1
|
Roh H, Kim DH, Cho Y, Jo YM, Del Alamo JA, Kulik HJ, Dincă M, Gumyusenge A. Robust Chemiresistive Behavior in Conductive Polymer/MOF Composites. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312382. [PMID: 38632844 DOI: 10.1002/adma.202312382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/20/2024] [Indexed: 04/19/2024]
Abstract
Metal-organic frameworks (MOFs) are promising materials for gas sensing but are often limited to single-use detection. A hybridization strategy is demonstrated synergistically deploying conductive MOFs (cMOFs) and conductive polymers (cPs) as two complementary mixed ionic-electronic conductors in high-performing stand-alone chemiresistors. This work presents significant improvement in i) sensor recovery kinetics, ii) cycling stability, and iii) dynamic range at room temperature. The effect of hybridization across well-studied cMOFs is demonstrated based on 2,3,6,7,10,11-hexahydroxytriphenylene (HHTP) and 2,3,6,7,10,11-hexaiminotriphenylene (HITP) ligands with varied metal nodes (Co, Cu, Ni). A comprehensive mechanistic study is conducted to relate energy band alignments at the heterojunctions between the MOFs and the polymer with sensing thermodynamics and binding kinetics. The findings reveal that hole enrichment of the cMOF component upon hybridization leads to selective enhancement in desorption kinetics, enabling significantly improved sensor recovery at room temperature, and thus long-term response retention. This mechanism is further supported by density functional theory calculations on sorbate-analyte interactions. It is also found that alloying cPs and cMOFs enables facile thin film co-processing and device integration, potentially unlocking the use of these hybrid conductors in diverse electronic applications.
Collapse
Affiliation(s)
- Heejung Roh
- Massachusetts Institute of Technology, Department of Materials Science & Engineering, 77 Massachusetts Ave, Cambridge, MA, 02139, USA
- Massachusetts Institute of Technology, Department of Chemistry, 77 Massachusetts Ave, Cambridge, MA, 02139, USA
| | - Dong-Ha Kim
- Massachusetts Institute of Technology, Department of Chemistry, 77 Massachusetts Ave, Cambridge, MA, 02139, USA
| | - Yeongsu Cho
- Massachusetts Institute of Technology, Department of Chemistry, 77 Massachusetts Ave, Cambridge, MA, 02139, USA
- Massachusetts Institute of Technology, Department of Chemical Engineering, 77 Massachusetts Ave, Cambridge, MA, 02139, USA
| | - Young-Moo Jo
- Massachusetts Institute of Technology, Department of Chemistry, 77 Massachusetts Ave, Cambridge, MA, 02139, USA
| | - Jesús A Del Alamo
- Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 77 Massachusetts Ave, Cambridge, MA, 02139, USA
- MIT-IBM Watson AI Lab, 75 Binney St, Cambridge, MA, 02139, USA
| | - Heather J Kulik
- Massachusetts Institute of Technology, Department of Chemistry, 77 Massachusetts Ave, Cambridge, MA, 02139, USA
- Massachusetts Institute of Technology, Department of Chemical Engineering, 77 Massachusetts Ave, Cambridge, MA, 02139, USA
| | - Mircea Dincă
- Massachusetts Institute of Technology, Department of Chemistry, 77 Massachusetts Ave, Cambridge, MA, 02139, USA
| | - Aristide Gumyusenge
- Massachusetts Institute of Technology, Department of Materials Science & Engineering, 77 Massachusetts Ave, Cambridge, MA, 02139, USA
| |
Collapse
|
2
|
Carsch K, Huang AJ, Dods MN, Parker ST, Rohde RC, Jiang HZH, Yabuuchi Y, Karstens SL, Kwon H, Chakraborty R, Bustillo KC, Meihaus KR, Furukawa H, Minor AM, Head-Gordon M, Long JR. Selective Adsorption of Oxygen from Humid Air in a Metal-Organic Framework with Trigonal Pyramidal Copper(I) Sites. J Am Chem Soc 2024; 146:3160-3170. [PMID: 38276891 PMCID: PMC10859921 DOI: 10.1021/jacs.3c10753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/27/2024]
Abstract
High or enriched-purity O2 is used in numerous industries and is predominantly produced from the cryogenic distillation of air, an extremely capital- and energy-intensive process. There is significant interest in the development of new approaches for O2-selective air separations, including the use of metal-organic frameworks featuring coordinatively unsaturated metal sites that can selectively bind O2 over N2 via electron transfer. However, most of these materials exhibit appreciable and/or reversible O2 uptake only at low temperatures, and their open metal sites are also potential strong binding sites for the water present in air. Here, we study the framework CuI-MFU-4l (CuxZn5-xCl4-x(btdd)3; H2btdd = bis(1H-1,2,3-triazolo[4,5-b],[4',5'-i])dibenzo[1,4]dioxin), which binds O2 reversibly at ambient temperature. We develop an optimized synthesis for the material to access a high density of trigonal pyramidal CuI sites, and we show that this material reversibly captures O2 from air at 25 °C, even in the presence of water. When exposed to air up to 100% relative humidity, CuI-MFU-4l retains a constant O2 capacity over the course of repeated cycling under dynamic breakthrough conditions. While this material simultaneously adsorbs N2, differences in O2 and N2 desorption kinetics allow for the isolation of high-purity O2 (>99%) under relatively mild regeneration conditions. Spectroscopic, magnetic, and computational analyses reveal that O2 binds to the copper(I) sites to form copper(II)-superoxide moieties that exhibit temperature-dependent side-on and end-on binding modes. Overall, these results suggest that CuI-MFU-4l is a promising material for the separation of O2 from ambient air, even without dehumidification.
Collapse
Affiliation(s)
- Kurtis
M. Carsch
- Institute
for Decarbonization Materials, University
of California, Berkeley, Berkeley, California 94720, United States
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
| | - Adrian J. Huang
- Institute
for Decarbonization Materials, University
of California, Berkeley, Berkeley, California 94720, United States
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
| | - Matthew N. Dods
- Institute
for Decarbonization Materials, University
of California, Berkeley, Berkeley, California 94720, United States
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Surya T. Parker
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Rachel C. Rohde
- Institute
for Decarbonization Materials, University
of California, Berkeley, Berkeley, California 94720, United States
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
| | - Henry Z. H. Jiang
- Institute
for Decarbonization Materials, University
of California, Berkeley, Berkeley, California 94720, United States
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Yuto Yabuuchi
- Institute
for Decarbonization Materials, University
of California, Berkeley, Berkeley, California 94720, United States
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Sarah L. Karstens
- Institute
for Decarbonization Materials, University
of California, Berkeley, Berkeley, California 94720, United States
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
| | - Hyunchul Kwon
- Institute
for Decarbonization Materials, University
of California, Berkeley, Berkeley, California 94720, United States
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
| | - Romit Chakraborty
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Karen C. Bustillo
- National
Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Katie R. Meihaus
- Institute
for Decarbonization Materials, University
of California, Berkeley, Berkeley, California 94720, United States
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
| | - Hiroyasu Furukawa
- Institute
for Decarbonization Materials, University
of California, Berkeley, Berkeley, California 94720, United States
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Andrew M. Minor
- National
Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department
of Materials Science and Engineering, University
of California, Berkeley, Berkeley, California 94720, United States
| | - Martin Head-Gordon
- Institute
for Decarbonization Materials, University
of California, Berkeley, Berkeley, California 94720, United States
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Jeffrey R. Long
- Institute
for Decarbonization Materials, University
of California, Berkeley, Berkeley, California 94720, United States
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
3
|
Wu ZF, Wang C, Liu X, Tan K, Fu Z, Teat SJ, Li ZW, Hei X, Huang XY, Xu G, Li J. Confinement of 1D Chain and 2D Layered CuI Modules in K-INA-R Frameworks via Coordination Assembly: Structure Regulation and Semiconductivity Tuning. J Am Chem Soc 2023; 145:19293-19302. [PMID: 37616202 DOI: 10.1021/jacs.3c05095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Herein, we present a new series of CuI-based hybrid materials with tunable structures and semiconducting properties. The CuI inorganic modules can be tailored into a one-dimensional (1D) chain and two-dimensional (2D) layer and confined/stabilized in coordination frameworks of potassium isonicotinic acid (HINA) and its derivatives (HINA-R, R = OH, NO2, and COOH). The resulting CuI-based hybrid materials exhibit interesting semiconducting behaviors associated with the dimensionality of the inorganic module; for instance, the structures containing the 2D-CuI module demonstrate significantly enhanced photoconductivity with a maximum increase of five orders of magnitude compared to that of the structures containing the 1D-CuI module. They also represent the first CuI-bearing hybrid chemiresistive gas sensors for NO2 with boosted sensing performance and sensitivity at multiple orders of magnitude over that of the pristine CuI. Particularly, the sensing ability of CuI-K-INA containing both 1D- and 2D-CuI modules is comparable to those of the best NO2 chemiresistors reported thus far.
Collapse
Affiliation(s)
- Zhao-Feng Wu
- Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Rd. Piscataway, New Brunswick, New Jersey 08854, United States
- State Key Laboratory of Structural Chemistry, Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, the Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, P. R. China
| | - Chuanzhe Wang
- State Key Laboratory of Structural Chemistry, Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, the Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| | - Xingwu Liu
- Synfuels China Technology Co.Ltd., Leyuan Second South Street Yanqi Development Zone Huairou, Beijing 101407, P. R. China
| | - Kui Tan
- Department of Chemistry, University of North Texas, 1155 Union Cir, Denton, Texas 76203, United States
| | - Zhihua Fu
- State Key Laboratory of Structural Chemistry, Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, the Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| | - Simon J Teat
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Zi-Wei Li
- State Key Laboratory of Structural Chemistry, Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, the Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, P. R. China
| | - Xiuze Hei
- Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Rd. Piscataway, New Brunswick, New Jersey 08854, United States
| | - Xiao-Ying Huang
- State Key Laboratory of Structural Chemistry, Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, the Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| | - Gang Xu
- State Key Laboratory of Structural Chemistry, Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, the Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| | - Jing Li
- Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Rd. Piscataway, New Brunswick, New Jersey 08854, United States
| |
Collapse
|
4
|
Bhadra M, Albert T, Franke A, Josef V, Ivanović-Burmazović I, Swart M, Moënne-Loccoz P, Karlin KD. Reductive Coupling of Nitric Oxide by Cu(I): Stepwise Formation of Mono- and Dinitrosyl Species En Route to a Cupric Hyponitrite Intermediate. J Am Chem Soc 2023; 145:2230-2242. [PMID: 36652374 PMCID: PMC10122266 DOI: 10.1021/jacs.2c09874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Transition-metal-mediated reductive coupling of nitric oxide (NO(g)) to nitrous oxide (N2O(g)) has significance across the fields of industrial chemistry, biochemistry, medicine, and environmental health. Herein, we elucidate a density functional theory (DFT)-supplemented mechanism of NO(g) reductive coupling at a copper-ion center, [(tmpa)CuI(MeCN)]+ (1) {tmpa = tris(2-pyridylmethyl)amine}. At -110 °C in EtOH (<-90 °C in MeOH), exposing 1 to NO(g) leads to a new binuclear hyponitrite intermediate [{(tmpa)CuII}2(μ-N2O22-)]2+ (2), exhibiting temperature-dependent irreversible isomerization to the previously characterized κ2-O,O'-trans-[(tmpa)2Cu2II(μ-N2O22-)]2+ (OOXray) complex. Complementary stopped-flow kinetic analysis of the reaction in MeOH reveals an initial mononitrosyl species [(tmpa)Cu(NO)]+ (1-(NO)) that binds a second NO molecule, forming a dinitrosyl species [(tmpa)CuII(NO)2] (1-(NO)2). The decay of 1-(NO)2 requires an available starting complex 1 to form a dicopper-dinitrosyl species hypothesized to be [{(tmpa)Cu}2(μ-NO)2]2+ (D) bearing a diamond-core motif, en route to the formation of hyponitrite intermediate 2. In contrast, exposing 1 to NO(g) in 2-MeTHF/THF (v/v 4:1) at <-80 °C leads to the newly observed transient metastable dinitrosyl species [(tmpa)CuII(NO)2] (1-(NO)2) prior to its disproportionation-mediated transformation to the nitrite product [(tmpa)CuII(NO2)]+. Our study furnishes a near-complete profile of NO(g) activation at a reduced Cu site with tripodal tetradentate ligation in two distinctly different solvents, aided by detailed spectroscopic characterization of metastable intermediates, including resonance Raman characterization of the new dinitrosyl and hyponitrite species detected.
Collapse
Affiliation(s)
- Mayukh Bhadra
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Therese Albert
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Alicja Franke
- Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nuremberg, 91058 Erlangen, Germany
- Department of Chemistry, Ludwig-Maximilians University, Munich, 81377 Munich, Germany
| | - Verena Josef
- Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Ivana Ivanović-Burmazović
- Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nuremberg, 91058 Erlangen, Germany
- Department of Chemistry, Ludwig-Maximilians University, Munich, 81377 Munich, Germany
| | - Marcel Swart
- IQCC & Departament de Química, Universitat de Girona, Campus Montilivi (Ciencies), 17003 Girona, Spain
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Pierre Moënne-Loccoz
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Kenneth D Karlin
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
5
|
Hu X, Huang T, Zhang G, Lin S, Chen R, Chung LH, He J. Metal-organic framework-based catalysts for lithium-sulfur batteries. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
6
|
Ren D, Cheng Y, Xu W, Qin W, Hao T, Wang F, Hu Y, Ma L, Zhang C. Copper-Based Metal-Organic Framework Induces NO Generation for Synergistic Tumor Therapy and Antimetastasis Activity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205772. [PMID: 36424140 DOI: 10.1002/smll.202205772] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/13/2022] [Indexed: 06/16/2023]
Abstract
The interaction between platelets and circulating tumor cells (CTCs) contributes to distal tumor metastasis by protecting CTCs from immunological assault and shear stress, which can be disrupted by nitric oxide (NO) through inhibiting platelet-mediated adhesion. To eradicate primitive tumors and inhibit CTC-based pulmonary metastasis, a novel biomimetic nanomedicine (mCuMNO) is designed by encapsulating Cu+ -responsive S-nitrosoglutathione as a NO donor into a copper-based metal-organic framework (CuM). This work discovers that mCuMNO can target tumor regions and deplete local glutathione (GSH) to reduce Cu2+ to Cu+ , followed by triggering NO release and hydroxyl radicals (·OH) production, thereby interrupting platelet/CTC interplay and contributing to chemodynamic therapy. Detailed studies demonstrate that mCuMNO exhibits high efficiency and safety in tumor therapy and antimetastasis activity, sheding new light on the development of CuM-based tumor synthetic therapy.
Collapse
Affiliation(s)
- Debao Ren
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, P.R. China
| | - Yibin Cheng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, P.R. China
| | - Wenxuan Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, P.R. China
| | - Wenjun Qin
- Key Laboratory for the Green Preparation and Application of Functional Materials of Ministry of Education, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, P.R. China
| | - Tonghui Hao
- Key Laboratory for the Green Preparation and Application of Functional Materials of Ministry of Education, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, P.R. China
| | - Fei Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, P.R. China
| | - Yun Hu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, P.R. China
| | - Lixin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, P.R. China
| | - Cheng Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, P.R. China
| |
Collapse
|
7
|
Eagleton A, Ko M, Stolz RM, Vereshchuk N, Meng Z, Mendecki L, Levenson AM, Huang C, MacVeagh KC, Mahdavi-Shakib A, Mahle JJ, Peterson GW, Frederick BG, Mirica KA. Fabrication of Multifunctional Electronic Textiles Using Oxidative Restructuring of Copper into a Cu-Based Metal-Organic Framework. J Am Chem Soc 2022; 144:23297-23312. [PMID: 36512516 PMCID: PMC9801431 DOI: 10.1021/jacs.2c05510] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Indexed: 12/15/2022]
Abstract
This paper describes a novel synthetic approach for the conversion of zero-valent copper metal into a conductive two-dimensional layered metal-organic framework (MOF) based on 2,3,6,7,10,11-hexahydroxytriphenylene (HHTP) to form Cu3(HHTP)2. This process enables patterning of Cu3(HHTP)2 onto a variety of flexible and porous woven (cotton, silk, nylon, nylon/cotton blend, and polyester) and non-woven (weighing paper and filter paper) substrates with microscale spatial resolution. The method produces conductive textiles with sheet resistances of 0.1-10.1 MΩ/cm2, depending on the substrate, and uniform conformal coatings of MOFs on textile swatches with strong interfacial contact capable of withstanding chemical and physical stresses, such as detergent washes and abrasion. These conductive textiles enable simultaneous detection and detoxification of nitric oxide and hydrogen sulfide, achieving part per million limits of detection in dry and humid conditions. The Cu3(HHTP)2 MOF also demonstrated filtration capabilities of H2S, with uptake capacity up to 4.6 mol/kgMOF. X-ray photoelectron spectroscopy and diffuse reflectance infrared spectroscopy show that the detection of NO and H2S with Cu3(HHTP)2 is accompanied by the transformation of these species to less toxic forms, such as nitrite and/or nitrate and copper sulfide and Sx species, respectively. These results pave the way for using conductive MOFs to construct extremely robust electronic textiles with multifunctional performance characteristics.
Collapse
Affiliation(s)
- Aileen
M. Eagleton
- Department
of Chemistry, Burke Laboratory, Dartmouth
College, Hanover, New Hampshire 03755, United States
| | - Michael Ko
- Department
of Chemistry, Burke Laboratory, Dartmouth
College, Hanover, New Hampshire 03755, United States
| | - Robert M. Stolz
- Department
of Chemistry, Burke Laboratory, Dartmouth
College, Hanover, New Hampshire 03755, United States
| | - Nataliia Vereshchuk
- Department
of Chemistry, Burke Laboratory, Dartmouth
College, Hanover, New Hampshire 03755, United States
| | - Zheng Meng
- Department
of Chemistry, Burke Laboratory, Dartmouth
College, Hanover, New Hampshire 03755, United States
| | - Lukasz Mendecki
- Department
of Chemistry, Burke Laboratory, Dartmouth
College, Hanover, New Hampshire 03755, United States
| | - Adelaide M. Levenson
- Department
of Chemistry, Burke Laboratory, Dartmouth
College, Hanover, New Hampshire 03755, United States
| | - Connie Huang
- Department
of Chemistry, Burke Laboratory, Dartmouth
College, Hanover, New Hampshire 03755, United States
| | - Katherine C. MacVeagh
- Department
of Chemistry, Burke Laboratory, Dartmouth
College, Hanover, New Hampshire 03755, United States
| | - Akbar Mahdavi-Shakib
- Department
of Chemistry, Frontier Institute for Research
in Sensor Technology (FIRST), University of Maine, Orono, Maine 04469, United States
| | - John J. Mahle
- DEVCOM
Chemical Biological Center, 8198 Blackhawk Road, Aberdeen Proving Ground, Maryland 21010-5424, United States
| | - Gregory W. Peterson
- DEVCOM
Chemical Biological Center, 8198 Blackhawk Road, Aberdeen Proving Ground, Maryland 21010-5424, United States
| | - Brian G. Frederick
- Department
of Chemistry, Frontier Institute for Research
in Sensor Technology (FIRST), University of Maine, Orono, Maine 04469, United States
| | - Katherine A. Mirica
- Department
of Chemistry, Burke Laboratory, Dartmouth
College, Hanover, New Hampshire 03755, United States
| |
Collapse
|
8
|
Tao W, Carter S, Trevino R, Zhang W, Shafaat HS, Zhang S. Reductive NO Coupling at Dicopper Center via a [Cu 2(NO) 2] 2+ Diamond-Core Intermediate. J Am Chem Soc 2022; 144:22633-22640. [PMID: 36469729 DOI: 10.1021/jacs.2c09523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Treatment of a dicopper(I,I) complex with excess amounts of NO leads to the formation of a dicopper dinitrosyl [Cu2(NO)2]2+ complex capable of (i) releasing two equivalents of NO reversibly in 90% yield and (ii) reacting with another equivalent of NO to afford N2O and dicopper nitrosyl oxo species [Cu2(NO)(O)]2+. Resonance Raman characterization of the [Cu2(NO)2]2+ complex shows a 15N-sensitive N═O stretch at 1527.6 cm-1 and two Cu-N stretches at 390.6 and 414.1 cm-1, supporting a symmetric diamond-core structure with bis-μ-NO ligands. The conversion of [Cu2(NO)2]2+ to [Cu2(NO)O]2+ occurs via a rate-limiting reaction with NO and bypasses the dicopper oxo intermediate, a mechanism distinct from that of diFe-mediated NO reduction to N2O.
Collapse
Affiliation(s)
- Wenjie Tao
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Samantha Carter
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Regina Trevino
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Weiyao Zhang
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Hannah S Shafaat
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Shiyu Zhang
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
9
|
He C, Zhao X, Huo M, Dai W, Cheng X, Yang J, Miao Y, Xiao S. Surface, Interface and Structure Optimization of Metal-Organic Frameworks: Towards Efficient Resourceful Conversion of Industrial Waste Gases. CHEM REC 2022:e202200211. [PMID: 36193960 DOI: 10.1002/tcr.202200211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/14/2022] [Indexed: 11/09/2022]
Abstract
Industrial waste gas emissions from fossil fuel over-exploitation have aroused great attention in modern society. Recently, metal-organic frameworks (MOFs) have been developed in the capture and catalytic conversion of industrial exhaust gases such as SO2 , H2 S, NOx , CO2 , CO, etc. Based on these resourceful conversion applications, in this review, we summarize the crucial role of the surface, interface, and structure optimization of MOFs for performance enhancement. The main points include (1) adsorption enhancement of target molecules by surface functional modification, (2) promotion of catalytic reaction kinetics through enhanced coupling in interfaces, and (3) adaptive matching of guest molecules by structural and pore size modulation. We expect that this review will provide valuable references and illumination for the design and development of MOF and related materials with excellent exhaust gas treatment performance.
Collapse
Affiliation(s)
- Chengpeng He
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China.,College of Chemistry and Environmental Science, Qujing Normal University, Qujing, 655011, China
| | - Xiuwen Zhao
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Mengjia Huo
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Wenrui Dai
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Xuejian Cheng
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Junhe Yang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China.,Prytula Igor Collaborate Innovation Center for Diamond, Shanghai Jian Qiao University, Shanghai, 201306, China
| | - Yingchun Miao
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing, 655011, China
| | - Shuning Xiao
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| |
Collapse
|
10
|
Yang K, Jiang J. Highly efficient CO2 conversion on a robust metal-organic framework Cu(I)-MFU-4l: Prediction and mechanistic understanding from DFT calculations. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
11
|
Röß-Ohlenroth R, Hirrle M, Kraft M, Kalytta-Mewes A, Jesche A, Krug von Nidda HA, Volkmer D. Synthesis, Thermal Stability and Magnetic Properties of an Interpenetrated Mn(II) Triazolate Coordination Framework. Z Anorg Allg Chem 2022. [DOI: 10.1002/zaac.202200153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Marcel Hirrle
- University of Augsburg: Universitat Augsburg GERMANY
| | - Maryana Kraft
- University of Augsburg: Universitat Augsburg GERMANY
| | | | - Anton Jesche
- University of Augsburg: Universitat Augsburg GERMANY
| | | | - Dirk Volkmer
- Augsburg University Institute of Physics Universitaetsstrasse 1 D-96159 Augsburg GERMANY
| |
Collapse
|
12
|
Jiang C, Wang X, Ouyang Y, Lu K, Jiang W, Xu H, Wei X, Wang Z, Dai F, Sun D. Recent advances in metal-organic frameworks for gas adsorption/separation. NANOSCALE ADVANCES 2022; 4:2077-2089. [PMID: 36133454 PMCID: PMC9418345 DOI: 10.1039/d2na00061j] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/22/2022] [Indexed: 06/16/2023]
Abstract
The unique structural advantage of metal-organic frameworks (MOFs) determines the great prospect and developability in gas adsorption and separation. Both ligand design and microporous engineering based on crystal structure are significant lever for coping with new application exploration and requirements. Focusing on the designable pore and modifiable frameworks of MOFs, this review discussed the recent advances in the field of gas adsorption and separation, and analyzed the host-guest interaction, structure-performance relations, and the adsorption/separation mechanism from ligand design, skeleton optimization, metal node regulation, and active sites construction. Based on the function-oriented perspective, we summarized the main research recently, and made an outlook based on the focus of microporous MOFs that require further attention in the structure design and industrial application.
Collapse
Affiliation(s)
- Chuanhai Jiang
- School of Materials Science and Engineering, College of Science, China University of Petroleum (East China) Qingdao Shandong 266580 China
| | - Xiaokang Wang
- School of Materials Science and Engineering, College of Science, China University of Petroleum (East China) Qingdao Shandong 266580 China
| | - Yuguo Ouyang
- School of Materials Science and Engineering, College of Science, China University of Petroleum (East China) Qingdao Shandong 266580 China
| | - Kebin Lu
- School of Materials Science and Engineering, College of Science, China University of Petroleum (East China) Qingdao Shandong 266580 China
| | - Weifeng Jiang
- School of Materials Science and Engineering, College of Science, China University of Petroleum (East China) Qingdao Shandong 266580 China
| | - Huakai Xu
- School of Materials Science and Engineering, College of Science, China University of Petroleum (East China) Qingdao Shandong 266580 China
| | - Xiaofei Wei
- School of Materials Science and Engineering, College of Science, China University of Petroleum (East China) Qingdao Shandong 266580 China
| | - Zhifei Wang
- School of Materials Science and Engineering, College of Science, China University of Petroleum (East China) Qingdao Shandong 266580 China
| | - Fangna Dai
- School of Materials Science and Engineering, College of Science, China University of Petroleum (East China) Qingdao Shandong 266580 China
| | - Daofeng Sun
- School of Materials Science and Engineering, College of Science, China University of Petroleum (East China) Qingdao Shandong 266580 China
| |
Collapse
|
13
|
Cheung YH, Ma K, Wasson MC, Wang X, Idrees KB, Islamoglu T, Mahle J, Peterson GW, Xin JH, Farha OK. Environmentally Benign Biosynthesis of Hierarchical MOF/Bacterial Cellulose Composite Sponge for Nerve Agent Protection. Angew Chem Int Ed Engl 2022; 61:e202202207. [PMID: 35212125 DOI: 10.1002/anie.202202207] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Indexed: 12/12/2022]
Abstract
The fabrication of MOF polymer composite materials enables the practical applications of MOF-based technology, in particular for protective suits and masks. However, traditional production methods typically require organic solvent for processing which leads to environmental pollution, low-loading efficiency, poor accessibility, and loss of functionality due to poor solvent resistance properties. For the first time, we have developed a microbial synthesis strategy to prepare a MOF/bacterial cellulose nanofiber composite sponge. The prepared sponge exhibited a hierarchically porous structure, high MOF loading (up to ≈90 %), good solvent resistance, and high catalytic activity for the liquid- and solid-state hydrolysis of nerve agent simulants. Moreover, the MOF/ bacterial cellulose composite sponge reported here showed a nearly 8-fold enhancement in the protection against an ultra-toxic nerve agent (GD) in permeability studies as compared to a commercialized adsorptive carbon cloth. The results shown here present an essential step toward the practical application of MOF-based protective gear against nerve agents.
Collapse
Affiliation(s)
- Yuk Ha Cheung
- Research Centre for Smart Wearable Technology, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR
| | - Kaikai Ma
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Megan C Wasson
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Xingjie Wang
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Karam B Idrees
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Timur Islamoglu
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - John Mahle
- U.S. Army Combat Capabilities Development Command Chemical Biological Center, 8198 Blackhawk Road, Aberdeen Proving Ground, MD 21010, USA
| | - Gregory W Peterson
- U.S. Army Combat Capabilities Development Command Chemical Biological Center, 8198 Blackhawk Road, Aberdeen Proving Ground, MD 21010, USA
| | - John H Xin
- Research Centre for Smart Wearable Technology, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR
| | - Omar K Farha
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA.,Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| |
Collapse
|
14
|
Cheung YH, Ma K, Wasson MC, Wang X, Idrees KB, Islamoglu T, Mahle J, Peterson GW, Xin JH, Farha OK. Environmentally Benign Biosynthesis of Hierarchical MOF/Bacterial Cellulose Composite Sponge for Nerve Agent Protection. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yuk Ha Cheung
- Research Centre for Smart Wearable Technology Institute of Textiles and Clothing The Hong Kong Polytechnic University Hung Hom Hong Kong SAR
| | - Kaikai Ma
- Department of Chemistry and International Institute for Nanotechnology Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Megan C. Wasson
- Department of Chemistry and International Institute for Nanotechnology Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Xingjie Wang
- Department of Chemistry and International Institute for Nanotechnology Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Karam B. Idrees
- Department of Chemistry and International Institute for Nanotechnology Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Timur Islamoglu
- Department of Chemistry and International Institute for Nanotechnology Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - John Mahle
- U.S. Army Combat Capabilities Development Command Chemical Biological Center 8198 Blackhawk Road Aberdeen Proving Ground MD 21010 USA
| | - Gregory W. Peterson
- U.S. Army Combat Capabilities Development Command Chemical Biological Center 8198 Blackhawk Road Aberdeen Proving Ground MD 21010 USA
| | - John H. Xin
- Research Centre for Smart Wearable Technology Institute of Textiles and Clothing The Hong Kong Polytechnic University Hung Hom Hong Kong SAR
| | - Omar K. Farha
- Department of Chemistry and International Institute for Nanotechnology Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
- Department of Chemical and Biological Engineering Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| |
Collapse
|
15
|
Mixed component metal-organic frameworks: Heterogeneity and complexity at the service of application performances. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214273] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
Miyasaka H. Charge Manipulation in Metal–Organic Frameworks: Toward Designer Functional Molecular Materials. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210277] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Hitoshi Miyasaka
- Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| |
Collapse
|
17
|
Oktawiec J, Jiang HZH, Turkiewicz AB, Long JR. Influence of the primary and secondary coordination spheres on nitric oxide adsorption and reactivity in cobalt(ii)-triazolate frameworks. Chem Sci 2021; 12:14590-14598. [PMID: 34881011 PMCID: PMC8580060 DOI: 10.1039/d1sc03994f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/19/2021] [Indexed: 12/28/2022] Open
Abstract
Nitric oxide (NO) is an important signaling molecule in biological systems, and as such, the ability of porous materials to reversibly adsorb NO is of interest for potential medical applications. Although certain metal-organic frameworks are known to bind NO reversibly at coordinatively unsaturated metal sites, the influence of the metal coordination environment on NO adsorption has not been studied in detail. Here, we examine NO adsorption in the frameworks Co2Cl2(bbta) (H2bbta = 1H,5H-benzo(1,2-d:4,5-d')bistriazole) and Co2(OH)2(bbta) using gas adsorption, infrared spectroscopy, powder X-ray diffraction, and magnetometry. At room temperature, NO adsorbs reversibly in Co2Cl2(bbta) without electron transfer, with low temperature data supporting spin-crossover of the NO-bound cobalt(ii) centers of the material. In contrast, adsorption of low pressures of NO in Co2(OH)2(bbta) is accompanied by charge transfer from the cobalt(ii) centers to form a cobalt(iii)-NO- adduct, as supported by diffraction and infrared spectroscopy data. At higher pressures of NO, characterization data indicate additional uptake of the gas and disproportionation of the bound NO to form a cobalt(iii)-nitro (NO2 -) species and N2O gas, a transformation that appears to be facilitated by secondary sphere hydrogen bonding interactions between the bound NO2 - and framework hydroxo groups. These results provide a rare example of reductive NO binding in a cobalt-based metal-organic framework, and they demonstrate that NO uptake can be tuned by changing the primary and secondary coordination environment of the framework metal centers.
Collapse
Affiliation(s)
- Julia Oktawiec
- Department of Chemistry, University of California Berkeley California 94720 USA
| | - Henry Z H Jiang
- Department of Chemistry, University of California Berkeley California 94720 USA
| | - Ari B Turkiewicz
- Department of Chemistry, University of California Berkeley California 94720 USA
| | - Jeffrey R Long
- Department of Chemistry, University of California Berkeley California 94720 USA
- Department of Chemical and Biomolecular Engineering, University of California Berkeley California 94720 USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory Berkeley California 94720 USA
| |
Collapse
|
18
|
Cai Z, Tao W, Moore CE, Zhang S, Wade CR. Direct NO Reduction by a Biomimetic Iron(II) Pyrazolate MOF. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zhongzheng Cai
- Department of Chemistry and Biochemistry The Ohio State University 100 West 18th Ave Columbus OH 43210 USA
| | - Wenjie Tao
- Department of Chemistry and Biochemistry The Ohio State University 100 West 18th Ave Columbus OH 43210 USA
| | - Curtis E. Moore
- Department of Chemistry and Biochemistry The Ohio State University 100 West 18th Ave Columbus OH 43210 USA
| | - Shiyu Zhang
- Department of Chemistry and Biochemistry The Ohio State University 100 West 18th Ave Columbus OH 43210 USA
| | - Casey R. Wade
- Department of Chemistry and Biochemistry The Ohio State University 100 West 18th Ave Columbus OH 43210 USA
| |
Collapse
|
19
|
Barnett BR, Evans HA, Su GM, Jiang HZH, Chakraborty R, Banyeretse D, Hartman TJ, Martinez MB, Trump BA, Tarver JD, Dods MN, Funke LM, Börgel J, Reimer JA, Drisdell WS, Hurst KE, Gennett T, FitzGerald SA, Brown CM, Head-Gordon M, Long JR. Observation of an Intermediate to H 2 Binding in a Metal-Organic Framework. J Am Chem Soc 2021; 143:14884-14894. [PMID: 34463495 DOI: 10.1021/jacs.1c07223] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Coordinatively unsaturated metal sites within certain zeolites and metal-organic frameworks can strongly adsorb a wide array of substrates. While many classical examples involve electron-poor metal cations that interact with adsorbates largely through physical interactions, unsaturated electron-rich metal centers housed within porous frameworks can often chemisorb guests amenable to redox activity or covalent bond formation. Despite the promise that materials bearing such sites hold in addressing myriad challenges in gas separations and storage, very few studies have directly interrogated mechanisms of chemisorption at open metal sites within porous frameworks. Here, we show that nondissociative chemisorption of H2 at the trigonal pyramidal Cu+ sites in the metal-organic framework CuI-MFU-4l occurs via the intermediacy of a metastable physisorbed precursor species. In situ powder neutron diffraction experiments enable crystallographic characterization of this intermediate, the first time that this has been accomplished for any material. Evidence for a precursor intermediate is also afforded from temperature-programmed desorption and density functional theory calculations. The activation barrier separating the precursor species from the chemisorbed state is shown to correlate with a change in the Cu+ coordination environment that enhances π-backbonding with H2. Ultimately, these findings demonstrate that adsorption at framework metal sites does not always follow a concerted pathway and underscore the importance of probing kinetics in the design of next-generation adsorbents.
Collapse
Affiliation(s)
- Brandon R Barnett
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Hayden A Evans
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Gregory M Su
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Henry Z H Jiang
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Romit Chakraborty
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Didier Banyeretse
- Department of Physics, Oberlin College, Oberlin, Ohio 44074, United States
| | - Tyler J Hartman
- Department of Physics, Oberlin College, Oberlin, Ohio 44074, United States
| | - Madison B Martinez
- Chemistry & Nanoscience Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Benjamin A Trump
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Jacob D Tarver
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Matthew N Dods
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Lena M Funke
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States.,Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Jonas Börgel
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Jeffrey A Reimer
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Walter S Drisdell
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Katherine E Hurst
- Chemistry & Nanoscience Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Thomas Gennett
- Chemistry & Nanoscience Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States.,Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | | | - Craig M Brown
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States.,Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Martin Head-Gordon
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jeffrey R Long
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
20
|
Peralta RA, Huxley MT, Albalad J, Sumby CJ, Doonan CJ. Single-Crystal-to-Single-Crystal Transformations of Metal-Organic-Framework-Supported, Site-Isolated Trigonal-Planar Cu(I) Complexes with Labile Ligands. Inorg Chem 2021; 60:11775-11783. [PMID: 34160208 DOI: 10.1021/acs.inorgchem.1c00849] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Transition-metal complexes bearing labile ligands can be difficult to isolate and study in solution because of unwanted dinucleation or ligand substitution reactions. Metal-organic frameworks (MOFs) provide a unique matrix that allows site isolation and stabilization of well-defined transition-metal complexes that may be of importance as moieties for gas adsorption or catalysis. Herein we report the development of an in situ anion metathesis strategy that facilitates the postsynthetic modification of Cu(I) complexes appended to a porous, crystalline MOF. By exchange of coordinated chloride for weakly coordinating anions in the presence of carbon monoxide (CO) or ethylene, a series of labile MOF-appended Cu(I) complexes featuring CO or ethylene ligands are prepared and structurally characterized using X-ray crystallography. These complexes have an uncommon trigonal planar geometry because of the absence of coordinating solvents. The porous host framework allows small and moderately sized molecules to access the isolated Cu(I) sites and displace the "place-holder" CO ligand, mirroring the ligand-exchange processes involved in Cu-centered catalysis.
Collapse
Affiliation(s)
- Ricardo A Peralta
- Centre for Advanced Nanomaterials and Department of Chemistry, The University of Adelaide, North Terrace, Adelaide, South Australia 5000, Australia
| | - Michael T Huxley
- Centre for Advanced Nanomaterials and Department of Chemistry, The University of Adelaide, North Terrace, Adelaide, South Australia 5000, Australia
| | - Jorge Albalad
- Centre for Advanced Nanomaterials and Department of Chemistry, The University of Adelaide, North Terrace, Adelaide, South Australia 5000, Australia
| | - Christopher J Sumby
- Centre for Advanced Nanomaterials and Department of Chemistry, The University of Adelaide, North Terrace, Adelaide, South Australia 5000, Australia
| | - Christian J Doonan
- Centre for Advanced Nanomaterials and Department of Chemistry, The University of Adelaide, North Terrace, Adelaide, South Australia 5000, Australia
| |
Collapse
|
21
|
Bien CE, Cai Z, Wade CR. Using Postsynthetic X-Type Ligand Exchange to Enhance CO 2 Adsorption in Metal-Organic Frameworks with Kuratowski-Type Building Units. Inorg Chem 2021; 60:11784-11794. [PMID: 34185507 DOI: 10.1021/acs.inorgchem.1c01077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Postsynthetic modification methods have emerged as indispensable tools for tuning the properties and reactivity of metal-organic frameworks (MOFs). In particular, postsynthetic X-type ligand exchange (PXLE) at metal building units has gained increasing attention as a means of immobilizing guest species, modulating the reactivity of framework metal ions, and introducing new functional groups. The reaction of a Zn-OH functionalized analogue of CFA-1 (1-OH, Zn(ZnOH)4(bibta)3, where bibta2- = 5,5'-bibenzotriazolate) with organic substrates containing mildly acidic E-H groups (E = C, O, N) results in the formation of Zn-E species and water as a byproduct. This Brønsted acid-base PXLE reaction is compatible with substrates with pKa(DMSO) values as high as 30 and offers a rapid and convenient means of introducing new functional groups at Kuratwoski-type metal nodes. Gas adsorption and diffuse reflectance infrared Fourier transform spectroscopy experiments reveal that the anilide-exchanged MOFs 1-NHPh0.9 and 1-NHPh2.5 exhibit enhanced low-pressure CO2 adsorption compared to 1-OH as a result of a Zn-NHPh + CO2 ⇌ Zn-O2CNHPh chemisorption mechanism. The MFU-4l analogue 2-NHPh ([Zn5(OH)2.1(NHPh)1.9(btdd)3], where btdd2- = bis(1,2,3-triazolo)dibenzodioxin), shows a similar improvement in CO2 adsorption in comparison to the parent MOF containing only Zn-OH groups.
Collapse
Affiliation(s)
- Caitlin E Bien
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Zhongzheng Cai
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Casey R Wade
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
22
|
Beagan DM, Cabelof AC, Pink M, Carta V, Gao X, Caulton KG. Nickel-mediated N-N bond formation and N 2O liberation via nitrogen oxyanion reduction. Chem Sci 2021; 12:10664-10672. [PMID: 34447560 PMCID: PMC8356809 DOI: 10.1039/d1sc02846d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/13/2021] [Indexed: 12/26/2022] Open
Abstract
The syntheses of (DIM)Ni(NO3)2 and (DIM)Ni(NO2)2, where DIM is a 1,4-diazadiene bidentate donor, are reported to enable testing of bis boryl reduced N-heterocycles for their ability to carry out stepwise deoxygenation of coordinated nitrate and nitrite, forming O(Bpin)2. Single deoxygenation of (DIM)Ni(NO2)2 yields the tetrahedral complex (DIM)Ni(NO)(ONO), with a linear nitrosyl and κ1-ONO. Further deoxygenation of (DIM)Ni(NO)(ONO) results in the formation of dimeric [(DIM)Ni(NO)]2, where the dimer is linked through a Ni–Ni bond. The lost reduced nitrogen byproduct is shown to be N2O, indicating N–N bond formation in the course of the reaction. Isotopic labelling studies establish that the N–N bond of N2O is formed in a bimetallic Ni2 intermediate and that the two nitrogen atoms of (DIM)Ni(NO)(ONO) become symmetry equivalent prior to N–N bond formation. The [(DIM)Ni(NO)]2 dimer is susceptible to oxidation by AgX (X = NO3−, NO2−, and OTf−) as well as nitric oxide, the latter of which undergoes nitric oxide disproportionation to yield N2O and (DIM)Ni(NO)(ONO). We show that the first step in the deoxygenation of (DIM)Ni(NO)(ONO) to liberate N2O is outer sphere electron transfer, providing insight into the organic reductants employed for deoxygenation. Lastly, we show that at elevated temperatures, deoxygenation is accompanied by loss of DIM to form either pyrazine or bipyridine bridged polymers, with retention of a BpinO− bridging ligand. Deoxygenation of nitrogen oxyanions coordinated to nickel using reduced borylated heterocycles leads to N–N bond formation and N2O liberation. The nickel dimer product facilitates NO disproportionation, leading to a synthetic cycle.![]()
Collapse
Affiliation(s)
- Daniel M Beagan
- Indiana University, Department of Chemistry 800 E. Kirkwood Ave. Bloomington IN 47401 USA
| | - Alyssa C Cabelof
- Indiana University, Department of Chemistry 800 E. Kirkwood Ave. Bloomington IN 47401 USA
| | - Maren Pink
- Indiana University, Department of Chemistry 800 E. Kirkwood Ave. Bloomington IN 47401 USA
| | - Veronica Carta
- Indiana University, Department of Chemistry 800 E. Kirkwood Ave. Bloomington IN 47401 USA
| | - Xinfeng Gao
- Indiana University, Department of Chemistry 800 E. Kirkwood Ave. Bloomington IN 47401 USA
| | - Kenneth G Caulton
- Indiana University, Department of Chemistry 800 E. Kirkwood Ave. Bloomington IN 47401 USA
| |
Collapse
|
23
|
Cai Z, Tao W, Moore CE, Zhang S, Wade CR. Direct NO Reduction by a Biomimetic Iron(II) Pyrazolate MOF. Angew Chem Int Ed Engl 2021; 60:21221-21225. [PMID: 34342117 DOI: 10.1002/anie.202108095] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Indexed: 11/11/2022]
Abstract
A novel metal-organic framework (MOF) containing one-dimensional, Fe2+ chains bridged by dipyrazolate linkers and N,N-dimethylformamide (DMF) ligands has been synthesized. The unusual chain-type metal nodes feature accessible coordination sites on adjacent metal centers, resulting in motifs that are reminiscent of the active sites in non-heme diiron enzymes. The MOF facilitates direct reduction of nitric oxide (NO), producing nearly quantitative yields of nitrous oxide (N2 O) and emulating the reactivity of flavodiiron nitric oxide reductases (FNORs). The ferrous form of the MOF can be regenerated via a synthetic cycle involving reduction with cobaltocene (CoCp2 ) followed by reaction with trimethylsilyl triflate (TMSOTf).
Collapse
Affiliation(s)
- Zhongzheng Cai
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Ave, Columbus, OH, 43210, USA
| | - Wenjie Tao
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Ave, Columbus, OH, 43210, USA
| | - Curtis E Moore
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Ave, Columbus, OH, 43210, USA
| | - Shiyu Zhang
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Ave, Columbus, OH, 43210, USA
| | - Casey R Wade
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Ave, Columbus, OH, 43210, USA
| |
Collapse
|
24
|
Jo YM, Lim K, Yoon JW, Jo YK, Moon YK, Jang HW, Lee JH. Visible-Light-Activated Type II Heterojunction in Cu 3(hexahydroxytriphenylene) 2/Fe 2O 3 Hybrids for Reversible NO 2 Sensing: Critical Role of π-π* Transition. ACS CENTRAL SCIENCE 2021; 7:1176-1182. [PMID: 34345668 PMCID: PMC8323242 DOI: 10.1021/acscentsci.1c00289] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Indexed: 05/05/2023]
Abstract
Metal-organic frameworks (MOFs) with high surface area, tunable porosity, and diverse structures are promising platforms for chemiresistors; however, they often exhibit low sensitivity, poor selectivity, and irreversibility in gas sensing, hindering their practical applications. Herein, we report that hybrids of Cu3(HHTP)2 (HHTP = 2,3,6,7,10,11-hexahydroxytriphenylene) nanoflakes and Fe2O3 nanoparticles exhibit highly sensitive, selective, and reversible detection of NO2 at 20 °C. The key parameters to determine their response, selectivity, and recovery are discussed in terms of the size of the Cu3(HHTP)2 nanoflakes, the interaction between the MOFs and NO2, and an increase in the concentration and lifetime of holes facilitated by visible-light photoactivation and charge-separating energy band alignment of the hybrids. These photoactivated MOF-oxide hybrids suggest a new strategy for designing high-performance MOF-based gas sensors.
Collapse
Affiliation(s)
- Young-Moo Jo
- Department
of Materials Science and Engineering, Korea
University, Seoul 02841, Republic of Korea
| | - Kyeorei Lim
- Department
of Materials Science and Engineering, Korea
University, Seoul 02841, Republic of Korea
| | - Ji Won Yoon
- Department
of Materials Science and Engineering, Korea
University, Seoul 02841, Republic of Korea
| | - Yong Kun Jo
- Department
of Materials Science and Engineering, Korea
University, Seoul 02841, Republic of Korea
| | - Young Kook Moon
- Department
of Materials Science and Engineering, Korea
University, Seoul 02841, Republic of Korea
| | - Ho Won Jang
- Department
of Materials Science and Engineering, Research
Institute of Advanced Materials Seoul National University, Seoul 08826, Republic of Korea
| | - Jong-Heun Lee
- Department
of Materials Science and Engineering, Korea
University, Seoul 02841, Republic of Korea
- E-mail: . Fax: +82-2-928-3584. Phone: +82-2-3290-3282
| |
Collapse
|
25
|
Wang J, Luo J, Zhai S, Yongsheng N, Tian D, Zhang C. Crystal structure of poly[diaqua-bis(μ 2-3-(pyrimidin-5-yl)benzoato-κ 2
N:O)cobalt(II)] dihydrate, [Co(C 11H 11O 2N 2) 2(H 2O) 2]. Z KRIST-NEW CRYST ST 2021. [DOI: 10.1515/ncrs-2021-0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
[Co(C11H11O2N2)2(H2O)2], monoclinic,
P
2
1
/
c
$P{2}_{1}/c$
(no. 14), a = 8.7117(5) Å, b = 8.7935(5) Å, c = 15.0791(9) Å, β = 103.557(1)°, V = 1122.97(11) Å3, Z = 2, R
gt
(F) = 0.0271, wR
ref
(F
2) = 0.0725, T = 296(2) K.
Collapse
Affiliation(s)
- Jing Wang
- Henan Key Laboratory of Coal Green Conversion, College of Chemistry and Chemical Engineering, Henan Polytechnic University , Jiaozuo 454003 , P. R. China
- College of Chemistry and Environmental Engineering, Anyang Institute of Technology , Anyang 455000 , Henan , P. R. China
| | - Jiahuan Luo
- College of Chemistry and Environmental Engineering, Anyang Institute of Technology , Anyang 455000 , Henan , P. R. China
| | - Shengxian Zhai
- College of Chemistry and Environmental Engineering, Anyang Institute of Technology , Anyang 455000 , Henan , P. R. China
| | - Niu Yongsheng
- College of Chemistry and Environmental Engineering, Anyang Institute of Technology , Anyang 455000 , Henan , P. R. China
| | - Dayong Tian
- College of Chemistry and Environmental Engineering, Anyang Institute of Technology , Anyang 455000 , Henan , P. R. China
| | - Chuanxiang Zhang
- Henan Key Laboratory of Coal Green Conversion, College of Chemistry and Chemical Engineering, Henan Polytechnic University , Jiaozuo 454003 , P. R. China
| |
Collapse
|
26
|
Ma Y, Han X, Xu S, Wang Z, Li W, da Silva I, Chansai S, Lee D, Zou Y, Nikiel M, Manuel P, Sheveleva AM, Tuna F, McInnes EJL, Cheng Y, Rudić S, Ramirez-Cuesta AJ, Haigh SJ, Hardacre C, Schröder M, Yang S. Atomically Dispersed Copper Sites in a Metal-Organic Framework for Reduction of Nitrogen Dioxide. J Am Chem Soc 2021; 143:10977-10985. [PMID: 34279096 PMCID: PMC8323097 DOI: 10.1021/jacs.1c03036] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Metal–organic
framework (MOF) materials provide an excellent
platform to fabricate single-atom catalysts due to their structural
diversity, intrinsic porosity, and designable functionality. However,
the unambiguous identification of atomically dispersed metal sites
and the elucidation of their role in catalysis are challenging due
to limited methods of characterization and lack of direct structural
information. Here, we report a comprehensive investigation of the
structure and the role of atomically dispersed copper sites in UiO-66
for the catalytic reduction of NO2 at ambient temperature.
The atomic dispersion of copper sites on UiO-66 is confirmed by high-angle
annular dark-field scanning transmission electron microscopy, electron
paramagnetic resonance spectroscopy, and inelastic neutron scattering,
and their location is identified by neutron powder diffraction and
solid-state nuclear magnetic resonance spectroscopy. The Cu/UiO-66
catalyst exhibits superior catalytic performance for the reduction
of NO2 at 25 °C without the use of reductants. A selectivity
of 88% for the formation of N2 at a 97% conversion of NO2 with a lifetime of >50 h and an unprecedented turnover
frequency
of 6.1 h–1 is achieved under nonthermal plasma activation. In situ and operando infrared, solid-state
NMR, and EPR spectroscopy reveal the critical role of copper sites
in the adsorption and activation of NO2 molecules, with
the formation of {Cu(I)···NO} and {Cu···NO2} adducts promoting the conversion of NO2 to N2. This study will inspire the further design and study of
new efficient single-atom catalysts for NO2 abatement via detailed unravelling of their role in catalysis.
Collapse
Affiliation(s)
- Yujie Ma
- Department of Chemistry, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Xue Han
- Department of Chemistry, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Shaojun Xu
- Department of Chemistry, University of Manchester, Manchester M13 9PL, United Kingdom.,UK Catalysis Hub, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell OX11 0FA, United Kingdom.,School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Zi Wang
- Department of Chemistry, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Weiyao Li
- Department of Chemistry, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Ivan da Silva
- ISIS Facility, STFC Rutherford Appleton Laboratory, Chilton, Oxfordshire OX11 0QX, United Kingdom
| | - Sarayute Chansai
- Department of Chemical Engineering and Analytical Science, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Daniel Lee
- Department of Chemical Engineering and Analytical Science, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Yichao Zou
- Department of Materials, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Marek Nikiel
- Department of Materials, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Pascal Manuel
- ISIS Facility, STFC Rutherford Appleton Laboratory, Chilton, Oxfordshire OX11 0QX, United Kingdom
| | - Alena M Sheveleva
- Department of Chemistry, University of Manchester, Manchester M13 9PL, United Kingdom.,Photon Science Institute, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Floriana Tuna
- Department of Chemistry, University of Manchester, Manchester M13 9PL, United Kingdom.,Photon Science Institute, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Eric J L McInnes
- Department of Chemistry, University of Manchester, Manchester M13 9PL, United Kingdom.,Photon Science Institute, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Yongqiang Cheng
- Neutron Scattering Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Svemir Rudić
- ISIS Facility, STFC Rutherford Appleton Laboratory, Chilton, Oxfordshire OX11 0QX, United Kingdom
| | - Anibal J Ramirez-Cuesta
- Neutron Scattering Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Sarah J Haigh
- Department of Materials, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Christopher Hardacre
- Department of Chemical Engineering and Analytical Science, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Martin Schröder
- Department of Chemistry, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Sihai Yang
- Department of Chemistry, University of Manchester, Manchester M13 9PL, United Kingdom
| |
Collapse
|
27
|
Abstract
X-ray crystallography is an invaluable tool in design and development of organometallic catalysis, but application typically requires species to display sufficiently high solution concentrations and lifetimes for single crystalline samples to be obtained. In crystallo organometallic chemistry relies on chemical reactions that proceed within the single-crystal environment to access crystalline samples of reactive organometallic fragments that are unavailable by alternate means. This highlight describes approaches to in crystallo organometallic chemistry including (a) solid-gas reactions between transition metal complexes in molecular crystals and diffusing small molecules, (b) reactions of organometallic complexes within the extended lattices of metal-organic frameworks (MOFs), and (c) intracrystalline photochemical transformations to generate reactive organometallic fragments. Application of these methods has enabled characterization of catalytically important transient species, including σ-alkane adducts of transition metals, metal alkyl intermediates implicated in metal-catalyzed carbonylations, and reactive M-L multiply bonded species involved in C-H functionalization chemistry. Opportunities and challenges for in crystallo organometallic chemistry are discussed.
Collapse
Affiliation(s)
- Kaleb A Reid
- Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, TX 77843, USA.
| | - David C Powers
- Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, TX 77843, USA.
| |
Collapse
|
28
|
Martínez-Ahumada E, Díaz-Ramírez ML, Velásquez-Hernández MDJ, Jancik V, Ibarra IA. Capture of toxic gases in MOFs: SO 2, H 2S, NH 3 and NO x. Chem Sci 2021; 12:6772-6799. [PMID: 34123312 PMCID: PMC8153083 DOI: 10.1039/d1sc01609a] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 04/28/2021] [Indexed: 12/11/2022] Open
Abstract
MOFs are promising candidates for the capture of toxic gases since their adsorption properties can be tuned as a function of the topology and chemical composition of the pores. Although the main drawback of MOFs is their vulnerability to these highly corrosive gases which can compromise their chemical stability, remarkable examples have demonstrated high chemical stability to SO2, H2S, NH3 and NO x . Understanding the role of different chemical functionalities, within the pores of MOFs, is the key for accomplishing superior captures of these toxic gases. Thus, the interactions of such functional groups (coordinatively unsaturated metal sites, μ-OH groups, defective sites and halogen groups) with these toxic molecules, not only determines the capture properties of MOFs, but also can provide a guideline for the desigh of new multi-functionalised MOF materials. Thus, this perspective aims to provide valuable information on the significant progress on this environmental-remediation field, which could inspire more investigators to provide more and novel research on such challenging task.
Collapse
Affiliation(s)
- Eva Martínez-Ahumada
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México Circuito Exterior s/n, CU, Del. Coyoacán, 04510 Ciudad de México Mexico +52(55) 5622-4595
| | | | | | - Vojtech Jancik
- Universidad Nacional Autónoma de México, Instituto de Química, Ciudad Universitaria Ciudad de México Mexico
- Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM Carr. Toluca-Atlacomulco Km 14.5 Toluca Estado de México 50200 Mexico
| | - Ilich A Ibarra
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México Circuito Exterior s/n, CU, Del. Coyoacán, 04510 Ciudad de México Mexico +52(55) 5622-4595
| |
Collapse
|