03/2023]
Abstract
Here, we report a mixed GAI and MAI (MGM) treatment method by forming a 2D alternating-cation-interlayer (ACI) phase (n = 2) perovskite layer on the 3D perovskite, modulating the bulk and interfacial defects in the perovskite films simultaneously, leading to the suppressed nonradiative recombination, longer lifetime, higher mobility, and reduced trap density. Consequently, the devices' performance is enhanced to 24.5% and 18.7% for 0.12 and 64 cm2, respectively. In addition, the MGM treatment can be applied to a wide range of perovskite compositions, including MA-, FA-, MAFA-, and CsFAMA-based lead halide perovskites, making it a general method for preparing efficient perovskite solar cells. Without encapsulation, the treated devices show improved stabilities.
Collapse
Affiliation(s)
- Pengfei Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, People's Republic of China
| | - Shirong Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, People's Republic of China.
| | - Jin Hyuck Heo
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul, 17104, Republic of Korea.
| | - Hongli Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, People's Republic of China
| | - Xihan Chen
- SUSTech Energy Institute for Carbon Neutrality, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, People's Republic of China
| | - Xianggao Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, People's Republic of China
| | - Fei Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, People's Republic of China.
| |
Collapse
|
12
|
Meng K, Chen B, Xiao M, Zhai Y, Qiao Z, Yu R, Pan L, Zheng L, Chen G. Humidity-Insensitive, Large-Area-Applicable, Hot-Air-Assisted Ambient Fabrication of 2D Perovskite Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209712. [PMID: 36579894 DOI: 10.1002/adma.202209712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/12/2022] [Indexed: 06/17/2023]
Abstract
2D layered perovskites (LPs) have shown great potential to deliver high-performance photovoltaic devices with long-term stability. Despite many signs of progress being made in film quality and device performance, LP films are mainly processed in strict conditions and through non-scalable techniques. Here, the hot-air-assisted ambient fabrication technique is introduced to prepare LP films for efficient and stable solar cells. The high-quality LP films with good crystallinity, preferable orientation and desirable morphology are obtained by balancing the crystal nucleation and growth processes. Employing the synchrotron-based in situ grazing-incidence X-ray diffraction technique, hot air induces the solidification of solutes and forms an intermediate at the air-liquid interface, which transforms into 3D-like perovskite, followed by the growth of the 2D species toward the substrate. The optimal LP film delivers a device power conversion efficiency of 16.36%, the best value for the LP-based solar cells prepared by the non-spin-coating techniques. The solar cell performance is insensitive to the film processing humidity and the device size is upscalable, which promises real-world deployment of LP-based optoelectronic devices.
Collapse
Affiliation(s)
- Ke Meng
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Bin Chen
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Mingyue Xiao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Yufeng Zhai
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Zhi Qiao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Runze Yu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Li Pan
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Liya Zheng
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Gang Chen
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| |
Collapse
|
13
|
Li B, Shen T, Yun S. Recent progress of crystal orientation engineering in halide perovskite photovoltaics. MATERIALS HORIZONS 2023; 10:13-40. [PMID: 36415914 DOI: 10.1039/d2mh00980c] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Manipulating the crystallographic orientation of semiconductor crystals plays a vital role in fine-tuning their facet-dependent properties, such as surface properties, charge transfer properties, trap state density, and lattice strain. The success in crystal orientation engineering enables the preferential growth orientation of perovskite thin films with favorable crystal planes by precise nucleation manipulation and growth condition optimization, rendering the films with the unique optoelectronic properties to further improve the efficiency of perovskite solar cells (PSCs). However, the origin and impact of preferential crystallographic orientation of perovskite thin films on the corresponding photovoltaic performance of PSCs are still far from being well understood. Herein, we explore the crystal orientation-dependent optoelectronic properties of halide perovskites and their influence on the photovoltaic performance of PSCs. We summarize the basic strategies for crystal facet engineering in the fabrication of preferentially oriented perovskite thin films, with a focus on the oriented growth mechanism during thin film formation. Based on the above knowledge and the recent research progress in terms of crystal orientation engineering in PSCs, a brief outlook on the remaining challenges and perspectives are provided.
Collapse
Affiliation(s)
- Bo Li
- School of Materials and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi, 710055, China.
| | - Ting Shen
- Department of Materials Science and Engineering, Clemson University, Clemson, SC, 29634, USA
| | - Sining Yun
- School of Materials and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi, 710055, China.
| |
Collapse
|
14
|
Zhang L, Jiang J, Hu Y, Lu Z, Wen X, Pendse S, Jia R, Wang GC, Lu TM, Shi J. Liquid-Phase van der Waals Epitaxy of a Few-Layer and Unit-Cell Thick Ruddlesden-Popper Halide Perovskite. J Am Chem Soc 2022; 144:17588-17596. [PMID: 36099192 DOI: 10.1021/jacs.2c07069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
2D Ruddlesden-Popper (RP) halide perovskites with natural multiple quantum well structures are an ideal platform to integrate into vertical heterostructures, which may introduce plentiful intriguing optoelectronic properties that are not accessible in a single bulk crystal. Here, we report liquid-phase van der Waals epitaxy of a 2D RP hybrid perovskite (4,4-DFPD)2PbI4 (4,4-DFPD is 4,4-difluoropiperidinium) on muscovite mica and fabricate a series of perovskite-perovskite vertical heterostructures by integrating it with a second 2D RP perovskite R-NPB [NPB = 1-(1-naphthyl)ethylammonium lead bromide] sheets. The grown (4,4-DFPD)2PbI4 nanobelt array can be multiple layers to unit-cell thin and are crystallographically aligned on the mica substrate. An interlayer photo emission in this R-NPB/(4,4-DFPD)2PbI4 heterostructure with a lifetime of about 25 ns at 120 K has been revealed. Our demonstration of epitaxial (4,4-DFPD)2PbI4 array grown on mica via liquid-phase van der Waals epitaxy provides a paradigm to prepare orderly distributed 2D RP hybrid perovskites for further integration into multiple heterostructures. The discovery of a new interlayer emission in the R-NPB/(4,4-DFPD)2PbI4 heterostructure enriches the basic understanding of interlayer charge transition in halide perovskite systems.
Collapse
Affiliation(s)
- Lifu Zhang
- Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Jie Jiang
- Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Yang Hu
- Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Zonghuan Lu
- Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Xixing Wen
- Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Saloni Pendse
- Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Ru Jia
- Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Gwo-Ching Wang
- Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Toh-Ming Lu
- Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Jian Shi
- Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| |
Collapse
|
15
|
Zhang X, Ye H, Liang L, Niu X, Wu J, Luo J. Direct Detection of Near-Infrared Circularly Polarized Light via Precisely Designed Chiral Perovskite Heterostructures. ACS APPLIED MATERIALS & INTERFACES 2022; 14:36781-36788. [PMID: 35917147 DOI: 10.1021/acsami.2c07208] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Chiral metal halide perovskites (CMHPs) have recently shown great potential for direct circularly polarized light (CPL) detection. However, owing to the limited cutoff wavelength edge of these CMHPs, most of the detectors presented thus far are characterized only in the ultraviolet and visible range; CMHPs that target at the near-infrared (NIR) region are still greatly desired. Here, we design a novel CMHP heterostructure, synthesized via solution-processed epitaxial growth of crystalline 3D MAPbI3 on a 2D chiral (R-BPEA)2PbI4 (R-BPEA = (R)-1-(4-bromophenyl)ethylammonium) crystal, and provide the first demonstration of self-powered direct NIR-CPL detection. Compared with individual chiral (R-BPEA)2PbI4, the heterostructure not only retains the spin selectivity but also allows much broader absorbance, especially beyond 780 nm, where the (R-BPEA)2PbI4 cannot absorb. Furthermore, the built-in electric potential in the heterojunction forces spontaneous separation/transport of photogenerated carriers, enabling the fabrication of devices operating without external energy supply. By making use of the abovementioned advantages, the self-powered CPL detectors of the (R-BPEA)2PbI4/MAPbI3 heterostructures hence show competitive circular polarization sensitivity at 785 nm with a high anisotropy factor of up to 0.25. In addition, a large on/off switching ratio of ∼105 and an impressive detectivity of ∼1010 Jones are also achieved. As a pioneer study, our results may broaden the material scope for future chiroptical devices based on CMHPs.
Collapse
Affiliation(s)
- Xinyuan Zhang
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huang Ye
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lishan Liang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Xinyi Niu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Jianbo Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junhua Luo
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, P. R. China
- School of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
16
|
Zhang X, Yao Y, Liang L, Niu X, Wu J, Luo J. Self-Assembly of 2D Hybrid Double Perovskites on 3D Cs 2 AgBiBr 6 Crystals towards Ultrasensitive Detection of Weak Polarized Light. Angew Chem Int Ed Engl 2022; 61:e202205939. [PMID: 35654743 DOI: 10.1002/anie.202205939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Indexed: 12/22/2022]
Abstract
We report the self-assembly of 2D double perovskite (BLA)2 CsAgBiBr7 (BLA=benzylammonium) on 3D Cs2 AgBiBr6 crystals, providing the first demonstration of polarization-sensitive photodetection using lead-free double perovskite heterocrystals (HCs). The (BLA)2 CsAgBiBr7 /Cs2 AgBiBr6 HC successfully combines the anisotropy of 2D double perovskites with the well-defined interface provided by heterogeneous integration. Driven by the built-in electric field in junction, photodetectors of HCs exhibit unique polarization dependence of zero-bias photocurrent with a large anisotropy ratio up to 9, which is 6 times amplified as compared to the pristine 2D (BLA)2 CsAgBiBr7 . More importantly, the present devices can remain polarization-sensitive with incident light intensity down to the nW cm-2 level. Our study on lead-free hybrid perovskite HCs marks a step toward establishing robust material foundations for fundamental scientific investigations and the development of optoelectronic devices.
Collapse
Affiliation(s)
- Xinyuan Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yunpeng Yao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Lishan Liang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Xinyi Niu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Jianbo Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Junhua Luo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China.,School of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
17
|
Geng J, Zhang H, Meng X, Gao H, Rong W, Xie H. Three-Dimensional Kelvin Probe Force Microscopy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:32719-32728. [PMID: 35816692 DOI: 10.1021/acsami.2c07645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Traditional Kelvin probe force microscopy (KPFM) is mainly limited to the characterization of two-dimensional (2D) surfaces, and in situ surface potential (SP) imaging along 3D device surfaces remains a challenge. This paper presents a multimode 3D-KPFM based on an orthogonal cantilever probe (OCP) that can achieve SP mapping of 3D micronano structures. It integrates three working modes: a bending mode for 2D horizontal surface imaging, a torsion mode for vertical sidewall imaging, and a vector tracking-based 3D scanning mode. The customized OCP has a nanoscale tip protruding from the side and underside of the cantilever, rather than the front, and the extended tip makes the proposed approach universally applicable for 3D detection from the nanometer to micrometer scale. The spatial resolution of the proposed method is analyzed by simulation, which shows it can reduce the cantilever homogenization effect. Linearity and energy resolution measurements show that the proposed method has comparable performance to traditional methods. A comparative experiment using a gold-silicon interface verifies the accuracy of the reported method in its bending and torsion modes. Further, the imaging ability of the 3D scanning mode is confirmed in the 3D characterization of a step grating. This technique is applied to the in situ characterization of a microforce sensor with microcomb structures. The experiment results show that this method can excellently achieve the 3D quantitative characterization of topography and SP, including critical dimensions and SP along a 3D device surface. This novel 3D-KPFM technique has many potential applications in the further exploration of 3D micronano devices.
Collapse
Affiliation(s)
- Junyuan Geng
- The State key Laboratory of Robotics and Systems, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Hao Zhang
- The State key Laboratory of Robotics and Systems, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Xianghe Meng
- The State key Laboratory of Robotics and Systems, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Haibo Gao
- The State key Laboratory of Robotics and Systems, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Weibin Rong
- The State key Laboratory of Robotics and Systems, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Hui Xie
- The State key Laboratory of Robotics and Systems, Harbin Institute of Technology, Harbin 150080, P. R. China
| |
Collapse
|
18
|
Liu M, Zhao R, Sun F, Zhang P, Zhang R, Chen Z, Li S. Wavelength-Tuneable Near-Infrared Luminescence in Mixed Tin-Lead Halide Perovskites. Front Chem 2022; 10:887983. [PMID: 35711964 PMCID: PMC9194474 DOI: 10.3389/fchem.2022.887983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/16/2022] [Indexed: 11/24/2022] Open
Abstract
Near-infrared light-emitting diodes (NIR-LEDs) are widely used in various applications such as night-vision devices, optical communication, biological imaging and optical diagnosis. The current solution-processed high-efficiency perovskite NIR-LEDs are typically based on CsPbI3 and FAPbI3 with emission peaks being limited in the range of 700–800 nm. NIR-LEDs with longer emission wavelengths near to 900 nm can be prepared by replacing Pb with Sn. However, Sn-based perovskite LEDs usually exhibit a low efficiency owing to the high concentration of Sn-related defects and the rapid oxidation of Sn2+ to Sn4+, which further induces the device degradation. These problems can be solved by rationally adjusting the ratio between Pb content with Sn. Mixed Sn-Pb halide perovskites with a smaller bandgap and superior stability than pure Sn-based perovskites are promising candidates for manufacturing next-generation NIR emitters. In this study, we systematically investigated the optical properties of a family of hybrid Sn and Pb iodide compounds. The emission spectra of the mixed Sn-Pb halide perovskites were tuned by changing the Sn:Pb ratio. Consequently, the peak emission wavelength red-shifted from 710 nm to longer than 950 nm. The absorption and photoluminescence emission properties associated with different compositions were compared, and the results demonstrated the potential of MA- and FA-based mixed Sn-Pb halide perovskites for preparing low-cost and efficient NIR-LEDs. In addition, we clarified the influence of cations on the bandgap bowing effect and electronic properties of mixed Sn-Pb halide perovskites.
Collapse
Affiliation(s)
- Meiyue Liu
- Key Laboratory of Photovoltaic Materials, Henan University, Kaifeng, China
| | - Ru Zhao
- Key Laboratory of Photovoltaic Materials, Henan University, Kaifeng, China
| | - Fuhao Sun
- Key Laboratory of Photovoltaic Materials, Henan University, Kaifeng, China
| | - Putao Zhang
- Key Laboratory of Photovoltaic Materials, Henan University, Kaifeng, China
| | - Rui Zhang
- Key Laboratory of Photovoltaic Materials, Henan University, Kaifeng, China
| | - Zeng Chen
- Key Laboratory of Photovoltaic Materials, Henan University, Kaifeng, China
| | - Shengjun Li
- Key Laboratory of Photovoltaic Materials, Henan University, Kaifeng, China
| |
Collapse
|
19
|
Zhang X, Yao Y, Liang L, Niu X, Wu J, Luo J. Self‐Assembly of 2D Hybrid Double Perovskites on 3D Cs2AgBiBr6 Crystals towards Ultrasensitive Detection of Weak Polarized Light. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xinyuan Zhang
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter chemistry CHINA
| | - Yunpeng Yao
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter chemistry CHINA
| | - Lishan Liang
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter chemistry CHINA
| | - Xinyi Niu
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter chemistry CHINA
| | - Jianbo Wu
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter chemistry CHINA
| | - Junhua Luo
- Chinese Academy of Sciences Crystalline Materials Yangqiao West Rd #155 350002 Fuzhou CHINA
| |
Collapse
|
20
|
Ye C, Jiang J, Zou S, Mi W, Xiao Y. Core–Shell Three-Dimensional Perovskite Nanocrystals with Chiral-Induced Spin Selectivity for Room-Temperature Spin Light-Emitting Diodes. J Am Chem Soc 2022; 144:9707-9714. [DOI: 10.1021/jacs.2c01214] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Chuying Ye
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Jiawei Jiang
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparation Technology, School of Science, Tianjin University, Tianjin 300350, China
| | - Shaolan Zou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Wenbo Mi
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparation Technology, School of Science, Tianjin University, Tianjin 300350, China
| | - Yin Xiao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| |
Collapse
|
21
|
Li X, Li H, Bi W, Song Y, Ge C, Wang A, Wang Z, Hao M, Kang Y, Yang Y, Dong Q. Hydration Intermediate Phase Regulated In-Plane and Out-Plane Epitaxy Growth of Oriented Nano-Array Structures on Perovskite Single Crystals. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107915. [PMID: 35445586 DOI: 10.1002/smll.202107915] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Indexed: 06/14/2023]
Abstract
Fabrication of organic-metal-halide perovskite micro-nano array structures draws attention to the potential application in polarized light, high-resolution X-ray imaging, light-emitting diodes, and lasers. However, it is still challenging to achieve the growth of controllable long-range ordered nanostructure arrays by chemical solution-based techniques. Herein, controllable epitaxial growth of long-range ordered micro-nano arrays on MAPbI3 single crystal (SC) surface is reported. A hydrated intermediate phase is found that can effectively regulate in-plane and out-plane orientated growth, respectively. This is attributed to the regulation of growth thermodynamics by hydration 0D perovskite intermediate phase enabling free recombination of PbI42- octahedral cages. Further, it is found that the degree of hydration is the key to the realization of in-plane and out-plane growth. Meanwhile, polarization emission and amplified spontaneous emission property are observed in highly oriented nanorod arrays with potential applications in anti-counterfeiting polarized emission.
Collapse
Affiliation(s)
- Xiaohui Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Hanming Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Weihui Bi
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Yilong Song
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Chengda Ge
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Anran Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Zisheng Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Mingwei Hao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Yifei Kang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Yang Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Qingfeng Dong
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| |
Collapse
|
22
|
Mahato S, Ghorai A, Mondal A, Srivastava SK, Modak M, Das S, Ray SK. Atomic-Scale Imaging and Nano-Scale Mapping of Cubic α-CsPbI 3 Perovskite Nanocrystals for Inverted Perovskite Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:9711-9723. [PMID: 35133121 DOI: 10.1021/acsami.1c20794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Colloidal synthesized cubic α-CsPbI3 perovskite nanocrystals having a smaller lattice constant (a = 6.2315 Å) compared to the standard structure, and nanoscale mapping of their surfaces are reported to achieve superior photovoltaic performance under 45-55% humidity conditions. Atomic scale transmission electron microscopic images have been utilized to probe the precise arrangement of Cs, Pb, and I atoms in a unit cell of α-CsPbI3 NCs, which is well supported by the VESTA structure. Theoretical calculation using density functional theory of our experimental structure reveals the realization of direct band to band transition with a lower band gap, a higher absorption coefficient, and stronger covalent bonding between the Pb and I atoms in the [PbI6]4- octahedral, as compared to reported standard structure. Nanoscale surface mapping using Kelvin probe force microscopy yielding contact potential difference (CPD) and conductive atomic force microscopy for current mapping have been employed on α-CsPbI3 NCs films deposited on different DMSO doped PEDOT:PSS layers. The difference of CPD value under dark and light illumination suggests that the hole injection strongly depends on the interfaces with PEDOT:PSS layer. The carrier transport through grain interiors and grain boundaries in α-CsPbI3 probed by the single-point c-AFM measurements reveal the excellent photosensitivity under the light conditions. Finally, inverted perovskite solar cells, employing α-CsPbI3 NCs film as an absorber layer and PEDOT:PSS layer as a hole transport layer, have been optimized to achieve the highest power conversion efficiency of 10.6%, showing their potential for future earth abundant, low cost, and air stable inverted perovskite photovoltaic devices.
Collapse
Affiliation(s)
- Somnath Mahato
- School of Nano Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721803, India
| | - Arup Ghorai
- School of Nano Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721803, India
- Department of Materials Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 790-784, Korea
| | - Ajoy Mondal
- Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | | | - Mantu Modak
- Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata-700064, India
| | - Shreyasi Das
- School of Nano Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721803, India
| | - Samit K Ray
- Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
23
|
Pious JK, Muthu C, Vijayakumar C. Organic Spacer Cation Assisted Modulation of the Structure and Properties of Bismuth Halide Perovskites. Acc Chem Res 2022; 55:275-285. [PMID: 34806368 DOI: 10.1021/acs.accounts.1c00545] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
ConspectusLead halide perovskites are under the spotlight of current research due to their potential for efficient and cost-effective next-generation optoelectronic devices. The unique photonic and electronic properties of these solution-processable materials brought them to the forefront of materials science. However, the toxicity and instability of lead-based perovskites are the major hurdles for their commercialization. These issues initiated an effort towards the development of environmentally friendly, lead-free perovskites. In this context, bismuth halide perovskites (BHPs) were ideal rivals for lead-based congeners due to their excellent chemical stability, lower toxicity, and structural versatility. Understanding the crystal structure and optoelectronic properties of BHPs is crucial for designing them for specific, tailor-made applications. This Account aims to review our recent research progress on the role of functional organic spacer cations in modulating the electronic confinements, optical properties, and photoconductivity of BHPs. We have employed a comprehensive experimental and theoretical investigation to probe the intriguing optical and electronic properties of these materials. Our findings on the structure-optoelectronic property correlations will be valuable guidelines for the rational selection of organic spacer cations in designing BHPs featuring low exciton binding energy, narrow optical bandgap, enhanced visible light absorption, and high photoconductivity. One of our key findings is that by increasing the electron affinity of the organic spacer ligands, photoconductivity and visible light absorption of BHPs could be significantly enhanced. We hope that the fundamental level understanding of the photophysical properties discussed in this Account will lead to new design rules for developing high-performance BHP materials.
Collapse
Affiliation(s)
- Johnpaul K. Pious
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695 019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Chinnadurai Muthu
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695 019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Chakkooth Vijayakumar
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695 019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| |
Collapse
|
24
|
Cheng X, Han Y, Cui BB. Hetero-perovskite engineering for stable and efficient perovskite solar cells. SUSTAINABLE ENERGY & FUELS 2022; 6:3304-3323. [DOI: 10.1039/d2se00398h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
This review summarizes and discusses the HPSC engineering and optimization mechanism, and provides systematic knowledge and prospects of their development in the photovoltaic field.
Collapse
Affiliation(s)
- Xiaohua Cheng
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology (BIT), Beijing 100081, P. R. China
- School of Chemistry and Chemical Engineering, BIT, Beijing 100081, P. R. China
| | - Ying Han
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology (BIT), Beijing 100081, P. R. China
- School of Chemistry and Chemical Engineering, BIT, Beijing 100081, P. R. China
| | - Bin-Bin Cui
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology (BIT), Beijing 100081, P. R. China
- School of Chemistry and Chemical Engineering, BIT, Beijing 100081, P. R. China
- School of Materials Science & Engineering, BIT, Beijing 100081, P. R. China
| |
Collapse
|
25
|
Zhang X, Zhu T, Ji C, Yao Y, Luo J. In Situ Epitaxial Growth of Centimeter-Sized Lead-Free (BA) 2CsAgBiBr 7/Cs 2AgBiBr 6 Heterocrystals for Self-Driven X-ray Detection. J Am Chem Soc 2021; 143:20802-20810. [PMID: 34846866 DOI: 10.1021/jacs.1c08959] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Halide perovskite heterocrystals, composed of distinct perovskite single crystals, have generated great interest for both fundamental research and applied device designs. One of the key advantages of using such a heterocrystal is its built-in electric potential, which enhances charge transport and suppresses the noise in the solid-state devices. On the basis of this strategy, high-performance optoelectronic devices (e.g., X-ray detectors) have been successfully demonstrated. However, the toxicity of metal cations (Pb) in those reported heterocrystals hinders their wider applications. Thus, developing lead-free halide perovskite heterocrystals is significant but remains highly challenging. Here, we report a solution-processed in situ heteroepitaxial approach that enables us to create the first lead-free halide perovskite heterocrystal, (BA)2CsAgBiBr7/Cs2AgBiBr6(BA = n-butylammonium), with dimensions of up to 10 × 7 × 6 mm3. The as-grown heterocrystals have high crystalline quality and present near atomically sharp interfaces. More excitingly, the (BA)2CsAgBiBr7/Cs2AgBiBr6 heterogeneous integration allows the formation of a built-in electric potential in the junction, which triggers spontaneous charge separation/transport. Consequently, X-ray detectors using the heterocrystals can operate in a self-driven mode and exhibit an impressive sensitivity (206 μC Gy-1 cm-2) superior to that of the pristine Cs2AgBiBr6 crystal detectors, an ultralow dark current, and operational stability. Our findings provide the first demonstration of lead-free halide perovskite heterocrystals and may open up opportunities for a host of sustainable and miniaturized perovskite optoelectronic devices.
Collapse
Affiliation(s)
- Xinyuan Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Tingting Zhu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China
| | - Chengmin Ji
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China.,Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, People's Republic of China
| | - Yunpeng Yao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China
| | - Junhua Luo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China.,School of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People's Republic of China.,Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
26
|
Zhang X, Liu X, Li L, Ji C, Yao Y, Luo J. Great Amplification of Circular Polarization Sensitivity via Heterostructure Engineering of a Chiral Two-Dimensional Hybrid Perovskite Crystal with a Three-Dimensional MAPbI 3 Crystal. ACS CENTRAL SCIENCE 2021; 7:1261-1268. [PMID: 34345674 PMCID: PMC8323243 DOI: 10.1021/acscentsci.1c00649] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Indexed: 05/04/2023]
Abstract
Chiral hybrid perovskites have brought an unprecedented opportunity for circularly polarized light (CPL) detection. However, the circular polarization sensitivity of such a detector remains extremely low because of the high exciton recombination rate in those single-phase hybrid perovskites. Here, a heterostructure construction strategy is proposed to reduce the electron-hole recombination rate in a chiral hybrid perovskite and achieve CPL detectors with greatly amplified circular polarization sensitivity. A heterostructure crystal, namely, [(R)-MPA]2MAPb2I7/MAPbI3 ((R)-MPA = (R)-methylphenethylamine, MA = methylammonium), has been successfully created by integrating a chiral two-dimensional (2D) perovskite with its three-dimensional counterpart via solution-processed heteroepitaxy. Strikingly, the sharp interface of the as-grown heterostructure crystal facilitates the formation of a built-in electric field, enabling the combined concepts of charge transfer and chirality transfer, which effectively reduces the recombination probability for photogenerated carriers while retaining chiroptical activity of chiral 2D perovskite. Thereby, the resultant CPL detector exhibits significantly amplified circular polarization sensitivity at zero bias with an impressive anisotropy factor up to 0.67, which is about six times higher than that of the single-phase [(R)-MPA]2MAPb2I7 (0.1). As a proof-of-concept, the strategy we presented here enables a novel path to modulate circular polarization sensitivity and will be helpful to design chiral hybrid perovskites for advanced chiroptical devices.
Collapse
Affiliation(s)
- Xinyuan Zhang
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research
on the Structure of Matter, Chinese Academy
of Sciences, Fuzhou, Fujian 350002, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Xitao Liu
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research
on the Structure of Matter, Chinese Academy
of Sciences, Fuzhou, Fujian 350002, China
- Fujian
Science & Technology Innovation Laboratory for Optoelectronic
Information of China, Fuzhou, Fujian 350108, P. R. China
| | - Lina Li
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research
on the Structure of Matter, Chinese Academy
of Sciences, Fuzhou, Fujian 350002, China
- Fujian
Science & Technology Innovation Laboratory for Optoelectronic
Information of China, Fuzhou, Fujian 350108, P. R. China
| | - Chengmin Ji
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research
on the Structure of Matter, Chinese Academy
of Sciences, Fuzhou, Fujian 350002, China
- Fujian
Science & Technology Innovation Laboratory for Optoelectronic
Information of China, Fuzhou, Fujian 350108, P. R. China
| | - Yunpeng Yao
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research
on the Structure of Matter, Chinese Academy
of Sciences, Fuzhou, Fujian 350002, China
| | - Junhua Luo
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research
on the Structure of Matter, Chinese Academy
of Sciences, Fuzhou, Fujian 350002, China
- School
of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
- Fujian
Science & Technology Innovation Laboratory for Optoelectronic
Information of China, Fuzhou, Fujian 350108, P. R. China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
27
|
Chen J, Zhou Y, Fu Y, Pan J, Mohammed OF, Bakr OM. Oriented Halide Perovskite Nanostructures and Thin Films for Optoelectronics. Chem Rev 2021; 121:12112-12180. [PMID: 34251192 DOI: 10.1021/acs.chemrev.1c00181] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Oriented semiconductor nanostructures and thin films exhibit many advantageous properties, such as directional exciton transport, efficient charge transfer and separation, and optical anisotropy, and hence these nanostructures are highly promising for use in optoelectronics and photonics. The controlled growth of these structures can facilitate device integration to improve optoelectronic performance and benefit in-depth fundamental studies of the physical properties of these materials. Halide perovskites have emerged as a new family of promising and cost-effective semiconductor materials for next-generation high-power conversion efficiency photovoltaics and for versatile high-performance optoelectronics, such as light-emitting diodes, lasers, photodetectors, and high-energy radiation imaging and detectors. In this Review, we summarize the advances in the fabrication of halide perovskite nanostructures and thin films with controlled dimensionality and crystallographic orientation, along with their applications and performance characteristics in optoelectronics. We examine the growth methods, mechanisms, and fabrication strategies for several technologically relevant structures, including nanowires, nanoplates, nanostructure arrays, single-crystal thin films, and highly oriented thin films. We highlight and discuss the advantageous photophysical properties and remarkable performance characteristics of oriented nanostructures and thin films for optoelectronics. Finally, we survey the remaining challenges and provide a perspective regarding the opportunities for further progress in this field.
Collapse
Affiliation(s)
- Jie Chen
- Division of Physical Science and Engineering (PSE) and KAUST Catalysis Center (KCC), Advanced Membranes and Porous Materials Center (AMPMC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.,School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yang Zhou
- Division of Physical Science and Engineering (PSE) and KAUST Catalysis Center (KCC), Advanced Membranes and Porous Materials Center (AMPMC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Yongping Fu
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jun Pan
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Omar F Mohammed
- Division of Physical Science and Engineering (PSE) and KAUST Catalysis Center (KCC), Advanced Membranes and Porous Materials Center (AMPMC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Osman M Bakr
- Division of Physical Science and Engineering (PSE) and KAUST Catalysis Center (KCC), Advanced Membranes and Porous Materials Center (AMPMC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|