1
|
Zhang Y, Wu L, Kerr TA, Garg NK, Tang Y. Fragment-Guided Genome Mining of Octacyclic Cyclophane Alkaloids from Fungi. J Am Chem Soc 2024; 146:23933-23942. [PMID: 39140852 PMCID: PMC11390344 DOI: 10.1021/jacs.4c06734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Nature uses compact but functionalized biosynthetic fragments as building blocks to generate complex natural products. To leverage this strategy for the discovery of natural products with new scaffolds, we performed genome mining to identify biosynthetic gene clusters (BGCs) in fungi that embed genes that can synthesize targeted fragments. The three-enzyme pathway that biosynthesizes the strained dityrosine cyclophane in the herquline A pathway was used to identify a large number of potential BGCs that may use the cyclophane as a fragment. Characterization of a conserved BGC from fungal strains led to the isolation of octacyclin A, an octacyclic natural product with an unprecedented structure, including two hetero-[3.3.1]bicycles and a combination of fused, bridged, and macrocyclic rings. Biosynthetic steps leading to octacyclin A were fully elucidated using pathway reconstitution and enzymatic assays, unveiling intriguing chemical logic and new enzymatic reactions in building the octacyclic core. Our work demonstrates the potential utility of fragment-guided genome mining in expanding natural product chemical space.
Collapse
Affiliation(s)
- Yalong Zhang
- Departments of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States
| | - Lin Wu
- Departments of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States
| | - Tyler A Kerr
- Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Neil K Garg
- Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Yi Tang
- Departments of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States
- Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
2
|
Liu J, Hu Y. Discovery and evolution of [4 + 2] cyclases. Curr Opin Chem Biol 2024; 81:102504. [PMID: 39068821 DOI: 10.1016/j.cbpa.2024.102504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 07/05/2024] [Accepted: 07/05/2024] [Indexed: 07/30/2024]
Abstract
[4 + 2] Cyclases are potent biocatalysts that have been bestowed upon microorganisms and plants by nature, equipping them with the powerful tools to utilize and implement the [4 + 2] cycloaddition reaction for constructing the cyclohexene core in synthesizing valuable molecules. Over the past two years, eleven new enzymes have joined this pericyclase club and undergone extensive investigation. In this review, we present a comprehensive overview of recent advancements in characterizing [4 + 2] cyclases with regard to their catalytic mechanism and stereoselectivity. We particularly focus on insights gained from enzyme co-crystal structures, cofactors, as well as the effects of glycosylation. Advancements in understanding the mechanisms of natural [4 + 2] cyclases offer the potential to mimic evolutionary processes and engineer artificial enzymes for the development of valuable and practical biocatalysts.
Collapse
Affiliation(s)
- Jiawang Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Youcai Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China.
| |
Collapse
|
3
|
Yancey CE, Hart L, Hefferan S, Mohamed OG, Newmister SA, Tripathi A, Sherman DH, Dick GJ. Metabologenomics reveals strain-level genetic and chemical diversity of Microcystis secondary metabolism. mSystems 2024; 9:e0033424. [PMID: 38916306 PMCID: PMC11264947 DOI: 10.1128/msystems.00334-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/22/2024] [Indexed: 06/26/2024] Open
Abstract
Microcystis spp. are renowned for producing the hepatotoxin microcystin in freshwater cyanobacterial harmful algal blooms around the world, threatening drinking water supplies and public and environmental health. However, Microcystis genomes also harbor numerous biosynthetic gene clusters (BGCs) encoding the biosynthesis of other secondary metabolites, including many with toxic properties. Most of these BGCs are uncharacterized and currently lack links to biosynthesis products. However, recent field studies show that many of these BGCs are abundant and transcriptionally active in natural communities, suggesting potentially important yet unknown roles in bloom ecology and water quality. Here, we analyzed 21 xenic Microcystis cultures isolated from western Lake Erie to investigate the diversity of the biosynthetic potential of this genus. Through metabologenomic and in silico approaches, we show that these Microcystis strains contain variable BGCs, previously observed in natural populations, and encode distinct metabolomes across cultures. Additionally, we find that the majority of metabolites and gene clusters are uncharacterized, highlighting our limited understanding of the chemical repertoire of Microcystis spp. Due to the complex metabolomes observed in culture, which contain a wealth of diverse congeners as well as unknown metabolites, these results underscore the need to deeply explore and identify secondary metabolites produced by Microcystis beyond microcystins to assess their impacts on human and environmental health.IMPORTANCEThe genus Microcystis forms dense cyanobacterial harmful algal blooms (cyanoHABs) and can produce the toxin microcystin, which has been responsible for drinking water crises around the world. While microcystins are of great concern, Microcystis also produces an abundance of other secondary metabolites that may be of interest due to their potential for toxicity, ecological importance, or pharmaceutical applications. In this study, we combine genomic and metabolomic approaches to study the genes responsible for the biosynthesis of secondary metabolites as well as the chemical diversity of produced metabolites in Microcystis strains from the Western Lake Erie Culture Collection. This unique collection comprises Microcystis strains that were directly isolated from western Lake Erie, which experiences substantial cyanoHAB events annually and has had negative impacts on drinking water, tourism, and industry.
Collapse
Affiliation(s)
- Colleen E. Yancey
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Lauren Hart
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Sierra Hefferan
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan, USA
- Departments of Medicinal Chemistry, Chemistry, Microbiology, and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Osama G. Mohamed
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
- Natural Products Discovery Core, Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Sean A. Newmister
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Ashootosh Tripathi
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
- Natural Products Discovery Core, Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - David H. Sherman
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
- Departments of Medicinal Chemistry, Chemistry, Microbiology, and Immunology, University of Michigan, Ann Arbor, Michigan, USA
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Gregory J. Dick
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan, USA
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan, USA
- Cooperative Institute for Great Lakes Research (CIGLR), School for Environment and Sustainability, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
4
|
Tang J, Matsuda Y. Discovery of fungal onoceroid triterpenoids through domainless enzyme-targeted global genome mining. Nat Commun 2024; 15:4312. [PMID: 38773118 PMCID: PMC11109268 DOI: 10.1038/s41467-024-48771-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 05/09/2024] [Indexed: 05/23/2024] Open
Abstract
Genomics-guided methodologies have revolutionized the discovery of natural products. However, a major challenge in the field of genome mining is determining how to selectively extract biosynthetic gene clusters (BGCs) for untapped natural products from numerous available genome sequences. In this study, we developed a fungal genome mining tool that extracts BGCs encoding enzymes that lack a detectable protein domain (i.e., domainless enzymes) and are not recognized as biosynthetic proteins by existing bioinformatic tools. We searched for BGCs encoding a homologue of Pyr4-family terpene cyclases, which are representative examples of apparently domainless enzymes, in approximately 2000 fungal genomes and discovered several BGCs with unique features. The subsequent characterization of selected BGCs led to the discovery of fungal onoceroid triterpenoids and unprecedented onoceroid synthases. Furthermore, in addition to the onoceroids, a previously unreported sesquiterpene hydroquinone, of which the biosynthesis involves a Pyr4-family terpene cyclase, was obtained. Our genome mining tool has broad applicability in fungal genome mining and can serve as a beneficial platform for accessing diverse, unexploited natural products.
Collapse
Affiliation(s)
- Jia Tang
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Yudai Matsuda
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China.
| |
Collapse
|
5
|
Yao FH, Liang X, Shen WB, Lu XH, Li GC, Qi SH. Microascones, Decahydrofluorene-Class Alkaloids from the Marine-Derived Fungus Microascus sp. SCSIO 41821. JOURNAL OF NATURAL PRODUCTS 2024; 87:810-819. [PMID: 38427823 DOI: 10.1021/acs.jnatprod.3c00984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Eight new decahydrofluorene-class alkaloids, microascones A and B (1 and 2), 2,3-epoxyphomapyrrolidone C (3), 14,16-epiascomylactam B (4), 24-hydroxyphomapyrrolidone A (5), and microascones C-E (6-8), along with five known analogs (9-13) were isolated from the marine-derived fungus Microascus sp. SCSIO 41821. Compounds 1 and 2 have an unprecedented complex macrocyclic alkaloid skeleton with a 6/5/6/5/6/5/13 polycyclic system. Their structures and absolute configurations were determined by spectroscopic analysis, quantum chemical calculations of ECD spectra, and 13C NMR chemical shifts. Compounds 10-13 showed selective enzyme inhibitory activity against PTPSig, PTP1B, and CDC25B, and 4, 9, and 10 exhibited strong antibacterial activity against seven tested pathogens. Their structure-bioactivity relationship was discussed, and a plausible biosynthetic pathway for 1-8 was also proposed.
Collapse
Affiliation(s)
- Fei-Hua Yao
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, Guangdong, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Liang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, Guangdong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Wen-Bin Shen
- New Drug Research & Development Center of North China Pharmaceutical Group Corporation, National Engineering Research Center of Microbial Medicine, Hebei industry Microbial Metabolic Technology Innovation Centre, Shijiazhuang Microbial Drugs Technology Innovation Center, Hebei Synthetic Biology High-Energy-Level Technology Innovation Center, Shijiazhuang 050015, Hebei, China
| | - Xin-Hua Lu
- New Drug Research & Development Center of North China Pharmaceutical Group Corporation, National Engineering Research Center of Microbial Medicine, Hebei industry Microbial Metabolic Technology Innovation Centre, Shijiazhuang Microbial Drugs Technology Innovation Center, Hebei Synthetic Biology High-Energy-Level Technology Innovation Center, Shijiazhuang 050015, Hebei, China
| | - Guo-Chao Li
- New Drug Research & Development Center of North China Pharmaceutical Group Corporation, National Engineering Research Center of Microbial Medicine, Hebei industry Microbial Metabolic Technology Innovation Centre, Shijiazhuang Microbial Drugs Technology Innovation Center, Hebei Synthetic Biology High-Energy-Level Technology Innovation Center, Shijiazhuang 050015, Hebei, China
| | - Shu-Hua Qi
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, Guangdong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| |
Collapse
|
6
|
Chen Y, Sewsurn S, Amand S, Kunz C, Pietrancosta N, Calabro K, Buisson D, Mann S. Metabolic Investigation and Auxiliary Enzyme Modelization of the Pyrrocidine Pathway Allow Rationalization of Paracyclophane-Decahydrofluorene Formation. ACS Chem Biol 2024; 19:886-895. [PMID: 38576157 DOI: 10.1021/acschembio.3c00684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Fungal paracyclophane-decahydrofluorene-containing natural products are complex polycyclic metabolites derived from similar hybrid PKS-NRPS pathways. Herein we studied the biosynthesis of pyrrocidines, one representative of this family, by gene inactivation in the producer Sarocladium zeae coupled to thorough metabolic analysis and molecular modeling of key enzymes. We characterized nine pyrrocidines and analogues as well as in mutants a variety of accumulating metabolites with new structures including rare cis-decalin, cytochalasan, and fused 6/15/5 macrocycles. This diversity highlights the extraordinary plasticity of the pyrrocidine biosynthetic gene cluster. From accumulating metabolites, we delineated the scenario of pyrrocidine biosynthesis. The ring A of the decahydrofluorene is installed by PrcB, a membrane-bound cyclizing isomerase, on a PKS-NRPS-derived pyrrolidone precursor. Docking experiments in PrcB allowed us to characterize the active site suggesting a mechanism triggered by arginine-mediated deprotonation at the terminal methyl of the substrate. Next, two integral membrane proteins, PrcD and PrcE, each predicted as a four-helix bundle, perform hydroxylation of the pyrrolidone ring and paracyclophane formation, respectively. Modelization of PrcE highlights a topological homology with vitamin K oxido-reductase and the presence of a disulfide bond. Our results suggest a previously unsuspected coupling mechanism via a transient loss of aromaticity of tyrosine residue to form the strained paracyclophane motif. Finally, the lipocalin-like protein PrcX drives the exo-cycloaddition yielding ring B and C of the decahydrofluorene to afford pyrrocidine A, which is transformed by a reductase PrcI to form pyrrocidine B. These insights will greatly facilitate the microbial production of pyrrocidine analogues by synthetic biology.
Collapse
Affiliation(s)
- Youwei Chen
- Laboratoire Molécules de Communication et Adaptation des Micro-organismes UMR 7245, Muséum National d'Histoire Naturelle, CNRS, Sorbonne Universités; CP54, 57 rue Cuvier, 75005 Paris, France
| | - Steffi Sewsurn
- Laboratoire Molécules de Communication et Adaptation des Micro-organismes UMR 7245, Muséum National d'Histoire Naturelle, CNRS, Sorbonne Universités; CP54, 57 rue Cuvier, 75005 Paris, France
| | - Séverine Amand
- Laboratoire Molécules de Communication et Adaptation des Micro-organismes UMR 7245, Muséum National d'Histoire Naturelle, CNRS, Sorbonne Universités; CP54, 57 rue Cuvier, 75005 Paris, France
| | - Caroline Kunz
- Laboratoire Molécules de Communication et Adaptation des Micro-organismes UMR 7245, Muséum National d'Histoire Naturelle, CNRS, Sorbonne Universités; CP54, 57 rue Cuvier, 75005 Paris, France
- Sorbonne Université, Faculté des Sciences et Ingénierie, UFR 927, F-75005 Paris, France
| | - Nicolas Pietrancosta
- Laboratoire des Biomolécules, LBM, Sorbonne Université, École Normale Supérieure, PSL University, CNRS, F-75005 Paris, France
- Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Sorbonne Université, INSERM, CNRS, F-75005 Paris, France
| | - Kevin Calabro
- Laboratoire Molécules de Communication et Adaptation des Micro-organismes UMR 7245, Muséum National d'Histoire Naturelle, CNRS, Sorbonne Universités; CP54, 57 rue Cuvier, 75005 Paris, France
| | - Didier Buisson
- Laboratoire Molécules de Communication et Adaptation des Micro-organismes UMR 7245, Muséum National d'Histoire Naturelle, CNRS, Sorbonne Universités; CP54, 57 rue Cuvier, 75005 Paris, France
| | - Stéphane Mann
- Laboratoire Molécules de Communication et Adaptation des Micro-organismes UMR 7245, Muséum National d'Histoire Naturelle, CNRS, Sorbonne Universités; CP54, 57 rue Cuvier, 75005 Paris, France
| |
Collapse
|
7
|
Yuan Y, Wang G, She Z, Chen Y, Kang W. Metabolites isolated from the mangrove endophytic fungus Didymella sp. CYSK-4 and their cytotoxic activities. Fitoterapia 2023; 171:105692. [PMID: 37757921 DOI: 10.1016/j.fitote.2023.105692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/20/2023] [Accepted: 09/23/2023] [Indexed: 09/29/2023]
Abstract
Two new 12- or 13- membered-ring macrocyclic alkaloids ascomylactam D and E (1 & 2), and a pair of new enantiomer (+)- and (-)- didymetone (3) were purified from the mangrove endophytic fungus Didymella sp. CYSK-4. Their structures and absolute configurations were determined by extensive spectroscopic analysis, single-crystal X-ray diffraction, ECD and 13C NMR calculations. Compound 2 exhibited significant cytotoxicity against human A549 and KYSE 150 cancer cell lines with IC50 values of 2.8 μM and 5.9 μM, respectively.
Collapse
Affiliation(s)
- Yilin Yuan
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China
| | - Guisheng Wang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China; School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhigang She
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Yan Chen
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China; School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| | - Wenyi Kang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China.
| |
Collapse
|
8
|
Al Subeh Z, Flores-Bocanegra L, Raja HA, Burdette JE, Pearce CJ, Oberlies NH. Embellicines C-E: Macrocyclic Alkaloids with a Cyclopenta[b]fluorene Ring System from the Fungus Sarocladium sp. JOURNAL OF NATURAL PRODUCTS 2023; 86:596-603. [PMID: 36884371 PMCID: PMC10043936 DOI: 10.1021/acs.jnatprod.2c01048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Indexed: 06/18/2023]
Abstract
Macrocyclic alkaloids with a cyclopenta[b]fluorene ring system are a relatively young structural class of fungal metabolites, with the first members reported in 2013. Bioassay-guided fractionation of a Sarocladium sp. (fungal strain MSX6737) led to a series of both known and new members of this structural class (1-5), including the known embellicine A (1), three new embellicine analogues (2, 4, and 5), and a semisynthetic acetylated analogue (3). The structures were identified by examining both high-resolution electrospray ionization mass spectrometry data and one-dimensional and two-dimensional NMR spectra. The relative configurations of these molecules were established via 1H-1H coupling constants and nuclear Overhauser effect spectroscopy, while comparisons of the experimental electronic circular dichroism (ECD) spectra with the time-dependent density functional theory ECD calculations were utilized to assign their absolute configurations, which were in good agreement with the literature. These alkaloids (1-5) showed cytotoxic activity against a human breast cancer cell line (MDA-MB-231) that ranged from 0.4 to 4.8 μM. Compounds 1 and 5 were also cytotoxic against human ovarian (OVCAR3) and melanoma (MDA-MB-435) cancer cell lines.
Collapse
Affiliation(s)
- Zeinab
Y. Al Subeh
- Department
of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
- Department
of Chemistry and Biochemistry, University
of North Carolina at Greensboro, Greensboro 27402, North Carolina, United States
| | - Laura Flores-Bocanegra
- Department
of Chemistry and Biochemistry, University
of North Carolina at Greensboro, Greensboro 27402, North Carolina, United States
| | - Huzefa A. Raja
- Department
of Chemistry and Biochemistry, University
of North Carolina at Greensboro, Greensboro 27402, North Carolina, United States
| | - Joanna E. Burdette
- Department
of Pharmaceutical Sciences, University of
Illinois at Chicago, Chicago 60612, Illinois, United States
| | - Cedric J. Pearce
- Mycosynthetix,
Inc., Hillsborough 27278, North Carolina, United States
| | - Nicholas H. Oberlies
- Department
of Chemistry and Biochemistry, University
of North Carolina at Greensboro, Greensboro 27402, North Carolina, United States
| |
Collapse
|
9
|
Chiang CY, Ohashi M, Tang Y. Deciphering chemical logic of fungal natural product biosynthesis through heterologous expression and genome mining. Nat Prod Rep 2023; 40:89-127. [PMID: 36125308 PMCID: PMC9906657 DOI: 10.1039/d2np00050d] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Covering: 2010 to 2022Heterologous expression of natural product biosynthetic gene clusters (BGCs) has become a widely used tool for genome mining of cryptic pathways, bottom-up investigation of biosynthetic enzymes, and engineered biosynthesis of new natural product variants. In the field of fungal natural products, heterologous expression of a complete pathway was first demonstrated in the biosynthesis of tenellin in Aspergillus oryzae in 2010. Since then, advances in genome sequencing, DNA synthesis, synthetic biology, etc. have led to mining, assignment, and characterization of many fungal BGCs using various heterologous hosts. In this review, we will highlight key examples in the last decade in integrating heterologous expression into genome mining and biosynthetic investigations. The review will cover the choice of heterologous hosts, prioritization of BGCs for structural novelty, and how shunt products from heterologous expression can reveal important insights into the chemical logic of biosynthesis. The review is not meant to be exhaustive but is rather a collection of examples from researchers in the field, including ours, that demonstrates the usefulness and pitfalls of heterologous biosynthesis in fungal natural product discovery.
Collapse
Affiliation(s)
- Chen-Yu Chiang
- Dept. of Chemical and Biomolecular Engineering, 5531 Boelter Hall, 420 Westwood Plaza, Los Angeles, CA 90095, USA.
| | - Masao Ohashi
- Dept. of Chemical and Biomolecular Engineering, 5531 Boelter Hall, 420 Westwood Plaza, Los Angeles, CA 90095, USA.
| | - Yi Tang
- Dept. of Chemical and Biomolecular Engineering, 5531 Boelter Hall, 420 Westwood Plaza, Los Angeles, CA 90095, USA.
- Dept. of Chemistry and Biochemistry, 5531 Boelter Hall, 420 Westwood Plaza, Los Angeles, CA 90095, USA
| |
Collapse
|
10
|
Wang F, Zhang Z, Chen Y, Ratovelomanana-Vidal V, Yu P, Chen GQ, Zhang X. Stereodivergent synthesis of chiral succinimides via Rh-catalyzed asymmetric transfer hydrogenation. Nat Commun 2022; 13:7794. [PMID: 36528669 PMCID: PMC9759521 DOI: 10.1038/s41467-022-35124-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 11/18/2022] [Indexed: 12/23/2022] Open
Abstract
Chiral succinimide moieties are ubiquitous in biologically active natural products and pharmaceuticals. Until today, despite the great interest, little success has been made for stereodivergent synthesis of chiral succinimides. Here, we report a general and efficient method for accessing 3,4-disubstituted succinimides through a dynamic kinetic resolution strategy based on asymmetric transfer hydrogenation. The Rh catalyst system exhibit high activities, enantioselectivities, and diastereoselectivities (up to 2000 TON, up to >99% ee, and up to >99:1 dr). Products with syn- and anti-configuration are obtained separately by control of the reaction conditions. For the N-unprotected substrates, both the enol and the imide group can be reduced by control of reaction time and catalyst loading. In addition, the detailed reaction pathway and origin of stereoselectivity are elucidated by control experiments and theoretical calculations. This study offers a straightforward and stereodivergent approach to the valuable enantioenriched succinimides (all 4 stereoisomers) from cheap chemical feedstocks in a single reaction step.
Collapse
Affiliation(s)
- Fangyuan Wang
- grid.263817.90000 0004 1773 1790Department of Chemistry, Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518000 China
| | - Zongpeng Zhang
- grid.263817.90000 0004 1773 1790Department of Chemistry, Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518000 China
| | - Yu Chen
- grid.263817.90000 0004 1773 1790Department of Chemistry, Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518000 China
| | - Virginie Ratovelomanana-Vidal
- grid.4444.00000 0001 2112 9282PSL University, Chimie ParisTech, CNRS, Institute1 of Chemistry for Life and Health Sciences, CSB2D team, 75005 Paris, France
| | - Peiyuan Yu
- grid.263817.90000 0004 1773 1790Department of Chemistry, Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518000 China
| | - Gen-Qiang Chen
- grid.263817.90000 0004 1773 1790Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, 518000 China
| | - Xumu Zhang
- grid.263817.90000 0004 1773 1790Department of Chemistry, Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518000 China
| |
Collapse
|
11
|
Nie Q, Guo S, Gao X. Unraveling the biosynthesis of penicillenols by genome mining PKS-NRPS gene clusters in Penicillium citrinum. AIChE J 2022; 68:e17885. [PMID: 36591370 PMCID: PMC9797205 DOI: 10.1002/aic.17885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/16/2022] [Indexed: 01/05/2023]
Abstract
Penicillenols belong to the family of tetramic acids with anticancer and antibacterial activities. Here, we report the discovery of the biosynthetic gene cluster (pnc) for penicillenol A1 and E in Penicillium citrinum ATCC9849 by genome mining. We discover the pnc cluster based on the results of gene deletions in P. citrinum and gene cluster heterologous expression in Aspergillus nidulans. We also propose the assembly line of the PKS module in PncA with the reduction by PncB provides a highly reduce polyketide chain to be further linked with an L-threonine molecule and released from PncA to produce penicillenol E. Further formation of penicillenol A1 requires the N-methylation of tetramic acid group by PncC. Our work deepens the understanding of the biosynthetic logic for N-methylated tetramic acids and contributes to the discovery of new penicillenols by genome mining.
Collapse
Affiliation(s)
- Qiuyue Nie
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, USA
| | - Shuqi Guo
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, USA
| | - Xue Gao
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, USA
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
- Department of Chemistry, Rice University, Houston, TX 77005, USA
| |
Collapse
|
12
|
Liu Q, Johnson LJ, Applegate ER, Arfmann K, Jauregui R, Larking A, Mace WJ, Maclean P, Walker T, Johnson RD. Identification of Genetic Diversity, Pyrrocidine-Producing Strains and Transmission Modes of Endophytic Sarocladium zeae Fungi from Zea Crops. Microorganisms 2022; 10:microorganisms10071415. [PMID: 35889134 PMCID: PMC9316807 DOI: 10.3390/microorganisms10071415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/12/2022] [Accepted: 07/12/2022] [Indexed: 12/10/2022] Open
Abstract
Genotyping by sequencing (GBS) was used to reveal the inherent genetic variation within the haploid fungi Sarocladium zeae isolated from diverse Zea germplasm, including modern Zea mays and its wild progenitors—the teosintes. In accordance with broad host relationship parameters, GBS analysis revealed significant host lineages of S. zeae genetic diversity, indicating that S. zeae genetic variation may associate with different evolutionary histories of host species or varieties. Based on a recently identified PKS-NRPS gene responsible for pyrrocidine biosynthesis in S. zeae fungi, a novel PCR assay was developed to discriminate pyrrocidine-producing S. zeae strains. This molecular method for screening bioactive strains of S. zeae is complementary to other approaches, such as chemical analyses. An eGFP-labelled S. zeae strain was also developed to investigate the endophytic transmission of S. zeae in Z. mays seedlings, which has further improved our understanding of the transmission modes of S. zeae endophytes in maize tissues.
Collapse
|
13
|
Ahmad IAH, Losacco GL, Shchurik V, Wang X, Cohen RD, Herron AN, Aiken S, Fiorito D, Wang H, Reibarkh M, Nowak T, Makarov AA, Stoll DR, Guillarme D, Mangion I, Aggarwal VK, Yu JQ, Regalado EL. Trapping-Enrichment Multi-dimensional Liquid Chromatography with On-Line Deuterated Solvent Exchange for Streamlined Structure Elucidation at the Microgram Scale. Angew Chem Int Ed Engl 2022; 61:e202117655. [PMID: 35139257 DOI: 10.1002/anie.202117655] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Indexed: 11/10/2022]
Abstract
At the forefront of chemistry and biology research, development timelines are fast-paced and large quantities of pure targets are rarely available. Herein, we introduce a new framework, which is built upon an automated, online trapping-enrichment multi-dimensional liquid chromatography platform (TE-Dt-mDLC) that enables: 1) highly efficient separation of complex mixtures in a first dimension (1 D-UV); 2) automated peak trapping-enrichment and buffer removal achieved through a sequence of H2 O and D2 O washes using an independent pump setup; and 3) a second dimension separation (2 D-UV-MS) with fully deuterated mobile phases and fraction collection to minimize protic residues for immediate NMR analysis while bypassing tedious drying processes and minimizing analyte degradation. Diverse examples of target isolation and characterization from organic synthesis and natural product chemistry laboratories are illustrated, demonstrating recoveries above 90 % using as little as a few micrograms of material.
Collapse
Affiliation(s)
- Imad A Haidar Ahmad
- Analytical Research & Development, MRL, Merck & Co., Inc., Rahway, NJ 07065, USA
| | | | - Vladimir Shchurik
- Analytical Research & Development, MRL, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Xiao Wang
- Analytical Research & Development, MRL, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Ryan D Cohen
- Analytical Research & Development, MRL, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Alastair N Herron
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sheenagh Aiken
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Daniele Fiorito
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Heather Wang
- Analytical Research & Development, MRL, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Mikhail Reibarkh
- Analytical Research & Development, MRL, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Timothy Nowak
- Analytical Research & Development, MRL, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Alexey A Makarov
- Analytical Research & Development, MRL, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Dwight R Stoll
- Department of Chemistry, Gustavus Adolphus College, Saint Peter, MN 56082, USA
| | - Davy Guillarme
- School of Pharmaceutical Sciences, University of Geneva, CMU, Rue Michel-Servet 1, 1211, Geneva 4, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU, Rue Michel-Servet 1, 1211, Geneva 4, Switzerland
| | - Ian Mangion
- Analytical Research & Development, MRL, Merck & Co., Inc., Rahway, NJ 07065, USA
| | | | - Jin-Quan Yu
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Erik L Regalado
- Analytical Research & Development, MRL, Merck & Co., Inc., Rahway, NJ 07065, USA
| |
Collapse
|
14
|
Sun Z, Jamieson CS, Ohashi M, Houk KN, Tang Y. Discovery and characterization of a terpene biosynthetic pathway featuring a norbornene-forming Diels-Alderase. Nat Commun 2022; 13:2568. [PMID: 35546152 PMCID: PMC9095873 DOI: 10.1038/s41467-022-30288-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 04/25/2022] [Indexed: 11/17/2022] Open
Abstract
Pericyclases, enzymes that catalyze pericyclic reactions, form an expanding family of enzymes that have biocatalytic utility. Despite the increasing number of pericyclases discovered, the Diels-Alder cyclization between a cyclopentadiene and an olefinic dienophile to form norbornene, which is among the best-studied cycloadditions in synthetic chemistry, has surprisingly no enzymatic counterpart to date. Here we report the discovery of a pathway featuring a norbornene synthase SdnG for the biosynthesis of sordaricin-the terpene precursor of antifungal natural product sordarin. Full reconstitution of sordaricin biosynthesis reveals a concise oxidative strategy used by Nature to transform an entirely hydrocarbon precursor into the highly functionalized substrate of SdnG for intramolecular Diels-Alder cycloaddition. SdnG generates the norbornene core of sordaricin and accelerates this reaction to suppress host-mediated redox modifications of the activated dienophile. Findings from this work expand the scopes of pericyclase-catalyzed reactions and P450-mediated terpene maturation.
Collapse
Affiliation(s)
- Zuodong Sun
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Cooper S Jamieson
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Masao Ohashi
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - K N Houk
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - Yi Tang
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
15
|
Ding Y, Jiang Y, Xu S, Xin X, An F. Perpyrrospirone A, an unprecedented hirsutellone peroxide from the marine-derived Penicillium citrinum. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.05.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
16
|
Ning Y, Hu B, Yu H, Liu X, Jiao B, Lu X. Optimization of Protoplast Preparation and Establishment of Genetic Transformation System of an Arctic-Derived Fungus Eutypella sp. Front Microbiol 2022; 13:769008. [PMID: 35464961 PMCID: PMC9019751 DOI: 10.3389/fmicb.2022.769008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 02/23/2022] [Indexed: 12/04/2022] Open
Abstract
Arctic-derived fungus Eutypella sp. D-1 has attracted wide attention due to its huge ability to synthesize secondary metabolites. However, current studies only focus on stimulating its production of new secondary metabolites by OSMAC strategies, and the relationship between secondary metabolites and biosynthetic gene clusters (BGCs) has not been explored. In this study, the preparation and regeneration conditions of Eutypella sp. D-1 protoplasts were explored to lay a foundation for the study of genetic transformation of this fungus. Orthogonal experiment showed that the optimal preparation conditions were 0.75 M NaCl, 20 g/L of lysing enzyme, and 20 g/L of driselase, 28°C for 6 h. The maximum yield of Eutypella sp. D-1 protoplasts could reach 6.15 × 106 cells·ml−1, and the concentration of osmotic stabilizer NaCl was the most important factor for Eutypella sp. D-1 protoplasts. The results of FDA staining showed that the prepared protoplasts had good activity. Besides, the best protoplasts regeneration medium was YEPS, whose maximum regeneration rate is 36%. The mediums with nitrogen sources, such as SR and RM, also had good effects on the Eutypella sp. D-1 protoplast regeneration, indicating that nitrogen sources played an important role on the Eutypella sp. D-1 protoplast regeneration. Subsequent transformation experiments showed that hygromycin resistance genes (hrg) could be successfully transferred into the genome of Eutypella sp. D-1, indicating that the prepared protoplasts could meet the needs of subsequent gene manipulation and research. This study lays a foundation for the genetic transformation of Eutypella sp. D-1.
Collapse
Affiliation(s)
- Yaodong Ning
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Naval Medical University, Shanghai, China
| | - Bo Hu
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center of PLA, Naval Medical University, Shanghai, China
| | - Haobing Yu
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center of PLA, Naval Medical University, Shanghai, China
| | - Xiaoyu Liu
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center of PLA, Naval Medical University, Shanghai, China
| | - Binghua Jiao
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Naval Medical University, Shanghai, China
| | - Xiaoling Lu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Naval Medical University, Shanghai, China
| |
Collapse
|
17
|
Skellam E. Biosynthesis of fungal polyketides by collaborating and trans-acting enzymes. Nat Prod Rep 2022; 39:754-783. [PMID: 34842268 DOI: 10.1039/d1np00056j] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Covering: 1999 up to 2021Fungal polyketides encompass a range of structurally diverse molecules with a wide variety of biological activities. The giant multifunctional enzymes that synthesize polyketide backbones remain enigmatic, as do many of the tailoring enzymes involved in functional modifications. Recent advances in elucidating biosynthetic gene clusters (BGCs) have revealed numerous examples of fungal polyketide synthases that require the action of collaborating enzymes to synthesize the carbon backbone. This review will discuss collaborating and trans-acting enzymes involved in loading, extending, and releasing polyketide intermediates from fungal polyketide synthases, and additional modifications introduced by trans-acting enzymes demonstrating the complexity encountered when investigating natural product biosynthesis in fungi.
Collapse
Affiliation(s)
- Elizabeth Skellam
- Department of Chemistry, BioDiscovery Institute, University of North Texas, 1155 Union Circle, Denton, TX 76203, USA.
| |
Collapse
|
18
|
Ahmad IAH, Losacco GL, Shchurik V, Wang X, Cohen RD, Herron AN, Aiken S, Fiorito D, Wang H, Reibarkh M, Nowak T, Makarov AA, Stoll DR, Guillarme D, Mangion I, Aggarwal VK, Yu J, Regalado EL. Trapping‐Enrichment Multi‐dimensional Liquid Chromatography with On‐Line Deuterated Solvent Exchange for Streamlined Structure Elucidation at the Microgram Scale. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | | | - Vladimir Shchurik
- Analytical Research & Development, MRL, Merck & Co., Inc. Rahway NJ 07065 USA
| | - Xiao Wang
- Analytical Research & Development, MRL, Merck & Co., Inc. Rahway NJ 07065 USA
| | - Ryan D. Cohen
- Analytical Research & Development, MRL, Merck & Co., Inc. Rahway NJ 07065 USA
| | - Alastair N. Herron
- Department of Chemistry The Scripps Research Institute La Jolla CA 92037 USA
| | - Sheenagh Aiken
- School of Chemistry University of Bristol Bristol BS8 1TS UK
| | - Daniele Fiorito
- School of Chemistry University of Bristol Bristol BS8 1TS UK
| | - Heather Wang
- Analytical Research & Development, MRL, Merck & Co., Inc. Rahway NJ 07065 USA
| | - Mikhail Reibarkh
- Analytical Research & Development, MRL, Merck & Co., Inc. Rahway NJ 07065 USA
| | - Timothy Nowak
- Analytical Research & Development, MRL, Merck & Co., Inc. Rahway NJ 07065 USA
| | - Alexey A. Makarov
- Analytical Research & Development, MRL, Merck & Co., Inc. Rahway NJ 07065 USA
| | - Dwight R. Stoll
- Department of Chemistry Gustavus Adolphus College Saint Peter MN 56082 USA
| | - Davy Guillarme
- School of Pharmaceutical Sciences University of Geneva, CMU Rue Michel-Servet 1 1211 Geneva 4 Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland University of Geneva, CMU Rue Michel-Servet 1 1211 Geneva 4 Switzerland
| | - Ian Mangion
- Analytical Research & Development, MRL, Merck & Co., Inc. Rahway NJ 07065 USA
| | | | - Jin‐Quan Yu
- Department of Chemistry The Scripps Research Institute La Jolla CA 92037 USA
| | - Erik L. Regalado
- Analytical Research & Development, MRL, Merck & Co., Inc. Rahway NJ 07065 USA
| |
Collapse
|
19
|
Wei G, Shu X, Yao Y, Zhang K, Zhang J, Gao SS. Heterologous Production of Unnatural Flavipucine Family Products Provides Insights into Flavipucines Biosynthesis. Org Lett 2021; 23:7708-7712. [PMID: 34554766 DOI: 10.1021/acs.orglett.1c02566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Heterologous expression of the flavipucine biosynthetic gene cluster in Aspergillus nidulans led to the production of flavipucine (1) and dihydroisoflavipucine (3), as well as six unusual flavipucine related products containing three classes of heterocycles. This combined with gene inactivation, chemical complementation, and transcriptome analysis demonstrated unprecedented ways to form 2-pyridone and 2-pyrone structures by the oxidative rearrangements of pyrrolinone precursors as well as provided insights into the biosynthesis of this important class of natural products.
Collapse
Affiliation(s)
- Guangzheng Wei
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China.,University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xian Shu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China.,University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yongpeng Yao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Kexin Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China.,University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jun Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Shu-Shan Gao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| |
Collapse
|
20
|
Zhang DY, Wang XX, Wang YN, Wang M, Zhuang PY, Jin Y, Liu H. Nine sesquiterpenoid dimers with four unprecedented types of carbon skeleton from Chloranthus henryi var. hupehensis. Org Chem Front 2021. [DOI: 10.1039/d1qo00810b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Chlorahupetones A–I (1–9), nine sesquiterpenoid dimers, were isolated from Chloranthus henryi var. hupehensis.
Collapse
Affiliation(s)
- Dan-Yang Zhang
- School of Pharmacy
- North China University of Science and Technology
- Tangshan 063210
- People's Republic of China
| | - Xiao-Xia Wang
- School of Pharmacy
- North China University of Science and Technology
- Tangshan 063210
- People's Republic of China
| | - Ya-Nan Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines
- Institute of Materia Medica
- Chinese Academy of Medical Sciences and Peking Union Medical College
- Beijing 100050
- People's Republic of China
| | - Min Wang
- Department of Pharmacy
- Affiliated Drum Tower Hospital of Nanjing University Medical School
- Nanjing 210008
- People's Republic of China
| | - Peng-Yu Zhuang
- School of Pharmacy
- North China University of Science and Technology
- Tangshan 063210
- People's Republic of China
| | - Yang Jin
- School of Pharmacy
- Nanjing Medical University
- Nanjing 211166
- People's Republic of China
| | - Hang Liu
- Department of Pharmacy
- Affiliated Drum Tower Hospital of Nanjing University Medical School
- Nanjing 210008
- People's Republic of China
| |
Collapse
|