1
|
Popek L, Lefebvre G, Debrauwer V, Roubaud D, Blanchard N, Meyer C, Bizet V. Synthesis of Pentafluorosulfanylated Ynamides and Further Functionalizations. Org Lett 2024; 26:10369-10375. [PMID: 39589238 DOI: 10.1021/acs.orglett.4c03972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Herein is described the first synthesis of SF5-ynamides, versatile building blocks featuring the pentafluorosulfanyl motif. This synthesis proceeds through a two-step sequence of radical SF5-addition onto the π-system of a wide range of terminal ynamides and derivatives substituted with various nitrogen fragments followed by a dehydrochlorination reaction. A selection of downstream functionalization reactions, including nucleophilic additions, cycloadditions, and sulfur ylide synthesis, highlights the wide-ranging applications of this novel type of functionalized SF5-building block.
Collapse
Affiliation(s)
- Lucas Popek
- Université de Haute-Alsace, Université de Strasbourg, CNRS, LIMA, UMR 7042, 68000 Mulhouse, France
| | - Gauthier Lefebvre
- Molecular, Macromolecular Chemistry, and Materials, ESPCI Paris-PSL, CNRS, 10 rue Vauquelin, 75005 Paris, France
| | - Vincent Debrauwer
- Université de Haute-Alsace, Université de Strasbourg, CNRS, LIMA, UMR 7042, 68000 Mulhouse, France
| | - David Roubaud
- Molecular, Macromolecular Chemistry, and Materials, ESPCI Paris-PSL, CNRS, 10 rue Vauquelin, 75005 Paris, France
| | - Nicolas Blanchard
- Université de Haute-Alsace, Université de Strasbourg, CNRS, LIMA, UMR 7042, 68000 Mulhouse, France
| | - Christophe Meyer
- Molecular, Macromolecular Chemistry, and Materials, ESPCI Paris-PSL, CNRS, 10 rue Vauquelin, 75005 Paris, France
| | - Vincent Bizet
- Université de Haute-Alsace, Université de Strasbourg, CNRS, LIMA, UMR 7042, 68000 Mulhouse, France
| |
Collapse
|
2
|
Kanzouai Y, Laghmari M, Yamari I, Bouzammit R, Bahsis L, Benali T, Chtita S, Bakhouch M, Akhazzane M, El Kouali M, Hammani K, Al Houari G. Chromone-isoxazole hybrids molecules: synthesis, spectroscopic, MEDT, ELF, antibacterial, ADME-Tox, molecular docking and MD simulation investigations. J Biomol Struct Dyn 2024; 42:6410-6424. [PMID: 37817499 DOI: 10.1080/07391102.2023.2266022] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 07/01/2023] [Indexed: 10/12/2023]
Abstract
A mechanistic study was performed within the molecular electron density theory at the B3LYP/6-311G (d,p) computational level to explain the regioselectivity observed. An electron localization function analysis was also performed, and the results confirm the zwitterionic-type (zw-type) mechanism of the cycloaddition reactions between nitrile oxide and alkylated 4H-chromene-2-carboxylate derivatives and shed more light on the obtained regioselectivity experimentally. In silico studies on the pharmacokinetics, ADME and toxicity tests of the compounds were also performed, and it was projected that compounds 5a, 5b, 5c and 5d are pharmacokinetic and have favorable ADME profiles. Moreover, docking and molecular dynamics investigations were conducted to evaluate the interactions, orientation and conformation of the target compounds on the active sites of four distinct enzymes. The results of this investigation showed that two compounds, 5a and 5c, interacted effectively with the S. aureus active site while maintaining acceptable binding energy.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Youssra Kanzouai
- Engineering Laboratory of Organometallic and Molecular Materials and Environment, Department of Chemistry, Faculty of Sciences Dhar El Mahraz, University of Sidi Mohamed Ben Abdellah, Fez, Morocco
| | - Mustapha Laghmari
- Laboratory of Natural Resources and Environment, Department of Biology Polydisciplinary Faculty of Taza, Sidi Mohamed Ben Abdellah University, Taza, Morocco
| | - Imane Yamari
- Laboratory of Analytical and Molecular Chemistry, Department of Chemistry, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, Casablanca, Morocco
| | - Rachid Bouzammit
- Engineering Laboratory of Organometallic and Molecular Materials and Environment, Department of Chemistry, Faculty of Sciences Dhar El Mahraz, University of Sidi Mohamed Ben Abdellah, Fez, Morocco
| | - Lahoucine Bahsis
- Laboratoire de Chimie Analytique et Moléculaire, LCAM, Département de Chimie, Faculté Polydisciplinaire de Safi, Université Cadi Ayyad, Safi, Morocco
| | - Taoufiq Benali
- Laboratory of Natural Resources and Environment, Department of Biology Polydisciplinary Faculty of Taza, Sidi Mohamed Ben Abdellah University, Taza, Morocco
- Environment and Health Team, Polydisciplinary Faculty of Safi, Department of Biology, Cadi Ayyad University, Safi, Morocco
| | - Samir Chtita
- Laboratory of Analytical and Molecular Chemistry, Department of Chemistry, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, Casablanca, Morocco
| | - Mohamed Bakhouch
- Bioorganic Chemistry Team, Department of Chemistry, Faculty of Sciences, University Chouaïb Doukkali, El Jadida, Morocco
| | - Mohamed Akhazzane
- Cité de l'innovation, Université Sidi Mohamed Ben Abdellah, Fez, Morocco
| | - M'hammed El Kouali
- Laboratory of Analytical and Molecular Chemistry, Department of Chemistry, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, Casablanca, Morocco
| | - Khalil Hammani
- Laboratory of Natural Resources and Environment, Department of Biology Polydisciplinary Faculty of Taza, Sidi Mohamed Ben Abdellah University, Taza, Morocco
| | - Ghali Al Houari
- Engineering Laboratory of Organometallic and Molecular Materials and Environment, Department of Chemistry, Faculty of Sciences Dhar El Mahraz, University of Sidi Mohamed Ben Abdellah, Fez, Morocco
| |
Collapse
|
3
|
Ye C, Huang R, Chiou MF, Wang B, Li D, Bao H. Synthesis of a new fluorophore: wavelength-tunable bisbenzo[ f]isoindolylidenes. Chem Sci 2023; 14:13151-13158. [PMID: 38023512 PMCID: PMC10664550 DOI: 10.1039/d3sc04445a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
The creation of new functional molecules is a central task in chemical synthesis. Herein, we report the synthesis of a new type of fluorophore, bisbenzo[f]isoindolylidenes, from easily accessible dipropargyl benzenesulfonamides. Wavelength-tunable fluorophores emitting strong fluorescence of green to red light were obtained in this reaction. Late-stage modifications and incorporation of bioactive molecules into these fluorophores give rise to potential applications in biological studies. Detailed computational and experimental studies were conducted to elucidate the mechanism, and suggest a reaction sequence involving Garratt-Braverman type cyclization, isomerization, fragmentation, dimerization and oxidation.
Collapse
Affiliation(s)
- Changqing Ye
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou Fujian 350002 P. R. China
| | - Rui Huang
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou Fujian 350002 P. R. China
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University Fuzhou Fujian 350002 P. R. China
| | - Mong-Feng Chiou
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou Fujian 350002 P. R. China
| | - Bo Wang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University Fuzhou Fujian 350002 P. R. China
| | - Daliang Li
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University Fuzhou Fujian 350002 P. R. China
| | - Hongli Bao
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou Fujian 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
4
|
Zhou X, Huang Q, Guo J, Dai L, Lu Y. Molecular Editing of Pyrroles via a Skeletal Recasting Strategy. ACS CENTRAL SCIENCE 2023; 9:1758-1767. [PMID: 37780359 PMCID: PMC10540293 DOI: 10.1021/acscentsci.3c00812] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Indexed: 10/03/2023]
Abstract
Heterocyclic scaffolds are commonly found in numerous biologically active molecules, therapeutic agents, and agrochemicals. To probe chemical space around heterocycles, many powerful molecular editing strategies have been devised. Versatile C-H functionalization strategies allow for peripheral modifications of heterocyclic motifs, often being specific and taking place at multiple sites. The past few years have seen the quick emergence of exciting "single-atom skeletal editing" strategies, through one-atom deletion or addition, enabling ring contraction/expansion and structural diversification, as well as scaffold hopping. The construction of heterocycles via deconstruction of simple heterocycles is unknown. Herein, we disclose a new molecular editing method which we name the skeletal recasting strategy. Specifically, by tapping on the 1,3-dipolar property of azoalkenes, we recast simple pyrroles to fully substituted pyrroles, through a simple phosphoric acid-promoted one-pot reaction consisting of dearomative deconstruction and rearomative reconstruction steps. The reaction allows for easy access to synthetically challenging tetra-substituted pyrroles which are otherwise difficult to synthesize. Furthermore, we construct N-N axial chirality on our pyrrole products, as well as accomplish a facile synthesis of the anticancer drug, Sutent. The potential application of this method to other heterocycles has also been demonstrated.
Collapse
Affiliation(s)
- Xueting Zhou
- Joint
School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, Fujian 350207, China
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Qingqin Huang
- Joint
School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, Fujian 350207, China
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Jiami Guo
- Joint
School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, Fujian 350207, China
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Lei Dai
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Yixin Lu
- Joint
School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, Fujian 350207, China
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| |
Collapse
|
5
|
Campeau D, Pommainville A, Gorodnichy M, Gagosz F. Copper and Silver Catalysis in the (3 + 2) Cycloaddition of Neutral Three-Atom Components with Terminal Alkynes. J Am Chem Soc 2023; 145:19018-19029. [PMID: 37582344 DOI: 10.1021/jacs.3c06533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
The introduction of the copper-catalyzed azide-alkyne coupling (CuAAC) to 1,3-dipolar cycloadditions was pivotal to their popularization in synthetic chemistry and to their application to multiple other domains of science. The reaction rate enhancement observed when coinage metal acetylide intermediates are involved in the cyclization process greatly expanded the structural and conditional range in which (3 + 2) cycloadditions may take place with terminal alkynes. Herein, we report that comparable rate enhancements, in nature and level, are induced by copper and silver catalysts in the intramolecular (3 + 2) cycloaddition of terminal alkynes with "neutral" three-atom components (TACs), specifically alkynyl sulfides. Through careful observations amidst reaction optimization, experimental, and DFT mechanistic studies, a pathway involving a proton-coupled cyclometallation key step is proposed. The sets of catalytic conditions that have been developed allow us to overcome several scope limitations previously presented by the thermally promoted (3 + 2) cycloaddition of "neutral" TACs, thus expanding their synthetic and applicative potential.
Collapse
Affiliation(s)
- Dominic Campeau
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa K1N 6N5, Canada
| | - Alice Pommainville
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa K1N 6N5, Canada
| | - Mila Gorodnichy
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa K1N 6N5, Canada
| | - Fabien Gagosz
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa K1N 6N5, Canada
| |
Collapse
|
6
|
Mutra MR, Li J, Wang JJ. Light-mediated sulfonyl-iodination of ynamides and internal alkynes. Chem Commun (Camb) 2023; 59:6584-6587. [PMID: 37183618 DOI: 10.1039/d3cc00842h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
We synthesized tetrasubstituted olefins regioselectively and stereoselectively from ynamides and internal alkynes with sulfonyl iodides under blue LEDs in few minutes. The key features are being metal-free, easy to handle, simple, broad in scope, and environmentally friendly. Furthermore, a gram-scale experiment was conducted, and the synthesized corresponding sulfonyl-iodinated products were smoothly altered into various other products.
Collapse
Affiliation(s)
- Mohana Reddy Mutra
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, No. 100, Shiquan 1st Rd, Sanmin District, Kaohsiung City, 807, Taiwan.
| | - Jing Li
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, No. 100, Shiquan 1st Rd, Sanmin District, Kaohsiung City, 807, Taiwan.
| | - Jeh-Jeng Wang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, No. 100, Shiquan 1st Rd, Sanmin District, Kaohsiung City, 807, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, No. 100 Tzyou 1st Rd, Sanmin District, Kaohsiung City 807, Taiwan
| |
Collapse
|
7
|
Iftikhar R, Mazhar A, Iqbal MS, Khan FZ, Askary SH, Sibtain H. Ring forming transformations of ynamides via cycloaddition. RSC Adv 2023; 13:10715-10756. [PMID: 37025669 PMCID: PMC10072253 DOI: 10.1039/d3ra00139c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 03/29/2023] [Indexed: 04/07/2023] Open
Abstract
Ynamides are N-alkyne compounds bearing an electron withdrawing group at the nitrogen atom. They offer unique pathways for the construction of versatile building blocks owing to their exceptional balance between reactivity and stability. Recently several studies have been reported that explore and illustrate the synthetic potential of ynamides and ynamide-derived advanced intermediates in cycloadditions with different reaction partners to yield heterocyclic cycloadducts of synthetic and pharmaceutical value. Cycloaddition reactions of ynamides are the facile and preferable routes for the construction of structural motifs having striking importance in synthetic, medicinal chemistry, and advanced materials. In this systematic review, we highlighted the recently reported novel transformations and synthetic applications that involved the cycloaddition reaction of ynamides. The scope along with the limitations of the transformations are discussed in detail.
Collapse
Affiliation(s)
- Ramsha Iftikhar
- Department of Chemistry, Government College University Faisalabad 38000-Faisalabad Pakistan
| | - Aqsa Mazhar
- Faculty of Health and Medicine, University of New South Wales 2033-Sydney Australia
| | - Muhammad Saqlain Iqbal
- Department of Electrical Information Engineering, Polytechnic University of Bari 70126-Bari Italy
| | - Faiza Zahid Khan
- Institute of Chemistry, RheinischeFriedrich-Wilhelms-Universität Bonn Bonn Germany
| | - Syed Hassan Askary
- Department of Chemistry, University of Management and Technology 54770-Lahore Pakistan
| | - Hifza Sibtain
- Department of Chemistry, University of Management and Technology 54770-Lahore Pakistan
| |
Collapse
|
8
|
Zhu BH, Ye SB, Nie ML, Xie ZY, Wang YB, Qian PC, Sun Q, Ye LW, Li L. I 2 -Catalyzed Cycloisomerization of Ynamides: Chemoselective and Divergent Access to Indole Derivatives. Angew Chem Int Ed Engl 2023; 62:e202215616. [PMID: 36573021 DOI: 10.1002/anie.202215616] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Indexed: 12/28/2022]
Abstract
Herein, an I2 -catalyzed unprecedented cycloisomerization of ynamides is developed, furnishing various functionalized bis(indole) derivatives in generally good to excellent yields with wide substrate scope and excellent atom-economy. This protocol not only represents the first molecular-iodine-catalyzed tandem complex alkyne cycloisomerizations, but also constitutes the first chemoselective cycloisomerization of tryptamine-ynamides involving distinctively different C(sp3 )-C(sp3 ) bond cleavage and rearrangement. Moreover, chiral tetrahydropyridine frameworks containing two stereocenters are obtained with moderate to excellent diastereoselectivities and excellent enantioselectivities. Meanwhile, cycloisomerization and aromatization of ynamides produce pyrrolyl indoles with high efficiency enabled by I2 . Additionally, control experiments and theoretical calculations reveal that this reaction probably undergoes a tandem 5-exo-dig cyclization/rearrangement process.
Collapse
Affiliation(s)
- Bo-Han Zhu
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, 325035, China.,Wenzhou Key Laboratory of Technology and Application of Environmental Functional Materials, Institute of New Materials & Industry Technology, Wenzhou University, Wenzhou, 325000, China
| | - Sheng-Bing Ye
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, 325035, China.,Wenzhou Key Laboratory of Technology and Application of Environmental Functional Materials, Institute of New Materials & Industry Technology, Wenzhou University, Wenzhou, 325000, China
| | - Min-Ling Nie
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, 325035, China.,Wenzhou Key Laboratory of Technology and Application of Environmental Functional Materials, Institute of New Materials & Industry Technology, Wenzhou University, Wenzhou, 325000, China
| | - Zhong-Yang Xie
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, 325035, China.,Wenzhou Key Laboratory of Technology and Application of Environmental Functional Materials, Institute of New Materials & Industry Technology, Wenzhou University, Wenzhou, 325000, China
| | - Yi-Bo Wang
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, 325035, China.,Wenzhou Key Laboratory of Technology and Application of Environmental Functional Materials, Institute of New Materials & Industry Technology, Wenzhou University, Wenzhou, 325000, China
| | - Peng-Cheng Qian
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, 325035, China.,Wenzhou Key Laboratory of Technology and Application of Environmental Functional Materials, Institute of New Materials & Industry Technology, Wenzhou University, Wenzhou, 325000, China
| | - Qing Sun
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, China
| | - Long-Wu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Long Li
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, 325035, China.,Wenzhou Key Laboratory of Technology and Application of Environmental Functional Materials, Institute of New Materials & Industry Technology, Wenzhou University, Wenzhou, 325000, China.,State Key Laboratory of Physical Chemistry of Solid Surfaces and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
9
|
Chalkha M, Nour H, Chebbac K, Nakkabi A, Bahsis L, Bakhouch M, Akhazzane M, Bourass M, Chtita S, Bin Jardan YA, Augustyniak M, Bourhia M, Aboul-Soud MA, El Yazidi M. Synthesis, Characterization, DFT Mechanistic Study, Antimicrobial Activity, Molecular Modeling, and ADMET Properties of Novel Pyrazole-isoxazoline Hybrids. ACS OMEGA 2022; 7:46731-46744. [PMID: 36570248 PMCID: PMC9773794 DOI: 10.1021/acsomega.2c05788] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
A series of new heterocycle hybrids incorporating pyrazole and isoxazoline rings was successfully synthesized, characterized, and evaluated for their antimicrobial responses. The synthesized compounds were obtained utilizing N-alkylation and 1,3-dipolar cycloaddition reactions, as well as their structures were established through spectroscopic methods and confirmed by mass spectrometry. To get more light on the regioselective synthesis of new hybrid compounds, mechanistic studies were performed using DFT calculations with B3LYP/6-31G(d,p) basis set. Additionally, the results of the preliminary screening indicate that some of the examined hybrids showed potent antimicrobial activity, compared to standard drugs. The results confirm that the antimicrobial activity is strongly dependent on the nature of the substituents linked pyrazole and isoxazoline rings. Furthermore, molecular docking studies were conducted to highlight the interaction modes between the investigated hybrid compounds and the Escherichia coli and Candida albicans receptors. Notably, the results demonstrate that the investigated compounds have strong protein binding affinities. The stability of the formed complexes by the binding between the hybrid compound 6c, and the target proteins was also confirmed using a 100 ns molecular dynamics simulation. Finally, the prediction of ADMET properties suggests that almost all hybrid compounds possess good pharmacokinetic profiles and no signs of observed toxicity, except for compounds 6e, 6f, and 6g.
Collapse
Affiliation(s)
- Mohammed Chalkha
- Engineering
Laboratory of Organometallic, Molecular, Materials and Environment,
Faculty of Sciences Dhar EL Mahraz, Sidi
Mohamed Ben Abdellah University, P.O. Box 1796, 30000 Fez, Morocco
| | - Hassan Nour
- Laboratory
of Analytical and Molecular Chemistry, Faculty of Sciences Ben M’Sik, Hassan II University of Casablanca, P.O. Box 7955, Casablanca, Morocco
| | - Khalid Chebbac
- Laboratory
of Biotechnology Conservation and Valorisation of Natural Resources,
Faculty of Sciences Dhar El Mahraz, Sidi
Mohammed Ben Abdallah University, P.O.
Box 1796, Fez 30000, Morocco
| | - Asmae Nakkabi
- Engineering
Laboratory of Organometallic, Molecular, Materials and Environment,
Faculty of Sciences Dhar EL Mahraz, Sidi
Mohamed Ben Abdellah University, P.O. Box 1796, 30000 Fez, Morocco
| | - Lahoucine Bahsis
- Laboratory
of Analytical and Molecular Chemistry, Polydisciplinary Faculty, Cadi Ayyad University, P.O. Box 4162, Safi 46000, Morocco
- Department
of Chemistry, Faculty of Sciences of El Jadida, Chouaïb Doukkali University,
P.O. Box 20, El Jadida 24000, Morocco
| | - Mohamed Bakhouch
- Laboratory
of Bioorganic Chemistry, Department of Chemistry, Faculty of Sciences, Chouaïb Doukkali University, P.O. Box 24, El Jadida 24000, Morocco
| | - Mohamed Akhazzane
- Engineering
Laboratory of Organometallic, Molecular, Materials and Environment,
Faculty of Sciences Dhar EL Mahraz, Sidi
Mohamed Ben Abdellah University, P.O. Box 1796, 30000 Fez, Morocco
- Cité
de l’innovation, Université
Sidi Mohamed Ben Abdellah, Route Immouzer, P.O. Box 2626, 30000 Fez, Morocco
| | - Mohamed Bourass
- Université
de Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, 351 Cours de la Libération, F-33405 Talence, Cédex France
| | - Samir Chtita
- Laboratory
of Analytical and Molecular Chemistry, Faculty of Sciences Ben M’Sik, Hassan II University of Casablanca, P.O. Box 7955, Casablanca, Morocco
| | - Yousef A. Bin Jardan
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, 11451 Riyadh, Saudi Arabia
| | - Maria Augustyniak
- Institute
of Biology, Biotechnology and Environmental Protection, Faculty of
Natural Sciences, University of Silesia
in Katowice, Bankowa 9, 40-007 Katowice, Poland
| | - Mohammed Bourhia
- Higher
Institute of Nursing Professions and Technical Health, Laayoune 70000, Morocco
| | - Mourad A.M. Aboul-Soud
- Department
of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University,
P.O. Box 10219, Riyadh 11433, Saudi Arabia
| | - Mohamed El Yazidi
- Engineering
Laboratory of Organometallic, Molecular, Materials and Environment,
Faculty of Sciences Dhar EL Mahraz, Sidi
Mohamed Ben Abdellah University, P.O. Box 1796, 30000 Fez, Morocco
| |
Collapse
|
10
|
Green and Efficient Construction of Chromeno[3,4- c]pyrrole Core via Barton-Zard Reaction from 3-Nitro-2 H-chromenes and Ethyl Isocyanoacetate. Molecules 2022; 27:molecules27238456. [PMID: 36500555 PMCID: PMC9737169 DOI: 10.3390/molecules27238456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 12/12/2022] Open
Abstract
A regioselective one-pot method for the synthesis of 1-ethyl 2,4-dihydrochromene[3,4-c]pyrroles in 63-94% yields from available 2-phenyl-, 2-trifluoro(trichloro)methyl- or 2-phenyl-2-(trifluoromethyl)-3-nitro-2H-chromenes and ethyl isocyanoacetate through the Barton-Zard reaction in ethanol at reflux for 0.5 h, using K2CO3 as a base, has been developed.
Collapse
|
11
|
Jiao L, Wang Y, Ding L, Zhang C, Wang XN, Chang J. Synthesis of 2-Aminopyrroles Via Metal-Free Annulation of Ynamides with 2 H-Azirines. J Org Chem 2022; 87:15564-15570. [DOI: 10.1021/acs.joc.2c02103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Lianhong Jiao
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Yanan Wang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Lixia Ding
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Chaofeng Zhang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Xiao-Na Wang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Junbiao Chang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
12
|
Pommainville A, Campeau D, Gagosz F. The Synthetic Potential of Thiophenium Ylide Cycloadducts**. Angew Chem Int Ed Engl 2022; 61:e202205963. [DOI: 10.1002/anie.202205963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Alice Pommainville
- Department of Chemistry and Biomolecular Sciences University of Ottawa Ottawa K1N 6N5 Canada
| | - Dominic Campeau
- Department of Chemistry and Biomolecular Sciences University of Ottawa Ottawa K1N 6N5 Canada
| | - Fabien Gagosz
- Department of Chemistry and Biomolecular Sciences University of Ottawa Ottawa K1N 6N5 Canada
| |
Collapse
|
13
|
Pommainville A, Campeau D, Gagosz F. The Synthetic Potential of Thiophenium Ylide Cycloadducts**. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Alice Pommainville
- Department of Chemistry and Biomolecular Sciences University of Ottawa Ottawa K1N 6N5 Canada
| | - Dominic Campeau
- Department of Chemistry and Biomolecular Sciences University of Ottawa Ottawa K1N 6N5 Canada
| | - Fabien Gagosz
- Department of Chemistry and Biomolecular Sciences University of Ottawa Ottawa K1N 6N5 Canada
| |
Collapse
|
14
|
Ren S, Huang K, Liu JB, Zhang L, Hou M, Qiu G. Palladium-catalyzed cyclization of 1-alkynyl-8-iodonaphthalene and double isocyanides for the synthesis of acenaphtho[1,2-b]pyrroles. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.02.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
15
|
Erguven H, Zhou C, Arndtsen BA. Multicomponent formation route to a new class of oxygen-based 1,3-dipoles and the modular synthesis of furans. Chem Sci 2021; 12:15077-15083. [PMID: 34909148 PMCID: PMC8612406 DOI: 10.1039/d1sc04088j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/26/2021] [Indexed: 11/21/2022] Open
Abstract
A new class of phosphorus-containing 1,3-dipoles can be generated by the multicomponent reaction of aldehydes, acid chlorides and the phosphonite PhP(catechyl). These 1,3-dipoles are formally cyclic tautomers of simple Wittig-type ylides, where the angle strain and moderate nucleophilicity in the catechyl-phosphonite favor their cyclization and also direct 1,3-dipolar cycloaddition to afford single regioisomers of substituted products. Coupling the generation of the dipoles with 1,3-dipolar cycloaddition offers a unique, modular route to furans from combinations of available aldehydes, acid chlorides and alkynes with independent control of all four substituents.
Collapse
Affiliation(s)
- Huseyin Erguven
- Department of Chemistry and Chemical Biology, Rutgers University 123 Bevier Road, Piscataway NJ 08854 USA
| | - Cuihan Zhou
- Department of Chemistry, McGill University 801 Sherbrooke Street West Montreal QC H3A0B8 Canada
| | - Bruce A Arndtsen
- Department of Chemistry, McGill University 801 Sherbrooke Street West Montreal QC H3A0B8 Canada
| |
Collapse
|
16
|
Wu R, Lu J, Cao T, Ma J, Chen K, Zhu S. Enantioselective Rh(II)-Catalyzed Desymmetric Cycloisomerization of Diynes: Constructing Furan-Fused Dihydropiperidines with an Alkyne-Substituted Aza-Quaternary Stereocenter. J Am Chem Soc 2021; 143:14916-14925. [PMID: 34469135 DOI: 10.1021/jacs.1c07556] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Described herein is an enantioselective dirhodium(II)-catalyzed cycloisomerization of diynes achieved by the strategy of desymmetrization, which not only represents a new cycloisomerization reaction of diynes but also constitutes the first Rh(II)-catalyzed asymmetric intramolecular cycloisomerization of 1,6-diynes. This protocol provides a range of valuable furan-fused dihydropiperidine derivatives with an enantiomerically enriched alkynyl-substituted aza-quaternary stereocenter in high efficiency, complete atom economy, and excellent enantioselectivity (up to 98% ee). Besides, the highly functionalized products could be easily transformed into various synthetically useful building blocks and conjugated with a series of pharmaceutical molecules. The mechanism involving a concerted [3+2] cycloaddition/[1,2]-H shift of the Rh(II) carbenoid intermediate was elucidated by DFT calculations and mechanistic studies. More importantly, the first single crystal of alkyne-dirhodium(II) was obtained to show that a η2-coordinating activation of alkynal by dirhodium(II) was involved. Weak hydrogen bondings between the carboxylate ligands and alkynal were found, which probably made the well-defined paddlewheel-like dirhodium(II) distinctive from other metal complexes in catalyzing this transformation. Furthermore, the origin of the enantioselectivity was elucidated by a Rh2(R-PTAD)4-alkyne complex and additional calculational studies.
Collapse
Affiliation(s)
- Rui Wu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Jiajun Lu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Tongxiang Cao
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Jun Ma
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Kai Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, People's Republic of China.,Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, People's Republic of China
| | - Shifa Zhu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China
| |
Collapse
|
17
|
Smith PJ, Jiang Y, Tong Z, Pickford HD, Christensen KE, Nugent J, Anderson EA. Synthesis of Polysubstituted Fused Pyrroles by Gold-Catalyzed Cycloisomerization/1,2-Sulfonyl Migration of Yndiamides. Org Lett 2021; 23:6547-6552. [PMID: 34369785 DOI: 10.1021/acs.orglett.1c02360] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Yndiamides (bis-N-substituted alkynes) are valuable precursors to azacycles. Here we report a cycloisomerization/1,2-sulfonyl migration of alkynyl-yndiamides to form tetrahydropyrrolopyrroles, unprecedented heterocyclic scaffolds that are relevant to medicinal chemistry. This functional group tolerant transformation can be achieved using Au(I) catalysis that proceeds at ambient temperature, and a thermally promoted process. The utility of the products is demonstrated by a range of reactions to functionalize the fused pyrrole core.
Collapse
Affiliation(s)
- Philip J Smith
- Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Yubo Jiang
- Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China
| | - Zixuan Tong
- Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Helena D Pickford
- Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | | | - Jeremy Nugent
- Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Edward A Anderson
- Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K
| |
Collapse
|