1
|
Mishra A, Priyadarshini N, Mansingh S, Parida K. Recent advancement in LaFeO 3-mediated systems towards photocatalytic and photoelectrocatalytic hydrogen evolution reaction: A comprehensive review. Adv Colloid Interface Sci 2024; 333:103300. [PMID: 39270595 DOI: 10.1016/j.cis.2024.103300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 08/16/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024]
Abstract
The present disrupted scenario of the world calls for urgent attention to the need for renewable resources as an energy source for harnessing and feeding uninterrupted power supply to mankind. Amidst this, Photocatalysis (PC) and Photoelectrocatalysis (PEC) are some of the most budding methods of exploiting solar energy. LaFeO3-based systems are eligible for PC/PEC Hydrogen (H2) generation, incorporating the process of water splitting, etc. It would be fair to mention that the above methods can mimic the natural process of photosynthesis. This review comprises an encyclopedia of recent advancements in LaFeO3 and modified systems towards sustainable Photocatalytic and Photoelectrocatalytic Hydrogen Evolution Reactions (HER). Besides the challenges, the review presents a clear and brief idea for the scientific research community on paving the future in upscaling and industrializing the LaFeO3-mediated green fuel (H2) generation to meet global energy needs.
Collapse
Affiliation(s)
- Anshumika Mishra
- Centre for Nano Science and Nano Technology, S 'O' A (Deemed to be University), Odisha, India
| | - Newmoon Priyadarshini
- Centre for Nano Science and Nano Technology, S 'O' A (Deemed to be University), Odisha, India
| | - Sriram Mansingh
- Centre for Nano Science and Nano Technology, S 'O' A (Deemed to be University), Odisha, India
| | - Kulamani Parida
- Centre for Nano Science and Nano Technology, S 'O' A (Deemed to be University), Odisha, India.
| |
Collapse
|
2
|
Zhang Y, Hua T, Huang X, Gu R, Chu R, Hu Y, Ye S, Yang M. Photodynamic therapy of severe hemorrhagic shock on yolk-shell MoS 2 nanoreactors. RSC Adv 2024; 14:32533-32541. [PMID: 39411261 PMCID: PMC11475463 DOI: 10.1039/d4ra04157g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/07/2024] [Indexed: 10/19/2024] Open
Abstract
Ischemia-reperfusion injury resulting from severe hemorrhagic shock continues to cause substantial damage to human health and impose a significant economic burden. In this study, we designed an Au-loaded yolk-shell MoS2 nanoreactor (Au@MoS2) that regulates cellular homeostasis. In vitro experiments validated the efficacy of the nanomaterial in reducing intracellular reactive oxygen species (ROS) production during hypoxia and reoxygenation, and had great cell biocompatibility, Au@MoS2. The antioxidant properties of the nanoreactors contributed to the elimination of ROS (over twofold scavenging ratio for ROS). In vivo results demonstrate that Au@MoS2 (54.88% of reduction) alleviates hyperlactatemia and reduces ischemia-reperfusion injury in rats subjected to severe hemorrhagic shock, compared to MoS2 (26.32% of reduction) alone. In addition, no discernible toxic side effects were observed in the rats throughout the experiment, underscoring the considerable promise of the nanoreactor for clinical trials. The mechanism involves catalyzing the degradation of endogenous lactic acid on the Au@MoS2 nanoreactor under 808 nm light, thereby alleviating ischemia-reperfusion injury. This work proposes a new selective strategy for the treatment of synergistic hemorrhagic shock.
Collapse
Affiliation(s)
- Yijun Zhang
- The Second Department of Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University Hefei Anhui 230001 China
- Laboratory of Cardiopulmonary Resuscitation and Critical Care, The Second Affiliated Hospital of Anhui Medical University Hefei Anhui 230001 China
| | - Tianfeng Hua
- The Second Department of Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University Hefei Anhui 230001 China
- Laboratory of Cardiopulmonary Resuscitation and Critical Care, The Second Affiliated Hospital of Anhui Medical University Hefei Anhui 230001 China
| | - Xiaoyi Huang
- School of Materials and Chemistry, Anhui Agricultural University Hefei Anhui 230036 China
- College of Animal Science and Technology, Anhui Agricultural University Hefei Anhui 230036 China
| | - Rongrong Gu
- School of Materials and Chemistry, Anhui Agricultural University Hefei Anhui 230036 China
- College of Animal Science and Technology, Anhui Agricultural University Hefei Anhui 230036 China
| | - Ruixi Chu
- School of Materials and Chemistry, Anhui Agricultural University Hefei Anhui 230036 China
- College of Animal Science and Technology, Anhui Agricultural University Hefei Anhui 230036 China
| | - Yan Hu
- The Second Department of Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University Hefei Anhui 230001 China
- Laboratory of Cardiopulmonary Resuscitation and Critical Care, The Second Affiliated Hospital of Anhui Medical University Hefei Anhui 230001 China
| | - Sheng Ye
- School of Materials and Chemistry, Anhui Agricultural University Hefei Anhui 230036 China
| | - Min Yang
- The Second Department of Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University Hefei Anhui 230001 China
- Laboratory of Cardiopulmonary Resuscitation and Critical Care, The Second Affiliated Hospital of Anhui Medical University Hefei Anhui 230001 China
| |
Collapse
|
3
|
Díaz-García AK, Gómez R. A WO 3-CuCrO 2 Tandem Photoelectrochemical Cell for Green Hydrogen Production under Simulated Sunlight. Molecules 2024; 29:4462. [PMID: 39339456 PMCID: PMC11434413 DOI: 10.3390/molecules29184462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
The development of photoelectrochemical tandem cells for water splitting with electrodes entirely based on metal oxides is hindered by the scarcity of stable p-type oxides and the poor stability of oxides in strongly alkaline and, particularly, strongly acidic electrolytes. As a novelty in the context of transition metal oxide photoelectrochemistry, a bias-free tandem cell driven by simulated sunlight and based on a CuCrO2 photocathode and a WO3 photoanode, both unprotected and free of co-catalysts, is demonstrated to split water while working with strongly acidic electrolytes. Importantly, the Faradaic efficiency for H2 evolution for the CuCrO2 electrode is found to be about 90%, among the highest for oxide photoelectrodes in the absence of co-catalysts. The tandem cell shows no apparent degradation in short-to-medium-term experiments. The prospects of using a practical cell based on this configuration are discussed, with an emphasis on the importance of modifying the materials for enhancing light absorption.
Collapse
Affiliation(s)
- Ana K. Díaz-García
- Institut Universitari d’Electroquímica i Departament de Química Física, Universitat d’Alacant, Apartat 99, E-03080 Alicante, Spain;
- Facultad de Bioanálisis, Universidad Veracruzana, Xalapa C.P. 91010, Mexico
| | - Roberto Gómez
- Institut Universitari d’Electroquímica i Departament de Química Física, Universitat d’Alacant, Apartat 99, E-03080 Alicante, Spain;
| |
Collapse
|
4
|
Liu D, Kuang Y. Particle-Based Photoelectrodes for PEC Water Splitting: Concepts and Perspectives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311692. [PMID: 38619834 DOI: 10.1002/adma.202311692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 04/06/2024] [Indexed: 04/16/2024]
Abstract
This comprehensive review delves into the intricacies of the photoelectrochemical (PEC) water splitting process, specifically focusing on the design, fabrication, and optimization of particle-based photoelectrodes for efficient green hydrogen production. These photoelectrodes, composed of semiconductor materials, potentially harness light energy and generate charge carriers, driving water oxidation and reduction reactions. The versatility of particle-based photoelectrodes as a platform for investigating and enhancing various semiconductor candidates is explored, particularly the emerging complex oxides with compelling charge transfer properties. However, the challenges presented by many factors influencing the performance and stability of these photoelectrodes, including particle size, shape, composition, morphology, surface modification, and electrode configuration, are highlighted. The review introduces the fundamental principles of semiconductor photoelectrodes for PEC water splitting, presents an exhaustive overview of different synthesis methods for semiconductor powders and their assembly into photoelectrodes, and discusses recent advances and challenges in photoelectrode material development. It concludes by offering promising strategies for improving photoelectrode performance and stability, such as the adoption of novel architectures and heterojunctions.
Collapse
Affiliation(s)
- Deyu Liu
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, China
| | - Yongbo Kuang
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19(A)Yuquan Road, Beijing, 100049, China
| |
Collapse
|
5
|
Hou S, Gao X, Wang S, Yu X, Liao J, Su D. Precise Defect Engineering on Graphitic Carbon Nitrides for Boosted Solar H 2 Production. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2302500. [PMID: 37259673 DOI: 10.1002/smll.202302500] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/08/2023] [Indexed: 06/02/2023]
Abstract
Defect engineering has been regarded as an "all-in-one strategy" to alleviate the insufficient solar utilization in g-C3N4. However, without appropriate modification, the defect benefits will be partly offset due to the formation of deep localized defect states and deteriorated surface states, lowering the photocarrier separation efficiency. To this end, the defective g-C3N4 is designed with both S dopants and N vacancies via a dual-solvent-assisted synthetic approach. The precise defect control is realized by the addition of ethylene glycol (EG) into precursor formation and molten sulfur into the pyrolysis process, which simultaneously induced g-C3N4. with shallow defect states. These shallow defect energy levels can act as a temporary electron reservoir, which are critical to evoke the migrated electrons from CB with a moderate trapping ability, thus suppressing the bulky photocarrier recombination. Additionally, the optimized surface states of DCN-ES are also demonstrated by the highest electron-trapping resistance (Rtrapping) of 9.56 × 103 Ω cm2 and the slowest decay kinetics of surface carriers (0.057 s-1), which guaranteed the smooth surface charge transfer rather than being the recombination sites. As a result, DCN-ES exhibited a superior H2 evolution rate of 4219.9 µmol g-1 h-1, which is 29.1-fold higher than unmodified g-C3N4.
Collapse
Affiliation(s)
- Shaoqi Hou
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Broadway, NSW, 2007, Australia
| | - Xiaochun Gao
- School of Physics and Optoelectronic Engineering, Ludong University, Yantai, 264000, China
| | - Shijian Wang
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Broadway, NSW, 2007, Australia
| | - Xingxing Yu
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Broadway, NSW, 2007, Australia
- Department of Chemistry, The University of Tokyo, Tokyo, 7-3-1 Hogo, Bunkyo, Japan
| | - Jiayan Liao
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Broadway, NSW, 2007, Australia
| | - Dawei Su
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Broadway, NSW, 2007, Australia
| |
Collapse
|
6
|
Chen Y, Li X, Yang H, Huang Y. Systematic Constructing FeOCl/BiVO 4 Hetero-Interfacial Hybrid Photoanodes for Efficient Photoelectrochemical Water Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402406. [PMID: 38716755 DOI: 10.1002/smll.202402406] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/29/2024] [Indexed: 10/01/2024]
Abstract
Bismuth vanadate (BiVO4), as a promising photoanode for photoelectrochemical (PEC) water splitting, suffers from poor charge separation efficiency and light absorption efficiency. Herein, iron oxychloride (FeOCl) is introduced as a novel cocatalyst simply grafted on BiVO4 to construct an integrated photoanode, enhancing PEC performance. The optimized FeOCl/BiVO4 photoanode exhibits a superior photocurrent density value of 5.23 mA cm-2 at 1.23 V versus reversible hydrogen electrode (RHE) under AM 1.5G illuminations. From experimental analysis, such high PEC performance is ascribed to the unique properties of FeOCl, facilitating charge transport, increasing light absorption efficiency, and promoting water oxidation kinetics. Density functional theory calculations further confirm that FeOCl optimizes the Gibbs free energy of H and O-containing intermediates (OOH*) during PEC processes, boosting the catalytic kinetics of PEC water splitting. This work presents FeOCl as a promising catalyst for constructing high efficient PEC water-splitting photoanodes.
Collapse
Affiliation(s)
- Yuxuan Chen
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangdong Provincial Key Laboratory of Fuel Cell Technology, Guangzhou, 510006, P. R. China
| | - Xiaolin Li
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangdong Provincial Key Laboratory of Fuel Cell Technology, Guangzhou, 510006, P. R. China
| | - Hao Yang
- School of Chemistry & Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning, 530004, P. R. China
| | - Yongchao Huang
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangdong Provincial Key Laboratory of Fuel Cell Technology, Guangzhou, 510006, P. R. China
| |
Collapse
|
7
|
Liu M, Yang W, Xiao R, Qin Y, Tan R, Chen Y, Gu W, Hu L, Lin Y, Zhu C. Anisotropic Dual S-Scheme Heterojunctions Mimic Natural Photosynthetic System for Boosting Photoelectric Response. Angew Chem Int Ed Engl 2024; 63:e202407481. [PMID: 38840295 DOI: 10.1002/anie.202407481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/29/2024] [Accepted: 06/05/2024] [Indexed: 06/07/2024]
Abstract
The design of heterojunctions that mimic natural photosynthetic systems holds great promise for enhancing photoelectric response. However, the limited interfacial space charge layer (SCL) often fails to provide sufficient driving force for the directional migration of inner charge carriers. Drawing inspiration from the electron transport chain (ETC) in natural photosynthesis system, we developed a novel anisotropic dual S-scheme heterojunction artificial photosynthetic system composed of Bi2O3-BiOBr-AgI for the first time, with Bi2O3 and AgI selectively distributed along the bicrystal facets of BiOBr. Compared to traditional semiconductors, the anisotropic carrier migration in BiOBr overcomes the recombination resulting from thermodynamic diffusion, thereby establishing a potential ETC for the directional migration of inner charge carriers. Importantly, this pioneering bioinspired design overcomes the limitations imposed by the limited distribution of SCL in heterojunctions, resulting in a remarkable 55-fold enhancement in photoelectric performance. Leveraging the etching of thiols on Ag-based materials, this dual S-scheme heterojunction is further employed in the construction of photoelectrochemical sensors for the detection of acetylcholinesterase and organophosphorus pesticides.
Collapse
Affiliation(s)
- Mingwang Liu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Wenhong Yang
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Runshi Xiao
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, Wuhan Institute of Technology, Wuhan, 430205, P. R. China
| | - Ying Qin
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Rong Tan
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Yuanxing Chen
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, Wuhan Institute of Technology, Wuhan, 430205, P. R. China
| | - Wenling Gu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Liuyong Hu
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, Wuhan Institute of Technology, Wuhan, 430205, P. R. China
| | - Yuehe Lin
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA99164, USA
| | - Chengzhou Zhu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| |
Collapse
|
8
|
Yeung CWS, Andrei V, Lee TH, Durrant JR, Reisner E. Organic Semiconductor-BiVO 4 Tandem Devices for Solar-Driven H 2O and CO 2 Splitting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404110. [PMID: 38943473 DOI: 10.1002/adma.202404110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/17/2024] [Indexed: 07/01/2024]
Abstract
Photoelectrochemical (PEC) devices offer a promising platform toward direct solar light harvesting and chemical storage through artificial photosynthesis. However, most prototypes employ wide bandgap semiconductors, moisture-sensitive inorganic light absorbers, or corrosive electrolytes. Here, the design and assembly of PEC devices based on an organic donor-acceptor bulk heterojunction (BHJ) using a carbon-based encapsulant are introduced, which demonstrate long-term H2 evolution and CO2 reduction in benign aqueous media. Accordingly, PCE10:EH-IDTBR photocathodes display long-term H2 production for 300 h in a near-neutral pH solution, whereas photocathodes with a molecular CO2 reduction catalyst attain a CO:H2 selectivity of 5.41±0.53 under 0.1 sun irradiation. Their early onset potential enables the construction of tandem PCE10:EH-IDTBR - BiVO4 artificial leaves, which couple unassisted syngas production with O2 evolution in a reactor completely powered by sunlight, sustaining a 1:1 ratio of CO to H2 over 96 h of operation.
Collapse
Affiliation(s)
- Celine Wing See Yeung
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Virgil Andrei
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
- Optoelectronics Group, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Tack Ho Lee
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, W12 0BZ, UK
- Department of Chemistry Education, Graduate Department of Chemical Materials, Institute for Plastic Information and Energy Materials, Sustainable Utilization of Photovoltaic Energy Research Center, Pusan National University, Busan, 46241, Republic of Korea
| | - James Robert Durrant
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, W12 0BZ, UK
| | - Erwin Reisner
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| |
Collapse
|
9
|
Zhou M, Sheng Z, Ji G, Zhang X. Aerogel-Involved Triple-State Gels Resemble Natural Living Leaves in Structure and Multi-Functions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406007. [PMID: 38847583 DOI: 10.1002/adma.202406007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/22/2024] [Indexed: 06/15/2024]
Abstract
Natural plant leaves with multiple functions, for example, spectral features, transpiration, photosynthesis, etc., have played a significant role in the ecosystem, and artificial synthesis of plant leaves with multiple functions of natural ones is still a great challenge. Herein, this work presents an aerogel-involved living leaf (AL), most similar to natural ones so far, by embedding super-hydrophobic SiO2 aerogel microparticles in polyvinyl alcohol hydrogel in the presence of hygroscopic salt and chlorophyllin copper sodium to form solid-liquid-vapor triple-state gel. The AL shows a high spectral similarity with all sampled 15 species of natural leaves and exhibits ≈4-7 times transpiration speed higher than natural leaves. More importantly, AL can achieve several times higher photosynthesis than natural leaves without the energy provided by the respiratory action of natural ones. This work demonstrates the feasibility of creating ALs with natural leaf-like triple-state gel structures and multiple functions, opening up new avenues for energy conversion, environmental engineering, and biomimetic applications.
Collapse
Affiliation(s)
- Ming Zhou
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
- Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Zhizhi Sheng
- Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Guangbin Ji
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| | - Xuetong Zhang
- Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
- Division of Surgery & Interventional Science, University College London, London, NW3 2PF, UK
| |
Collapse
|
10
|
Feng J, Zhang Y, Morlet-Savary F, Schmitt M, Zhang J, Xiao P, Dumur F, Lalevée J. Ultrafast Sunlight-Induced Polymerization: Unveiling 2-Phenylnaphtho[2,3-d]Thiazole-4,9-dione as a Unique Scaffold for High-Speed and Precision 3D Printing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400230. [PMID: 38501752 DOI: 10.1002/smll.202400230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/06/2024] [Indexed: 03/20/2024]
Abstract
A series of 15 dyes based on the 2-phenylnaphtho[2,3-d]thiazole-4,9-dione scaffold and 1 compound based on the 2,3-diphenyl-1,2,3,4-tetrahydrobenzo[g]quinoxaline-5,10-dione scaffold are studied as photoinitiators. These compounds are used in two- and three-component high-performance photoinitiating systems for the free radical polymerization of trimethylolpropane triacrylate (TMPTA) and polyethylene glycol diacrylate (PEGDA) under sunlight. Remarkably, the conversion of TMPTA can reach ≈60% within 20 s, while PEGDA attains a 96% conversion within 90 s. To delve into the intricate chemical mechanisms governing the polymerization, an array of analytical techniques is employed. Specifically, UV-vis absorption and fluorescence spectroscopy, steady-state photolysis, stability experiments, fluorescence quenching experiments, cyclic voltammetry, and electron spin resonance spin trapping (ESR-ST) experiments, collectively contribute to a comprehensive understanding of the photochemical mechanisms. Photoinitiation capacities of these systems are determined using real-time Fourier transformed infrared spectroscopy (RT-FTIR). Of particular interest is the revelation that, owing to the superior initiation ability of these dyes, high-resolution 3D patterns can be manufactured by direct laser write (DLW) technology and 3D printing. This underscores the efficient initiation of free radical polymerization processes by the newly developed dyes under both artificial and natural light sources, presenting an avenue for energy-saving, and environmentally friendly polymerization conditions.
Collapse
Affiliation(s)
- Ji Feng
- Université de Haute-Alsace, CNRS, IS2M UMR7361, Mulhouse, F-68100, France
- Université de Strasbourg, Strasbourg, F-67081, France
| | - Yijun Zhang
- Université de Haute-Alsace, CNRS, IS2M UMR7361, Mulhouse, F-68100, France
- Université de Strasbourg, Strasbourg, F-67081, France
| | - Fabrice Morlet-Savary
- Université de Haute-Alsace, CNRS, IS2M UMR7361, Mulhouse, F-68100, France
- Université de Strasbourg, Strasbourg, F-67081, France
| | - Michael Schmitt
- Université de Haute-Alsace, CNRS, IS2M UMR7361, Mulhouse, F-68100, France
- Université de Strasbourg, Strasbourg, F-67081, France
| | - Jing Zhang
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia, 5095, Australia
| | - Pu Xiao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Frédéric Dumur
- Aix Marseille Univ, CNRS, ICR, UMR 7273, Marseille, F-13397, France
| | - Jacques Lalevée
- Université de Haute-Alsace, CNRS, IS2M UMR7361, Mulhouse, F-68100, France
- Université de Strasbourg, Strasbourg, F-67081, France
| |
Collapse
|
11
|
M Meirovich M, Bachar O, Shemesh M, Cohen Y, Popik A, Yehezkeli O. Light-driven, bias-free nitrogenase-based bioelectrochemical cell for ammonia generation. Biosens Bioelectron 2024; 255:116254. [PMID: 38569252 DOI: 10.1016/j.bios.2024.116254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/12/2024] [Accepted: 03/25/2024] [Indexed: 04/05/2024]
Abstract
Nitrogen fixation is a key process that sustains life on Earth. Nitrogenase is the sole enzyme capable of fixing nitrogen under ambient conditions. Extensive research efforts have been dedicated to elucidating the enzyme mechanism and its artificial activation through high applied voltage, photochemistry, or strong reducing agents. Harnessing light irradiation to minimize the required external bias can lower the process's high energy investment. Herein, we present the development of photo-bioelectrochemical cells (PBECs) utilizing BiVO4/CoP or CdS/NiO photoanodes for nitrogenase activation toward N2 fixation. The constructed PBEC based on BiVO4/CoP photoanode requires minimal external bias (200 mV) and suppresses O2 generation that allows efficient activation of the nitrogenase enzyme, using glucose as an electron donor. In a second developed PBEC configuration, CdS/NiO photoanode was used, enabling bias-free activation of the nitrogenase-based cathode to produce 100 μM of ammonia at a faradaic efficiency (FE) of 12%. The ammonia production was determined by a commonly used fluorescence probe and further validated using 1H-NMR spectroscopy. The presented PBECs lay the foundation for biotic-abiotic systems to directly activate enzymes toward value-added chemicals by light-driven reactions.
Collapse
Affiliation(s)
- Matan M Meirovich
- Faculty of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, 3200003, Haifa, Israel
| | - Oren Bachar
- Faculty of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, 3200003, Haifa, Israel
| | - Mor Shemesh
- Faculty of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, 3200003, Haifa, Israel
| | - Yifat Cohen
- Faculty of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, 3200003, Haifa, Israel
| | - Alice Popik
- Faculty of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, 3200003, Haifa, Israel
| | - Omer Yehezkeli
- Faculty of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, 3200003, Haifa, Israel; Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, 3200003, Haifa, Israel; The Nancy and Stephen Grand Technion Energy Program, Technion - Israel Institute of Technology, 3200003, Haifa, Israel.
| |
Collapse
|
12
|
Cui JY, Li TT, Chen L, Wang JJ. Advancing BiVO 4 Photoanode Activity for Ethylene Glycol Oxidation via Strategic pH Control. Molecules 2024; 29:2783. [PMID: 38930848 PMCID: PMC11206287 DOI: 10.3390/molecules29122783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/07/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
The photoelectrochemical (PEC) conversion of organic small molecules offers a dual benefit of synthesizing value-added chemicals and concurrently producing hydrogen (H2). Ethylene glycol, with its dual hydroxyl groups, stands out as a versatile organic substrate capable of yielding various C1 and C2 chemicals. In this study, we demonstrate that pH modulation markedly enhances the photocurrent of BiVO4 photoanodes, thus facilitating the efficient oxidation of ethylene glycol while simultaneously generating H2. Our findings reveal that in a pH = 1 ethylene glycol solution, the photocurrent density at 1.23 V vs. RHE can attain an impressive 7.1 mA cm-2, significantly surpassing the outputs in neutral and highly alkaline environments. The increase in photocurrent is attributed to the augmented adsorption of ethylene glycol on BiVO4 under acidic conditions, which in turn elevates the activity of the oxidation reaction, culminating in the maximal production of formic acid. This investigation sheds light on the pivotal role of electrolyte pH in the PEC oxidation process and underscores the potential of the PEC strategy for biomass valorization into value-added products alongside H2 fuel generation.
Collapse
Affiliation(s)
- Jun-Yuan Cui
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China; (J.-Y.C.); (T.-T.L.); (L.C.)
| | - Tian-Tian Li
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China; (J.-Y.C.); (T.-T.L.); (L.C.)
| | - Long Chen
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China; (J.-Y.C.); (T.-T.L.); (L.C.)
| | - Jian-Jun Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China; (J.-Y.C.); (T.-T.L.); (L.C.)
- Shenzhen Research Institute of Shandong University, Shenzhen 518057, China
| |
Collapse
|
13
|
Sportelli G, Marchi M, Fornasiero P, Filippini G, Franco F, Melchionna M. Photoelectrocatalysis for Hydrogen Evolution Ventures into the World of Organic Synthesis. GLOBAL CHALLENGES (HOBOKEN, NJ) 2024; 8:2400012. [PMID: 38868602 PMCID: PMC11165553 DOI: 10.1002/gch2.202400012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/27/2024] [Indexed: 06/14/2024]
Abstract
The use of light as a catalytic prompt for the synthesis of industrial relevant compounds is widely explored in the past years, with a special consideration over the hydrogen evolution reaction (HER). However, semiconductors for heterogeneous photocatalysis suffer from fast charge recombination and, consequently, low solar-to-hydrogen efficiency. These drawbacks can be mitigated by coupling photocatalysts with an external circuit that can physically separate the photogenerated charge carriers (electrons and holes). For this reason, photoelectrochemical (PEC) production of hydrogen is under the spotlight as promising green and sustainable technique and widely investigated in numerous publications. However, considering that a significant fraction of the hydrogen produced is used for reduction processes, the development of PEC devices for direct in situ hydrogenation can address the challenges associated with hydrogen storage and distribution. This Perspective aims at highlighting the fundamental aspects of HER from PEC systems, and how these can be harnessed toward the implementation of suitable settings for the hydrogenation of organic compounds of industrial value.
Collapse
Affiliation(s)
- Giuseppe Sportelli
- Department of Chemical and Pharmaceutical SciencesUniversity of Triestevia Licio Giorgieri 1Trieste34127Italy
- Department of Science, Technology and SocietyUniversity School for Advanced Studies IUSS PaviaPiazza della Vittoria 15Pavia27100Italy
| | - Miriam Marchi
- Department of Chemical and Pharmaceutical SciencesUniversity of Triestevia Licio Giorgieri 1Trieste34127Italy
| | - Paolo Fornasiero
- Department of Chemical and Pharmaceutical SciencesUniversity of Triestevia Licio Giorgieri 1Trieste34127Italy
- Center for EnergyEnvironment and Transport “Giacomo Ciamician” and ICCOM‐CNR Trieste Research UnitUniversity of Triestevia Licio Giorgieri 1Trieste34127Italy
| | - Giacomo Filippini
- Department of Chemical and Pharmaceutical SciencesUniversity of Triestevia Licio Giorgieri 1Trieste34127Italy
| | - Federico Franco
- Department of Chemical and Pharmaceutical SciencesUniversity of Triestevia Licio Giorgieri 1Trieste34127Italy
| | - Michele Melchionna
- Department of Chemical and Pharmaceutical SciencesUniversity of Triestevia Licio Giorgieri 1Trieste34127Italy
- Center for EnergyEnvironment and Transport “Giacomo Ciamician” and ICCOM‐CNR Trieste Research UnitUniversity of Triestevia Licio Giorgieri 1Trieste34127Italy
| |
Collapse
|
14
|
Hu Y, Zhou W, Gong W, Gao C, Shen S, Kong T, Xiong Y. Tailoring Second Coordination Sphere for Tunable Solid-Liquid Interfacial Charge Transfer toward Enhanced Photoelectrochemical H 2 Production. Angew Chem Int Ed Engl 2024; 63:e202403520. [PMID: 38446498 DOI: 10.1002/anie.202403520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 03/07/2024]
Abstract
The recombination of photogenerated charge carriers severely limits the performance of photoelectrochemical (PEC) H2 production. Here, we demonstrate that this limitation can be overcome by optimizing the charge transfer dynamics at the solid-liquid interface via molecular catalyst design. Specifically, the surface of a p-Si photocathode is modulated using molecular catalysts with different metal atoms and organic ligands to improve H2 production performance. Co(pda-SO3H)2 is identified as an efficient and durable catalyst for H2 production through the rational design of metal centers and first/second coordination spheres. The modulation with Co(pda-SO3H)2, which contains an electron-withdrawing -SO3H group in the second coordination sphere, elevates the flat-band potential of the polished p-Si photocathode and nanoporous p-Si photocathode by 81 mV and 124 mV, respectively, leading to the maximized energy band bending and the minimized interfacial carrier transport resistance. Consequently, both the two photocathodes achieve the Faradaic efficiency of more than 95 % for H2 production, which is well maintained during 18 h and 21 h reaction, respectively. This work highlights that the band-edge engineering by molecular catalysts could be an important design consideration for semiconductor-catalyst hybrids toward PEC H2 production.
Collapse
Affiliation(s)
- Yangguang Hu
- Anhui Engineering Research Center of Carbon Neutrality, The Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, 241002, Wuhu, Anhui, China
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, 230026, Hefei, Anhui, China
| | - Wu Zhou
- International Research Centre for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, 710049, Xi'an, Shaanxi, China
| | - Wanbing Gong
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, 230026, Hefei, Anhui, China
| | - Chao Gao
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, 230026, Hefei, Anhui, China
| | - Shaohua Shen
- International Research Centre for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, 710049, Xi'an, Shaanxi, China
| | - Tingting Kong
- Anhui Engineering Research Center of Carbon Neutrality, The Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, 241002, Wuhu, Anhui, China
| | - Yujie Xiong
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, 230026, Hefei, Anhui, China
| |
Collapse
|
15
|
Xi Z, Xing J, Yuan R, Yuan Y. Covalent organic frame based high-performance nanocomposite for construction of ATP sensor. Biosens Bioelectron 2024; 250:116081. [PMID: 38316088 DOI: 10.1016/j.bios.2024.116081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/18/2024] [Accepted: 01/25/2024] [Indexed: 02/07/2024]
Abstract
In this work, a novel covalent organic frame (TAPT-TFPB COF) with self-enhanced photoelectric activity was prepared for decorating on conductive single-walled carbon nanotubes (SWCNT) to synthetize a high-performance photoelectric nanocomposite (COF/SWCNT), in which the interfacial charge separation and photogenerated carrier migration rate was significantly improved to obtain desiring photoelectric conversion efficiency for generating an extremely high photocurrent. Accordingly, the synthetic COF/SWCNT was ingeniously applied in the fabrication of ultrasensitive photoelectrochemical (PEC) biosensor for realizing the trace ATP detection by integrating with an Exo III-assisted dual DNA recycling amplification strategy. The recycling amplification could efficiently convert trace target ATP into plentiful output DNA, which ingeniously triggered the hybridization chain reaction (HCR) to generate a long DNA strand with substantial quencher manganese porphyrin (MnPP) loading to depress the photocurrent of COF/SWCNT. The experimental data showed that proposed biosensor had a detection range from 10 fmol L-1 to 10 nmol L-1 with the detection limit as low as 2.75 fmol L-1 (S/N = 3). In addition, this proposed biosensor showed excellent analytical performance in terms of stability, specificity and reproducibility, providing a possibility to accomplish sensitive and accurate in vitro diagnosis.
Collapse
Affiliation(s)
- Zhiyi Xi
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Juan Xing
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| | - Yali Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
16
|
Zhao X, Lu X, Chen WJ, Yang MQ, Pan X, Bian Z. Exceptional piezocatalytic H 2 production of nitrogen-doped TiO 2@carbon nanosheets induced by engineered piezoelectricity. J Colloid Interface Sci 2024; 659:11-20. [PMID: 38157722 DOI: 10.1016/j.jcis.2023.12.101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/04/2023] [Accepted: 12/16/2023] [Indexed: 01/03/2024]
Abstract
Piezocatalytic hydrogen evolution is a promising strategy to generate sustainable energy. In this report, nitrogen-doped (N-doped) TiO2@ carbon nanosheets (N-TiO2@C NSs) was successfully synthesized using C3N4 as a multifunctional template. During the synthesis, the two-dimensional (2D) architecture of C3N4 nanosheets directed the synthesis of TiO2 nanosheets. In addition, nitrogens of C3N4 were doped into the TiO2 lattice. Simultaneously, C3N4 was transformed into N-doped carbon nanosheets. N doping broke the crystal symmetry of TiO2, which endowed TiO2 with promising piezoelectric properties. The N-doped carbon nanosheets derived from C3N4 improved charge carrier separation efficiency and served as a flexible support to inhibit structural damage under sonication. Therefore, the N-TiO2@C NSs exhibited highly efficient activity for piezocatalytic H2 production (6.4 mmol·g-1·h-1) in the presence of methanol, much higher than those of the previously reported piezocatalysts. Our method is hoped to provide a new strategy for designing highly efficient piezocatalysts.
Collapse
Affiliation(s)
- Xiaojing Zhao
- College of Chemical Engineering and Materials, Quanzhou Normal University, Quanzhou 362000, China
| | - Xiaoxiao Lu
- College of Chemical Engineering and Materials, Quanzhou Normal University, Quanzhou 362000, China; College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350117, China
| | - Wen-Jie Chen
- College of Chemical Engineering and Materials, Quanzhou Normal University, Quanzhou 362000, China
| | - Min-Quan Yang
- College of Chemical Engineering and Materials, Quanzhou Normal University, Quanzhou 362000, China; College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350117, China.
| | - Xiaoyang Pan
- College of Chemical Engineering and Materials, Quanzhou Normal University, Quanzhou 362000, China; College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350117, China.
| | - Zhenfeng Bian
- Education Ministry Key and International Joint Lab of Resource Chemistry and Shanghai Key Lab of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, China.
| |
Collapse
|
17
|
Dang K, Liu S, Wu L, Tang D, Xue J, Wang J, Ji H, Chen C, Zhang Y, Zhao J. Bias distribution and regulation in photoelectrochemical overall water-splitting cells. Natl Sci Rev 2024; 11:nwae053. [PMID: 38666092 PMCID: PMC11044968 DOI: 10.1093/nsr/nwae053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 12/18/2023] [Accepted: 01/12/2024] [Indexed: 04/28/2024] Open
Abstract
The water oxidation half-reaction at anodes is always considered the rate-limiting step of overall water splitting (OWS), but the actual bias distribution between photoanodes and cathodes of photoelectrochemical (PEC) OWS cells has not been investigated systematically. In this work, we find that, for PEC cells consisting of photoanodes (nickel-modified n-Si [Ni/n-Si] and α-Fe2O3) with low photovoltage (Vph < 1 V), a large portion of applied bias is exerted on the Pt cathode for satisfying the hydrogen evolution thermodynamics, showing a thermodynamics-controlled characteristic. In contrast, for photoanodes (TiO2 and BiVO4) with Vph > 1 V, the bias required for cathode activation can be significantly reduced, exhibiting a kinetics-controlled characteristic. Further investigations show that the bias distribution can be regulated by tuning the electrolyte pH and using alternative half-reaction couplings. Accordingly, a volcano plot is presented for the rational design of the overall reactions and unbiased PEC cells. Motivated by this, an unbiased PEC cell consisting of a simple Ni/n-Si photoanode and Pt cathode is assembled, delivering a photocurrent density of 5.3 ± 0.2 mA cm-2.
Collapse
Affiliation(s)
- Kun Dang
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Siqin Liu
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Wu
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Daojian Tang
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Xue
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaming Wang
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongwei Ji
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chuncheng Chen
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuchao Zhang
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jincai Zhao
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
18
|
Zhang C, Wang L, Cao Z, Li R, Ye S. Electronic structure modulation of Mo sites in anion and cation co-doped MoO 2 nanospheres for electrocatalytic water oxidation. Chem Commun (Camb) 2024; 60:2744-2747. [PMID: 38196399 DOI: 10.1039/d3cc06039j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Herein, we synthesized a type of anion/cation co-doped MoO2 nanosphere as an efficient OER catalyst. The optimized Ni/N-MoO2 exhibited a lower overpotential of 270 mV at 10 mA cm-2 in 24 h. This work provides a unique direction for the synthesis of efficient and stable MoO2-based electrocatalysts for water splitting.
Collapse
Affiliation(s)
- Chunyan Zhang
- School of Materials and Chemistry & School of Plant Protection, Anhui Agricultural University, Hefei 230036, China.
| | - Ling Wang
- School of Materials and Chemistry & School of Plant Protection, Anhui Agricultural University, Hefei 230036, China.
| | - Zhuwei Cao
- School of Materials and Chemistry & School of Plant Protection, Anhui Agricultural University, Hefei 230036, China.
| | - Rui Li
- School of Materials and Chemistry & School of Plant Protection, Anhui Agricultural University, Hefei 230036, China.
| | - Sheng Ye
- School of Materials and Chemistry & School of Plant Protection, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
19
|
Zhou J, Cheng H, Cheng J, Wang L, Xu H. The Emergence of High-Performance Conjugated Polymer/Inorganic Semiconductor Hybrid Photoelectrodes for Solar-Driven Photoelectrochemical Water Splitting. SMALL METHODS 2024; 8:e2300418. [PMID: 37421184 DOI: 10.1002/smtd.202300418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/15/2023] [Indexed: 07/10/2023]
Abstract
Solar-driven photoelectrochemical (PEC) energy conversion holds great potential in converting solar energy into storable and transportable chemicals or fuels, providing a viable route toward a carbon-neutral society. Conjugated polymers are rapidly emerging as a new class of materials for PEC water splitting. They exhibit many intriguing properties including tunable electronic structures through molecular engineering, excellent light harvesting capability with high absorption coefficients, and facile fabrication of large-area thin films via solution processing. Recent advances have indicated that integrating rationally designed conjugated polymers with inorganic semiconductors is a promising strategy for fabricating efficient and stable hybrid photoelectrodes for high-efficiency PEC water splitting. This review introduces the history of developing conjugated polymers for PEC water splitting. Notable examples of utilizing conjugated polymers to broaden the light absorption range, improve stability, and enhance the charge separation efficiency of hybrid photoelectrodes are highlighted. Furthermore, key challenges and future research opportunities for further improvements are also presented. This review provides an up-to-date overview of fabricating stable and high-efficiency PEC devices by integrating conjugated polymers with state-of-the-art semiconductors and would have significant implications for the broad solar-to-chemical energy conversion research.
Collapse
Affiliation(s)
- Jie Zhou
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Hao Cheng
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jun Cheng
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Lei Wang
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Hangxun Xu
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
20
|
Lei R, Tang Y, Yan S, Qiu W, Guo Z, Tian X, Wang Q, Zhang K, Ju S, Yang S, Wang X. De-Pinning Fermi Level and Accelerating Surface Kinetics with an ALD Finish Boost the Fill Factor of BiVO 4 Photoanodes to 44. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306513. [PMID: 37803425 DOI: 10.1002/smll.202306513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/07/2023] [Indexed: 10/08/2023]
Abstract
With the rapid development of performance and long-term stability, bismuth vanadate (BiVO4 ) has emerged as the preferred photoanode in photoelectrochemical tandem devices. Although state-of-the-art BiVO4 photoanodes realize a saturated photocurrent density approaching the theoretical maximum, the fill factor (FF) is still inferior, pulling down the half-cell applied bias photon-to-current efficiency (HC-ABPE). Among the major fundamental limitations are the Fermi level pinning and sluggish surface kinetics at the low applied potentials. This work demonstrates that the plasma-assisted atomic layer deposition technique is capable of addressing these issues by seamlessly installing an angstrom-scale FeNi-layer between BiVO4 and electrolyte. Not only this ultrathin FeNi layer serves as an efficient OER cocatalyst, more importantly, it also effectively passivates the surface states of BiVO4 , de-pins the surface Fermi level, and enlarges the built-in voltage, allowing the photoanode to make optimal use of the photogenerated holes for achieving high FF up to 44% and HC-ABPE to 2.2%. This study offers a new approach for enhancing the FF of photoanodes and provides guidelines for designing efficient unassisted solar fuel devices.
Collapse
Affiliation(s)
- Renbo Lei
- School of Advanced Materials, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Yupu Tang
- School of Advanced Materials, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Shihan Yan
- School of Advanced Materials, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Weitao Qiu
- Guangdong Provincial Key Laboratory of Nano-Micro Materials Research, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Zheng Guo
- School of Advanced Materials, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Xu Tian
- School of Advanced Materials, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Qian Wang
- School of Advanced Materials, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Kai Zhang
- Guangdong Provincial Key Laboratory of Nano-Micro Materials Research, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Shanshan Ju
- School of Advanced Materials, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Shihe Yang
- Guangdong Provincial Key Laboratory of Nano-Micro Materials Research, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Xinwei Wang
- School of Advanced Materials, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| |
Collapse
|
21
|
Yang X, Cui J, Lin L, Bian A, Dai J, Du W, Guo S, Hu J, Xu X. Enhanced Charge Separation in Nanoporous BiVO4 by External Electron Transport Layer Boosts Solar Water Splitting. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305567. [PMID: 38059797 PMCID: PMC10837342 DOI: 10.1002/advs.202305567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/10/2023] [Indexed: 12/08/2023]
Abstract
The optimization of charge transport with electron-hole separation directed toward specific redox reactions is a crucial mission for artificial photosynthesis. Bismuth vanadate (BiVO4 , BVO) is a popular photoanode material for solar water splitting, but it faces tricky challenges in poor charge separation due to its modest charge transport properties. Here, a concept of the external electron transport layer (ETL) is first proposed and demonstrated its effectiveness in suppressing the charge recombination both in bulk and at surface. Specifically, a conformal carbon capsulation applied on BVO enables a remarkable increase in the charge separation efficiency, thanks to its critical roles in passivating surface charge-trapping sites and building external conductance channels. Through decorated with an oxygen evolution catalyst to accelerate surface charge transfer, the carbon-encased BVO (BVO@C) photoanode manifests durable water splitting over 120 h with a high current density of 5.9 mA cm-2 at 1.23 V versus the reversible hydrogen electrode (RHE) under 1 sun irradiation (100 mW cm-2 , AM 1.5 G), which is an activity-stability trade-off record for single BVO light absorber. This work opens up a new avenue to steer charge separation via external ETL for solar fuel conversion.
Collapse
Affiliation(s)
- Xiaotian Yang
- College of Physics Science and Technology, and Interdisciplinary Research CenterYangzhou UniversityYangzhou225002China
| | - Jianpeng Cui
- College of Physics Science and Technology, and Interdisciplinary Research CenterYangzhou UniversityYangzhou225002China
| | - Luxue Lin
- College of Physics Science and Technology, and Interdisciplinary Research CenterYangzhou UniversityYangzhou225002China
| | - Ang Bian
- School of ScienceJiangsu University of Science and TechnologyZhenjiang212100China
| | - Jun Dai
- School of ScienceJiangsu University of Science and TechnologyZhenjiang212100China
| | - Wei Du
- College of Physics Science and Technology, and Interdisciplinary Research CenterYangzhou UniversityYangzhou225002China
| | - Shiying Guo
- College of Physics Science and Technology, and Interdisciplinary Research CenterYangzhou UniversityYangzhou225002China
| | - Jingguo Hu
- College of Physics Science and Technology, and Interdisciplinary Research CenterYangzhou UniversityYangzhou225002China
| | - Xiaoyong Xu
- College of Physics Science and Technology, and Interdisciplinary Research CenterYangzhou UniversityYangzhou225002China
| |
Collapse
|
22
|
Peng S, Liu D, An K, Ying Z, Chen M, Feng J, Lo KH, Pan H. n-Si/SiO x /CoO x -Mo Photoanode for Efficient Photoelectrochemical Water Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304376. [PMID: 37649206 DOI: 10.1002/smll.202304376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/29/2023] [Indexed: 09/01/2023]
Abstract
Green hydrogen is considered to be the key for solving the emerging energy and environmental issues. The photoelectrochemical (PEC) process for the production of green hydrogen has been widely investigated because solar power is clean and renewable. However, mass production in this way is still far away from reality. Here, a Si photoanode is reported with CoOx as co-catalyst for efficient water oxidation. It is found that a high photovoltage of 350 mV can be achieved in 1.0 m K3 BO3 . Importantly, the photovoltage can be further increased to 650 mV and the fill factor of 0.62 is obtained in 1.0 m K3 BO3 by incorporating Mo into CoOx . The Mo-incorporated photoanode is also highly stable. It is shown that the incorporation of Mo can reduce the particle size of co-catalyst on the Si surface, improve the particle-distribution uniformity, and increase the density of particles, which can effectively enhance the light absorption and the electrochemical active surface area. Importantly, the Mo-incorporation results in high energy barrier in the heterojunction. All of these factors are attributed to improved the PEC performance. These findings may provide new strategies to maximize the solar-to-fuel efficiency by tuning the co-catalysts on the Si surface.
Collapse
Affiliation(s)
- Shuyang Peng
- Department of Electromechanical Engineering, Faculty of Science and Technology, University of Macau, Macao S. A. R., 999078, China
| | - Di Liu
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao S. A. R., 999078, China
| | - Keyu An
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao S. A. R., 999078, China
| | - Zhiqin Ying
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences (CAS), Ningbo City, 315201, P. R. China
| | - Mingpeng Chen
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, School of Materials and Energy, Yunnan University, Kunming, 650091, China
| | - Jinxian Feng
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao S. A. R., 999078, China
| | - Kin Ho Lo
- Department of Electromechanical Engineering, Faculty of Science and Technology, University of Macau, Macao S. A. R., 999078, China
| | - Hui Pan
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao S. A. R., 999078, China
- Department of Physics and Chemistry, Faculty of Science and Technology, University of Macau, Macao S. A. R., 999078, China
| |
Collapse
|
23
|
Xu W, Zhang JP, Tang XQ, Yang X, Han YW, Lan MJ, Tang X, Shen Y. Highly efficient sulfur-doped Ni 3Fe electrocatalysts for overall water splitting: Rapid synthesis, mechanism and driven by sustainable energy. J Colloid Interface Sci 2024; 653:1423-1431. [PMID: 37804611 DOI: 10.1016/j.jcis.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 09/25/2023] [Accepted: 10/01/2023] [Indexed: 10/09/2023]
Abstract
Designing efficient electrocatalysts and insight into their electrocatalytic mechanisms are significantly important for storing and converting the intermittent sustainable energy sources into clean hydrogen. In this study, we synthesize the bifunctional sulfur-doped Ni3Fe (NiFeS) electrocatalysts by a simple electrodeposition method only taking 30 s. After optimizing the components, it was found that the synthesized NiFeS electrocatalysts exhibit the excellent hydrogen and oxygen evolution reaction performances in 1.0 M potassium hydroxide solution. The results of experimental and theoretical calculations reveal that the introduced sulfur could optimize the electronic distribution, which make Ni electron-rich and Fe electron-deficient, thereby weakening the energy barriers of potential-determining steps, i.e. the absorption of H2O molecule on Ni sites for HER and formation of *OOH on Fe sites for OER, respectively. Besides, the NiFeS electrocatalysts are used as the bifunctional electrodes to water splitting, which only need 1.51 V to reach 10 mA·cm-2, and exhibits excellent durability and a >95% Faraday efficiency. Furthermore, the intermittent kinetic, wind and solar energies are used to power the assembled electrolyzer with NiFeS bi-electrodes to verify their great application potential. This work not only proved a deep insight into mechanism of the boosted electrocatalytic activities of NiFeS, but also the synthesized NiFeS electrocatalysts have great application prospect in the conversion of intermittent and sustainable energy sources into hydrogen by water electrocatalysis.
Collapse
Affiliation(s)
- Wei Xu
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing 400067, China; Department of Physics, School of Artificial Intelligence, Chongqing Technology and Business University, Chongqing 400067, China; Chongqing South-to-Thais Environmental Protection Technology Research Institute Co., Ltd., Chongqing 400060, China.
| | - Jun-Peng Zhang
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing 400067, China
| | - Xian-Qing Tang
- Department of Physics, School of Artificial Intelligence, Chongqing Technology and Business University, Chongqing 400067, China
| | - Xu Yang
- Department of Physics, School of Artificial Intelligence, Chongqing Technology and Business University, Chongqing 400067, China
| | - Yi-Wen Han
- Department of Physics, School of Artificial Intelligence, Chongqing Technology and Business University, Chongqing 400067, China
| | - Ming-Jian Lan
- Department of Physics, School of Artificial Intelligence, Chongqing Technology and Business University, Chongqing 400067, China
| | - Xin Tang
- College of Material Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Yu Shen
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing 400067, China; Chongqing South-to-Thais Environmental Protection Technology Research Institute Co., Ltd., Chongqing 400060, China.
| |
Collapse
|
24
|
Lei R, Tang Y, Qiu W, Yan S, Tian X, Wang Q, Chen Q, Wang Z, Qian W, Xu Q, Yang S, Wang X. Prompt Hole Extraction Suppresses V 5+ Dissolution and Sustains Large-Area BiVO 4 Photoanodes for Over 2100 h Water Oxidation. NANO LETTERS 2023; 23:11785-11792. [PMID: 38078823 DOI: 10.1021/acs.nanolett.3c03743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Nanostructured bismuth vanadate (BiVO4) is at the forefront of emerging photoanodes in photoelectrochemical tandem devices for solar water splitting owing to the suitable band edge position and efficient charge separation capability. However, the (photo)chemical corrosion involving V5+ dissolution limits the long-term stability of BiVO4. Herein, guided by DFT calculations, we introduce an ALD-derived NiOx catalyst layer on BiVO4 to stabilize the surface Bi-O bonds, facilitate hole extraction, and thus suppress the V5+ dissolution. At the same time, the ALD NiOx catalyst layer could efficiently suppress the surface recombination and accelerate the surface OER kinetics, boosting the half-cell applied bias photon-to-current efficiency of BiVO4 to 2.05%, as well as a fill factor of 47.1%. By adding trace NaVO3 to the electrolyte, the NiOx/BiVO4 photoanode with an illumination area of 10.5 cm2 shows a record operational stability of more than 2100 h.
Collapse
Affiliation(s)
- Renbo Lei
- School of Advanced Materials, Shenzhen Graduate School, Peking University, Shenzhen 518055, People's Republic of China
| | - Yupu Tang
- School of Advanced Materials, Shenzhen Graduate School, Peking University, Shenzhen 518055, People's Republic of China
| | - Weitao Qiu
- School of Advanced Materials, Shenzhen Graduate School, Peking University, Shenzhen 518055, People's Republic of China
| | - Shihan Yan
- School of Advanced Materials, Shenzhen Graduate School, Peking University, Shenzhen 518055, People's Republic of China
| | - Xu Tian
- School of Advanced Materials, Shenzhen Graduate School, Peking University, Shenzhen 518055, People's Republic of China
| | - Qian Wang
- School of Advanced Materials, Shenzhen Graduate School, Peking University, Shenzhen 518055, People's Republic of China
| | - Qindong Chen
- School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen 518055, People's Republic of China
| | - Zhenhui Wang
- School of Advanced Materials, Shenzhen Graduate School, Peking University, Shenzhen 518055, People's Republic of China
| | - Wei Qian
- School of Advanced Materials, Shenzhen Graduate School, Peking University, Shenzhen 518055, People's Republic of China
| | - Qiyong Xu
- School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen 518055, People's Republic of China
| | - Shihe Yang
- School of Advanced Materials, Shenzhen Graduate School, Peking University, Shenzhen 518055, People's Republic of China
| | - Xinwei Wang
- School of Advanced Materials, Shenzhen Graduate School, Peking University, Shenzhen 518055, People's Republic of China
| |
Collapse
|
25
|
Poeira RG, Siopa D, Anacleto P, Sadewasser S, Dale PJ. Optical Measurement of the Stoichiometry of Thin-Film Compounds Synthetized From Multilayers: Example of Cu(In,Ga)Se2. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:1847-1855. [PMID: 37850643 DOI: 10.1093/micmic/ozad105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/26/2023] [Accepted: 09/18/2023] [Indexed: 10/19/2023]
Abstract
The properties of centimeter-sized thin-film compound semiconductors depend upon the morphology and chemical composition of the multiple submicrometer-thick elemental and alloy precursor layers from which they are synthesized. The challenge is to characterize the individual precursor layers over these length scales during a multistep synthesis without altering or contaminating them. Conventional electron and X-ray-based morphological and compositional techniques are invasive, require preparation, and are thus incompatible with in-line synthesis processes. In a proof-of-concept study, we applied confocal laser scanning microscopy (CLSM) as a noninvasive optical imaging technique, which measures three-dimensional surface profiles with nanoscale resolution, to this challenge. Using an array of microdots containing Cu(In,Ga)Se2 semiconductor layers for solar cells as an example, we performed CLSM correlative studies to quantify morphological and layer thickness changes during four stages of a thin-film compound synthesis. Using simple assumptions, we measured the micrometer-scale spatially resolved chemical composition of stacked precursor layers to predict the final material phases formed and predict relative device performance. The high spatial resolution, coupled with the ability to measure sizeable areas without influencing the synthesis at high speed, makes CLSM an excellent prospect for research and quality control tool for thin films.
Collapse
Affiliation(s)
- Ricardo G Poeira
- Department of Physics and Materials Science, University of Luxembourg, 41, rue du Brill, L-4422 Belvaux, Luxembourg
| | - Daniel Siopa
- Department of Physics and Materials Science, University of Luxembourg, 41, rue du Brill, L-4422 Belvaux, Luxembourg
| | - Pedro Anacleto
- INL-International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal
| | - Sascha Sadewasser
- INL-International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal
| | - Phillip J Dale
- Department of Physics and Materials Science, University of Luxembourg, 41, rue du Brill, L-4422 Belvaux, Luxembourg
| |
Collapse
|
26
|
Lei Y, Chen H, Shu C, Chen C. Fe- and S-Modified BiOI as Catalysts to Oxygen Evolution and Hydrogen Evolution Reactions in Overall Photoelectrochemical Water Splitting. MATERIALS (BASEL, SWITZERLAND) 2023; 17:6. [PMID: 38203860 PMCID: PMC10780252 DOI: 10.3390/ma17010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/03/2023] [Accepted: 12/07/2023] [Indexed: 01/12/2024]
Abstract
Developing catalysts with superior activity to hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is equally important to the overall photoelectrochemical water splitting to produce hydrogen. In this work, bismuth oxyiodide (BiOI), iron-modified bismuth iodide Fe/BiOI, and the sulfurized S-Fe/BiOI were prepared using the solvothermal method. The three materials all have good absorption ability for visible light. The photoelectrochemical catalytic activity of BiOI to oxygen evolution reaction (OER) is significantly enhanced after iron modification, while the sulfurized product S-Fe/BiOI exhibits better catalytic activity to hydrogen evolution reaction (HER). Hence, OER and HER can be simultaneously catalyzed by using Fe/BiOI and S-Fe/BiOI as anodic and cathodic catalysts to facilitate the overall photoelectrochemical water splitting process.
Collapse
Affiliation(s)
- Yu Lei
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
- Chongqing Key Laboratory of Materials Surface & Interface Science, Chongqing University of Arts and Sciences, Chongqing 402160, China; (H.C.); (C.S.)
| | - Hongdian Chen
- Chongqing Key Laboratory of Materials Surface & Interface Science, Chongqing University of Arts and Sciences, Chongqing 402160, China; (H.C.); (C.S.)
| | - Chenyang Shu
- Chongqing Key Laboratory of Materials Surface & Interface Science, Chongqing University of Arts and Sciences, Chongqing 402160, China; (H.C.); (C.S.)
| | - Changguo Chen
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| |
Collapse
|
27
|
Guo C, Tang Y, Yang Z, Zhao T, Liu J, Zhao Y, Wang F. Reinforcing the Efficiency of Photothermal Catalytic CO 2 Methanation through Integration of Ru Nanoparticles with Photothermal MnCo 2O 4 Nanosheets. ACS NANO 2023. [PMID: 37982387 DOI: 10.1021/acsnano.3c07630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Carbon dioxide (CO2) hydrogenation to methane (CH4) is regarded as a promising approach for CO2 utilization, whereas achieving desirable conversion efficiency under mild conditions remains a significant challenge. Herein, we have identified ultrasmall Ru nanoparticles (∼2.5 nm) anchored on MnCo2O4 nanosheets as prospective photothermal catalysts for CO2 methanation at ambient pressure with light irradiation. Our findings revealed that MnCo2O4 nanosheets exhibit dual functionality as photothermal substrates for localized temperature enhancement and photocatalysts for electron donation. As such, the optimized Ru/MnCo2O4-2 gave a high CH4 production rate of 66.3 mmol gcat-1 h-1 (corresponding to 5.1 mol gRu-1 h-1) with 96% CH4 selectivity at 230 °C under ambient pressure and light irradiation (420-780 nm, 1.25 W cm-2), outperforming most reported plasmonic metal-based catalysts. The mechanisms behind the intriguing photothermal catalytic performance improvement were substantiated through a comprehensive investigation involving experimental characterizations, numerical simulations and density functional theory (DFT) calculations, which unveiled the synergistic effects of enhanced charge separation efficiency, improved reaction kinetics, facilitated reactant adsorption/activation and accelerated intermediate conversion under light irradiation over Ru/MnCo2O4. A comparison study showed that, with identical external input energy during the reaction, Ru/MnCo2O4-2 had a much higher catalytic efficiency compared to Ru/TiO2 and Ru/Al2O3. This study underscores the pivotal role played by photothermal supports and is believed to engender a heightened interest in plasmonic metal nanoparticles anchored on photothermal substrates for CO2 methanation under mild conditions.
Collapse
Affiliation(s)
- Chan Guo
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan 250061, P. R. China
| | - Yunxiang Tang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan 250061, P. R. China
| | - Zhengyi Yang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan 250061, P. R. China
| | - Tingting Zhao
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan 250061, P. R. China
| | - Jiurong Liu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan 250061, P. R. China
| | - Yufei Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Fenglong Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan 250061, P. R. China
- Shenzhen Research Institute of Shandong University, Shenzhen, Guangdong 518057, China
| |
Collapse
|
28
|
Zhang M, Xue H, Han X, Zhang Z, Jiang Y, Deng Y, Hu W. Accelerate charge separation in Cu 2O/MoO 2 photocathode for photoelectrocatalytic hydrogen evolution. J Colloid Interface Sci 2023; 650:284-293. [PMID: 37413862 DOI: 10.1016/j.jcis.2023.06.203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/23/2023] [Accepted: 06/30/2023] [Indexed: 07/08/2023]
Abstract
Photoelectrocatalyzing water reduction is a potential approach to building a green and sustainable society. As a benchmark photocathode, Cu2O receives much attention but faces serious charge recombination and photocorrosion. This work prepared an excellent Cu2O/MoO2 photocathode via in situ electrodeposition. A systematical study of theory and experiment demonstrates that MoO2 not only effectively passivates the surface state of Cu2O as well as accelerates reaction kinetics as a cocatalyst, but also promotes the directional migration and separation of photogenerated charge. As expected, the constructed photocathode exhibits a highly enhanced photocurrent density and an appealing energy transformation efficacy. Importantly, MoO2 can inhibit the reduction of Cu+ in Cu2O via a formed internal electric field and shows excellent photoelectrochemical stability. These findings pave the way to designing a high-activity photocathode with high stability.
Collapse
Affiliation(s)
- Mengmeng Zhang
- State Key Laboratory of Separation Membrane and Membrane Processes, Tianjin Municipal Key Laboratory of Advanced Fiber and Energy Storage, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Hui Xue
- School of Mechanical Engineering, Tiangong University, Tianjin 300387, China
| | - Xiaopeng Han
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Zhijia Zhang
- State Key Laboratory of Separation Membrane and Membrane Processes, Tianjin Municipal Key Laboratory of Advanced Fiber and Energy Storage, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Yong Jiang
- State Key Laboratory of Separation Membrane and Membrane Processes, Tianjin Municipal Key Laboratory of Advanced Fiber and Energy Storage, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China.
| | - Yida Deng
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou 570228, China.
| | - Wenbin Hu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin 300350, China
| |
Collapse
|
29
|
Wang H, Gao RT, Nguyen NT, Bai J, Ren S, Liu X, Zhang X, Wang L. Superhydrophilic CoFe Dispersion of Hydrogel Electrocatalysts for Quasi-Solid-State Photoelectrochemical Water Splitting. ACS NANO 2023; 17:22071-22081. [PMID: 37901939 DOI: 10.1021/acsnano.3c08861] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Photoelectrochemical (PEC) water splitting is an attractive strategy to convert solar energy to hydrogen. However, the lifetime of PEC devices is restricted by the photocorrosion of semiconductors and the instability of co-catalysts. Herein, we report a feasible in situ inherent cross-linking method for stabilizing semiconductors that uses a CoFe-dispersed polyacrylamide (PAM) hydrogel as a transparent protector. The CoFe-PAM hydrogel protected BiVO4 (BVO) photoanode reached a photocurrent density of 5.7 mA cm-2 at 1.23 VRHE under AM 1.5G illumination with good stability. The PAM hydrogel network improved the loading of Fe sites while enabling the retention of more CoFe co-catalysts and increasing the electron density of the reaction active sites, further improving the PEC performance and stability. More importantly, by tuning the polymerization network, we pioneer the use of quasi-solid-state electrolytes in photoelectrochemistry, where the high concentration of ionic solvent in the PAM hydrogel ensures effective charge transport and good water storage owing to the hydrophilic and porous structure of the hydrogel. This work expands the scope of PEC research by providing a class of three-dimensional hydrogel electrocatalysts and quasi-solid-state electrolytes with huge extension potential, and the versatility of these quasi-solid-state electrolytes can be employed for other semiconductors.
Collapse
Affiliation(s)
- Hao Wang
- College of Chemistry and Chemical Engineering, College of Energy Material and Chemistry, Inner Mongolia University, Hohhot 010021, China
| | - Rui-Ting Gao
- College of Chemistry and Chemical Engineering, College of Energy Material and Chemistry, Inner Mongolia University, Hohhot 010021, China
| | - Nhat Truong Nguyen
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering and Computer Science, Concordia University, Montreal, QC H3G 2W1, Canada
| | - Jinwei Bai
- College of Chemistry and Chemical Engineering, College of Energy Material and Chemistry, Inner Mongolia University, Hohhot 010021, China
| | - Shijie Ren
- College of Chemistry and Chemical Engineering, College of Energy Material and Chemistry, Inner Mongolia University, Hohhot 010021, China
| | - Xianhu Liu
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Wenhua Road 97-1, Zhengzhou 450002, China
| | - Xueyuan Zhang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Lei Wang
- College of Chemistry and Chemical Engineering, College of Energy Material and Chemistry, Inner Mongolia University, Hohhot 010021, China
| |
Collapse
|
30
|
Yang G, Yang W, Gu H, Fu Y, Wang B, Cai H, Xia J, Zhang N, Liang C, Xing G, Yang S, Chen Y, Huang W. Perovskite-Solar-Cell-Powered Integrated Fuel Conversion and Energy-Storage Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300383. [PMID: 36906920 DOI: 10.1002/adma.202300383] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/26/2023] [Indexed: 06/18/2023]
Abstract
Metal halide hybrid perovskite solar cells (PSCs) have received considerable attention over the past decade owing to their potential for low-cost, solution-processable, earth-abundant, and high-performance superiority, increasing power conversion efficiencies of up to 25.7%. Solar energy conversion into electricity is highly efficient and sustainable, but direct utilization, storage, and poor energy diversity are difficult to achieve, resulting in a potential waste of resources. Considering its convenience and feasibility, converting solar energy into chemical fuels is regarded as a promising pathway for boosting energy diversity and expanding its utilization. In addition, the energy conversion-storage integrated system can efficiently sequentially capture, convert, and store energy in electrochemical energy storage devices. However, a comprehensive overview focusing on PSC-self-driven integrated devices with a discussion of their development and limitations remains lacking. Here, focus is on the development of representative configurations of emerging PSC-based photo-electrochemical devices including self-charging power packs, unassisted solar water splitting/CO2 reduction. The advanced progresses in this field, including configuration design, key parameters, working principles, integration strategies, electrode materials, and their performance evaluations are also summarized. Finally, scientific challenges and future perspectives for ongoing research in this field are presented.
Collapse
Affiliation(s)
- Gege Yang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710000, P. R. China
| | - Wenhan Yang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710000, P. R. China
| | - Hao Gu
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, P. R. China
| | - Ying Fu
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710000, P. R. China
| | - Bin Wang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710000, P. R. China
| | - Hairui Cai
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710000, P. R. China
| | - Junmin Xia
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, P. R. China
| | - Nan Zhang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, P. R. China
| | - Chao Liang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710000, P. R. China
| | - Guichuan Xing
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, P. R. China
| | - Shengchun Yang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710000, P. R. China
| | - Yiwang Chen
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang, 330000, P. R. China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an, 710000, P. R. China
| |
Collapse
|
31
|
Guo Y, Hu X, Sun R, Wang X, Tan B. Covalent Triazine Framework Films through In-Situ Growth for Photocatalytic Hydrogen Evolution. CHEMSUSCHEM 2023; 16:e202300759. [PMID: 37365972 DOI: 10.1002/cssc.202300759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/23/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
Photocatalytic hydrogen evolution through water splitting offers a promising way to convert solar energy into chemical energy. Covalent triazine frameworks (CTFs) are ideal photocatalysts owing to its exceptional in-plane π-conjugation, high chemical stability, and sturdy framework structure. However, CTF-based photocatalysts are typically in powder form, which presents challenges in catalyst recycling and scale-up applications. To overcome this limitation, we present a strategy for producing CTF films with excellent hydrogen evolution rate that are more suitable for large-scale water splitting due to their ease of separation and recyclability. We developed a simple and robust technique for producing CTF films on glass substrates via in-situ growth polycondensation, with thicknesses adjustable from 800 nm to 27 μm. These CTF films exhibit exceptional photocatalytic activity, with the hydrogen evolution reaction (HER) performance reaching as high as 77.8 mmol h-1 g-1 and 213.3 mmol m-2 h-1 with co-catalyst Pt under visible light (≥420 nm). Additionally, they demonstrate good stability and recyclability, further highlighting their potential in green energy conversion and photocatalytic devices. Overall, our work presents a promising approach for producing CTF films suitable for a range of applications and paves the way for further developments in this field.
Collapse
Affiliation(s)
- Yantong Guo
- Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road No. 1037, 430074, Wuhan, P. R. China
| | - Xunliang Hu
- Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road No. 1037, 430074, Wuhan, P. R. China
| | - Ruixue Sun
- Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road No. 1037, 430074, Wuhan, P. R. China
| | - Xiaoyan Wang
- Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road No. 1037, 430074, Wuhan, P. R. China
| | - Bien Tan
- Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road No. 1037, 430074, Wuhan, P. R. China
| |
Collapse
|
32
|
Xu Z, Chen L, Brabec CJ, Guo F. All Printed Photoanode/Photovoltaic Mini-Module for Water Splitting. SMALL METHODS 2023; 7:e2300619. [PMID: 37382406 DOI: 10.1002/smtd.202300619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/21/2023] [Indexed: 06/30/2023]
Abstract
Printing a large-area bismuth vanadate photoanode offers a promising approach for cost-effective photoelectrochemical (PEC) water splitting. However, the light absorption trade-off with charge transfer, as well as stability issues always lead to poor PEC efficiency. Here, the solution-processed recipe is advanced with BiI3 dopant for the printed deposition with controllable crystal growth. The resultant BiVO4 films prefer (001) orientation with nanorod feature on substrate, allowing a faster charge transfer and improved photocurrent. The BiVO4 photoanode in tandem with perovskite solar module delivers an operating photocurrent density of 5.88 mA cm-2 at zero bias in 3.11 cm2 active area under AM 1.5 G illumination, yielding a solar-to-hydrogen efficiency as high as 7.02% for unbiased water splitting. Equally important, the stability of the aged BiVO4 rods has been addressed to distinguish phase segregation at surface. The photocatalysis degradation composes of vanadium loss and Bi2 O3 enriching at the surface, opening a lid on the long-term stability of BiVO4 photoanodes.
Collapse
Affiliation(s)
- Zhenhua Xu
- School of Materials Science and Engineering, NingboTech University, Ningbo, 315100, China
- Institute of New Energy Technology, College of Information Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Lang Chen
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha, 410082, China
| | - Christoph J Brabec
- Institute of Materials for Electronics and Energy Technology (i-MEET), Friedrich-Alexander University Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Fei Guo
- Institute of New Energy Technology, College of Information Science and Technology, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
33
|
Zhou Y, Ai S, Chai Y, Yuan R, Liu H. Ultrasensitive Photocathodic Biosensor Based on the Cu 2O/PTB7-Th/PDA + Composite with Enhanced Photoelectrochemical Performance for the Detection of MicroRNA-375-3p. Anal Chem 2023; 95:12383-12390. [PMID: 37559508 DOI: 10.1021/acs.analchem.3c01935] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Herein, an ultrasensitive photocathodic biosensor was fabricated based on Cu2O/PTB7-Th/PDA+ photoactive materials with high photocarrier separation efficiency for the detection of microRNA-375-3p. Impressively, the photocathodic signal of the Cu2O material was significantly enhanced by using PTB7-Th as an energy level-matching photoactive material to enhance the bulk charge separation and N,N-bis (2-(trimethylammoniumiodide) propylene) perylene-3,4,9,10-tetracarboxydiimide (PDA+) as an interfacial charge transfer mediator to efficiently suppress charge recombination at the photoelectrode/electrolyte interface. Compared with the pristine Cu2O as a photocathode, the obtained Cu2O/PTB7-Th/PDA+ exhibited a 17 times higher photocathodic signal. As a proof of concept, a PEC biosensor was fabricated by using Cu2O/PTB7-Th/PDA+ as a photoactive material and a target-triggered 3D DNA walker integrated with the dumbbell hybridization chain reaction (DHCR) as a signal amplifier to achieve the sensitive detection of microRNA-375-3p with a detection limit of 0.3 fM. This work provided a method to increase the photocurrent signal and the sensitivity of PEC-sensing platforms for the detection of biomarkers and disease diagnosis.
Collapse
Affiliation(s)
- Yuying Zhou
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Simin Ai
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yaqin Chai
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Hongyan Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
34
|
Patil RP, Mahadik MA, Chae WS, Choi SH, Jang JS. Porous Zn 1-xCd xSe/ZnO Nanorod Photoanode Fabricated from ZnO Building Blocks Grown on Zn Foil for Photoelectrochemical Solar Hydrogen Production. ACS APPLIED MATERIALS & INTERFACES 2023; 15:37361-37370. [PMID: 37500097 DOI: 10.1021/acsami.3c05476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Solar energy is the most promising, efficient, environmentally friendly energy source with the potential to meet global demand due to its non-polluting nature. Herein, a porous Zn1-xCdxSe/ZnO nanorod (NR) heterojunction was synthesized by hydrothermal and low-temperature solvothermal methods. First, the ZnO NR was grown on a Zinc foil, and an inorganic-organic hybrid ZnSe(en)0.5 material was developed by the low-temperature solvothermal method. In this work, the ZnO NR acted as a base material and a building block for the growth of ZnSe(en)0.5. Moreover, after the solvothermal process, the reduced Se2- reacts with the ZnO NR and forms inorganic-organic hybrid ZnSe(en)0.5. After the selenization process, the obtained material shows a red brick color due to the absorbance of excessive Se metal particles during the solvothermal process. Furthermore, in order to enhance the photoelectrochemical properties, the Cd2+ ion exchange method was applied at various temperatures (140, 160, and 180 °C for 3 h) to produce a precursor material to a porous Zn1-xCdxSe/ZnO NR nanostructure. The optimum Zn1-xCdxSe/ZnO NR-160 photoanode showed a high photocurrent density of 7.8 mA·cm-2 at -0.5 V vs. Ag/AgCl with a hydrogen evolution rate of 199 μmol·cm-2/3 h. The improved photocurrent performance was attributed to effective light absorption and prolonged recombination lifetime.
Collapse
Affiliation(s)
- Ruturaj P Patil
- Division of Biotechnology, Safety, Environment and Life Science Institute, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan 54596, Republic of Korea
| | - Mahadeo A Mahadik
- Division of Biotechnology, Safety, Environment and Life Science Institute, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan 54596, Republic of Korea
| | - Weon-Sik Chae
- Daegu Center, Korea Basic Science Institute, Daegu 41566, Republic of Korea
| | - Sun Hee Choi
- Pohang Accelerator Laboratory (PAL), Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Jum Suk Jang
- Division of Biotechnology, Safety, Environment and Life Science Institute, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan 54596, Republic of Korea
| |
Collapse
|
35
|
Liu B, Wang S, Zhang G, Gong Z, Wu B, Wang T, Gong J. Tandem cells for unbiased photoelectrochemical water splitting. Chem Soc Rev 2023. [PMID: 37325843 DOI: 10.1039/d3cs00145h] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Hydrogen is an essential energy carrier which will address the challenges posed by the energy crisis and climate change. Photoelectrochemical water splitting (PEC) is an important method for producing solar-powered hydrogen. The PEC tandem configuration harnesses sunlight as the exclusive energy source to drive both the hydrogen (HER) and oxygen evolution reactions (OER), simultaneously. Therefore, PEC tandem cells have been developed and gained tremendous interest in recent decades. This review describes the current status of the development of tandem cells for unbiased photoelectrochemical water splitting. The basic principles and prerequisites for constructing PEC tandem cells are introduced first. We then review various single photoelectrodes for use in water reduction or oxidation, and highlight the current state-of-the-art discoveries. Second, a close look into recent developments of PEC tandem cells in water splitting is provided. Finally, a perspective on the key challenges and prospects for the development of tandem cells for unbiased PEC water splitting are given.
Collapse
Affiliation(s)
- Bin Liu
- School of Chemical Engineering and Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, Tianjin 300072, China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Department of Chemical and Environmental Engineering, School of Engineering and Applied Sciences, Yale University, New Haven, CT 06520, USA
| | - Shujie Wang
- School of Chemical Engineering and Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, Tianjin 300072, China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| | - Gong Zhang
- School of Chemical Engineering and Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, Tianjin 300072, China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Zichen Gong
- School of Chemical Engineering and Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, Tianjin 300072, China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Bo Wu
- School of Chemical Engineering and Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, Tianjin 300072, China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Tuo Wang
- School of Chemical Engineering and Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, Tianjin 300072, China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Jinlong Gong
- School of Chemical Engineering and Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, Tianjin 300072, China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Department of Chemical and Environmental Engineering, School of Engineering and Applied Sciences, Yale University, New Haven, CT 06520, USA
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
36
|
Wang FD, Yang LJ, Wang XX, Rong Y, Yang LB, Zhang CX, Yan FY, Wang QL. Pyrazine-Functionalized Donor-Acceptor Covalent Organic Frameworks for Enhanced Photocatalytic H 2 Evolution with High Proton Transport. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207421. [PMID: 36890778 DOI: 10.1002/smll.202207421] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/13/2023] [Indexed: 06/08/2023]
Abstract
The well-defined 2D or 3D structure of covalent organic frameworks (COFs) makes it have great potential in photoelectric conversion and ions conduction fields. Herein, a new donor-accepter (D-A) COF material, named PyPz-COF, constructed from electron donor 4,4',4″,4'″-(pyrene-1,3,6,8-tetrayl)tetraaniline and electron accepter 4,4'-(pyrazine-2,5-diyl)dibenzaldehyde with an ordered and stable π-conjugated structure is reported. Interestingly, the introduction of pyrazine ring endows the PyPz-COF a distinct optical, electrochemical, charge-transfer properties, and also brings plentiful CN groups that enrich the proton by hydrogen bonds to enhance the photocatalysis performance. Thus, PyPz-COF exhibits a significantly improved photocatalytic hydrogen generation performance up to 7542 µmol g-1 h-1 with Pt as cocatalyst, also in clear contrast to that of PyTp-COF without pyrazine introduction (1714 µmol g-1 h-1 ). Moreover, the abundant nitrogen sites of the pyrazine ring and the well-defined 1D nanochannels enable the as-prepared COFs to immobilize H3 PO4 proton carriers in COFs through hydrogen bond confinement. The resulting material has an impressive proton conduction up to 8.10 × 10-2 S cm-1 at 353 K, 98% RH. This work will inspire the design and synthesis of COF-based materials with both efficient photocatalysis and proton conduction performance in the future.
Collapse
Affiliation(s)
- Feng-Dong Wang
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Li-Juan Yang
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Xin-Xin Wang
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Yi Rong
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Li-Bin Yang
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Chen-Xi Zhang
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
- Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Fang-You Yan
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Qing-Lun Wang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
37
|
Fang WW, Yang GY, Fan ZH, Chen ZC, Hu XL, Zhan Z, Hussain I, Lu Y, He T, Tan BE. Conjugated cross-linked phosphine as broadband light or sunlight-driven photocatalyst for large-scale atom transfer radical polymerization. Nat Commun 2023; 14:2891. [PMID: 37210380 DOI: 10.1038/s41467-023-38402-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 05/01/2023] [Indexed: 05/22/2023] Open
Abstract
The use of light to regulate photocatalyzed reversible deactivation radical polymerization (RDRP) under mild conditions, especially driven by broadband light or sunlight directly, is highly desired. But the development of a suitable photocatalyzed polymerization system for large-scale production of polymers, especially block copolymers, has remained a big challenge. Herein, we report the development of a phosphine-based conjugated hypercrosslinked polymer (PPh3-CHCP) photocatalyst for an efficient large-scale photoinduced copper-catalyzed atom transfer radical polymerization (Cu-ATRP). Monomers including acrylates and methyl acrylates can achieve near-quantitative conversions under a wide range (450-940 nm) of radiations or sunlight directly. The photocatalyst could be easily recycled and reused. The sunlight-driven Cu-ATRP allowed the synthesis of homopolymers at 200 mL from various monomers, and monomer conversions approached 99% in clouds intermittency with good control over polydispersity. In addition, block copolymers at 400 mL scale can also be obtained, which demonstrates its great potential for industrial applications.
Collapse
Affiliation(s)
- Wei-Wei Fang
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei, Anhui, 230009, PR China
| | - Gui-Yu Yang
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei, Anhui, 230009, PR China
| | - Zi-Hui Fan
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei, Anhui, 230009, PR China
| | - Zi-Chao Chen
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei, Anhui, 230009, PR China
| | - Xun-Liang Hu
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, PR China
| | - Zhen Zhan
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, PR China
| | - Irshad Hussain
- Department of Chemistry & Chemical Engineering, SBA School of Science & Engineering, Lahore University of Management Sciences (LUMS), Lahore Cantt, Lahore, 54792, Pakistan
| | - Yang Lu
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei, Anhui, 230009, PR China
| | - Tao He
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei, Anhui, 230009, PR China.
| | - Bi-En Tan
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, PR China.
| |
Collapse
|
38
|
Gao RT, Zhang J, Nakajima T, He J, Liu X, Zhang X, Wang L, Wu L. Single-atomic-site platinum steers photogenerated charge carrier lifetime of hematite nanoflakes for photoelectrochemical water splitting. Nat Commun 2023; 14:2640. [PMID: 37156781 PMCID: PMC10167323 DOI: 10.1038/s41467-023-38343-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 04/26/2023] [Indexed: 05/10/2023] Open
Abstract
Although much effort has been devoted to improving photoelectrochemical water splitting of hematite (α-Fe2O3) due to its high theoretical solar-to-hydrogen conversion efficiency of 15.5%, the low applied bias photon-to-current efficiency remains a huge challenge for practical applications. Herein, we introduce single platinum atom sites coordination with oxygen atom (Pt-O/Pt-O-Fe) sites into single crystalline α-Fe2O3 nanoflakes photoanodes (SAs Pt:Fe2O3-Ov). The single-atom Pt doping of α-Fe2O3 can induce few electron trapping sites, enhance carrier separation capability, and boost charge transfer lifetime in the bulk structure as well as improve charge carrier injection efficiency at the semiconductor/electrolyte interface. Further introduction of surface oxygen vacancies can suppress charge carrier recombination and promote surface reaction kinetics, especially at low potential. Accordingly, the optimum SAs Pt:Fe2O3-Ov photoanode exhibits the photoelectrochemical performance of 3.65 and 5.30 mA cm-2 at 1.23 and 1.5 VRHE, respectively, with an applied bias photon-to-current efficiency of 0.68% for the hematite-based photoanodes. This study opens an avenue for designing highly efficient atomic-level engineering on single crystalline semiconductors for feasible photoelectrochemical applications.
Collapse
Affiliation(s)
- Rui-Ting Gao
- College of Chemistry and Chemical Engineering, College of Energy Material and Chemistry, Inner Mongolia University, Hohhot, 010021, China
| | - Jiangwei Zhang
- College of Chemistry and Chemical Engineering, College of Energy Material and Chemistry, Inner Mongolia University, Hohhot, 010021, China
| | - Tomohiko Nakajima
- Advanced Manufacturing Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Jinlu He
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China.
| | - Xianhu Liu
- Key Laboratory of Materials Processing and Mold, Ministry of Education, Zhengzhou University, Zhengzhou, 450002, China
| | - Xueyuan Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Lei Wang
- College of Chemistry and Chemical Engineering, College of Energy Material and Chemistry, Inner Mongolia University, Hohhot, 010021, China.
| | - Limin Wu
- College of Chemistry and Chemical Engineering, College of Energy Material and Chemistry, Inner Mongolia University, Hohhot, 010021, China.
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
39
|
Xue R, Ge P, Xie J, Hu Z, Wang X, Li P. Controllable CO 2 Reduction or Hydrocarbon Oxidation Driven by Entire Solar via Silver Quantum Dots Direct Photocatalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207234. [PMID: 36703519 DOI: 10.1002/smll.202207234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/04/2023] [Indexed: 05/18/2023]
Abstract
The current solar-chemical-industry based on semiconductor photocatalyst is impractical. Metal catalysts are extensively employed in thermal- and electro-catalysis industries, but unsuitable for direct-driven photocatalysis. Herein, silver quantum dots (Ag-QDs) are synthesized on support via an in situ photoreduction method, and in situ photocatalysis temperature programmed dynamics chemisorption desorption analyses are designed to demonstrate that Ag-QDs should be the actual photocatalytic sites. The surface plasmon resonance of Ag-QDs could harvests entire visible solar, and the plasmon-driven charge-transfer exhibits opposite directions at the interface when supports are different. Consequently, Ag-QDs could be alternatively regulated as oxidation or reduction active centers. Furthermore, Ag-QDs excite electron tunneling transfer with adsorbate, which does not generate high-energy free-radical intermediates. As a result, the efficiencies of hydrocarbon photooxidation and CO2 photoreduction are improved in several orders of magnitude. Evidently, the Ag-QDs direct photocatalytic technology greatly promotes solar-chemical-industry applications.
Collapse
Affiliation(s)
- Ruiting Xue
- United Technology Center of Western Metal Materials Co., Ltd, Northwest Institute for Non-ferrous Metal Research, Shaanxi Institute for Materials Engineering, Xi'an, 710016, P. R. China
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Peng Ge
- United Technology Center of Western Metal Materials Co., Ltd, Northwest Institute for Non-ferrous Metal Research, Shaanxi Institute for Materials Engineering, Xi'an, 710016, P. R. China
| | - Jun Xie
- United Technology Center of Western Metal Materials Co., Ltd, Northwest Institute for Non-ferrous Metal Research, Shaanxi Institute for Materials Engineering, Xi'an, 710016, P. R. China
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Ziyuan Hu
- United Technology Center of Western Metal Materials Co., Ltd, Northwest Institute for Non-ferrous Metal Research, Shaanxi Institute for Materials Engineering, Xi'an, 710016, P. R. China
| | - Xikui Wang
- United Technology Center of Western Metal Materials Co., Ltd, Northwest Institute for Non-ferrous Metal Research, Shaanxi Institute for Materials Engineering, Xi'an, 710016, P. R. China
| | - Peiqi Li
- United Technology Center of Western Metal Materials Co., Ltd, Northwest Institute for Non-ferrous Metal Research, Shaanxi Institute for Materials Engineering, Xi'an, 710016, P. R. China
| |
Collapse
|
40
|
Dong Z, Hu S, Li Z, Xu J, Gao D, Yu F, Li X, Cao X, Wang Y, Zhang Z, Liu Y, Wang X. Biomimetic Photocatalytic System Designed by Spatially Separated Cocatalysts on Z-scheme Heterojunction with Identified Charge-transfer Processes for Boosting Removal of U(VI). SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300003. [PMID: 36807523 DOI: 10.1002/smll.202300003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/30/2023] [Indexed: 05/18/2023]
Abstract
Designing highly efficient photocatalysts with rapid migration of photogenerated charges and surface reaction kinetics for the photocatalytic removal of uranium (U(VI)) from uranium mine wastewater remains a significant challenge. Inspired by natural photosynthesis, a biomimetic photocatalytic system is assembled by designing a novel hollow nanosphere MnOx @TiO2 @CdS@Au (MTCA) with loading MnOx and Au nano particles (Au NPs) cocatalysts on the inner and outer surfaces of the TiO2 @CdS. The spatially separated cocatalysts efficiently drive the photogenerated charges to migrate in opposite directions, while the Z-scheme heterogeneous shell further separates the interfacial charges. Theoretical calculation identifies multiple consecutive forward charge transfers without charge recombination within MTCA. Thus, MTCA could efficiently remove 99.61% of U(VI) after 15 min of simulated sunlight irradiation within 3 mmol L-1 NaHCO3 with 0.231 min-1 of the reduction rate constant, outperforming most previously reported photocatalysts. MTCA further significantly removes 91.83% of U(VI) from the natural uranium mining wastewater under sunlight irradiation. This study provides a novel approach to designing an ideal biomimetic photocatalyst for remediating environmental pollution.
Collapse
Affiliation(s)
- Zhimin Dong
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, 330013, P. R. China
- Institute of Geology, Chinese Academy of Geological Sciences, 26 Baiwanzhuang Road, 100037, Beijing, P. R. China
| | - Shuxian Hu
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Zifan Li
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, 330013, P. R. China
| | - Jinhao Xu
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Donglin Gao
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, 330013, P. R. China
| | - Fengtao Yu
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, 330013, P. R. China
| | - Xiaoyan Li
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, 330013, P. R. China
| | - Xiaohong Cao
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, 330013, P. R. China
| | - Youqun Wang
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, 330013, P. R. China
| | - Zhibin Zhang
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, 330013, P. R. China
| | - Yunhai Liu
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, 330013, P. R. China
| | - Xiangke Wang
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| |
Collapse
|
41
|
Wang X, Zhao F, Zhang N, Wu W, Wang Y. Hollow Spherical Pd/CdS/NiS with Carrier Spatial Separation for Photocatalytic Hydrogen Generation. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1326. [PMID: 37110911 PMCID: PMC10143208 DOI: 10.3390/nano13081326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/08/2023] [Accepted: 04/08/2023] [Indexed: 06/19/2023]
Abstract
Inspired by the unique properties of the three-dimensional hollow nanostructures in the field of photocatalysis, as well as the combination of co-catalyst, porous hollow spherical Pd/CdS/NiS photocatalysts are prepared by stepwise synthesis. The results show that the Schottky junction between Pd and CdS accelerates the transport of photogenerated electrons, while a p-n junction between NiS and CdS traps the photogenerated holes. As co-catalysts, the Pd nanoparticles and the NiS are loaded inside and outside the hollow CdS shell layer, respectively, which combines with the particular characteristic of the hollow structure, resulting in a spatial carrier separation effect. Under the synergy of the dual co-catalyst loading and hollow structure, the Pd/CdS/NiS has favorable stability. Its H2 production under visible light is significantly increased to 3804.6 μmol/g/h, representing 33.4 times more than that of pure CdS. The apparent quantum efficiency is 0.24% at 420 nm. A feasible bridge for the development of efficient photocatalysts is offered by this work.
Collapse
Affiliation(s)
- Xiao Wang
- School of Materials and Energy, Lanzhou University, Lanzhou 730000, China
- National and Local Joint Engineering Laboratory for Optical Conversion Materials and Technology, Lanzhou University, Lanzhou 730000, China
| | - Fei Zhao
- School of Materials and Energy, Lanzhou University, Lanzhou 730000, China
- National and Local Joint Engineering Laboratory for Optical Conversion Materials and Technology, Lanzhou University, Lanzhou 730000, China
| | - Nan Zhang
- School of Materials and Energy, Lanzhou University, Lanzhou 730000, China
- National and Local Joint Engineering Laboratory for Optical Conversion Materials and Technology, Lanzhou University, Lanzhou 730000, China
| | - Wenli Wu
- School of Materials and Energy, Lanzhou University, Lanzhou 730000, China
- National and Local Joint Engineering Laboratory for Optical Conversion Materials and Technology, Lanzhou University, Lanzhou 730000, China
| | - Yuhua Wang
- School of Materials and Energy, Lanzhou University, Lanzhou 730000, China
- National and Local Joint Engineering Laboratory for Optical Conversion Materials and Technology, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
42
|
Shen H, Wei T, Liu Q, Zhang S, Luo J, Liu X. Heterogeneous Ni-MoN nanosheet-assembled microspheres for urea-assisted hydrogen production. J Colloid Interface Sci 2023; 634:730-736. [PMID: 36563429 DOI: 10.1016/j.jcis.2022.12.067] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Electrocatalytic water splitting is a promising technology for sustainable hydrogen (H2) production; however, it is restricted by the kinetically sluggish anodic oxygen evolution reaction (OER). Replacing OER with urea oxidation reaction (UOR) with low thermodynamic potential can simultaneously improve the energy efficiency of H2 production and purify urea-containing wastewater. Here we report a facile assembly-calcination two-step method to synthesize heterogeneous Ni-MoN nanosheet-assembled microspheres (Ni-MoN NAMs). The nanosheet-assembled structure and the synergistic metallic Ni-MoN heterogeneous interface endow the Ni-MoN NAMs with good OER (1.52 V@10 mA cm-2), UOR (1.28 V@10 mA cm-2), and hydrogen evolution reaction (HER, 0.16 V@10 mA cm-2) activity. The two-electrode urea electrolysis cell with Ni-MoN NAMs as both the cathode and anode requires an extremely low cell voltage of 1.41 V to afford 20 mA cm-2, which is 0.3 V lower than that of the water electrolyzer, paving the way for energy-saving H2 production.
Collapse
Affiliation(s)
- Hui Shen
- School of Bioengineering, Hefei Technology College, Hefei 230012, China
| | - Tianran Wei
- MOE Key Laboratory of New Processing Technology for Non-Ferrous Metals and Materials, and Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, School of Resource, Environments and Materials, Guangxi University, Nanning 530004, China
| | - Qian Liu
- Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, China
| | - Shusheng Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou 450000, China
| | - Juo Luo
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China; Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen 518110, China
| | - Xijun Liu
- MOE Key Laboratory of New Processing Technology for Non-Ferrous Metals and Materials, and Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, School of Resource, Environments and Materials, Guangxi University, Nanning 530004, China.
| |
Collapse
|
43
|
Zhao C, Wang X, Yin Y, Tian W, Zeng G, Li H, Ye S, Wu L, Liu J. Molecular Level Modulation of Anthraquinone-containing Resorcinol-formaldehyde Resin Photocatalysts for H 2 O 2 Production with Exceeding 1.2 % Efficiency. Angew Chem Int Ed Engl 2023; 62:e202218318. [PMID: 36578144 DOI: 10.1002/anie.202218318] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/24/2022] [Accepted: 12/27/2022] [Indexed: 12/30/2022]
Abstract
Designing polymeric photocatalysts at the molecular level to modulate the photogenerated charge behavior is a promising and challenging strategy for efficient hydrogen peroxide (H2 O2 ) photosynthesis. Here, we introduce electron-deficient 1,4-dihydroxyanthraquinone (DHAQ) into the framework of resorcinol-formaldehyde (RF) resin, which modulates the donor/acceptor ratio from the perspective of molecular design for promoting the charge separation. Interestingly, H2 O2 can be produced via oxygen reduction and water oxidation pathways, verified by isotopic labeling and in situ characterization techniques. Density functional theory (DFT) calculations elucidate that DHAQ can reduce the energy barrier for H2 O2 production. RF-DHAQ exhibits excellent overall photosynthesis of H2 O2 with a solar-to-chemical conversion (SCC) efficiency exceeding 1.2 %. This work opens a new avenue to design polymeric photocatalysts at the molecular level for high-efficiency artificial photosynthesis.
Collapse
Affiliation(s)
- Chen Zhao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xinyao Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yanfeng Yin
- State Key Laboratory of Molecular Reaction Dynamics and the Dynamic Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Wenming Tian
- State Key Laboratory of Molecular Reaction Dynamics and the Dynamic Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Guang Zeng
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Haitao Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Sheng Ye
- College of Science & School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Limin Wu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 200433, Shanghai, China.,Inner Mongolia University, Hohhot, Inner Mongolia, 010021, P. R. China
| | - Jian Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China.,Inner Mongolia University, Hohhot, Inner Mongolia, 010021, P. R. China.,DICP-Surrey Joint Centre for Future Materials, Department of Chemical and Process Engineering and Advanced Technology Institute, University of Surrey, Guilford, Surrey GU27XH, UK
| |
Collapse
|
44
|
Yang Y, Volpato GA, Rossin E, Peruffo N, Tumbarello F, Nicoletti C, Bonetto R, Paoloni L, Umari P, Colusso E, Dell'Amico L, Berardi S, Collini E, Caramori S, Agnoli S, Sartorel A. Photoelectrochemical C-H Activation Through a Quinacridone Dye Enabling Proton-Coupled Electron Transfer. CHEMSUSCHEM 2023; 16:e202201980. [PMID: 36507568 DOI: 10.1002/cssc.202201980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Dye-sensitized photoanodes for C-H activation in organic substrates are assembled by vacuum sublimation of a commercially available quinacridone (QNC) dye in the form of nanosized rods onto fluorine-doped tin oxide (FTO), TiO2 , and SnO2 slides. The photoanodes display extended absorption in the visible range (450-600 nm) and ultrafast photoinduced electron injection (<1 ps, as revealed by transient absorption spectroscopy) of the QNC dye into the semiconductor. The proton-coupled electron-transfer reactivity of QNC is exploited for generating a nitrogen-based radical as its oxidized form, which is competent in C-H bond activation. The key reactivity parameter is the bond-dissociation free energy (BDFE) associated with the N⋅/N-H couple in QNC of 80.5±2.3 kcal mol-1 , which enables hydrogen atom abstraction from allylic or benzylic C-H moieties. A photoelectrochemical response is indeed observed for organic substrates characterized by C-H bonds with BDFE below the 80.5 kcal mol-1 threshold, such as γ-terpinene, xanthene, or dihydroanthracene. This work provides a rational, mechanistically oriented route to the design of dye-sensitized photoelectrodes for selective organic transformations.
Collapse
Affiliation(s)
- Yunshuo Yang
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy
| | - Giulia Alice Volpato
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy
| | - Elena Rossin
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy
| | - Nicola Peruffo
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy
| | - Francesco Tumbarello
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy
| | - Catia Nicoletti
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy
| | - Ruggero Bonetto
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy
| | - Lorenzo Paoloni
- Department of Physics and Astronomy, University of Padova, via F. Marzolo 8, 35131, Padova, Italy
| | - Paolo Umari
- Department of Physics and Astronomy, University of Padova, via F. Marzolo 8, 35131, Padova, Italy
| | - Elena Colusso
- Department of Industrial Engineering and INSTM, University of Padova, F. Marzolo 9, 35131, Padova, Italy
| | - Luca Dell'Amico
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy
| | - Serena Berardi
- Department of Chemical and Pharmaceutical Sciences, Centro Interuniversitario per la Conversione Chimica dell'Energia Solare (SolarChem), Sez. di Ferrara, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
| | - Elisabetta Collini
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy
| | - Stefano Caramori
- Department of Chemical and Pharmaceutical Sciences, Centro Interuniversitario per la Conversione Chimica dell'Energia Solare (SolarChem), Sez. di Ferrara, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
| | - Stefano Agnoli
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy
| | - Andrea Sartorel
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy
| |
Collapse
|
45
|
Hu C, Cheng L, Zhou L, Jiang Z, Gan P, Cao S, Li Q, Chen C, Wang Y, Mostafavi M, Wang S, Ma J. Radiolytic Water Splitting Sensitized by Nanoscale Metal-Organic Frameworks. J Am Chem Soc 2023; 145:5578-5588. [PMID: 36812014 DOI: 10.1021/jacs.3c00547] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
High-energy radiation that is compatible with renewable energy sources enables direct H2 production from water for fuels; however, the challenge is to convert it as efficiently as possible, and the existing strategies have limited success. Herein, we report the use of Zr/Hf-based nanoscale UiO-66 metal-organic frameworks as highly effective and stable radiation sensitizers for purified and natural water splitting under γ-ray irradiation. Scavenging and pulse radiolysis experiments with Monte Carlo simulations show that the combination of 3D arrays of ultrasmall metal-oxo clusters and high porosity affords unprecedented effective scattering between secondary electrons and confined water, generating increased precursors of solvated electrons and excited states of water, which are the main species responsible for H2 production enhancement. The use of a small quantity (<80 mmol/L) of UiO-66-Hf-OH can achieve a γ-rays-to-hydrogen conversion efficiency exceeding 10% that significantly outperforms Zr-/Hf-oxide nanoparticles and the existing radiolytic H2 promoters. Our work highlights the feasibility and merit of MOF-assisted radiolytic water splitting and promises a competitive method for creating a green H2 economy.
Collapse
Affiliation(s)
- Changjiang Hu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, P. R. China
| | - Liwei Cheng
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou 215123, P. R. China.,Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| | - Liheng Zhou
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, P. R. China
| | - Zhiwen Jiang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, P. R. China
| | - Pingping Gan
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, P. R. China
| | - Shuiyan Cao
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, P. R. China
| | - Qiuhao Li
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, P. R. China
| | - Chong Chen
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, P. R. China
| | - Yunlong Wang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, P. R. China
| | - Mehran Mostafavi
- Institut de Chimie Physique UMR8000, CNRS/Université Paris-Saclay, Orsay 91405, France
| | - Shuao Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou 215123, P. R. China.,Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| | - Jun Ma
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, P. R. China.,Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
46
|
Wu Y, Liu D, Le J, Zhuang H, Kuang Y. Pt Nanoparticle Assisted Homogeneous Surface Engineering of Polymer-Based Bulk-Heterojunction Photocathodes for Efficient Charge Extraction and Catalytic Hydrogen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206763. [PMID: 36599667 DOI: 10.1002/smll.202206763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/05/2022] [Indexed: 06/17/2023]
Abstract
To fabricate a high-efficiency bulk-heterojunction (BHJ)-based photocathode, introducing suitable interfacial modification layer(s) is a crucial strategy. Surface engineering is especially important for achieving high-performance photocathodes because the photoelectrochemical (PEC) reactions at the photocathode/electrolyte interface are the rate-limiting process. Despite its importance, the influence of interfacial layer morphology regulation on PEC activity has attracted insufficient attention. In this work, RuO2 , with excellent conductivity, capacity and catalytic properties, is utilized as an interfacial layer to modify the BHJ layer. However, the homogeneous coverage of hydrophilic RuO2 on the hydrophobic BHJ surface is challenging. To address this issue, a Pt nanoparticle-assisted homogeneous RuO2 layer deposition method is developed and successfully applied to several BHJ-based photocathodes, achieving superior PEC performance compared to those prepared by conventional interface engineering strategies. Among them, the fluorine-doped tin oxide (FTO)/J71:N2200(Pt)/RuO2 photocathode generates the best photocurrent density of -9.0 mA cm-2 at 0 V with an onset potential of up to 1.0 V under AM1.5 irradiation.
Collapse
Affiliation(s)
- Yanling Wu
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, Zhejiang, 315201, China
- Fujian Provincial Key Laboratory of Featured Biochemical and Chemical Materials, Ningde Normal University, 1 Xueyuan Road, Ningde, Fujian, 352100, China
| | - Deyu Liu
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, Zhejiang, 315201, China
| | - Jiabo Le
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, Zhejiang, 315201, China
| | - Huanglong Zhuang
- Fujian Provincial Key Laboratory of Featured Biochemical and Chemical Materials, Ningde Normal University, 1 Xueyuan Road, Ningde, Fujian, 352100, China
| | - Yongbo Kuang
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, Zhejiang, 315201, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100000, China
| |
Collapse
|
47
|
Swathi S, Priyanga M, Rathinam Y, Ganesan R, Al-Sehemi AG, Velauthapillai D. Neodymium-Doped Novel Barium Tungstate Nanospindles for the Enhanced Oxygen Evolution Reaction. ACS OMEGA 2023; 8:3745-3754. [PMID: 36742998 PMCID: PMC9893247 DOI: 10.1021/acsomega.2c05156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 12/07/2022] [Indexed: 06/18/2023]
Abstract
In this work, pristine, 0.02, 0.04, and 0.06 M neodymium (Nd)-doped barium tungstate nanostructures were synthesized via a simple co-precipitation method for the water oxidation process. The obtained X-ray diffraction high-intensity peak at a 2θ value of 26.4° corresponding to the (112) lattice plane confirmed the formation of a tetragonal structure of BaWO4. Moreover, the BaWO4 morphology was examined by scanning electron microscopy, which showed the existence of nanospindles. An energy-dispersive X-ray spectrum confirmed the subsistence of the produced materials, for example, barium (Ba), tungsten (W), oxide (O), and neodymium (Nd), with weight percentages of 28.58, 46.63, 16.64, and 8.16%, respectively. The 0.04 M Nd-doped BaWO4 product was explored to attain a high surface area of 18.18 m2/g, a pore volume of 0.079 cm3/g, and a pore diameter of 2.215 nm. Compared to the other prepared electrodes, the 0.04 M Nd-doped BaWO4 product exhibited low overpotential values of 330 mV and 450 mV to deliver current densities of 10 mA/cm2 and 50 mA/cm2, respectively. In addition, the optimized electrode achieved a small Tafel slope value of 158 mV dec-1 and followed the Volmer-Heyrovsky mechanism. Moreover, the electrical conductivity of BaWO4 was tuned due to the addition of a rare-earth metal dopant, and it exhibited the charge-transfer resistance and solution resistance values of 0.98 and 1.01 Ω, respectively. The prepared electrocatalyst was further studied by using cyclic voltammetry, and it exhibited a high double-layer capacitance value of 29.3 mF/cm2 and high electrochemically active surface areas of 1.465 cm2. The electrochemical performance was greatly improved depending on the concentration of the doping agent, and it was well consistent with the obtained results. The best electrocatalyst was subjected to a chronoamperometry test, which exhibited excellent stability even after 20 h. Hence, this work suggests that alkaline metal tungstates have a cost-effective, efficient, and promising electrocatalyst, and it is a new approach for the water oxidation process.
Collapse
Affiliation(s)
- Srinivasan Swathi
- Department
of Physics, Alagappa University, Karaikudi, Tamil Nadu630 003, India
| | - Marimuthu Priyanga
- Department
of Physics, Alagappa University, Karaikudi, Tamil Nadu630 003, India
| | - Yuvakkumar Rathinam
- Department
of Physics, Alagappa University, Karaikudi, Tamil Nadu630 003, India
| | - Ravi Ganesan
- Department
of Physics, Alagappa University, Karaikudi, Tamil Nadu630 003, India
- Adjunct
Professor, Department of Physics, Chandigarh
University, Mohali, Punjab140 413, India
| | | | - Dhayalan Velauthapillai
- Faculty
of Engineering and Science, Western Norway
University of Applied Sciences, Bergen5063, Norway
| |
Collapse
|
48
|
Wu L, Zhang B, Xu C, Wang J, Wu A, Kou H, Su L, Zheng Z, Li X. Investigation on Growth and Anisotropic Charge Lifetime of BiVO
4
Crystal. CRYSTAL RESEARCH AND TECHNOLOGY 2023. [DOI: 10.1002/crat.202200253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Lei Wu
- School of Materials and Chemistry University of Shanghai for Science and Technology Shanghai 200093 P. R. China
- State Key Laboratory of High Performance Ceramics Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 201899 P. R. China
| | - Bo Zhang
- State Key Laboratory of High Performance Ceramics Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 201899 P. R. China
| | - Chonglei Xu
- State Key Laboratory of High Performance Ceramics Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 201899 P. R. China
| | - Junpeng Wang
- School of Materials Science and Engineering University of Jinan Shandong 250022 P. R. China
| | - Anhua Wu
- State Key Laboratory of High Performance Ceramics Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 201899 P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Huamin Kou
- State Key Laboratory of High Performance Ceramics Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 201899 P. R. China
| | - Liangbi Su
- State Key Laboratory of High Performance Ceramics Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 201899 P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Zhaoke Zheng
- State Key Laboratory of Crystal Materials Shandong University Jinan 250100 P. R. China
| | - Xiang Li
- School of Materials and Chemistry University of Shanghai for Science and Technology Shanghai 200093 P. R. China
| |
Collapse
|
49
|
Garcia-Osorio DA, Shalvey TP, Banerji L, Saeed K, Neri G, Phillips LJ, Hutter OS, Casadevall C, Antón-García D, Reisner E, Major JD, Cowan AJ. Hybrid photocathode based on a Ni molecular catalyst and Sb 2Se 3 for solar H 2 production. Chem Commun (Camb) 2023; 59:944-947. [PMID: 36597867 DOI: 10.1039/d2cc04810h] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We report a H2 evolving hybrid photocathode based on Sb2Se3 and a precious metal free molecular catalyst. Through the use of a high surface area TiO2 scaffold, we successfully increased the Ni molecular catalyst loading from 7.08 ± 0.43 to 45.76 ± 0.81 nmol cm-2, achieving photocurrents of 1.3 mA cm-2 at 0 V vs. RHE, which is 81-fold higher than the device without the TiO2 mesoporous layer.
Collapse
Affiliation(s)
| | - Thomas P Shalvey
- Stephenson Institute for Renewable Energy, University of Liverpool, L69 7ZF, UK.
| | - Liam Banerji
- Stephenson Institute for Renewable Energy, University of Liverpool, L69 7ZF, UK.
| | - Khezar Saeed
- Stephenson Institute for Renewable Energy, University of Liverpool, L69 7ZF, UK. .,Department of Chemistry, Aarhus University, Aarhus C 8000, Denmark
| | - Gaia Neri
- Stephenson Institute for Renewable Energy, University of Liverpool, L69 7ZF, UK.
| | - Laurie J Phillips
- Stephenson Institute for Renewable Energy, University of Liverpool, L69 7ZF, UK.
| | - Oliver S Hutter
- Stephenson Institute for Renewable Energy, University of Liverpool, L69 7ZF, UK. .,Department of Mathematics, Physics and Electrical Engineering, Northumbria University, NE1 8ST, UK
| | - Carla Casadevall
- Yusuf Hamied Department of Chemistry, University of Cambridge, CB2 1EW, UK
| | | | - Erwin Reisner
- Yusuf Hamied Department of Chemistry, University of Cambridge, CB2 1EW, UK
| | - Jonathan D Major
- Stephenson Institute for Renewable Energy, University of Liverpool, L69 7ZF, UK.
| | - Alexander J Cowan
- Stephenson Institute for Renewable Energy, University of Liverpool, L69 7ZF, UK.
| |
Collapse
|
50
|
Gao RT, Nguyen NT, Nakajima T, He J, Liu X, Zhang X, Wang L, Wu L. Dynamic semiconductor-electrolyte interface for sustainable solar water splitting over 600 hours under neutral conditions. SCIENCE ADVANCES 2023; 9:eade4589. [PMID: 36598972 PMCID: PMC9812387 DOI: 10.1126/sciadv.ade4589] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Photoelectrochemical (PEC) water splitting that functions in pH-neutral electrolyte attracts increasing attention to energy demand sustainability. Here, we propose a strategy to in situ form a NiB layer by tuning the composition of the neutral electrolyte with the additions of nickel and borate species, which improves the PEC performance of the BiVO4 photoanode. The NiB/BiVO4 exhibits a photocurrent density of 6.0 mA cm-2 at 1.23 VRHE with an onset potential of 0.2 VRHE under 1 sun illumination. The photoanode displays a photostability of over 600 hours in a neutral electrolyte. The additive of Ni2+ in the electrolyte, which efficiently inhibits the dissolution of NiB, can accelerate the photogenerated charge transfer and enhance the water oxidation kinetics. The borate species with B─O bonds act as a promoter of catalyst activity by accelerating proton-coupled electron transfer. The synergy effect of both species suppresses the surface charge recombination and inhibits the photocorrosion of BiVO4.
Collapse
Affiliation(s)
- Rui-Ting Gao
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Nhat Truong Nguyen
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering and Computer Science, Concordia University, Montreal QC H3G 2W1, Canada
| | - Tomohiko Nakajima
- Advanced Manufacturing Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Jinlu He
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
- Corresponding author. (L.Wa.); (J.H.); (L.Wu.)
| | - Xianhu Liu
- Key Laboratory of Materials Processing and Mold, Ministry of Education, Zhengzhou University, Zhengzhou 450002, China
| | - Xueyuan Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Lei Wang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
- Corresponding author. (L.Wa.); (J.H.); (L.Wu.)
| | - Limin Wu
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Corresponding author. (L.Wa.); (J.H.); (L.Wu.)
| |
Collapse
|