1
|
Zhang SY, Lv J, Zhou ZR, Geng PX, Li DW, Qian RC, Ju H. A Modular Engineered DNA Nanodevice for Precise Profiling of Telomerase RNA Location and Activity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2409344. [PMID: 39731326 DOI: 10.1002/advs.202409344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/08/2024] [Indexed: 12/29/2024]
Abstract
Increased telomerase activity has been considered as a conspicuous sign of human cancers. The catalytic cores of telomerase involve a reverse transcriptase and the human telomerase RNA (hTR). However, current detection of telomerase is largely limited to its activity at the tissue and single-cell levels. To reveal the precise distribution of subcellular hTR and telomerase activity, here a modular engineered DNA nanodevice (DNA-ND) is designed capable of imaging hTR and telomerase activity in cytoplasm and nucleus, enabling colocalization analysis. DNA-ND is a modular DNA complex comprising hTR and telomerase activity detection modules, which respectively sense intercellular hTR and telomerase activity via target-sensitive allosteric transition of DNA switches, actuating orthogonal activation of fluorescence signals to achieve in situ co-imaging of hTR and telomerase activity. By integrating DNA-ND with specific localized signals, the DNA-ND based precise profiling of colocalization of hTR and telomerase activity in different cell lines as well as their dynamic changes during pharmacological interventions is demonstrated. Notably, the results suggest that the locations of hTR and telomerase activity are not exactly overlapped, indicating the influence of intracellular environment on the binding of hTR to telomerase.
Collapse
Affiliation(s)
- Shi-Yi Zhang
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Jian Lv
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Ze-Rui Zhou
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Peter X Geng
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, P. R. China
| | - Da-Wei Li
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Ruo-Can Qian
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
2
|
Xu M, Xu C, Qiu Y, Feng Y, Shi Q, Liu Y, Deng H, Ma X, Lin N, Shi Q, Shen Z, Meng S, Yang J, Chen H, Xue F. Zinc-based radioenhancers to activate tumor radioimmunotherapy by PD-L1 and cGAS-STING pathway. J Nanobiotechnology 2024; 22:782. [PMID: 39702231 DOI: 10.1186/s12951-024-02999-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 11/06/2024] [Indexed: 12/21/2024] Open
Abstract
Radiotherapy and immunotherapy have already become the primary form of treatment for non-small-cell lung cancer (NSCLC), but are limited by high radiotherapy dose and low immune response rate. Herein, a multi-pronged strategy using a radio-immuno-enhancer (ZnO-Au@mSiO2) is developed by inducing tumor cells apoptosis and reprograming the immunosuppressive tumor microenvironment (TME). The radio-immuno-enhancer employed Au as a radiosensitizer, transition Zn ions as immune activators, which not only tremendously enhances the anti-proliferative activity of radiotherapy toward cancer cells, but also activates the immune response with multi-targets to let "exhausted" T cells "back to life" by triggering immunogenic cell death (ICD), immune checkpoint blockade (ICB) that target PD-1/PD-L1 and cGAS-STING under X-ray irradiation with a low dosage. The in vivo results demonstrate desirable antitumor and immunogenic effects of radio-immuno-enhancer-mediated immune activation by increasing the ratio of cytotoxic T cells (CTLs) and helper T cells. This work provides a feasible approach for future development of effective transition metal ion-activated radio-immunotherapeutic agents.
Collapse
Affiliation(s)
- Mengjiao Xu
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Intergration in Vaccine Research, Xiamen University, Xiamen, China
- Department of Gastrointestinal Surgery, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
| | - Chao Xu
- Department of Gastrointestinal Surgery, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
| | - Yu Qiu
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Intergration in Vaccine Research, Xiamen University, Xiamen, China
| | - Yushuo Feng
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Intergration in Vaccine Research, Xiamen University, Xiamen, China
| | - Qianqian Shi
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Intergration in Vaccine Research, Xiamen University, Xiamen, China
| | - Yaqing Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Intergration in Vaccine Research, Xiamen University, Xiamen, China
| | - Huaping Deng
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Intergration in Vaccine Research, Xiamen University, Xiamen, China
| | - Xiaoqian Ma
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Intergration in Vaccine Research, Xiamen University, Xiamen, China
| | - Nuo Lin
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Intergration in Vaccine Research, Xiamen University, Xiamen, China
| | - Qunying Shi
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Intergration in Vaccine Research, Xiamen University, Xiamen, China
| | - Zhiyang Shen
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Intergration in Vaccine Research, Xiamen University, Xiamen, China
| | - Shanshan Meng
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Intergration in Vaccine Research, Xiamen University, Xiamen, China
| | - Jiang Yang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Hongmin Chen
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, China.
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Intergration in Vaccine Research, Xiamen University, Xiamen, China.
- Department of Gastrointestinal Surgery, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China.
| | - Fangqin Xue
- Department of Gastrointestinal Surgery, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China.
| |
Collapse
|
3
|
Li W, Li Q, Xia H, Liu W, Jing G, Yu J, Liu W, Lin M, Huang Y. Multi-DNAzymes cascade reaction mediated aptasensors for OTA detection based on the integration of autocatalytic Mg 2+-dependent DNAzyme cleavage and entropy-driven circuit. Int J Biol Macromol 2024; 289:138896. [PMID: 39701233 DOI: 10.1016/j.ijbiomac.2024.138896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024]
Abstract
Ochratoxin A (OTA) is a compound of concern due to its potential health effects on humans. Detecting OTA in food is crucial for safeguarding public health. In this study, we fabricated a multi-DNAzyme cascade reaction-mediated colorimetric aptasensors for OTA detection, integrating autocatalytic Mg2+-dependent DNAzyme cleavage (MNAzyme) and an entropy-driven circuit. In brief, the recognition between the aptamer and target OTA led to the release of DNA1. Subsequently, DNA1 hybridized with DNA2, generating an upstream MNAzyme that facilitated the production of a downstream MNAzyme. These MNAzymes possess similar substrate binding arms, enabling them to catalyze the same substrate. The catalytic efficiency of MNAzymes towards the substrates was enhanced due to the increasing concentration of MNAzymes. The cleavage products then triggered an entropy-driven cycle to generate a signal. Under optimal conditions, the sensing system exhibited low detection limits of 48.97 fM for OTA. Additionally, the proposed aptasensor was successfully applied to quantitatively analyze OTA in food samples. Thus, the multi-DNAzyme cascade reaction-mediated colorimetric aptasensors offer an adaptable platform for detecting traces of OTA contaminant in food.
Collapse
Affiliation(s)
- Wenshan Li
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, China.
| | - Qingqing Li
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Huaiyue Xia
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Wenjie Liu
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Guoxing Jing
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Jianna Yu
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Wen Liu
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Mengtong Lin
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Yujuan Huang
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| |
Collapse
|
4
|
Wang Z, Wang X, He Y, Wu H, Mao R, Wang H, Qiu L. Exploring Framework Nucleic Acids: A Perspective on Their Cellular Applications. JACS AU 2024; 4:4110-4128. [PMID: 39610738 PMCID: PMC11600171 DOI: 10.1021/jacsau.4c00776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 11/30/2024]
Abstract
Cells are fundamental units of life. The coordination of cellular functions and behaviors relies on a cascade of molecular networks. Technologies that enable exploration and manipulation of specific molecular events in living cells with high spatiotemporal precision would be critical for pathological study, disease diagnosis, and treatment. Framework nucleic acids (FNAs) represent a novel class of nucleic acid materials characterized by their monodisperse and rigid nanostructure. Leveraging their exceptional programmability, convenient modification property, and predictable atomic-level architecture, FNAs have attracted significant attention in diverse cellular applications such as cell recognition, imaging, manipulation, and therapeutic interventions. In this perspective, we will discuss the utilization of FNAs in living cell systems while critically assessing the opportunities and challenges presented in this burgeoning field.
Collapse
Affiliation(s)
- Zhaoyang Wang
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, College of Biology, Aptamer Engineering Center of Hunan
Province, Hunan University, Changsha, Hunan 410082, China
| | - Xin Wang
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, College of Biology, Aptamer Engineering Center of Hunan
Province, Hunan University, Changsha, Hunan 410082, China
- The
Key Laboratory of Zhejiang Province for Aptamers and Theranostics,
Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Yao He
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, College of Biology, Aptamer Engineering Center of Hunan
Province, Hunan University, Changsha, Hunan 410082, China
| | - Hui Wu
- The
Key Laboratory of Zhejiang Province for Aptamers and Theranostics,
Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Rui Mao
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, College of Biology, Aptamer Engineering Center of Hunan
Province, Hunan University, Changsha, Hunan 410082, China
| | - Haiyuan Wang
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, College of Biology, Aptamer Engineering Center of Hunan
Province, Hunan University, Changsha, Hunan 410082, China
| | - Liping Qiu
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, College of Biology, Aptamer Engineering Center of Hunan
Province, Hunan University, Changsha, Hunan 410082, China
- The
Key Laboratory of Zhejiang Province for Aptamers and Theranostics,
Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
5
|
Sun P, Gou H, Che X, Chen G, Feng C. Recent advances in DNAzymes for bioimaging, biosensing and cancer therapy. Chem Commun (Camb) 2024; 60:10805-10821. [PMID: 39248025 DOI: 10.1039/d4cc03774j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
DNAzymes, a class of single-stranded catalytic DNA with good stability, high catalytic activity, and easy synthesis, functionalization and modification properties, have garnered significant interest in the realm of biosensing and bioimaging. Their integration with fluorescent dyes or chemiluminescent moieties has led to remarkable bioimaging outcomes, while DNAzyme-based biosensors have demonstrated robust sensitivity and selectivity in detecting metal ions, nucleic acids, proteins, enzyme activities, exosomes, bacteria and microorganisms. In addition, by delivering DNAzymes into tumor cells, the mRNA therein can be cleaved to regulate the expression of corresponding proteins, which has further propelled the application of DNAzymes in cancer gene therapy and synergistic therapy. This paper reviews the strategies for screening attractive DNAzymes such as SELEX and high-throughput sequencing, and briefly describes the amplification strategies of DNAzymes, which mainly include catalytic hairpin assembly (CHA), DNA walker, hybridization chain reaction (HCR), DNA origami, CRISPR-Cas12a, rolling circle amplification (RCA), and aptamers. In addition, applications of DNAzymes in bioimaging, biosensing, and cancer therapy are also highlighted. Subsequently, the possible challenges of these DNAzymes in practical applications are further pointed out, and future research directions are suggested.
Collapse
Affiliation(s)
- Pei Sun
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
| | - Hongquan Gou
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai 200072, P. R. China
| | - Xinran Che
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
| | - Guifang Chen
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
| | - Chang Feng
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
| |
Collapse
|
6
|
Wu MS, Zhou ZR, Wang XY, Du XC, Li DW, Qian RC. Design of a Membrane-Anchored DNAzyme-Based Molecular Machine for Enhanced Cancer Therapy by Customized Cascade Regulation. ACS Pharmacol Transl Sci 2024; 7:2869-2877. [PMID: 39296274 PMCID: PMC11406680 DOI: 10.1021/acsptsci.4c00362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 09/21/2024]
Abstract
Synthetic DNAzyme-based structures enable dynamic cell regulation. However, engineering an effective and targeted DNAzyme-based structure to perform customizable multistep regulation remains largely unexplored. Herein, we designed a membrane-anchored DNAzyme-based molecular machine to implement dynamic inter- and intracellular cascade regulation, which realizes efficient T-cell/cancer cell interactions and subsequent receptor mediated cancer cell uptake. Using CD8+ T-cells and HeLa cancer cells as a proof of concept, we demonstrate that the designed DNAzyme-based molecular machine enables customized cascade regulation including (1) specific recognition between T-cells and cancer cells, (2) specific response and fluorescence sensing upon extracellular stimuli, and (3) cascade regulation including intercellular distance shortening, cell-cell communication, and intracellular delivery of anticancer drugs. Together, this work provides a promising pathway for customized cascade cell regulation based on a DNAzyme-based molecular machine, which enables enhanced cancer therapy by combining T-cell immunotherapy and chemotherapy.
Collapse
Affiliation(s)
- Man-Sha Wu
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Ze-Rui Zhou
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xiao-Yuan Wang
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xi-Chen Du
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Da-Wei Li
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Ruo-Can Qian
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
7
|
Guo P, Zhang X, Chen J, Chen X, Jiang YB, Jiang T. On-Demand Elongation of Peptide Nanofibrils at Cellular Interfaces to Modulate Cell-Cell Interactions. NANO LETTERS 2024; 24:11194-11201. [PMID: 39213611 DOI: 10.1021/acs.nanolett.4c02370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Natural cells can achieve specific cell-cell interactions by enriching nonspecific binding molecules on demand at intercellular contact faces, a pathway currently beyond synthetic capabilities. We are inspired to construct responsive peptide fibrils on cell surfaces, which elongate upon encountering target cells while maintaining a short length when contacting competing cells, as directed by a strand-displacement reaction arranged on target cell surfaces. With the display of ligands that bind to both target and competing cells, the contact-induced, region-selective fibril elongation selectively promotes host-target cell interactions via the accumulation of nonspecific ligands between matched cells. This approach is effective in guiding natural killer cells, the broad-spectrum effector lymphocytes, to eliminate specific cancer cells. In contrast to conventional methods relying on target cell-specific binding molecules for the desired cellular interactions, this dynamic scaffold-based approach would broaden the scope of cell combinations for manipulation and enhance the adjustability of cell behaviors for future applications.
Collapse
Affiliation(s)
- Pan Guo
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen 361005, China
| | - Xingjing Zhang
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen 361005, China
| | - Jingsheng Chen
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen 361005, China
| | - Xiaoyong Chen
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen 361005, China
| | - Yun-Bao Jiang
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen 361005, China
| | - Tao Jiang
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen 361005, China
| |
Collapse
|
8
|
Qiao Y, Wang L, Xu W, Yang P, Tang C, Song D, Ling P, Gao F. Reversible Modulation of Cell-Cell Interactions Using Electrochemistry. ACS APPLIED MATERIALS & INTERFACES 2024; 16:43341-43349. [PMID: 39103300 DOI: 10.1021/acsami.4c08619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Cell-cell interactions play an important role in many biological processes, and various methods have been developed for controlling the cell-cell interactions. However, the effective and rapid control of intercellular interactions remains challenging. Herein, we report a novel, rapid, and effective electrochemical strategy without destroying the basic life processes for the dynamic control of intercellular interactions via liposome fusion. In the proposed system, bioorthogonal chemical groups and hydroquinone (HQ)- and aminooxy (AO)-tethered ligands were modified on the surface of living cells on the basis of the liposome fusion, enabling dynamical intercellular assemblies. Upon application of the corresponding oxidative potential, the "off-state" HQ could be oxidized to the "on-state" quinone (Q), which subsequently reacts with AO-tethered ligands to form stable oxime linkages under physiological conditions. This reaction effectively shortens the distance between cells, promoting the formation of cell clusters. When the corresponding reverse reductive potential is applied, the oxime linkage is cleaved, resulting in the release of the cells. Furthermore, we employed HQ- and AO-tethered ligands to modify mitochondria, inducing mitochondrial aggregation. This noninvasive and label-free strategy allows for the dynamic reversible regulation of intercellular interactions, enhancing our understanding of intercellular communication networks, and has the potential for improving the antitumor therapy efficacy.
Collapse
Affiliation(s)
- Yalong Qiao
- Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Linyu Wang
- Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Wenwen Xu
- Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Pei Yang
- Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Chuanye Tang
- Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Danjie Song
- Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Pinghua Ling
- Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Feng Gao
- Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| |
Collapse
|
9
|
Liu W, Cheng G, Cui H, Tian Z, Li B, Han Y, Wu JX, Sun J, Zhao Y, Chen T, Yu G. Theoretical basis, state and challenges of living cell-based drug delivery systems. Theranostics 2024; 14:5152-5183. [PMID: 39267776 PMCID: PMC11388066 DOI: 10.7150/thno.99257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/12/2024] [Indexed: 09/15/2024] Open
Abstract
The therapeutic efficacy of drugs is determined, to a certain extent, by the efficiency of drug delivery. The low efficiency of drug delivery systems (DDSs) is frequently associated with serious toxic side effects and can even prove fatal in certain cases. With the rapid development of technology, drug delivery has evolved from using traditional frameworks to using nano DDSs (NDDSs), endogenous biomaterials DDSs (EBDDSs), and living cell DDSs (LCDDSs). LCDDSs are receiving widespread attention from researchers at present owing to the unique advantages of living cells in targeted drug delivery, including their excellent biocompatibility properties, low immunogenicity, unique biological properties and functions, and role in the treatment of diseases. However, the theoretical basis and techniques involved in the application of LCDDSs have not been extensively summarized to date. Therefore, this review comprehensively summarizes the properties and applications of living cells, elaborates the various drug loading approaches and controlled drug release, and discusses the results of clinical trials. The review also discusses the current shortcomings and prospects for the future development of LCDDSs, which will serve as highly valuable insights for the development and clinical transformation of LCDDSs in the future.
Collapse
Affiliation(s)
- Wei Liu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Guowang Cheng
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Hao Cui
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Zhen Tian
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Bowen Li
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Yanhua Han
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Jia-Xin Wu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Jie Sun
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Yuyue Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Tongkai Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Guangtao Yu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| |
Collapse
|
10
|
Tao H, Wang Q, Chen K, Zhu P, Gu Y, Geng D. Metal ion metabolism and osteoporosis: possible implications for pharmaceutical biotechnology and tissue engineering. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1763-1765. [PMID: 38676813 DOI: 10.1007/s11427-023-2541-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 01/29/2024] [Indexed: 04/29/2024]
Affiliation(s)
- Huaqiang Tao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Qiufei Wang
- Department of Orthopedics, Changshu Hospital Affiliated to Soochow University, First People's Hospital of Changshu City, Changshu, 215506, China
| | - Kai Chen
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China
- Department of Orthopedics, Hai'an People's Hospital, Hai'an, 226600, China
| | - Pengfei Zhu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Ye Gu
- Department of Orthopedics, Changshu Hospital Affiliated to Soochow University, First People's Hospital of Changshu City, Changshu, 215506, China.
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China.
| |
Collapse
|
11
|
Xue E, Lee ACK, Chow KT, Ng DKP. Promotion and Detection of Cell-Cell Interactions through a Bioorthogonal Approach. J Am Chem Soc 2024; 146:17334-17347. [PMID: 38767615 PMCID: PMC11212048 DOI: 10.1021/jacs.4c04317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/22/2024]
Abstract
Manipulation of cell-cell interactions via cell surface modification is crucial in tissue engineering and cell-based therapy. To be able to monitor intercellular interactions, it can also provide useful information for understanding how the cells interact and communicate. We report herein a facile bioorthogonal strategy to promote and monitor cell-cell interactions. It involves the use of a maleimide-appended tetrazine-caged boron dipyrromethene (BODIPY)-based fluorescent probe and a maleimide-substituted bicyclo[6.1.0]non-4-yne (BCN) to modify the membrane of macrophage (RAW 264.7) and cancer (HT29, HeLa, and A431) cells, respectively, via maleimide-thiol conjugation. After modification, the two kinds of cells interact strongly through inverse electron-demand Diels-Alder reaction of the surface tetrazine and BCN moieties. The coupling also disrupts the tetrazine quenching unit, restoring the fluorescence emission of the BODIPY core on the cell-cell interface, and promotes phagocytosis. Hence, this approach can promote and facilitate the detection of intercellular interactions, rendering it potentially useful for macrophage-based immunotherapy.
Collapse
Affiliation(s)
- Evelyn
Y. Xue
- Department
of Chemistry, The Chinese University of
Hong Kong, Shatin,
N.T., Hong Kong, China
| | - Alan Chun Kit Lee
- School
of Life Sciences, The Chinese University
of Hong Kong, Shatin, N.T., Hong Kong, China
- Department
of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Kwan T. Chow
- Department
of Biomedical Sciences, City University
of Hong Kong, Kowloon, Hong Kong, China
| | - Dennis K. P. Ng
- Department
of Chemistry, The Chinese University of
Hong Kong, Shatin,
N.T., Hong Kong, China
| |
Collapse
|
12
|
Fu R, Hou J, Wang Z, Xianyu Y. DNA Molecular Computation Using the CRISPR-Mediated Reaction and Surface Growth of Gold Nanoparticles. ACS NANO 2024; 18:14754-14763. [PMID: 38781600 DOI: 10.1021/acsnano.4c04265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
DNA has emerged as a promising tool to build logic gates for biocomputing. However, prevailing methodologies predominantly rely on hybridization reactions or structural alterations to construct DNA logic gates, which are limited in simplicity and diversity. Herein, we developed simple and smart DNA-based logic gates for biocomputing through the DNA-mediated growth of gold nanomaterials without precise structure design and probe modification. Capitalizing on their excellent plasmonic properties, the surface growth of gold nanomaterials enables distinct wavelength shifts and unique shapes, which are modulated by the composition, length, and concentration of the DNA sequences. Combined with a CRISPR-mediated reaction, we constructed DNA circuits to achieve complicated biocomputing to modulate the surface growth of gold nanomaterials. By implementing logic functions controlled by input-mediated growth of gold nanomaterials, we established YES/NOT, AND/NAND, OR/NOR, XOR, and INHIBIT gates and further constructed cascade logic circuits, parity checker for natural numbers, and gray code encoder, which are promising for DNA biocomputing.
Collapse
Affiliation(s)
- Ruijie Fu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Sir Run Run Shaw Hospital, Hangzhou 310016, People's Republic of China
| | - Jinjie Hou
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Sir Run Run Shaw Hospital, Hangzhou 310016, People's Republic of China
| | - Zexiang Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Sir Run Run Shaw Hospital, Hangzhou 310016, People's Republic of China
| | - Yunlei Xianyu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Sir Run Run Shaw Hospital, Hangzhou 310016, People's Republic of China
| |
Collapse
|
13
|
Zhang Q, Zhang Y, Wu L, Wang D, Zhuo Y, Lu Y, Liu Y, Wang Z, Qiu L, Tan W. DNA Reaction Circuits to Establish Designated Biological Functions in Multicellular Community. NANO LETTERS 2024; 24:5808-5815. [PMID: 38710049 DOI: 10.1021/acs.nanolett.4c00980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
In multicellular organisms, individual cells are coordinated through complex communication networks to accomplish various physiological tasks. Aiming to establish new biological functions in the multicellular community, we used DNA as the building block to develop a cascade of nongenetic reaction circuits to establish a dynamic cell-cell communication network. Utilizing membrane-anchored amphiphilic DNA tetrahedra (TDN) as the nanoscaffold, reaction circuits were incorporated into three unrelated cells in order to uniquely regulate their sense-and-response behaviors. As a proof-of-concept, this step enabled these cells to simulate significant biological events involved in T cell-mediated anticancer immunity. Such events included cancer-associated antigen recognition and the presentation of antigen-presenting cells (APCs), APC-facilitated T cell activation and dissociation, and T cell-mediated cancer targeting and killing. By combining the excellent programmability and molecular recognition ability of DNA, our cell-surface reaction circuits hold promise for mimicking and manipulating many biological processes.
Collapse
Affiliation(s)
- Qiang Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Yue Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Limei Wu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Dan Wang
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Yuting Zhuo
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Yao Lu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Yue Liu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Zhimin Wang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Liping Qiu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
14
|
Wang Y, Xiong Y, Shi K, Effah CY, Song L, He L, Liu J. DNA nanostructures for exploring cell-cell communication. Chem Soc Rev 2024; 53:4020-4044. [PMID: 38444346 DOI: 10.1039/d3cs00944k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
The process of coordinating between the same or multiple types of cells to jointly execute various instructions in a controlled and carefully regulated environment is a very appealing field. In order to provide clearer insight into the role of cell-cell interactions and the cellular communication of this process in their local communities, several interdisciplinary approaches have been employed to enhance the core understanding of this phenomenon. DNA nanostructures have emerged in recent years as one of the most promising tools in exploring cell-cell communication and interactions due to their programmability and addressability. Herein, this review is dedicated to offering a new perspective on using DNA nanostructures to explore the progress of cell-cell communication. After briefly outlining the anchoring strategy of DNA nanostructures on cell membranes and the subsequent dynamic regulation of DNA nanostructures, this paper highlights the significant contribution of DNA nanostructures in monitoring cell-cell communication and regulating its interactions. Finally, we provide a quick overview of the current challenges and potential directions for the application of DNA nanostructures in cellular communication and interactions.
Collapse
Affiliation(s)
- Ya Wang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| | - Yamin Xiong
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Kangqi Shi
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| | - Clement Yaw Effah
- The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou 450003, China
| | - Lulu Song
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| | - Leiliang He
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| | - Jianbo Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China.
| |
Collapse
|
15
|
Kamijo T, Yazawa K. Nucleotide-based regenerated fiber production using salmon (Oncorhynchus keta) milt waste by solution spinning. Int J Biol Macromol 2024; 258:128866. [PMID: 38123035 DOI: 10.1016/j.ijbiomac.2023.128866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/30/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
The use of nucleic acid-derived fibers has not been developed in contrast to the traditional use of polysaccharide- and protein-based fibers in daily life. Salmon, Oncorhynchus keta, is an abundant fishery resource, and its milt contains a huge amount of DNA. Most of the milt is discarded because it degrades easily and is unsuitable for food consumption. DNA-based fibers are expected to possess functionality and mechanical strength because DNA is a polyanion with a high molecular weight. Here, using DNA extracted from the salmon milt, we produced nucleotide-based fibers. A solution spinning system was applied using ethanol as a coagulant. Adding the salt to the dope solution reduced the solubility of DNA, which was essential for the successful spinning of DNA-based fibers. The obtained fibers became insoluble in water by ultraviolet (UV) exposure. Fibril-like structures were detected on the fracture surface, and humidity influenced the conformational structure. This study focuses on the bulk-scale production of biodegradable DNA-based fibers. Therefore, it can be used not only for clothing and filters but also as a functional material to remove harmful pollutants released into the ocean, such as heavy metal ions and aromatic derivatives.
Collapse
Affiliation(s)
- Takafumi Kamijo
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
| | - Kenjiro Yazawa
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan; Division of Fibers and Textiles, Interdisciplinary Cluster for Cutting Edge Research, Institute for Fiber Engineering, Shinshu University, 3-15-1, Tokida, Ueda, Nagano 386-8567, Japan.
| |
Collapse
|
16
|
Wang DX, Liu B, Han GM, Li Q, Kong DM, Enderlein J, Chen T. Metal-Induced Energy Transfer (MIET) Imaging of Cell Surface Engineering with Multivalent DNA Nanobrushes. ACS NANO 2024. [PMID: 38231016 PMCID: PMC10883130 DOI: 10.1021/acsnano.3c10162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
The spacing between cells has a significant impact on cell-cell interactions, which are critical to the fate and function of both individual cells and multicellular organisms. However, accurately measuring the distance between cell membranes and the variations between different membranes has proven to be a challenging task. In this study, we employ metal-induced energy transfer (MIET) imaging/spectroscopy to determine and track the intermembrane distance and variations with nanometer precision. We have developed a DNA-based molecular adhesive called the DNA nanobrush, which serves as a cellular adhesive for connecting the plasma membranes of different cells. By manipulating the number of base pairs within the DNA nanobrush, we can modify various aspects of membrane-membrane interactions such as adhesive directionality, distance, and forces. We demonstrate that such nanometer-level changes can be detected with MIET imaging/spectroscopy. Moreover, we successfully employed MIET to measure distance variations between a cellular plasma membrane and a model membrane. This experiment not only showcases the effectiveness of MIET as a powerful tool for accurately quantifying membrane-membrane interactions but also validates the potential of DNA nanobrushes as cellular adhesives. This innovative method holds significant implications for advancing the study of multicellular interactions.
Collapse
Affiliation(s)
- Dong-Xia Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for Cell Responses, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- III. Institute of Physics - Biophysics, Georg August University, 37077 Göttingen, Germany
| | - Bo Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for Cell Responses, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Gui-Mei Han
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for Cell Responses, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Qingnan Li
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for Cell Responses, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - De-Ming Kong
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for Cell Responses, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Jörg Enderlein
- III. Institute of Physics - Biophysics, Georg August University, 37077 Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), Universitätsmedizin Göttingen, Robert-Koch-Strasse 40, Göttingen 37075, Germany
| | - Tao Chen
- III. Institute of Physics - Biophysics, Georg August University, 37077 Göttingen, Germany
| |
Collapse
|
17
|
Zhao L, Chen J, Bai B, Song G, Zhang J, Yu H, Huang S, Wang Z, Lu G. Topical drug delivery strategies for enhancing drug effectiveness by skin barriers, drug delivery systems and individualized dosing. Front Pharmacol 2024; 14:1333986. [PMID: 38293666 PMCID: PMC10825035 DOI: 10.3389/fphar.2023.1333986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/27/2023] [Indexed: 02/01/2024] Open
Abstract
Topical drug delivery is widely used in various diseases because of the advantages of not passing through the gastrointestinal tract, avoiding gastrointestinal irritation and hepatic first-pass effect, and reaching the lesion directly to reduce unnecessary adverse reactions. The skin helps the organism to defend itself against a huge majority of external aggressions and is one of the most important lines of defense of the body. However, the skin's strong barrier ability is also a huge obstacle to the effectiveness of topical medications. Allowing the bioactive, composition in a drug to pass through the stratum corneum barrier as needed to reach the target site is the most essential need for the bioactive, composition to exert its therapeutic effect. The state of the skin barrier, the choice of delivery system for the bioactive, composition, and individualized disease detection and dosing planning influence the effectiveness of topical medications. Nowadays, enhancing transdermal absorption of topically applied drugs is the hottest research area. However, enhancing transdermal absorption of drugs is not the first choice to improve the effectiveness of all drugs. Excessive transdermal absorption enhances topical drug accumulation at non-target sites and the occurrence of adverse reactions. This paper introduces topical drug delivery strategies to improve drug effectiveness from three perspectives: skin barrier, drug delivery system and individualized drug delivery, describes the current status and shortcomings of topical drug research, and provides new directions and ideas for topical drug research.
Collapse
Affiliation(s)
- Lin Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiamei Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bai Bai
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guili Song
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jingwen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Han Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shiwei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhang Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guanghua Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
18
|
Wu X, Shuai X, Nie K, Li J, Liu L, Wang L, Huang C, Li C. DNA-Based Fluorescent Nanoprobe for Cancer Cell Membrane Imaging. Molecules 2024; 29:267. [PMID: 38202850 PMCID: PMC10780466 DOI: 10.3390/molecules29010267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/21/2023] [Accepted: 01/01/2024] [Indexed: 01/12/2024] Open
Abstract
As an important barrier between the cytoplasm and the microenvironment of the cell, the cell membrane is essential for the maintenance of normal cellular physiological activities. An abnormal cell membrane is a crucial symbol of body dysfunction and the occurrence of variant diseases; therefore, the visualization and monitoring of biomolecules associated with cell membranes and disease markers are of utmost importance in revealing the biological functions of cell membranes. Due to their biocompatibility, programmability, and modifiability, DNA nanomaterials have become increasingly popular in cell fluorescence imaging in recent years. In addition, DNA nanomaterials can be combined with the cell membrane in a specific manner to enable the real-time imaging of signal molecules on the cell membrane, allowing for the real-time monitoring of disease occurrence and progression. This article examines the recent application of DNA nanomaterials for fluorescence imaging on cell membranes. First, we present the conditions for imaging DNA nanomaterials in the cell membrane microenvironment, such as the ATP, pH, etc. Second, we summarize the imaging applications of cell membrane receptors and other molecules. Finally, some difficulties and challenges associated with DNA nanomaterials in the imaging of cell membranes are presented.
Collapse
Affiliation(s)
- Xiaoqiao Wu
- Department of Basic Medicine, Shangqiu Medical College, Shangqiu 476100, China;
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; (X.S.); (K.N.); (J.L.); (L.L.); (C.H.)
| | - Xinjia Shuai
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; (X.S.); (K.N.); (J.L.); (L.L.); (C.H.)
| | - Kunhan Nie
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; (X.S.); (K.N.); (J.L.); (L.L.); (C.H.)
| | - Jing Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; (X.S.); (K.N.); (J.L.); (L.L.); (C.H.)
| | - Lin Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; (X.S.); (K.N.); (J.L.); (L.L.); (C.H.)
| | - Lijuan Wang
- Department of Basic Medicine, Shangqiu Medical College, Shangqiu 476100, China;
| | - Chengzhi Huang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; (X.S.); (K.N.); (J.L.); (L.L.); (C.H.)
| | - Chunmei Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; (X.S.); (K.N.); (J.L.); (L.L.); (C.H.)
| |
Collapse
|
19
|
Almeida‐Pinto J, Lagarto MR, Lavrador P, Mano JF, Gaspar VM. Cell Surface Engineering Tools for Programming Living Assemblies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304040. [PMID: 37823678 PMCID: PMC10700290 DOI: 10.1002/advs.202304040] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/10/2023] [Indexed: 10/13/2023]
Abstract
Breakthroughs in precision cell surface engineering tools are supporting the rapid development of programmable living assemblies with valuable features for tackling complex biological problems. Herein, the authors overview the most recent technological advances in chemically- and biologically-driven toolboxes for engineering mammalian cell surfaces and triggering their assembly into living architectures. A particular focus is given to surface engineering technologies for enabling biomimetic cell-cell social interactions and multicellular cell-sorting events. Further advancements in cell surface modification technologies may expand the currently available bioengineering toolset and unlock a new generation of personalized cell therapeutics with clinically relevant biofunctionalities. The combination of state-of-the-art cell surface modifications with advanced biofabrication technologies is envisioned to contribute toward generating living materials with increasing tissue/organ-mimetic bioactivities and therapeutic potential.
Collapse
Affiliation(s)
- José Almeida‐Pinto
- Department of ChemistryCICECO‐Aveiro Institute of Materials University of Aveiro Campus Universitário de SantiagoAveiro3810‐193Portugal
| | - Matilde R. Lagarto
- Department of ChemistryCICECO‐Aveiro Institute of Materials University of Aveiro Campus Universitário de SantiagoAveiro3810‐193Portugal
| | - Pedro Lavrador
- Department of ChemistryCICECO‐Aveiro Institute of Materials University of Aveiro Campus Universitário de SantiagoAveiro3810‐193Portugal
| | - João F. Mano
- Department of ChemistryCICECO‐Aveiro Institute of Materials University of Aveiro Campus Universitário de SantiagoAveiro3810‐193Portugal
| | - Vítor M. Gaspar
- Department of ChemistryCICECO‐Aveiro Institute of Materials University of Aveiro Campus Universitário de SantiagoAveiro3810‐193Portugal
| |
Collapse
|
20
|
Yang H, Yao L, Wang Y, Chen G, Chen H. Advancing cell surface modification in mammalian cells with synthetic molecules. Chem Sci 2023; 14:13325-13345. [PMID: 38033886 PMCID: PMC10685406 DOI: 10.1039/d3sc04597h] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Biological cells, being the fundamental entities of life, are widely acknowledged as intricate living machines. The manipulation of cell surfaces has emerged as a progressively significant domain of investigation and advancement in recent times. Particularly, the alteration of cell surfaces using meticulously crafted and thoroughly characterized synthesized molecules has proven to be an efficacious means of introducing innovative functionalities or manipulating cells. Within this realm, a diverse array of elegant and robust strategies have been recently devised, including the bioorthogonal strategy, which enables selective modification. This review offers a comprehensive survey of recent advancements in the modification of mammalian cell surfaces through the use of synthetic molecules. It explores a range of strategies, encompassing chemical covalent modifications, physical alterations, and bioorthogonal approaches. The review concludes by addressing the present challenges and potential future opportunities in this rapidly expanding field.
Collapse
Affiliation(s)
- He Yang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University 199 Ren'ai Road Suzhou 215123 Jiangsu P. R. China
| | - Lihua Yao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University 199 Ren'ai Road Suzhou 215123 Jiangsu P. R. China
| | - Yichen Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University 199 Ren'ai Road Suzhou 215123 Jiangsu P. R. China
| | - Gaojian Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University 199 Ren'ai Road Suzhou 215123 Jiangsu P. R. China
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University Suzhou 215006 Jiangsu P. R. China
| | - Hong Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University 199 Ren'ai Road Suzhou 215123 Jiangsu P. R. China
| |
Collapse
|
21
|
Yu J, Zhang Y, Li L, Xiang Y, Yao X, Zhao Y, Cai K, Li M, Li Z, Luo Z. Coordination-driven FBXW7 DNAzyme-Fe nanoassembly enables a binary switch of breast cancer cell cycle checkpoint responses for enhanced ferroptosis-radiotherapy. Acta Biomater 2023; 169:434-450. [PMID: 37516418 DOI: 10.1016/j.actbio.2023.07.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/22/2023] [Accepted: 07/24/2023] [Indexed: 07/31/2023]
Abstract
Radiotherapy is a mainstream modality for breast cancer treatment that employs ionizing radiation (IR) to damage tumor cell DNA and elevate ROS stress, which demonstrates multiple clinically-favorable advantages including localized treatment and low invasiveness. However, breast cancer cells may activate the p53-mediated cell cycle regulation in response to radiotherapy to repair IR-induced cellular damage and facilitate post-treatment survival. F-Box and WD Repeat Domain Containing 7 (FBXW7) is a promoter of p53 degradation and critical nexus of cell proliferation and survival events. Herein, we engineered a cooperative radio-ferroptosis-stimulatory nanomedicine through coordination-driven self-assembly between ferroptosis-inducing Fe2+ ions and FBXW7-inhibiting DNAzymes and further modification of tumor-targeting dopamine-modified hyaluronic acid (HA). The nanoassembly could be selectively internalized by breast cancer cells and disintegrated in lysosomes to release the therapeutic payload. DNAzyme readily abolishes FBXW7 expression and stabilizes phosphorylated p53 to cause irreversible G2 phase arrest for amplifying post-IR tumor cell apoptosis. Meanwhile, the p53 stabilization also inhibits the SLC7A11-cystine-GSH axis, which combines with the IR-upregulated ROS levels to amplify Fe2+-mediated ferroptotic damage. The DNAzyme-Fe-HA nanoassembly could thus systematically boost the tumor cell damaging effects of IR, presenting a simple and effective approach to augment the response of breast cancer to radiotherapy. STATEMENT OF SIGNIFICANCE: To overcome the intrinsic radioresistance in breast cancer, we prepared co-assembly of Fe2+ and FBXW7-targeted DNAzymes and modified surface with dopamine conjugated hyaluronic acid (HA), which enabled tumor-specific FBXW7-targeted gene therapy and ferroptosis therapy in IR-treated breast cancers. The nanoassembly could be activated in acidic condition to release the therapeutic contents. Specifically, the DNAzymes could selectively degrade FBXW7 mRNA in breast cancer cells to simultaneously induce accumulation of p53 and retardation of NHEJ repair, eventually inducing irreversible cell cycle arrest to promote apoptosis. The p53 stabilization would also inhibit the SLC7A11/GSH/GPX4 axis to enhance Fe2+ mediated ferroptosis. These merits could act in a cooperative manner to induce pronounced tumor inhibitory effect, offering new approaches for tumor radiosensitization in the clinics.
Collapse
Affiliation(s)
- Jiawu Yu
- School of Life Science, Chongqing University, Chongqing 400044, China
| | - Yuchen Zhang
- School of Life Science, Chongqing University, Chongqing 400044, China
| | - Liqi Li
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Yang Xiang
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Centre, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Xuemei Yao
- School of Life Science, Chongqing University, Chongqing 400044, China
| | - Youbo Zhao
- School of Life Science, Chongqing University, Chongqing 400044, China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Menghuan Li
- School of Life Science, Chongqing University, Chongqing 400044, China.
| | - Zhongjun Li
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Centre, The Second Affiliated Hospital, Army Medical University, Chongqing, China.
| | - Zhong Luo
- School of Life Science, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
22
|
Wu K, Ma C, Wang Y. Functional Nucleic Acid Probes Based on Two-Photon for Biosensing. BIOSENSORS 2023; 13:836. [PMID: 37754070 PMCID: PMC10527542 DOI: 10.3390/bios13090836] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/18/2023] [Accepted: 08/18/2023] [Indexed: 09/28/2023]
Abstract
Functional nucleic acid (FNA) probes have been widely used in environmental monitoring, food analysis, clinical diagnosis, and biological imaging because of their easy synthesis, functional modification, flexible design, and stable properties. However, most FNA probes are designed based on one-photon (OP) in the ultraviolet or visible regions, and the effectiveness of these OP-based FNA probes may be hindered by certain factors, such as their potential for photodamage and limited light tissue penetration. Two-photon (TP) is characterized by the nonlinear absorption of two relatively low-energy photons of near-infrared (NIR) light with the resulting emission of high-energy ultraviolet or visible light. TP-based FNA probes have excellent properties, including lower tissue self-absorption and autofluorescence, reduced photodamage and photobleaching, and higher spatial resolution, making them more advantageous than the conventional OP-based FNA probes in biomedical sensing. In this review, we summarize the recent advances of TP-excited and -activated FNA probes and detail their applications in biomolecular detection. In addition, we also share our views on the highlights and limitations of TP-based FNA probes. The ultimate goal is to provide design approaches for the development of high-performance TP-based FNA probes, thereby promoting their biological applications.
Collapse
Affiliation(s)
- Kefeng Wu
- GBA Branch of Aerospace Information Research Institute, Chinese Academy of Sciences, Guangzhou 510700, China
- Guangdong Provincial Key Laboratory of Terahertz Quantum Electromagnetics, Guangzhou 510700, China
| | - Changbei Ma
- School of Life Sciences, Central South University, Changsha 410013, China
| | - Yisen Wang
- GBA Branch of Aerospace Information Research Institute, Chinese Academy of Sciences, Guangzhou 510700, China
- Guangdong Provincial Key Laboratory of Terahertz Quantum Electromagnetics, Guangzhou 510700, China
| |
Collapse
|
23
|
Xia Y, Lei X, Ma X, Wang S, Yang Z, Wu Y, Ren X. Combination of RCA and DNAzyme for Dual-Signal Isothermal Amplification of Exosome RNA. Molecules 2023; 28:5528. [PMID: 37513400 PMCID: PMC10384651 DOI: 10.3390/molecules28145528] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/29/2023] [Accepted: 07/02/2023] [Indexed: 07/30/2023] Open
Abstract
The RNA contained in exosomes plays a crucial role in information transfer between cells in various life activities. The accurate detection of low-abundance exosome RNA (exRNA) is of great significance for cell function studies and the early diagnosis of diseases. However, their intrinsic properties, such as their short length and high sequence homology, represent great challenges for exRNA detection. In this paper, we developed a dual-signal isothermal amplification method based on rolling circle amplification (RCA) coupled with DNAzyme (RCA-DNAzyme). The sensitive detection of low-abundance exRNA, the specific recognition of their targets and the amplification of the detection signal were studied and explored. By designing padlock probes to specifically bind to the target exRNA, while relying on the ligation reaction to enhance recognition, the precise targeting of exosome RNA was realized. The combination of RCA and DNAzyme could achieve a twice-as-large isothermal amplification of the signal compared to RCA alone. This RCA-DNAzyme assay could sensitively detect a target exRNA at a concentration as low as 527 fM and could effectively distinguish the target from other miRNA sequences. In addition, this technology was successfully proven to be effective for the quantitative detection of miR-21 by spike recovery, providing a new research approach for the accurate detection of low-abundance exRNA and the exploration of unknown exRNA functions.
Collapse
Affiliation(s)
- Yuqing Xia
- Department of Chemistry and Biology, Faculty of Environment and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Xin Lei
- Department of Chemistry and Biology, Faculty of Environment and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Xiaochen Ma
- Department of Chemistry and Biology, Faculty of Environment and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Shizheng Wang
- Department of Chemistry and Biology, Faculty of Environment and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Zifu Yang
- Department of Chemistry and Biology, Faculty of Environment and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Yifan Wu
- Department of Chemistry and Biology, Faculty of Environment and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Xiaojun Ren
- Department of Chemistry and Biology, Faculty of Environment and Life Science, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
24
|
Liu X, Wang Y, Ye B, Bi X. Catalyst-free thiazolidine formation chemistry enables the facile construction of peptide/protein-cell conjugates (PCCs) at physiological pH. Chem Sci 2023; 14:7334-7345. [PMID: 37416697 PMCID: PMC10321533 DOI: 10.1039/d3sc01382k] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/07/2023] [Indexed: 07/08/2023] Open
Abstract
Although numerous genetic, chemical, and physical strategies have been developed to remodel the cell surface landscape for basic research and the development of live cell-based therapeutics, new chemical modification strategies capable of decorating cells with various genetically/non-genetically encodable molecules are still urgently needed. Herein, we describe a remarkably simple and robust chemical strategy for cell surface modifications by revisiting the classical thiazolidine formation chemistry. Cell surfaces harbouring aldehydes can be chemoselectively conjugated with molecules containing a 1,2-aminothiol moiety at physiological pH without the need to use any toxic catalysts and complicated chemical synthesis. Through the combined use of thiazolidine formation and the SpyCatcher-SpyTag system, we have further developed a SpyCatcher-SpyTag Chemistry Assisted Cell Surface Engineering (SpyCASE) platform, providing a modular approach for the construction of large protein-cell conjugates (PCCs) in their native state. Thiazolidine-bridged molecules can also be detached from the surface again through a biocompatible Pd-catalyzed bond scission reaction, enabling reversible modification of living cell surfaces. In addition, this approach allows us to modulate specific cell-cell interactions and generate NK cell-based PCCs to selectively target/kill several EGFR-positive cancer cells in vitro. Overall, this study provides an underappreciated but useful chemical tool to decorate cells with tailor-made functionalities.
Collapse
Affiliation(s)
- Xiangquan Liu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology Hangzhou 310014 Zhejiang China
| | - Youyu Wang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology Hangzhou 310014 Zhejiang China
| | - Bangce Ye
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology Hangzhou 310014 Zhejiang China
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science & Technology Shanghai 200237 China
| | - Xiaobao Bi
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology Hangzhou 310014 Zhejiang China
| |
Collapse
|
25
|
Guo P, Wang D, Zhang S, Cheng D, Wu S, Zuo X, Jiang YB, Jiang T. Reassembly of Peptide Nanofibrils on Live Cell Surfaces Promotes Cell-Cell Interactions. NANO LETTERS 2023. [PMID: 37399537 DOI: 10.1021/acs.nanolett.3c01100] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Nature regulates cellular interactions through the cell-surface molecules and plasma membranes. Despite advances in cell-surface engineering with diverse ligands and reactive groups, modulating cell-cell interactions through scaffolds of the cell-binding cues remains a challenging endeavor. Here, we assembled peptide nanofibrils on live cell surfaces to present the ligands that bind to the target cells. Surprisingly, with the same ligands, reducing the thermal stability of the nanofibrils promoted cellular interactions. Characterizations of the system revealed a thermally induced fibril disassembly and reassembly pathway that facilitated the complexation of the fibrils with the cells. Using the nanofibrils of varied stabilities, the cell-cell interaction was promoted to different extents with free-to-bound cell conversion ratios achieved at low (31%), medium (54%), and high (93%) levels. This study expands the toolbox to generate desired cell behaviors for applications in many areas and highlights the merits of thermally less stable nanoassemblies in designing functional materials.
Collapse
Affiliation(s)
- Pan Guo
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen 361005, China
| | - Di Wang
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen 361005, China
| | - Shumin Zhang
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen 361005, China
| | - Dan Cheng
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen 361005, China
| | - Siyu Wu
- X-ray Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Xiaobing Zuo
- X-ray Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Yun-Bao Jiang
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| | - Tao Jiang
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| |
Collapse
|
26
|
Chen Y, Wu T, Xie S, Bai Y, Xing H. Orientation-controlled membrane anchoring of bioorthogonal catalysts on live cells via liposome fusion-based transport. SCIENCE ADVANCES 2023; 9:eadg2583. [PMID: 37163595 PMCID: PMC10171822 DOI: 10.1126/sciadv.adg2583] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
An obstacle to conducting diverse bioorthogonal reactions in living systems is the sensitivity of artificial metal catalysts. It has been reported that artificial metallocatalysts can be assembled in "cleaner" environments in cells for stabilized performance, which is powerful but is limited by the prerequisite of using specific cells. We report here a strategy to establish membrane-anchored catalysts with precise spatial control via liposome fusion-based transport (MAC-LiFT), loading bioorthogonal catalytic complexes onto either or both sides of the membrane leaflets. We show that the inner face of the cytoplasmic membrane serves as a reliable shelter for metal centers, protecting the complexes from deactivation thus substantially lowering the amount of catalyst needed for effective intracellular catalysis. This MAC-LiFT approach makes it possible to establish catalyst-protective systems with exclusively exogenous agents in a wide array of mammalian cells, allowing convenient and wider use of diverse bioorthogonal reactions in live cellular systems.
Collapse
Affiliation(s)
- Yuanyuan Chen
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Tong Wu
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Shasha Xie
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Yugang Bai
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Hang Xing
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| |
Collapse
|
27
|
Cai F, Ren Y, Dai J, Yang J, Shi X. Effects of Various Cell Surface Engineering Reactions on the Biological Behavior of Mammalian Cells. Macromol Biosci 2023; 23:e2200379. [PMID: 36579789 DOI: 10.1002/mabi.202200379] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/15/2022] [Indexed: 12/30/2022]
Abstract
Cell surface engineering technologies can regulate cell function and behavior by modifying the cell surface. Previous studies have mainly focused on investigating the effects of cell surface engineering reactions and materials on cell activity. However, they do not comprehensively analyze other cellular processes. This study exploits covalent bonding, hydrophobic interactions, and electrostatic interactions to modify the macromolecules succinimide ester-methoxy polyethylene glycol (NHS-mPEG), distearoyl phosphoethanolamine-methoxy polyethylene glycol (DSPE-mPEG), and poly-L-lysine (PLL), respectively, on the cell surface. This work systematically investigates the effects of the three surface engineering reactions on the behavior of human umbilical vein endothelial cells (HUVECs) and human skin fibroblasts, including viability, growth, proliferation, cell cycle, adhesion, and migration. The results reveals that the PLL modification method notably affects cell viability and G2/M arrest and has a short modification duration. However, the DSPE-mPEG and NHS-mPEG modification methods have little effect on cell viability and proliferation but have a prolonged modification duration. Moreover, the DSPE-mPEG modification method highly affects cell adherence. Further, the NHS-mPEG modification method can significantly improve the migration ability of HUVECs by reducing the area of focal adhesions. The findings of this study will contribute to the application of cell surface engineering technology in the biomedical field.
Collapse
Affiliation(s)
- Fengying Cai
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou, 350108, China
| | - Yafeng Ren
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou, 350108, China
| | - Jiajia Dai
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou, 350108, China
| | - Jianmin Yang
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou, 350108, China.,Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou, 350108, China
| | - Xianai Shi
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou, 350108, China.,Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou, 350108, China
| |
Collapse
|
28
|
Yu L, Ma Z, He Q. Dynamic DNA Nanostructures for Cell Manipulation. ACS Biomater Sci Eng 2023; 9:562-576. [PMID: 36592368 DOI: 10.1021/acsbiomaterials.2c01204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Dynamic DNA nanostructures are DNA nanostructures with reconfigurable elements that can undergo structural transformations in response to specific stimuli. Thus, anchoring dynamic DNA nanostructures on cell membranes is an attractive and promising strategy for well-controlled cell manipulation. Here, we review the latest progress in dynamic DNA nanostructures for cell manipulation. Commonly used mechanisms for dynamic DNA nanostructures are first introduced. Subsequently, we summarize the anchoring strategies for dynamic DNA nanostructures on cell membranes and list possible applications (including programming cell membrane receptors, controlling ligand activity and drug delivery, capturing and releasing cells, and assembling cells into clusters). Finally, insights into the remaining challenges are presented.
Collapse
Affiliation(s)
- Lu Yu
- Department of Endocrinology and Metabolism, The First People's Hospital of Changde City, Renmin Middle Road 818, Changde, Hunan 415000, P. R. China
| | - Zongrui Ma
- Department of Ophthalmology, The First People's Hospital of Changde City, Renmin Middle Road 818, Changde, Hunan 415000, P. R. China
| | - Qunye He
- School of Pharmacy, Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai 200000, P. R. China
| |
Collapse
|
29
|
Zheng Y, Chen J, Song XR, Chang MQ, Feng W, Huang H, Jia CX, Ding L, Chen Y, Wu R. Manganese-enriched photonic/catalytic nanomedicine augments synergistic anti-TNBC photothermal/nanocatalytic/immuno-therapy via activating cGAS-STING pathway. Biomaterials 2023; 293:121988. [PMID: 36580716 DOI: 10.1016/j.biomaterials.2022.121988] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 12/26/2022]
Abstract
As the clinical efficacy of immunotherapy for triple-negative breast cancer (TNBC) remains limited, exploring new immunotherapy approaches is still indispensable. Mn2+ has been proven as a cGAS-STING agonist to remarkably enhance antitumor immunity. Here, we report a combined tumor-therapeutic strategy based on Prussian blue (PB)-mediated photothermal therapy with Mn2+-augmented immunotherapy by synergistically activating the cGAS-STING pathway. Mn-enriched photonic nanomedicine (MnPB-MnOx) were constructed by integrating MnOx onto the surface of Mn-doped PB nanoparticles. All components of MnPB-MnOx are biocompatible and biodegradable, wherein sufficient Mn are endowed through rational nanostructure design, conferring easier cGAS-STING activation. Additionally, tumor hyperthermia strengthened by MnPB under near-infrared light radiation, synergistic with the generation of reactive oxygen species catalyzed by MnOx, double hits cancer cells to release abundant tumor-associated antigens for further promoting immune response stimulation. The local anti-TNBC efficacy of photothermal/immuno-therapy has been proven effective in subcutaneous 4T1-bearing mice. Especially, it has been systematically demonstrated in bilateral orthotopic 4T1-bearing mice that the as-proposed treatment could successfully activate innate and adaptive immunity, and local therapy could engender systemic responses to suppress the distant tumors. Collectively, this work represents a proof-of-concept for a non-invasive Mn-based tumor-immunotherapeutic modality, providing a paradigm for the immunotherapy of metastatic-prone tumors.
Collapse
Affiliation(s)
- Yi Zheng
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China
| | - Jing Chen
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China
| | - Xin-Ran Song
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Mei-Qi Chang
- Central Laboratory of Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, PR China
| | - Wei Feng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Hui Huang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Cai-Xia Jia
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China
| | - Li Ding
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Ultrasound Research and Education Institute, Tongji University Cancer Center, Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, Tongji University School of Medicine, Tongji University, Shanghai, 200070, PR China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China.
| | - Rong Wu
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China.
| |
Collapse
|
30
|
Hu O, Li Z, Wu J, Tan Y, Chen Z, Tong Y. A Multicomponent Nucleic Acid Enzyme-Cleavable Quantum Dot Nanobeacon for Highly Sensitive Diagnosis of Tuberculosis with the Naked Eye. ACS Sens 2023; 8:254-262. [PMID: 36579361 DOI: 10.1021/acssensors.2c02114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Clinical tuberculosis (TB) screening and diagnosis are crucial for controlling the spread of this life-threatening infectious disease. In this work, a novel, rapid, and simple colorimetric detection platform for TB was developed based on a quantum dot-based nanobeacon (QD-NB) and multicomponent nucleic acid enzyme (MNAzyme). In the presence of target DNA (IS1081 gene fragment), the recombinase polymerase amplification (RPA) was performed and the amplicons were chemically DNA-denatured and then subjected to MNAzyme reaction. RNA-cleaving MNAzyme assembly included the recognition of target DNA and hybridization with a QD-NB fluorescence probe. Under the addition of Mg2+, the RNA-containing QD-NB as a cleavable substrate could be broken into two DNA fragments, leading to green fluorescence release due to their departure from a black hole quencher (BHQ2). The TB detection could be achieved with the naked eye under a portable and inexpensive UV flashlight. Our results demonstrated that QD-NB-based MNAzyme colorimetric assays improved the detection sensitivity by 1 order of magnitude compared with the detection using RPA. The limit of detection (LOD) of the visual reading was as low as 2 copies/μL (3.3 amol/L). Excellent specificity and reproducibility could also be achieved. Furthermore, the practical application of the colorimetric method for TB diagnosis was verified by 36 clinical TB patients and 20 healthy individuals. The developed QD-NB-based MNAzyme colorimetric assays provided a rapid, convenient, sensitive, and accurate alternative for clinical TB screening and diagnosis.
Collapse
Affiliation(s)
- Ou Hu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, P. R. China
| | - Zeyu Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, P. R. China
| | - Jinghao Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, P. R. China
| | - Yaoju Tan
- State Key Laboratory of Respiratory Disease, Department of Clinical Laboratory, Guangzhou Chest Hospital, Guangzhou, Guangzhou 510095, P. R. China
| | - Zuanguang Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, P. R. China
| | - Yanli Tong
- Guangdong Second Provincial General Hospital, Guangzhou, Guangzhou 510317, P. R. China
| |
Collapse
|
31
|
Xiong M, Kong G, Liu Q, Liu L, Yin Y, Liu Y, Yuan H, Zhang XB, Tan W. DNA-Templated Anchoring of Proteins for Programmable Cell Functionalization and Immunological Response. NANO LETTERS 2023; 23:183-191. [PMID: 36577045 DOI: 10.1021/acs.nanolett.2c03928] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Membrane protein engineering exhibits great potential for cell functionalization. Although genetic strategies are sophisticated for membrane protein engineering, there still exist some issues, including transgene insertional mutagenesis, laborious, complicated procedures, and low tunability. Herein, we report a DNA-templated anchoring of exogenous proteins on living cell membranes to realize programmable functionalization of living cells. Using DNA as a scaffold, the model cell membranes are readily modified with proteins, on which the density and ratio of proteins as well as their interactions can be precisely controlled through predictable DNA hybridization. Then, the natural killer (NK) cells were engineered to gain the ability to eliminate the immune checkpoint signaling at the NK-tumor synapse, which remarkably promoted NK cell activation in immunotherapy. Given the versatile functions of exogenous proteins and flexible designs of programmable DNA, this method has the potential to facilitate membrane-protein-based cell engineering and therapy.
Collapse
Affiliation(s)
- Mengyi Xiong
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University Changsha, Hunan 410082, China
| | - Gezhi Kong
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University Changsha, Hunan 410082, China
| | - Qin Liu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University Changsha, Hunan 410082, China
| | - Lu Liu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University Changsha, Hunan 410082, China
| | - Yao Yin
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University Changsha, Hunan 410082, China
| | - Ying Liu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University Changsha, Hunan 410082, China
| | - Hui Yuan
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Xiao-Bing Zhang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University Changsha, Hunan 410082, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University Changsha, Hunan 410082, China
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
32
|
Wang B, Wang M, Peng F, Fu X, Wen M, Shi Y, Chen M, Ke G, Zhang XB. Construction and Application of DNAzyme-based Nanodevices. Chem Res Chin Univ 2023; 39:42-60. [PMID: 36687211 PMCID: PMC9841151 DOI: 10.1007/s40242-023-2334-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/02/2023] [Indexed: 01/19/2023]
Abstract
The development of stimuli-responsive nanodevices with high efficiency and specificity is very important in biosensing, drug delivery, and so on. DNAzymes are a class of DNA molecules with the specific catalytic activity. Owing to their unique catalytic activity and easy design and synthesis, the construction and application of DNAzymes-based nanodevices have attracted much attention in recent years. In this review, the classification and properties of DNAzyme are first introduced. The construction of several common kinds of DNAzyme-based nanodevices, such as DNA motors, signal amplifiers, and logic gates, is then systematically summarized. We also introduce the application of DNAzyme-based nanodevices in sensing and therapeutic fields. In addition, current limitations and future directions are discussed.
Collapse
Affiliation(s)
- Bo Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 P. R. China
| | - Menghui Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 P. R. China
| | - Fangqi Peng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 P. R. China
| | - Xiaoyi Fu
- Institute of Basic Medicine and Cancer(IBMC), Chinese Academy of Sciences, Hangzhou, 310022 P. R. China
| | - Mei Wen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 P. R. China
| | - Yuyan Shi
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 P. R. China
| | - Mei Chen
- College of Materials Science and Engineering, Hunan University, Changsha, 410082 P. R. China
| | - Guoliang Ke
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 P. R. China
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 P. R. China
| |
Collapse
|
33
|
Du X, He PP, Wang C, Wang X, Mu Y, Guo W. Fast Transport and Transformation of Biomacromolecular Substances via Thermo-Stimulated Active "Inhalation-Exhalation" Cycles of Hierarchically Structured Smart pNIPAM-DNA Hydrogels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2206302. [PMID: 36268982 DOI: 10.1002/adma.202206302] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Although smart hydrogels hold great promise in biosensing and biomedical applications, their response to external stimuli is governed by the passive diffusion-dependent substance transport between hydrogels and environments and within the 3D hydrogel matrices, resulting in slow response to biomacromolecules and limiting their extensive applications. Herein, inspired by the respiration systems of organisms, an active strategy to achieve highly efficient biomolecular substance transport through the thermo-stimulated "inhalation-exhalation" cycles of hydrogel matrices is demonstrated. The cryo-structured poly(N-isopropylacrylamide) (pNIPAM)-DNA hydrogels, composed of functional DNA-tethered pNIPAM networks and free-water-containing macroporous channels, exhibit thermally triggered fast and reversible shrinking/swelling cycles with high-volume changes, which drive the formation of dynamic water stream to accelerate the intake of external substances and expelling of endogenous substances, thus promoting the functional properties of hydrogel systems. Demonstrated by catalytic DNAzyme and CRISPR-Cas12a-incorporating hydrogels, significantly enhanced catalytic efficiency with up to 280% and 390% is achieved, upon the introduction of active "inhalation-exhalation" cycles, respectively. Moreover, remotely near-infrared (NIR)-triggering of "inhalation-exhalation" cycles is achieved after the introduction of NIR-responsive MXene nanosheets into the hydrogel matrix. These hydrogel systems with enhanced substance transport and transformation properties hold promise in the development of more effective biosensing and therapeutic systems.
Collapse
Affiliation(s)
- Xiaoxue Du
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Ping-Ping He
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Chunyan Wang
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Xiaowen Wang
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yali Mu
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Weiwei Guo
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
34
|
Liu H, Chen Y, Ju H. Functional DNA structures for cytosensing. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
35
|
Li L, Liu S, Zhang C, Guo Z, Shao S, Deng X, Liu Q. Recent Advances in DNA-Based Cell Surface Engineering for Biological Applications. Chemistry 2022; 28:e202202070. [PMID: 35977912 DOI: 10.1002/chem.202202070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Indexed: 12/14/2022]
Abstract
Due to its excellent programmability and biocompatibility, DNA molecule has unique advantages in cell surface engineering. Recent progresses provide a reliable and feasible way to engineer cell surfaces with diverse DNA molecules and DNA nanostructures. The abundant form of DNA nanostructures has greatly expanded the toolbox of DNA-based cell surface engineering and gave rise to a variety of novel and fascinating applications. In this review, we summarize recent advances in DNA-based cell surface engineering and its biological applications. We first introduce some widely used methods of immobilizing DNA molecules on cell surfaces and their application features. Then we discuss the approaches of employing DNA nanostructures and dynamic DNA nanotechnology as elements for creating functional cell surfaces. Finally, we review the extensive biological applications of DNA-based cell surface engineering and discuss the challenges and prospects of DNA-based cell surface engineering.
Collapse
Affiliation(s)
- Lexun Li
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Bio-Sensing and Chemometrics College of Biology, Hunan University Changsha, Hunan, 410082, People's Republic of China
| | - Shuang Liu
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Bio-Sensing and Chemometrics College of Biology, Hunan University Changsha, Hunan, 410082, People's Republic of China
| | - Chunjuan Zhang
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Bio-Sensing and Chemometrics College of Biology, Hunan University Changsha, Hunan, 410082, People's Republic of China
| | - Zhenzhen Guo
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Bio-Sensing and Chemometrics College of Biology, Hunan University Changsha, Hunan, 410082, People's Republic of China
| | - Shuxuan Shao
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Bio-Sensing and Chemometrics College of Biology, Hunan University Changsha, Hunan, 410082, People's Republic of China
| | - Xiaodan Deng
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Bio-Sensing and Chemometrics College of Biology, Hunan University Changsha, Hunan, 410082, People's Republic of China
| | - Qiaoling Liu
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Bio-Sensing and Chemometrics College of Biology, Hunan University Changsha, Hunan, 410082, People's Republic of China
| |
Collapse
|
36
|
Qian RC, Zhou ZR, Wu Y, Yang Z, Guo W, Li DW, Lu Y. Combination Cancer Treatment: Using Engineered DNAzyme Molecular Machines for Dynamic Inter- and Intracellular Regulation. Angew Chem Int Ed Engl 2022; 61:e202210935. [PMID: 36253586 PMCID: PMC10245287 DOI: 10.1002/anie.202210935] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Indexed: 11/05/2022]
Abstract
Despite the promise of combination cancer therapy, it remains challenging to develop targeted strategies that are nontoxic to normal cells. Here we report a combination therapeutic strategy based on engineered DNAzyme molecular machines that can promote cancer apoptosis via dynamic inter- and intracellular regulation. To achieve external regulation of T-cell/cancer cell interactions, we designed a DNAzyme-based molecular machine with an aptamer and an i-motif, as the MUC-1-selective aptamer allows the specific recognition of cancer cells. The i-motif is folded under the tumor acidic microenvironment, shortening the intercellular distance. As a result, T-cells are released by metal ion activated DNAzyme cleavage. To achieve internal regulation of mitochondria, we delivered another DNAzyme-based molecular machine with mitochondria-targeted peptides into cancer cells to induce mitochondria aggregation. Our strategy achieved an enhanced killing effect in zinc deficient cancer cells.
Collapse
Affiliation(s)
- Ruo-Can Qian
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Ze-Rui Zhou
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Yuting Wu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Zhenglin Yang
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Weijie Guo
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Da-Wei Li
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
37
|
Wang Q, Wang Z, He Y, Xiong B, Li Y, Wang F. Chemical and structural modification of RNA-cleaving DNAzymes for efficient biosensing and biomedical applications. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
38
|
Bipedal DNAzyme walker triggered dual-amplification electrochemical platform for ultrasensitive ratiometric biosensing of microRNA-21. Biosens Bioelectron 2022; 220:114879. [DOI: 10.1016/j.bios.2022.114879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/23/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
|
39
|
Liu Y, Zhu P, Huang J, He H, Ma C, Wang K. Integrating DNA nanostructures with DNAzymes for biosensing, bioimaging and cancer therapy. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
40
|
Fang Y, Yan Y, Bi S, Wang Y, Chen Y, Xu P, Ju H, Liu Y. Screening T-Cell Activity via a Photodetachable DNA-Copolymer Nanocage and Its Therapeutic Application. Anal Chem 2022; 94:13205-13214. [PMID: 36095289 DOI: 10.1021/acs.analchem.2c02763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Screening T-cell activity and selecting active ones from large ex vivo-expanded populations before reinfusion is important for the success of T-cell therapy. Cytokine secretion is the evaluation criterion of cell immune activity. Cell membrane-anchored probes and microchamber-based techniques have been used to screen cytokine secretion at the single-cell level. However, they are either easily affected by nearby cells' secretion or lack of single-cell encapsulation efficiency. Here, we design a photodetachable DNA-copolymer nanocage on the cell membrane for screening the activities of ex vivo-expanded T cells by in-situ monitoring cytokine interferon-gamma (IFN-γ) secretion. The ones with good immune activity are selected for therapeutic application. DNA-copolymer nanocage is self-assembled on a cell membrane to encapsulate a single T cell. A self-quenched IFN-γ recognition aptamer is contained in the DNA-copolymer nanocage, which recovers fluorescence in response to IFN-γ secretion to indicate individual T-cell activity. The active T cells are collected after fluorescence-activated cell sorting, irradiated with 5 min UV light to detach nanocage from the cell membrane, and continuously cocultured with downstream cells. The selected Jurkat cells and CD19 CAR-T cells showed improved capabilities for downstream cell activation and cancer cell killing. The cell membrane-detachable DNA-copolymer nanocage-based T-cell activity screening and selection would have promising applications in T-cell therapy.
Collapse
Affiliation(s)
- Yanyun Fang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yawei Yan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Shiyi Bi
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yingfei Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yue Chen
- Department of Hematology, Nanjing Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing 210093, China
| | - Peipei Xu
- Department of Hematology, Nanjing Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing 210093, China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Ying Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.,Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China
| |
Collapse
|
41
|
Kong Y, Yuan F, Yang F, Zhang C, Xian Y. Cell-Membrane-Anchored Upconversion Nanoprobe for Near-Infrared Light Triggered Cell-Cell Interactions. Anal Chem 2022; 94:12024-12032. [PMID: 35994569 DOI: 10.1021/acs.analchem.2c01099] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Manipulating cell-cell interactions is of great significance in cell communication and cell-based therapies. Although efforts have been made to construct cell-cell assembly by stimuli-responsive host-guest interactions, controllable cell-cell interactions by near-infrared (NIR) light triggered reversible assembly remain a challenge. Herein, we develop a NIR-controlled system based on β-cyclodextrin (β-CD) modified upconversion nanoparticles (UCNPs) for reversible and noninvasive manipulation of cell assembly and disassembly, which is realized by host-guest interactions between E/Z-photoisomerization of arylazopyrazole (AAP) and β-CD under the NIR irradiation. UCNPs can convert NIR to ultraviolet light, which leads to the transformation of AAP from the E-isomer to the Z-isomer. And it can be reverted back to the E-isomer under visible light irradiation. This reversible photoisomerization can modulate the host-guest interaction between β-CD and AAP, thus leading to reversible cell assembly and disassembly. Furthermore, by precise regulating cell-cell interactions by NIR light, cell-cell communication and molecular transportation can be realized. Given the diversity of host and guest molecules and the advantages of NIR light in biological applications, reversible cell-cell assembly has great potential for the regulation of cell behaviors and cell-based therapies.
Collapse
Affiliation(s)
- Yujing Kong
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Fang Yuan
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Fei Yang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Cuiling Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Yuezhong Xian
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| |
Collapse
|
42
|
Yu X, Chen X, Sun Z, Niu R, Deng Y, Wang L, Zhu Y, Zhang L, Zhang H, Wang K, Yang J, Gu W, Liu G, Luo Y. Ultracentrifugation-Free Enrichment and Quantification of Small Extracellular Vesicles. Anal Chem 2022; 94:10337-10345. [DOI: 10.1021/acs.analchem.1c05491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xingle Yu
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing 400044, P.R. China
- College of Bioengineering, Chongqing University, Chongqing 400044, P.R. China
| | - Xiaohui Chen
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing 400044, P.R. China
- College of Bioengineering, Chongqing University, Chongqing 400044, P.R. China
| | - Zixin Sun
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing 400044, P.R. China
| | - Ruyan Niu
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing 400044, P.R. China
- College of Bioengineering, Chongqing University, Chongqing 400044, P.R. China
| | - Yun Deng
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing 400044, P.R. China
- College of Bioengineering, Chongqing University, Chongqing 400044, P.R. China
| | - Liu Wang
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing 400044, P.R. China
| | - Ying Zhu
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing 400044, P.R. China
| | - Liangliang Zhang
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing 400044, P.R. China
- College of Bioengineering, Chongqing University, Chongqing 400044, P.R. China
| | - Hong Zhang
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing 400044, P.R. China
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan 250033, Shandong, China
| | - Kang Wang
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing 400044, P.R. China
- College of Bioengineering, Chongqing University, Chongqing 400044, P.R. China
| | - Jichun Yang
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing 400044, P.R. China
| | - Wei Gu
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing 400044, P.R. China
| | - Guoxiang Liu
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing 400044, P.R. China
| | - Yang Luo
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing 400044, P.R. China
- Department of Clinical Laboratory, Fuling Hospital, Chongqing University, Chongqing 408099, P.R. China
- Department of Clinical Laboratory, Jiangjin Hospital, Chongqing University, Chongqing 402260, P.R. China
| |
Collapse
|
43
|
Han W, He M, Zhang Y, Zhou J, Li Z, Liu X, Sun X, Yin X, Yao D, Liang H. Cadherin-dependent adhesion modulated 3D cell-assembly. J Mater Chem B 2022; 10:4959-4966. [PMID: 35730726 DOI: 10.1039/d2tb01006b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The emergence of synthetic biology has opened new avenues in constructing cell-assembly biosystems with specific gene expression and function. The phenomena of cell spreading and detachment during tissue development and cancer metastasis are caused by surface tension, which in turn results from differences in cell-cell adhesion mediated by the dimerization of cadherin expressed on the cell surface. In this study, E- and P-cadherin plasmids were first constructed based on the differential adhesion hypothesis, then they were electroporated into K562 cells and HEK293T cells, respectively, to explore the process of cell migration and assembly regulated by cadherins. Using this approach, some special 3D cell functional components with a phase separation structure were fabricated successfully. Our work will be of potential application in the construction of self-assembling synthetic tissues and organoids.
Collapse
Affiliation(s)
- Wenjie Han
- Hefei National Research Center for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Miao He
- School of Chemistry and Materials Science, Department of Polymer Science and Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Yunhan Zhang
- School of Chemistry and Materials Science, Department of Polymer Science and Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Junxiang Zhou
- School of Chemistry and Materials Science, Department of Polymer Science and Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Zhigang Li
- School of Chemistry and Materials Science, Department of Polymer Science and Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Xiaoyu Liu
- School of Chemistry and Materials Science, Department of Polymer Science and Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Xiaoyun Sun
- Hefei National Research Center for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Xue Yin
- School of Chemistry and Materials Science, Department of Polymer Science and Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Dongbao Yao
- School of Chemistry and Materials Science, Department of Polymer Science and Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Haojun Liang
- Hefei National Research Center for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui 230026, China. .,School of Chemistry and Materials Science, Department of Polymer Science and Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui 230026, China.
| |
Collapse
|
44
|
Zhang Q, Liang Y, Xing H. Caging-Decaging Strategies to Realize Spatiotemporal Control of DNAzyme Activity for Biosensing and Bioimaging. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2137-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
45
|
Chen Z, Zhang W, Wang M, Backman LJ, Chen J. Effects of Zinc, Magnesium, and Iron Ions on Bone Tissue Engineering. ACS Biomater Sci Eng 2022; 8:2321-2335. [PMID: 35638755 DOI: 10.1021/acsbiomaterials.2c00368] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Large-sized bone defects are a great challenge in clinics and considerably impair the quality of patients' daily life. Tissue engineering strategies using cells, scaffolds, and bioactive molecules to regulate the microenvironment in bone regeneration is a promising approach. Zinc, magnesium, and iron ions are natural elements in bone tissue and participate in many physiological processes of bone metabolism and therefore have great potential for bone tissue engineering and regeneration. In this review, we performed a systematic analysis on the effects of zinc, magnesium, and iron ions in bone tissue engineering. We focus on the role of these ions in properties of scaffolds (mechanical strength, degradation, osteogenesis, antibacterial properties, etc.). We hope that our summary of the current research achievements and our notifications of potential strategies to improve the effects of zinc, magnesium, and iron ions in scaffolds for bone repair and regeneration will find new inspiration and breakthroughs to inspire future research.
Collapse
Affiliation(s)
- Zhixuan Chen
- School of Medicine, Southeast University, 210009 Nanjing, China.,Center for Stem Cell and Regenerative Medicine, Southeast University, 210009 Nanjing, China
| | - Wei Zhang
- School of Medicine, Southeast University, 210009 Nanjing, China.,Center for Stem Cell and Regenerative Medicine, Southeast University, 210009 Nanjing, China.,Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210096 Nanjing, China.,China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou 310058, China
| | - Mingyue Wang
- School of Medicine, Southeast University, 210009 Nanjing, China.,Center for Stem Cell and Regenerative Medicine, Southeast University, 210009 Nanjing, China
| | - Ludvig J Backman
- Department of Integrative Medical Biology, Anatomy, Umeå University, SE-901 87 Umeå, Sweden.,Department of Community Medicine and Rehabilitation, Physiotherapy, Umeå University, SE-901 87 Umeå, Sweden
| | - Jialin Chen
- School of Medicine, Southeast University, 210009 Nanjing, China.,Center for Stem Cell and Regenerative Medicine, Southeast University, 210009 Nanjing, China.,Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210096 Nanjing, China.,China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou 310058, China
| |
Collapse
|
46
|
Abstract
Lipid-DNA conjugates have emerged as highly useful tools to modify the cell membranes. These conjugates generally consist of a lipid anchor for membrane modification and a functional DNA nanostructure for membrane analysis or regulation. There are several unique properties of these lipid-DNA conjugates, especially including their programmability, fast and efficient membrane insertion, and precise sequence-specific assembly. These unique properties have enabled a broad range of biophysical applications on live cell membranes. In this review, we will mainly focus on recent tremendous progress, especially during the past three years, in regulating the biophysical features of these lipid-DNA conjugates and their key applications in studying cell membrane biophysics. Some insights into the current challenges and future directions of this interdisciplinary field have also been provided.
Collapse
Affiliation(s)
| | | | - Mingxu You
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA
| |
Collapse
|
47
|
Chen J, Fu S, Zhang C, Liu H, Su X. DNA Logic Circuits for Cancer Theranostics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2108008. [PMID: 35254723 DOI: 10.1002/smll.202108008] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 02/08/2022] [Indexed: 06/14/2023]
Abstract
Cancer diagnosis and therapeutics (theranostics) based on the tumor microenvironment (TME) and biomarkers has been an emerging approach for precision medicine. DNA nanotechnology dynamically controls the self-assembly of DNA molecules at the nanometer scale to construct intelligent DNA chemical reaction systems. The DNA logic circuit is a particularly emerging approach for computing within the DNA chemical systems. DNA logic circuits can sensitively respond to tumor-specific markers and the TME through logic operations and signal amplification, to generate detectable signals or to release anti-cancer agents. In this review, the fundamental concepts of DNA logic circuits are clarified, the basic modules in the circuit are summarized, and how this advanced nano-assembly circuit responds to tumor-related molecules, how to perform logic operations, to realize signal amplification, and selectively release drugs through discussing over 30 application examples, are demonstrated. This review shows that DNA logic circuits have powerful logic judgment and signal amplification functions in improving the specificity and sensitivity of cancer diagnosis and making cancer treatment controllable. In the future, researchers are expected to overcome the existing shortcomings of DNA logic circuits and design smarter DNA devices with better biocompatibility and stability, which will further promote the development of cancer theranostics.
Collapse
Affiliation(s)
- Jing Chen
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shengnan Fu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Chunyi Zhang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Huiyu Liu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xin Su
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
48
|
Kim Y, Jung HJ, Lee Y, Koo S, Thangam R, Jang WY, Kim SY, Park S, Lee S, Bae G, Patel KD, Wei Q, Lee KB, Paulmurugan R, Jeong WK, Hyeon T, Kim D, Kang H. Manipulating Nanoparticle Aggregates Regulates Receptor-Ligand Binding in Macrophages. J Am Chem Soc 2022; 144:5769-5783. [PMID: 35275625 DOI: 10.1021/jacs.1c08861] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The receptor-ligand interactions in cells are dynamically regulated by modulation of the ligand accessibility. In this study, we utilize size-tunable magnetic nanoparticle aggregates ordered at both nanometer and atomic scales. We flexibly anchor magnetic nanoparticle aggregates of tunable sizes over the cell-adhesive RGD ligand (Arg-Gly-Asp)-active material surface while maintaining the density of dispersed ligands accessible to macrophages at constant. Lowering the accessible ligand dispersity by increasing the aggregate size at constant accessible ligand density facilitates the binding of integrin receptors to the accessible ligands, which promotes the adhesion of macrophages. In high ligand dispersity, distant magnetic manipulation to lift the aggregates (which increases ligand accessibility) stimulates the binding of integrin receptors to the accessible ligands available under the aggregates to augment macrophage adhesion-mediated pro-healing polarization both in vitro and in vivo. In low ligand dispersity, distant control to drop the aggregates (which decreases ligand accessibility) repels integrin receptors away from the aggregates, thereby suppressing integrin receptor-ligand binding and macrophage adhesion, which promotes inflammatory polarization. Here, we present "accessible ligand dispersity" as a novel fundamental parameter that regulates receptor-ligand binding, which can be reversibly manipulated by increasing and decreasing the ligand accessibility. Limitless tuning of nanoparticle aggregate dimensions and morphology can offer further insight into the regulation of receptor-ligand binding in host cells.
Collapse
Affiliation(s)
- Yuri Kim
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Hee Joon Jung
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- NUANCE Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Yunjung Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Sagang Koo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Ramar Thangam
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Woo Young Jang
- Department of Orthopedic Surgery, Korea University Anam Hospital, Seoul 02841, Republic of Korea
| | - Seong Yeol Kim
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Sangwoo Park
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Sungkyu Lee
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Gunhyu Bae
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Kapil Dev Patel
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Qiang Wei
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University, Chengdu 610065, China
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Ramasamy Paulmurugan
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford University, Palo Alto, California 94304, United States
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Stanford University, Palo Alto, California 94304, United States
| | - Woong Kyo Jeong
- Department of Orthopedic Surgery, Korea University Anam Hospital, Seoul 02841, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Dokyoon Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- Department of Bionano Engineering and Bionanotechnology, Hanyang University, Ansan 15588, Republic of Korea
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
- Department of Biomicrosystem Technology, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
49
|
Abstract
DNA strands with unique secondary structures can catalyze various chemical reactions and mimic natural enzymes with the assistance of cofactors, which have attracted much research attention. At the same time, the emerging DNA nanotechnology provides an efficient platform to organize functional components of the enzymatic systems and regulate their catalytic performances. In this review, we summarize the recent progress of DNA-based enzymatic systems. First, DNAzymes (Dzs) are introduced, and their versatile utilities are summarized. Then, G-quadruplex/hemin (G4/hemin) Dzs with unique oxidase/peroxidase-mimicking activities and representative examples where these Dzs served as biosensors are explicitly elaborated. Next, the DNA-based enzymatic cascade systems fabricated by the structural DNA nanotechnology are depicted. In addition, the applications of catalytic DNA nanostructures in biosensing and biomedicine are included. At last, the challenges and the perspectives of the DNA-based enzymatic systems for practical applications are also discussed.
Collapse
|
50
|
Wang W, Wang S. Cell-based biocomposite engineering directed by polymers. LAB ON A CHIP 2022; 22:1042-1067. [PMID: 35244136 DOI: 10.1039/d2lc00067a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Biological cells such as bacterial, fungal, and mammalian cells always exploit sophisticated chemistries and exquisite micro- and nano-structures to execute life activities, providing numerous templates for engineering bioactive and biomorphic materials, devices, and systems. To transform biological cells into functional biocomposites, polymer-directed cell surface engineering and intracellular functionalization have been developed over the past two decades. Polymeric materials can be easily adopted by various cells through polymer grafting or in situ hydrogelation and can successfully bridge cells with other functional materials as interfacial layers, thus achieving the manufacture of advanced biocomposites through bioaugmentation of living cells and transformation of cells into templated materials. This review article summarizes the recent progress in the design and construction of cell-based biocomposites by polymer-directed strategies. Furthermore, the applications of cell-based biocomposites in broad fields such as cell research, biomedicine, and bioenergy are discussed. Last, we provide personal perspectives on challenges and future trends in this interdisciplinary area.
Collapse
Affiliation(s)
- Wenshuo Wang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
| | - Shutao Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, CAS Center for Excellence in Nanoscience, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|