1
|
Zhang CJ, Liu ZZ, Kang YB, Qu JP. Photocatalytic Generation of β-Fluoroalkylated α-Carbonyl Carbocations. Org Lett 2025; 27:264-268. [PMID: 39694878 DOI: 10.1021/acs.orglett.4c04273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Nucleophilic addition to α,β-unsaturated carbonyl compounds normally occurs at the carbonyl carbon or β-carbon. The direct α-nucleophilic addition at the α-carbon can hardly be achieved due to electronic mismatch. In this work, we report the nucleophilic addition of β-fluoroalkyl α-carbonyl carbocations that are prepared via CBZ6-induced redox-neutral photocatalysis. In this process, the photocatalytic oxidation of the β-fluoroalkyl α-carbonyl radical to the corresponding carbocation is the key step. The β-fluoroalkyl α-carbonyl radical is generated in situ by the addition of a polyfluoroalkyl radical, which is generated by the photocatalytic fragmentation of polyfluoroalkyl sulfonyl chloride, to α,β-unsaturated carbonyls. The high E00 value of CBZ6 (3.19 V vs the saturated calomel electrode), which corresponds with the absorbed photoenergy, contributes to the high catalytic reactivity.
Collapse
Affiliation(s)
- Chong-Jin Zhang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zhen-Zhen Liu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yan-Biao Kang
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Jian-Ping Qu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
2
|
Wang YP, Guo ZZ, Qu JP, Kang YB. Photoreductive N-N Homocoupling Catalyzed by a Superphotoreductant. J Org Chem 2024; 89:16804-16808. [PMID: 39453715 DOI: 10.1021/acs.joc.4c02112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2024]
Abstract
Azines are valuable synthons or target molecules in organic synthesis. In this work, we report that CBZ6 could work as a photoreductive catalyst for the N-N homocoupling of oximes in high efficiency. This therefore enabled convenient access to a large variety of azines from the corresponding aryl and alkyl ketones, as well as aryl aldehydes in up to 99% yield. 2,4-Dinitrophenoxyl was used as the recyclable auxiliary and the CBZ6 photocatalyst could also be recycled. These together with the low catalyst loading (2 mol % of CBZ6), the short reaction time (4 h), and the nontoxic DMSO solvent make the current process a sustainable and practical alternative to the classic methods.
Collapse
Affiliation(s)
- Yi-Ping Wang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Zhen-Zhen Guo
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Jian-Ping Qu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yan-Biao Kang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
3
|
Zhang SR, Yue JP, Wang LF, Gui YY, Zhang W, Yu DG, Ye JH. Dearomative hydroamination of heteroarenes catalyzed by the phenolate photocatalyst. Chem Commun (Camb) 2024; 60:13083-13086. [PMID: 39440373 DOI: 10.1039/d4cc03879g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Dearomative functionalization of heteroarenes offers an attractive and sustainable approach for the rapid construction of complex 3D heterocyclic scaffolds from planar structures. Despite progress in this field, dearomative amination of heteroarenes via a radical anion intermediate remains a challenge. Here, we report a photoredox-catalyzed dearomative hydroamination of heteroarenes with hydrazodiformates under mild and transition-metal-free reaction conditions. Various benzofurans and benzothiophenes can efficiently participate in this transformation. A series of mechanistic experiments revealed that heteroaryl radical anions are the crucial intermediates, generated through photo-induced electron transfer between the excited phenolate photocatalyst and heteroarenes.
Collapse
Affiliation(s)
- Shu-Rong Zhang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, P. R. China
| | - Jun-Ping Yue
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Long-Fu Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, P. R. China
| | - Yong-Yuan Gui
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, P. R. China
| | - Wei Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, P. R. China.
| | - Da-Gang Yu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Jian-Heng Ye
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| |
Collapse
|
4
|
Zhang CJ, Sun Y, Gong J, Zhang H, Liu ZZ, Wang F, Chen JX, Qu JP, Kang YB. α-Nucleophilic Addition to α,β-Unsaturated Carbonyl Compounds via Photocatalytically Generated α-Carbonyl Carbocations. Angew Chem Int Ed Engl 2024:e202415496. [PMID: 39494965 DOI: 10.1002/anie.202415496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Indexed: 11/05/2024]
Abstract
We report the photocatalytic oxidation of α-carbonyl radicals of amides or esters to the corresponding α-carbonyl carbocations through super photoreductant CBZ6 induced redox-neutral photocatalysis. The α-carbonyl radicals are formed by the β-addition of alkyl radicals generated in situ by the photocatalytic fragmentation of N-hydroxyphthalimide esters to the α,β-unsaturated amides and esters. This method enables the α-nucleophilic addition of hydroxyl or alkoxyl radicals to amides and esters without any prefunctionalization.
Collapse
Affiliation(s)
- Chong-Jin Zhang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Yu Sun
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Jie Gong
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Hao Zhang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhen-Zhen Liu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Fang Wang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Jin-Xiang Chen
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jian-Ping Qu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Yan-Biao Kang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
5
|
Zhang H, Chen JX, Qu JP, Kang YB. Photocatalytic low-temperature defluorination of PFASs. Nature 2024; 635:610-617. [PMID: 39567791 DOI: 10.1038/s41586-024-08179-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 10/08/2024] [Indexed: 11/22/2024]
Abstract
Polyfluoroalkyl and perfluoroalkyl substances (PFASs) are found in many everyday consumer products, often because of their high thermal and chemical stabilities, as well as their hydrophobic and oleophobic properties1. However, the inert carbon-fluorine (C-F) bonds that give PFASs their properties also provide resistance to decomposition through defluorination, leading to long-term persistence in the environment, as well as in the human body, raising substantial safety and health concerns1-5. Despite recent advances in non-incineration approaches for the destruction of functionalized PFASs, processes for the recycling of perfluorocarbons (PFCs) as well as polymeric PFASs such as polytetrafluoroethylene (PTFE) are limited to methods that use either elevated temperatures or strong reducing reagents. Here we report the defluorination of PFASs with a highly twisted carbazole-cored super-photoreductant KQGZ. A series of PFASs could be defluorinated photocatalytically at 40-60 °C. PTFE gave amorphous carbon and fluoride salts as the major products. Oligomeric PFASs such as PFCs, perfluorooctane sulfonic acid (PFOS), polyfluorooctanoic acid (PFOA) and derivatives give carbonate, formate, oxalate and trifluoroacetate as the defluorinated products. This allows for the recycling of fluorine in PFASs as inorganic fluoride salt. The mechanistic investigation reveals the difference in reaction behaviour and product components for PTFE and oligomeric PFASs. This work opens a window for the low-temperature photoreductive defluorination of the 'forever chemicals' PFASs, especially for PTFE, as well as the discovery of new super-photoreductants.
Collapse
Affiliation(s)
- Hao Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Jin-Xiang Chen
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Jian-Ping Qu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, China.
| | - Yan-Biao Kang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
6
|
Bi H, Shen C, Wang SR. Catalytic Dearomative [1,5]-Sigmatropic Carbon Shift of Heterole-Fused Norcaradienes Enabled Concise Helicenation. Angew Chem Int Ed Engl 2024:e202415839. [PMID: 39429218 DOI: 10.1002/anie.202415839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/02/2024] [Accepted: 10/18/2024] [Indexed: 10/22/2024]
Abstract
In contrast to the locked fluxionality of norcaradienes fused by benzene, unexplored less aromatic heterole-fused norcaradienes, creatively generated by intramolecular hydroarylation of heteroaryl alkynylcyclopropanes, reserve a balancing fluxionality that permits a dearomative [1,5]-sigmatropic carbon shift of norcaradienes akin to the reduced aromaticity of heterole. This "walk" shift was confirmed by the isolation of a cycloheptatriene species derived from ring-expansion of a dearomatized alkynylated heterole-fused norcaradiene. A following ester-directed ring-opening rearomatization of these dearomatized heterole-fused norcaradienes gives the products featuring migratory acylmethyls that are competent for helicenation with the neighboring (hetero) arenes via (formal) dehydrative alkenylation. Such balancing reactivity of heterole-fused norcaradienes will open up the opportunity for the development of controllable reactions of fused norcaradienes.
Collapse
Affiliation(s)
- Hongyan Bi
- Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Chaoren Shen
- Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Sunewang R Wang
- Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
7
|
Zhen YY, Qu JP, Kang YB. Synthesis Enabled by E-to-Z Isomerization Using CBZ6 as Energy Transfer Photocatalyst. Org Lett 2024; 26:5177-5181. [PMID: 38856646 DOI: 10.1021/acs.orglett.4c01715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
The reactions of Z-isomers and E-isomers usually are different in consideration of the regioselectivity of chemoselectivity. The syntheses of Z-isomers are not feasible in many cases. The energy transfer (EnT) E/Z-photoisomerization might yield the Z-isomers. In this work, CBZ6 was proven to be an EnT photocatalyst for the E → Z-isomerization of C-C or C-N double bonds. The transformations of in situ generated Z-isomers of oximes and stilbenes consequently afforded the desired reversed Beckmann rearrangement products and phenanthrenes, respectively.
Collapse
Affiliation(s)
- Ying-Ying Zhen
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jian-Ping Qu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yan-Biao Kang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
8
|
Zhang W, Ren J, Wang D, Sun TY, Xia XF. Selective Reduction of Triple Bond via Proton-Coupled Electron Transfer for the Synthesis of α, β-Unsaturated γ-Lactams. Org Lett 2024; 26:3982-3986. [PMID: 38690829 DOI: 10.1021/acs.orglett.4c01235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Described herein is the development of a visible-light-induced photoredox 1,6-enyne reductive cyclization via selective reduction of a triple bond instead of an activated double bond. The selective 1,6-enyne radical cyclization/carbon═carbon double bond cleavage provided a straightforward route to structurally valuable α,β-unsaturated γ-lactams. TEMPO-trap experiments, control experiments, and DFT calculations have offered evidence supporting the possible catalytic cycle.
Collapse
Affiliation(s)
- Wenjuan Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Juan Ren
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Dawei Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Tian-Yu Sun
- Institute of Molecular Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518132, China
| | - Xiao-Feng Xia
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
9
|
Zhang W, Song Y, Sun TY, Wang D, Xia XF. Photocatalytic Proton-Coupled Electron Transfer Enabled Radical Cyclization for Isoquinoline-1,3-diones Synthesis. J Org Chem 2024; 89:5060-5068. [PMID: 38525894 DOI: 10.1021/acs.joc.4c00282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Radical cyclization has been demonstrated to be an efficient method to access functionalized heterocycles from easily accessible raw materials. Described herein is the development of a photocatalytic proton-coupled electron transfer (PCET) strategy for the synthesis of isoquinoline-1,3-diones using readily prepared naphthalimide (NI)-based organic photocatalysts. The process features free metal-complex photocatalysts, acids, and mild reaction conditions. This mild radical cyclization protocol has a broad substrate scope and can be effectively applied to a variety of medicinally relevant substrates. Furthermore, control experiments were conducted to elucidate the mechanism of this visible light-induced methodology.
Collapse
Affiliation(s)
- Wenjuan Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yaqi Song
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Tian-Yu Sun
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Dawei Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiao-Feng Xia
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
10
|
Zhang B, Li TT, Mao ZC, Jiang M, Zhang Z, Zhao K, Qu WY, Xiao WJ, Chen JR. Enantioselective Cyanofunctionalization of Aromatic Alkenes via Radical Anions. J Am Chem Soc 2024; 146:1410-1422. [PMID: 38179949 DOI: 10.1021/jacs.3c10439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Alkene radical ions constitute an integral and unique class of reactive intermediates for the synthesis of valuable compounds because they have both unpaired spins and charge. However, relatively few synthetic applications of alkene radical anions have emerged due to a dearth of generally applicable and mild radical anion generation approaches. Precise control over the chemo- and stereoselectivity in alkene radical anion-mediated processes represents another long-standing challenge due to their high reactivity. To overcome these issues, here, we develop a new redox-neutral strategy that seamlessly merges photoredox and copper catalysis to enable the controlled generation of alkene radical anions and their orthogonal enantioselective cyanofunctionalization via distonic-like species. This new strategy enables highly regio-, chemo-, and enantioselective hydrocyanation, deuterocyanation, and cyanocarboxylation of alkenes without stoichiometric reductants or oxidants under visible light irradiation. This protocol provides a new blueprint for the exploration of the transformation potential of alkene radical anions.
Collapse
Affiliation(s)
- Bin Zhang
- College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Tian-Tian Li
- College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Zhi-Cheng Mao
- College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Min Jiang
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China
| | - Zhihan Zhang
- College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Ke Zhao
- College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Wen-Yuan Qu
- College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Wen-Jing Xiao
- College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
- Wuhan Institute of Photochemistry and Technology, 7 North Bingang Road, Wuhan, Hubei 430082, China
| | - Jia-Rong Chen
- College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
- Wuhan Institute of Photochemistry and Technology, 7 North Bingang Road, Wuhan, Hubei 430082, China
| |
Collapse
|
11
|
Cen FT, Sun Y, Qu JP, Kang YB. Photocatalytic Redox-Neutral Alkoxyacylation of Alkenes. Org Lett 2023; 25:8997-9001. [PMID: 38060991 DOI: 10.1021/acs.orglett.3c03583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
β-Alkoxyketones are important building blocks in organic synthesis. By utilizing CBZ6, with an oxidative potential of -2.16 V (vs the saturated calomel electrode), as a redox-neutral photocatalyst, alkoxyacylation of olefins was accomplished under the irradiation of visible light via a cationic intermediate. It involves the addition of an acyl radical to olefin to form a radical intermediate and the following oxidation of the radical intermediate to the benzyl cationic intermediate that is captured by alkoxy anions. This process provides concise and practical access to the β-functionalized ketones.
Collapse
Affiliation(s)
- Fu-Tong Cen
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yu Sun
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jian-Ping Qu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yan-Biao Kang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
12
|
Zhou J, Wang W, Zuo F, Liu S, Mosim Amin P, Zhong K, Bai R, Wang Y. Catalyst-Controlled Divergent Generations and Transformations of α-Carbonyl Cations from Alkynes. Angew Chem Int Ed Engl 2023; 62:e202302545. [PMID: 37856619 DOI: 10.1002/anie.202302545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/21/2023]
Abstract
α-Carbonyl cations are the umpolung forms of the synthetically fundamental α-carbonyl carbanions. They are highly reactive yet rarely studied and utilized species and their precursors were rather limited. Herein, we report the catalyst-controlled divergent generations of α-carbonyl cations from single alkyne functionalities and the interception of them via Wagner-Meerwein rearrangement. Two chemodivergent catalytic systems have been established, leading to two different types of α-carbonyl cations and, eventually, two different types of products, i.e. the α,β- and β,γ-unsaturated carbonyl compounds. Broad spectrum of alkynes including aryl alkyne, ynamide, alkynyl ether, and alkynyl sulfide could be utilized and the migration priorities of different groups in the Wagner-Meerwein rearrangement step was elucidated. Density functional theory calculations further supported the intermediacy of α-carbonyl cations via the N-O bond cleavage in both the two catalytic systems. Another key feature of this methodology was the fragmentation of synthetically inert tert-butyl groups into readily transformable olefin functionalities. The synthetic potential was highlighted by the scale-up reactions and the downstream diversifications including the formal synthesis of nicotlactone B and galbacin.
Collapse
Affiliation(s)
- Junrui Zhou
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University (XJTU), Xi'an, 710049, P. R. China
| | - Weilin Wang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University (XJTU), Xi'an, 710049, P. R. China
| | - Fenfang Zuo
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, 400030, China
| | - Shupeng Liu
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University (XJTU), Xi'an, 710049, P. R. China
| | - Pathan Mosim Amin
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University (XJTU), Xi'an, 710049, P. R. China
| | - Kangbao Zhong
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, 400030, China
| | - Ruopeng Bai
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, 400030, China
| | - Youliang Wang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University (XJTU), Xi'an, 710049, P. R. China
| |
Collapse
|
13
|
Zhou W, Dmitriev IA, Melchiorre P. Reductive Cross-Coupling of Olefins via a Radical Pathway. J Am Chem Soc 2023; 145:25098-25102. [PMID: 37947488 PMCID: PMC10682986 DOI: 10.1021/jacs.3c11285] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/04/2023] [Accepted: 11/08/2023] [Indexed: 11/12/2023]
Abstract
Olefins are widely available at low costs, which explains the usefulness of developing new methods for their functionalization. Here we report a simple protocol that uses a photoredox catalyst and an inexpensive thiol catalyst to stitch together two olefins, forming a new C-C bond. Specifically, an electron-poor olefin is reduced by the photoredox catalyst to generate, upon protonation, a carbon radical, which is then captured by a neutral olefin. This intermolecular cross-coupling process provides a tool for rapidly synthesizing sp3-dense molecules from olefins using an unconventional disconnection.
Collapse
Affiliation(s)
- Wei Zhou
- ICIQ
− Institute of Chemical Research of Catalonia, Avinguda Països Catalans
16, 43007 Tarragona, Spain
| | - Igor A. Dmitriev
- ICIQ
− Institute of Chemical Research of Catalonia, Avinguda Països Catalans
16, 43007 Tarragona, Spain
| | - Paolo Melchiorre
- Department
of Industrial Chemistry ‘Toso Montanari’, University of Bologna, Via Piero Gobetti 85, 40129 Bologna, Italy
| |
Collapse
|
14
|
Cui XC, Zhang H, Zhang H, Wang YP, Qu JP, Kang YB. Synthesis of α-Hydroxyl and α-Amino Pyridinyl Esters via Photoreductive Dual Radical Cross-Coupling. Org Lett 2023; 25:7198-7203. [PMID: 37747960 DOI: 10.1021/acs.orglett.3c02780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
A method for the synthesis of α-hydroxyl and α-amino pyridinyl esters via photoreductive dual radical cross-coupling catalyzed by the super-organoreductant CBZ6 has been developed. A wide range of 2-pyridinylation and 4-pyridinylation of either α-ketoesters or imine derivatives has been achieved. The applications in the synthesis of pyridinyl amino-hydroxyl acids as well as a new chiral oxazoline ligand have also been accomplished.
Collapse
Affiliation(s)
- Xian-Chao Cui
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hu Zhang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hao Zhang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yi-Ping Wang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jian-Ping Qu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yan-Biao Kang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
15
|
Zhang MZ, Wang P, Liu HY, Wang D, Deng Y, Bai YH, Luo F, Wu WY, Chen T. Metal-Catalyst-Free One-Pot Aqueous Synthesis of trans-1,2-Diols from Electron-Deficient α,β-Unsaturated Amides via Epoxidation Using Oxone as a Dual Role Reagent. CHEMSUSCHEM 2023; 16:e202300583. [PMID: 37311715 DOI: 10.1002/cssc.202300583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/05/2023] [Accepted: 06/13/2023] [Indexed: 06/15/2023]
Abstract
In organic synthesis, incorporating two functional groups into the carbon-carbon double bond of α,β-unsaturated amides is challenging due to the electron-deficient nature of the olefin moiety. Although a few examples of dihydroxylation of α,β-unsaturated amides have been demonstrated, producing cis-1,2-diols using either highly toxic OsO4 or other specialized metal reagents in organic solvents, they are limited to several specific amides. We describe herein a general and one-pot direct synthesis of trans-1,2-diols from electron-deficient α,β-unsaturated amides through dihydroxylation using oxone as a dual-role reagent in water. This reaction does not require any metal catalyst and produces non-hazardous and nontoxic K2 SO4 as the sole byproduct. Moreover, epoxidation products could also be selectively formed by adjusting the reaction conditions. By the strategy, the intermediates of Mcl-1 inhibitor and antiallergic bioactive molecule can be synthesized in one pot. The gram-scale synthesis of trans-1,2-diol which is isolated and purified by recrystallization further shows the potential applications of this new reaction in organic synthesis.
Collapse
Affiliation(s)
- Ming-Zhong Zhang
- College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing, 408100, China
| | - Ping Wang
- College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing, 408100, China
| | - Hai-Yan Liu
- College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing, 408100, China
| | - Dailian Wang
- College of Chemistry and Chemical Engineering, Ningxia Normal University, Guyuan, 756000, China
| | - Ya Deng
- College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing, 408100, China
| | - Yu-Heng Bai
- College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing, 408100, China
| | - Fei Luo
- College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing, 408100, China
| | - Wen-Yu Wu
- College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing, 408100, China
| | - Tieqiao Chen
- College of Chemical Engineering and Technology, Hainan University, Haikou, 410082, China
| |
Collapse
|
16
|
Ghosh S, Majumder S, Ghosh D, Hajra A. Redox-neutral carbon-heteroatom bond formation under photoredox catalysis. Chem Commun (Camb) 2023. [PMID: 37171250 DOI: 10.1039/d3cc01873c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Recently, visible-light-mediated photoredox catalysis has been emerging as one of the fastest growing fields in organic chemistry because of its low cost, easy availability and environmental benignness. In the past five years, a new yet challenging trend, visible-light-induced redox-neutral carbon-heteroatom bond formation reaction involving presumed radical intermediates, has been flourishing rapidly. Although mostly transition metal-based photoredox catalysts were reported, a few organophotoredox catalysts have also shown efficacy towards carbon-heteroatom bond formation reactions. This review intends to summarize the recent research progress in redox-neutral carbon-heteroatom bond formations based on active intermediate(s) involved under photoredox catalysis.
Collapse
Affiliation(s)
- Sumit Ghosh
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, India.
| | - Souvik Majumder
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, India.
| | - Debashis Ghosh
- Department of Chemistry, St. Joseph's University, Bangalore 560027, Karnataka, India
| | - Alakananda Hajra
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, India.
| |
Collapse
|
17
|
Wang SD, Yang B, Zhang H, Qu JP, Kang YB. Reductive Cleavage of C-X or N-S Bonds Catalyzed by Super Organoreductant CBZ6. Org Lett 2023; 25:816-820. [PMID: 36693162 DOI: 10.1021/acs.orglett.2c04346] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The reductive cleavage of C(Ar)-X bonds is the key step for the cross coupling of Ar-X with other groups. In this work, under the irradiation of 407 nm LEDs using sodium formate as reductant and thiol as hydrogen atom transfer agent, a variety of (hetero)aryl chlorides, bromides, and iodides could be reduced to corresponding (hetero)arenes. The key intermediates, aryl radicals, could be trapped by either hydrogen, phosphite, or borates. The same reduction conditions can be extended to the deprotection of sulfonamides.
Collapse
Affiliation(s)
- Si-Da Wang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Bo Yang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hao Zhang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jian-Ping Qu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yan-Biao Kang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
18
|
Liang Z, Wang K, Sun Q, Peng Y, Bao X. Iron-catalyzed dual decarboxylative coupling of α-amino acids and dioxazolones under visible-light to access amide derivatives. Chem Commun (Camb) 2023; 59:752-755. [PMID: 36541573 DOI: 10.1039/d2cc03318f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
An iron-catalyzed decarboxylative C-N coupling of α-amino acids with dioxazolones is described herein to synthesize amide derivatives under visible-light. The desired products can be given in good to excellent yields under simple, mild, and oxidant-free conditions. This protocol provides a practical route for the transformation of α-amino acids to the corresponding amides. Computational studies were carried out to shed light on the mechanism of this reaction.
Collapse
Affiliation(s)
- Zhanqun Liang
- Innovation Center for Chemical Sciences, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China.
| | - Kaifeng Wang
- Innovation Center for Chemical Sciences, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China.
| | - Qing Sun
- Innovation Center for Chemical Sciences, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China.
| | - Yuzhu Peng
- Innovation Center for Chemical Sciences, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China.
| | - Xiaoguang Bao
- Innovation Center for Chemical Sciences, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China. .,Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
19
|
Qiu ZW, Long L, Zhu ZQ, Liu HF, Pan HP, Ma AJ, Peng JB, Wang YH, Gao H, Zhang XZ. Asymmetric Three-Component Reaction to Assemble the Acyclic All-Carbon Quaternary Stereocenter via Visible Light and Phosphoric Acid Catalysis. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zong-Wang Qiu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, Guangdong, China
| | - Liang Long
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education of China (MOE), Jinan University, Guangzhou 510632, China
| | - Zhi-Qiang Zhu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, Guangdong, China
| | - Hong-Fu Liu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, Guangdong, China
| | - Han-Peng Pan
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, Guangdong, China
| | - Ai-Jun Ma
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, Guangdong, China
| | - Jin-Bao Peng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, Guangdong, China
| | - Yong-Heng Wang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education of China (MOE), Jinan University, Guangzhou 510632, China
| | - Hao Gao
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education of China (MOE), Jinan University, Guangzhou 510632, China
| | - Xiang-Zhi Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, Guangdong, China
| |
Collapse
|
20
|
Jia H, Ritter T. α-Thianthrenium Carbonyl Species: The Equivalent of an α-Carbonyl Carbocation. Angew Chem Int Ed Engl 2022; 61:e202208978. [PMID: 35895980 PMCID: PMC9804271 DOI: 10.1002/anie.202208978] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Indexed: 01/05/2023]
Abstract
Here we report an α-thianthrenium carbonyl species, as the equivalent of an α-carbonyl carbocation, which is generated by the radical conjugate addition of a trifluoromethyl thianthrenium salt to Michael acceptors. The reactivity allows for the synthesis of Cα -tetrasubstituted α- and β-amino acid analogues via a Ritter reaction by addition of acetonitrile. Addition of hydroxide, methoxide, and even fluoride can afford α-heteroatom substituted α-phenylpropanoates.
Collapse
Affiliation(s)
- Hao Jia
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Tobias Ritter
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| |
Collapse
|
21
|
Yang S, Fan H, Xie L, Dong G, Chen M. Photoinduced Desaturation of Amides by Palladium Catalysis. Org Lett 2022; 24:6460-6465. [PMID: 36040045 DOI: 10.1021/acs.orglett.2c02594] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A photoinduced palladium-catalyzed desaturation method that is suitable for converting the linear amides to their α,β-unsaturated counterparts is reported. The reaction does not require strong base/acid or sulfur/selenium and oxidant reagents and can be carried out at room temperature through a simple one-step operation. The protocol exhibits great scalability and functional group tolerance. The reaction mechanism has been investigated through deuterium labeling experiments, radical clock, radical capture, and kinetic studies. Mechanistic studies suggested a radical pathway involving aryl/alkyl Pd-radical intermediates.
Collapse
Affiliation(s)
- Sen Yang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Huike Fan
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Licheng Xie
- Huaide College, Changzhou University, Jingjiang 214513, China
| | - Guangbin Dong
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Ming Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
22
|
Jia H, Ritter T. α‐Thianthrenium Carbonyl Species: The Equivalent of an α‐Carbonyl Carbocation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hao Jia
- Max-Planck-Institute für Kohlenforschung: Max-Planck-Institut fur Kohlenforschung Chemistry Kaiser-Wilhelm-Platz 1 45470 Muelheim an der Ruhr GERMANY
| | - Tobias Ritter
- Max-Planck-Institut für Kohlenforschung: Max-Planck-Institut fur Kohlenforschung Department of Organic Chemistry Kaiser-Wilhelm-Platz 1 45470 Muelheim an der Ruhr GERMANY
| |
Collapse
|
23
|
Recent advances of visible-light photocatalysis in the functionalization of organic compounds. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2022. [DOI: 10.1016/j.jphotochemrev.2022.100488] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
24
|
Cui XC, Zhang H, Wang YP, Qu JP, Kang YB. Synthesis of carbinoxamine via α-C(sp 3)–H 2-pyridylation of O, S or N-containing compounds enabled by non-D–A-type super organoreductants and sulfoxide- or sulfide HAT reagents. Chem Sci 2022; 13:11246-11251. [PMID: 36320488 PMCID: PMC9517729 DOI: 10.1039/d2sc03504a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/01/2022] [Indexed: 11/21/2022] Open
Abstract
The radical cations of tertiary amines (R3N) have been well-established as the precursors of HAT reagents in photochemical transformations. Similarly, thiols and thioacids bearing SH groups have also been widely applied as HAT reagents. Despite the fact that sulfoxides (R2SO) and sulfides (RSR) also bear lone pairs of electrons, these compounds have been barely reported as HAT reagents in photocatalysis. On the other hand, the α-C–H 4-pyridylation of O or N-containing compounds has been documented, whereas 2-pyridylation remains challenging. However, the antihistamine and anticholinergic agent carbinoxamine is an ether bearing 2-pyridyl, which has not been obtained by the existing α-photoarylation of ether. In this work, we report the discovery of a non-donor–acceptor (D–A) type organic photoreductant CBZ6 and sulfoxide/sulfide synergistically catalyzed general α-C(sp3)–H arylation of ethers, thioethers and amines. By using as low as 1 mol% of CBZ6 as a recyclable organic photoreductant and sulfoxides or sulfides as a new type of HAT reagent, the 2- or 4-pyridylation of O, N, or S-containing compounds has been accomplished. This is the first base-free version of α-C–H 2-/4-pyridylation of O, N, or S-containing compounds. It is the first example of sulfoxides or sulfides working as HAT reagents. It is also the first general method for photocatalytic HAT 2-pyridylation of various ethers, amines or thioethers. We report the discovery of a non-donor–acceptor (D–A) type organic photoreductant CBZ6 and sulfoxide/sulfide synergistically catalyzed general α-C(sp3)–H arylation of ethers, thioethers and amines.![]()
Collapse
Affiliation(s)
- Xian-Chao Cui
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Hu Zhang
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Yi-Ping Wang
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Jian-Ping Qu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yan-Biao Kang
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
25
|
Wang D, Huang H, Zhu X. Development of Anthrazoline Photocatalyst for Promoting Amination and Amidation Reactions. Chem Commun (Camb) 2022; 58:3529-3532. [DOI: 10.1039/d1cc07315j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, we report the synthesis, optical and electrochemical properties of a series of organophotocatalysts bearing anthrazoline framework, as well as demonstrate their catalytic competencies in promoting C-N bond...
Collapse
|
26
|
Zhang X, Huang YM, Qin HL, Baoguo Z, Rakesh KP, Tang H. Copper-Promoted Conjugate Addition of Carboxylic Acids to Ethenesulfonyl Fluoride (ESF) for Constructing Aliphatic Sulfonyl Fluorides. ACS OMEGA 2021; 6:25972-25981. [PMID: 34660959 PMCID: PMC8515394 DOI: 10.1021/acsomega.1c02804] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/23/2021] [Indexed: 05/06/2023]
Abstract
A CuO-promoted direct hydrocarboxylation of ethenesulfonyl fluoride (ESF) was developed using carboxylic acid as a nucleophile under mild conditions. A variety of molecules containing both ester group and aliphatic sulfonyl fluoride moiety exhibit great potential in medicinal chemistry and chemical biology. Furthermore, the modification of the known drugs Ibuprofen and Aspirin was also demonstrated.
Collapse
Affiliation(s)
- Xu Zhang
- School
of Chemistry, Chemical Engineering and Life Science and State Key
Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Yu-Mei Huang
- School
of Chemistry, Chemical Engineering and Life Science and State Key
Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Hua-Li Qin
- School
of Chemistry, Chemical Engineering and Life Science and State Key
Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Zhang Baoguo
- Lab
of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai 201210, China
| | - K. P. Rakesh
- School
of Chemistry, Chemical Engineering and Life Science and State Key
Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Haolin Tang
- School
of Chemistry, Chemical Engineering and Life Science and State Key
Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
27
|
Jiang Y, Li B, Ma N, Shu S, Chen Y, Yang S, Huang Z, Shi D, Zhao Y. Photoredox‐Catalyst‐Enabled
para
‐Selective Trifluoromethylation of
tert
‐Butyl Arylcarbamates. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yaqiqi Jiang
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry Chemical Engineering and Materials Science, Soochow University Suzhou 215123 P. R. China
- School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453000 P. R. China
| | - Bao Li
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals Key Laboratory of Green Chemical Media and Reactions Ministry of Education School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453000 P. R. China
| | - Nana Ma
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals Key Laboratory of Green Chemical Media and Reactions Ministry of Education School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453000 P. R. China
| | - Sai Shu
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry Chemical Engineering and Materials Science, Soochow University Suzhou 215123 P. R. China
- School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453000 P. R. China
| | - Yujie Chen
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry Chemical Engineering and Materials Science, Soochow University Suzhou 215123 P. R. China
- School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453000 P. R. China
| | - Shan Yang
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry Chemical Engineering and Materials Science, Soochow University Suzhou 215123 P. R. China
- School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453000 P. R. China
| | - Zhibin Huang
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry Chemical Engineering and Materials Science, Soochow University Suzhou 215123 P. R. China
- School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453000 P. R. China
| | - Daqing Shi
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry Chemical Engineering and Materials Science, Soochow University Suzhou 215123 P. R. China
- School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453000 P. R. China
| | - Yingsheng Zhao
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry Chemical Engineering and Materials Science, Soochow University Suzhou 215123 P. R. China
- School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453000 P. R. China
| |
Collapse
|
28
|
Kumar R, Nguyen QH, Um TW, Shin S. Recent Progress in Enolonium Chemistry under Metal-Free Conditions. CHEM REC 2021; 22:e202100172. [PMID: 34418282 DOI: 10.1002/tcr.202100172] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/08/2021] [Accepted: 08/11/2021] [Indexed: 11/09/2022]
Abstract
Umpolung approach through inversion of the polarity of conventional enolates, has opened up an unprecedented opportunity in the cross-coupling via alkylation. The enolonium equivalents can be accessed either by hypervalent iodine reagents, activation/oxidation of amides, or the oxidation of alkynes. Under umpolung conditions, highly basic conditions required for classical enolate chemistry can be avoided, and they can couple with unmodified nucleophiles such as heteroatom donors and electron-rich arenes.
Collapse
Affiliation(s)
- Ravi Kumar
- Department of Chemistry, Center for New Directions in Organic Chemistry (CNOS), and Institute for Natural Sciences, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Korea
| | - Quynh H Nguyen
- Department of Chemistry, Center for New Directions in Organic Chemistry (CNOS), and Institute for Natural Sciences, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Korea
| | - Tae-Woong Um
- Department of Chemistry, Center for New Directions in Organic Chemistry (CNOS), and Institute for Natural Sciences, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Korea
| | - Seunghoon Shin
- Department of Chemistry, Center for New Directions in Organic Chemistry (CNOS), and Institute for Natural Sciences, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Korea
| |
Collapse
|
29
|
Jiang Y, Li B, Ma N, Shu S, Chen Y, Yang S, Huang Z, Shi D, Zhao Y. Photoredox-Catalyst-Enabled para-Selective Trifluoromethylation of tert-Butyl Arylcarbamates. Angew Chem Int Ed Engl 2021; 60:19030-19034. [PMID: 34160867 DOI: 10.1002/anie.202105631] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/22/2021] [Indexed: 01/26/2023]
Abstract
The direct incorporation of a trifluoromethyl group on an aromatic ring using a radical pathway has been extensively investigated. However, the direct highly para-selective C-H trifluoromethylation of a class of arenes has not been achieved. In this study, we report a light-promoted 4,5-dichlorofluorescein (DCFS)-enabled para-selective C-H trifluoromethylation of arylcarbamates using Langlois reagent. The preliminary mechanistic study revealed that the activated organic photocatalyst coordinated with the arylcarbamate led to para-selective C-H trifluoromethylation. Ten-gram scale reaction performs well highlighting the synthetic importance of this new protocol.
Collapse
Affiliation(s)
- Yaqiqi Jiang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453000, P. R. China
| | - Bao Li
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453000, P. R. China
| | - Nana Ma
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453000, P. R. China
| | - Sai Shu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453000, P. R. China
| | - Yujie Chen
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453000, P. R. China
| | - Shan Yang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453000, P. R. China
| | - Zhibin Huang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453000, P. R. China
| | - Daqing Shi
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453000, P. R. China
| | - Yingsheng Zhao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453000, P. R. China
| |
Collapse
|
30
|
Czyz ML, Taylor MS, Horngren TH, Polyzos A. Reductive Activation and Hydrofunctionalization of Olefins by Multiphoton Tandem Photoredox Catalysis. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01000] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Milena L. Czyz
- School of Chemistry, The University of Melbourne, Parkville 3010, Victoria, Australia
| | - Mitchell S. Taylor
- School of Chemistry, The University of Melbourne, Parkville 3010, Victoria, Australia
| | - Tyra H. Horngren
- School of Chemistry, The University of Melbourne, Parkville 3010, Victoria, Australia
| | - Anastasios Polyzos
- School of Chemistry, The University of Melbourne, Parkville 3010, Victoria, Australia
- CSIRO Manufacturing, Research Way, Clayton 3168, Victoria, Australia
| |
Collapse
|
31
|
Abstract
A recyclable organic photoreductant (1 mol % CBZ6)-catalyzed reductive (pinacol) coupling of aldehydes, ketones, and imines has been developed. Irradiated by purple light (407 nm) using triethylamine as an electron donor, a variety of 1,2-diols and 1,2-diamines could be prepared. The oxidation potential of the excited state of CBZ6 is established as -1.92 V (vs saturated calomel electrode (SCE)). The relative high reductive potential enables the reductive coupling of carbonyl compounds and their derivatives. CBZ6 can be prepared in gram scale and is acid/base- or air-stable. It could be applied in large-scale photoreductive synthesis and recovered in high yield after the reaction.
Collapse
Affiliation(s)
- Hua Wang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jian-Ping Qu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Yan-Biao Kang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
32
|
Zheng D, Plöger S, Daniliuc CG, Studer A. Licht‐vermittelte intermolekulare Kupplung von Alkenen mit Ketonen über Acyloxy‐Nitroso‐Verbindungen. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Danqing Zheng
- Westfälische Wilhelms-Universität Organisch-Chemisches Institut Corrensstraße 40 48149 Münster Deutschland
| | - Stefanie Plöger
- Westfälische Wilhelms-Universität Organisch-Chemisches Institut Corrensstraße 40 48149 Münster Deutschland
| | - Constantin G. Daniliuc
- Westfälische Wilhelms-Universität Organisch-Chemisches Institut Corrensstraße 40 48149 Münster Deutschland
| | - Armido Studer
- Westfälische Wilhelms-Universität Organisch-Chemisches Institut Corrensstraße 40 48149 Münster Deutschland
| |
Collapse
|
33
|
Zheng D, Plöger S, Daniliuc CG, Studer A. Photo-Mediated Intermolecular Coupling of Alkenes with Ketones via Acyloxy Nitroso Compounds. Angew Chem Int Ed Engl 2021; 60:8547-8551. [PMID: 33559941 DOI: 10.1002/anie.202016955] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/02/2021] [Indexed: 12/15/2022]
Abstract
An atom-economic intermolecular radical addition reaction of acyloxy nitroso compounds to electron-deficient alkenes mediated by visible light is reported. The starting nitroso derivatives are readily prepared by oxidation of the corresponding oximes prepared from ketones and the overall transformation represents an oxidative coupling of a ketone with a Michael acceptor. The cascade proceeds smoothly under mild conditions, providing a series of valuable functionalized oximes in moderate to good yields. Mechanistic studies suggest that these cascades proceed via addition/coupling processes that are controlled by the persistent radical effect (PRE) with NO acting as the persistent species.
Collapse
Affiliation(s)
- Danqing Zheng
- Westfälische Wilhelms-Universität, Organisch-Chemisches Institut, Corrensstrasse 40, 48149, Münster, Germany
| | - Stefanie Plöger
- Westfälische Wilhelms-Universität, Organisch-Chemisches Institut, Corrensstrasse 40, 48149, Münster, Germany
| | - Constantin G Daniliuc
- Westfälische Wilhelms-Universität, Organisch-Chemisches Institut, Corrensstrasse 40, 48149, Münster, Germany
| | - Armido Studer
- Westfälische Wilhelms-Universität, Organisch-Chemisches Institut, Corrensstrasse 40, 48149, Münster, Germany
| |
Collapse
|
34
|
Teets TS, Wu Y, Kim D. Photophysical Properties and Redox Potentials of Photosensitizers for Organic Photoredox Transformations. Synlett 2021. [DOI: 10.1055/a-1390-9065] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AbstractPhotoredox catalysis has proven to be a powerful tool in synthetic organic chemistry. The rational design of photosensitizers with improved photocatalytic performance constitutes a major advancement in photoredox organic transformations. This review summarizes the fundamental ground-state and excited-state photophysical and electrochemical attributes of molecular photosensitizers, which are important determinants of their photocatalytic reactivity.
Collapse
|