1
|
Lavendomme R, Yamashina M. Antiaromaticity in molecular assemblies and materials. Chem Sci 2024:d4sc05318d. [PMID: 39512924 PMCID: PMC11537289 DOI: 10.1039/d4sc05318d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/23/2024] [Indexed: 11/15/2024] Open
Abstract
Antiaromatic rings are infamously unstable and difficult to work with but they possess unusual electronic properties that make them interesting for fundamental and applied research. This perspective presents reports on discrete or polymeric assemblies made from antiaromatic building blocks, bound by either covalent linkages or supramolecular interactions. Compared to polymeric materials, discrete assemblies are more commonly studied, but most efforts have been devoted to their preparation and fundamental property studies, whereas applications are scarcely suggested. Future research in the field should focus on developing applications that benefit from the specific properties of antiaromatic rings. On the other hand, the few reports on antiaromatic-based materials hint at a promising future for this class of materials in organic electronics. To guide non-experts, different antiaromatic compounds are evaluated for their suitability as building blocks for larger assemblies.
Collapse
Affiliation(s)
- Roy Lavendomme
- Laboratoire de Chimie Organique, Université libre de Bruxelles (ULB) Avenue F. D. Roosevelt 50, CP160/06 B-1050 Brussels Belgium
- Laboratoire de Résonance Magnétique Nucléaire Haute Résolution, Université libre de Bruxelles (ULB) Avenue F. D. Roosevelt 50, CP160/08 B-1050 Brussels Belgium
| | - Masahiro Yamashina
- Department of Chemistry, School of Science, Institute of Science Tokyo 2-12-1 Ookayama Meguro-ku Tokyo 152-8551 Japan
| |
Collapse
|
2
|
Shafie SA, Nozawa R, Takano H, Shinokubo H. Radical reactivity of antiaromatic Ni(II) norcorroles with azo radical initiators. Beilstein J Org Chem 2024; 20:1967-1972. [PMID: 39161706 PMCID: PMC11331536 DOI: 10.3762/bjoc.20.172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/01/2024] [Indexed: 08/21/2024] Open
Abstract
Norcorrole is a stable 16π-antiaromatic porphyrinoid that exhibits characteristic reactivities and physical properties. Here, we disclose the reaction of Ni(II) norcorroles with alkyl radicals derived from azo radical initiators. The radical selectively attacked the distal α-position relative to the meso-position to construct a nonaromatic bowl-shaped structure. The photophysical and electrochemical properties of the obtained radical adducts were compared to those of the parent Ni(II) norcorrole. The radical reactivity of Ni(II) norcorroles was investigated by density functional theory (DFT) calculations.
Collapse
Affiliation(s)
- Siham Asyiqin Shafie
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering and Integrated Research Consortium Chemical Sciences (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Ryo Nozawa
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering and Integrated Research Consortium Chemical Sciences (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Hideaki Takano
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering and Integrated Research Consortium Chemical Sciences (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
- Institute for Advanced Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Hiroshi Shinokubo
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering and Integrated Research Consortium Chemical Sciences (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| |
Collapse
|
3
|
Liu SY, Li S, Ukai S, Nozawa R, Fukui N, Sugimori R, Kishi R, Shinokubo H. Homochiral and Heterochiral Self-Sorting Assemblies of Antiaromatic Ni(II) Norcorrole Dimers. Chemistry 2024; 30:e202400292. [PMID: 38769938 DOI: 10.1002/chem.202400292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 05/22/2024]
Abstract
Recently, π-π stacked antiaromatic π-systems have received considerable attention because they can exhibit stacked-ring aromaticity due to substantial intermolecular orbital interactions. Here, we report three antiaromatic norcorrole dimers that self-assemble to form supramolecular architectures through chiral self-sorting. A 2,2'-linked norcorrole dimer with 3,5-di-tert-butylphenyl groups forms a π-stacked dimer both in solid and solution states via homochiral self-sorting. Its association constant in solution is (3.6±1.7)×105 M-1 at 20 °C. In the solid state, 3,3'-linked norcorrole dimers with 3,5-di-tert-butylphenyl and phenyl groups afford macrocyclic and helical supramolecular assemblies via heterochiral and homochiral self-sorting, respectively. Notably, the subtle modification in the substituent resulted in a complete change in the structure of the aggregates and the chiral self-sorting mode. The present findings demonstrate that structural manipulation in antiaromatic monomer units leads to the formation of various supramolecular assemblies on the basis of the attractive interactions between antiaromatic π-systems.
Collapse
Affiliation(s)
- Si-Yu Liu
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, and Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, 464-8603, Nagoya, Japan
| | - Sha Li
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, and Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, 464-8603, Nagoya, Japan
| | - Shusaku Ukai
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, and Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, 464-8603, Nagoya, Japan
| | - Ryo Nozawa
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, and Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, 464-8603, Nagoya, Japan
| | - Norihito Fukui
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, and Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, 464-8603, Nagoya, Japan
- PRESTO, Japan Science and Technology Agency (JST), Kawaguchi, 332-0012, Saitama, Japan
| | - Ryota Sugimori
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, 560-8531, Toyonaka, Osaka, Japan
| | - Ryohei Kishi
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, 560-8531, Toyonaka, Osaka, Japan
| | - Hiroshi Shinokubo
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, and Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, 464-8603, Nagoya, Japan
| |
Collapse
|
4
|
Ishikawa S, Yamasumi K, Sugiura S, Sato S, Watanabe G, Koo YH, Seki S, Bando Y, Haketa Y, Shinokubo H, Maeda H. Norcorroles as antiaromatic π-electronic systems that form dimension-controlled assemblies. Chem Sci 2024; 15:7603-7609. [PMID: 38784757 PMCID: PMC11110129 DOI: 10.1039/d4sc01633e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 04/15/2024] [Indexed: 05/25/2024] Open
Abstract
Norcorrole derivatives with 3,4,5-trialkoxyphenyl moieties at the meso positions were synthesized to form various stacking assemblies in single crystals and thermotropic liquid crystals (LCs) depending on aliphatic chain lengths. Triple-decker stacking structures were formed via the interactions between the antiaromatic systems formed for the butoxy and dodecyloxy derivatives in the single-crystal and LC states, respectively. In particular, the LC state exhibited discotic columnar structures comprising triple deckers to exhibit high electric conductivity, as supported by molecular dynamics simulations.
Collapse
Affiliation(s)
- Soh Ishikawa
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University Kusatsu 525-8577 Japan
| | - Kazuhisa Yamasumi
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University Kusatsu 525-8577 Japan
| | - Shinya Sugiura
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University Kusatsu 525-8577 Japan
| | - Shunsuke Sato
- Department of Physics, School of Science, Kitasato University Sagamihara 252-0373 Japan
| | - Go Watanabe
- Department of Physics, School of Science, Kitasato University Sagamihara 252-0373 Japan
- Department of Data Science, School of Frontier Engineering, Kitasato University Sagamihara 252-0373 Japan
| | - Yun Hee Koo
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University Kyoto 615-8510 Japan
| | - Shu Seki
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University Kyoto 615-8510 Japan
| | - Yuya Bando
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University Kusatsu 525-8577 Japan
| | - Yohei Haketa
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University Kusatsu 525-8577 Japan
| | - Hiroshi Shinokubo
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University Nagoya 464-8603 Japan
| | - Hiromitsu Maeda
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University Kusatsu 525-8577 Japan
| |
Collapse
|
5
|
Wang Q, Sundholm D, Gauss J, Nottoli T, Lipparini F, Kino S, Ukai S, Fukui N, Shinokubo H. Changing aromatic properties through stacking: the face-to-face dimer of Ni(II) bis(pentafluorophenyl)norcorrole. Phys Chem Chem Phys 2024; 26:14777-14786. [PMID: 38716819 DOI: 10.1039/d4cp00968a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Nuclear magnetic resonance (NMR) shielding constants have been calculated for Ni(II) bis(pentafluorophenyl)norcorrole and its face-to-face stacked dimer at the Hartree-Fock (HF), second-order Møller-Plesset perturbation theory (MP2), complete-active-space self-consistent-field (CASSCF) levels as well as at density functional theory (DFT) levels using several functionals. The calculated 1H NMR shielding constants agree rather well with the experimental ones. The shielding constants of N and Ni calculated at DFT, HF, and MP2 levels differ from those obtained in the CASSCF calculations due to near-degeneracy effects at the Ni atom. The calculated magnetically induced current densities show that the monomer is antiaromatic, sustaining a strong global paratropic ring current, and the dimer is aromatic, sustaining a strong diatropic ring current. Qualitatively the same current density is obtained at the employed levels of theory. The most accurate ring-current strengths are probably obtained at the MP2 level. The aromatic dimer has a short intermolecular distance of less than 3 Å. The intermolecular interaction changes the nature of the frontier orbitals leading to a formal double bond between the norcorrole macrocycles.
Collapse
Affiliation(s)
- Qian Wang
- Department of Chemistry, Faculty of Science, University of Helsinki, P.O. Box 55 (A.I. Virtanens plats 1), FIN-00014, Finland.
| | - Dage Sundholm
- Department of Chemistry, Faculty of Science, University of Helsinki, P.O. Box 55 (A.I. Virtanens plats 1), FIN-00014, Finland.
| | - Jürgen Gauss
- Department Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Tommaso Nottoli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Filippo Lipparini
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Shota Kino
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Shusaku Ukai
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Norihito Fukui
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
- Graduate School of Engineering, Nagoya University, 2JST PRESTO, Japan
| | - Hiroshi Shinokubo
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| |
Collapse
|
6
|
Wang K, Ito S, Ren S, Shimizu D, Fukui N, Kishi R, Liu Q, Osuka A, Song J, Shinokubo H. A Triply Linked Porphyrin-Norcorrole Hybrid with Singlet Diradical Character. Angew Chem Int Ed Engl 2024; 63:e202401233. [PMID: 38251909 DOI: 10.1002/anie.202401233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 01/23/2024]
Abstract
Norcorrole Ni(II) complexes have recently received considerable attention because they are readily accessible antiaromatic molecules. Their high stability under ambient conditions and ease of synthesis have enabled the exploration of the intrinsic properties of antiaromatic molecules. Here, we report the synthesis and properties of meso-meso singly linked porphyrin-norcorrole hybrids and a triply linked porphyrin-norcorrole hybrid. The singly linked and triply linked porphyrin-norcorrole hybrids were fully characterized, including an X-ray structural analysis. Due to their orthogonal conformation, the singly linked hybrids maintain the individual electronic properties of their porphyrin and norcorrole subunits, while the triply linked hybrid shows a significantly smaller electrochemical HOMO-LUMO gap (0.45 eV) than that of Ni(II) dimesitylnorcorrole (1.08 eV). Furthermore, the triply linked hybrid exhibits singlet diradical characteristics, as confirmed by VT NMR, ESR, and SQUID experiments.
Collapse
Affiliation(s)
- Kaisheng Wang
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8603, Japan
| | - Satoru Ito
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8603, Japan
| | - Shuang Ren
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha, 410082, China
| | - Daiki Shimizu
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Norihito Fukui
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8603, Japan
- PRESTO, Japan Science and Technology Agency (JST), Kawaguchi, Saitama, 332-0012, Japan
| | - Ryohei Kishi
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| | - Qiang Liu
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha, 410082, China
| | - Atsuhiro Osuka
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine, Ministry of Educational of China, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Jianxin Song
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine, Ministry of Educational of China, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Hiroshi Shinokubo
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8603, Japan
| |
Collapse
|
7
|
Zhang D, Zhang F, Du H, Liu F, Yi X, Chen J, Hu BL. U-shaped stereoscopic design strategy toward N-doped nanographene segment. RSC Adv 2024; 14:11771-11774. [PMID: 38617572 PMCID: PMC11009840 DOI: 10.1039/d4ra00788c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024] Open
Abstract
There have been scarce reports about stereoscopic design of N-heteroacenes (NHAs), especially for the electron-deficient π-building blocks. Herein, we report the design and synthesis of a U-shaped bis(pyrene-quinoxaline) (BPQ). Single crystal X-ray diffraction reveals the herringbone stacking pattern and the presence of regular and incompletely closed pores.
Collapse
Affiliation(s)
- Dongyang Zhang
- School of Materials Science and Engineering, Jiangxi Provincial Key Laboratory of Power Batteries and Materials, Jiangxi University of Sciences and Technology Ganzhou 341000 China
- CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences Ningbo 315201 China
| | - Fengyuan Zhang
- CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences Ningbo 315201 China
| | - Hanyun Du
- CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences Ningbo 315201 China
- School of Materials Science and Chemical Engineering, Ningbo University Ningbo 315211 China
| | - Fei Liu
- CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences Ningbo 315201 China
| | - Xiaohui Yi
- CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences Ningbo 315201 China
| | - Jun Chen
- School of Materials Science and Engineering, Jiangxi Provincial Key Laboratory of Power Batteries and Materials, Jiangxi University of Sciences and Technology Ganzhou 341000 China
| | - Ben-Lin Hu
- CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences Ningbo 315201 China
| |
Collapse
|
8
|
Kino S, Ukai S, Fukui N, Haruki R, Kumai R, Wang Q, Horike S, Phung QM, Sundholm D, Shinokubo H. Close Stacking of Antiaromatic Ni(II) Norcorrole Originating from a Four-Electron Multicentered Bonding Interaction. J Am Chem Soc 2024; 146:9311-9317. [PMID: 38502926 PMCID: PMC10996016 DOI: 10.1021/jacs.4c01142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 03/21/2024]
Abstract
A π-conjugated molecule with one electronic spin often forms a π-stacked dimer through molecular orbital interactions between two unpaired electrons. The bonding is recognized as a multicentered two-electron interaction between the two π-conjugated molecules. Here, we disclose a multicentered bonding interaction between two antiaromatic molecules involving four electrons. We have synthesized an antiaromatic porphyrin analogue, Ni(II) bis(pentafluorophenyl)norcorrole. Its dimer adopts a face-to-face stacked structure with an extremely short stacking distance of 2.97 Å. The close stacking originates from a multicenter four-electron bonding interaction between the two molecules. The bonding electrons were experimentally observed via synchrotron X-ray diffraction analysis and corroborated by theoretical calculations. The intermolecular interaction of the molecular orbitals imparts the stacked dimer with aromatic character that is distinctly different from that of its monomer.
Collapse
Affiliation(s)
- Shota Kino
- Department
of Molecular and Macromolecular Chemistry, Graduate School of Engineering
and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Shusaku Ukai
- Department
of Molecular and Macromolecular Chemistry, Graduate School of Engineering
and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Norihito Fukui
- Department
of Molecular and Macromolecular Chemistry, Graduate School of Engineering
and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
- PRESTO, Japan
Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan
| | - Rie Haruki
- Photon
Factory, Institute of Materials Structure
Science, High Energy Accelerator Research Organization (KEK), Tsukuba, 305-0801, Japan
| | - Reiji Kumai
- Photon
Factory, Institute of Materials Structure
Science, High Energy Accelerator Research Organization (KEK), Tsukuba, 305-0801, Japan
| | - Qian Wang
- Department
of Chemistry, Faculty of Science, University
of Helsinki, Helsinki, FIN-00014, Finland
| | - Satoshi Horike
- Department
of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Quan Manh Phung
- Department
of Chemistry, Graduate School of Science, Nagoya University, Furo-cho,
Chikusa-ku, Nagoya, 464-8602, Japan
| | - Dage Sundholm
- Department
of Chemistry, Faculty of Science, University
of Helsinki, Helsinki, FIN-00014, Finland
| | - Hiroshi Shinokubo
- Department
of Molecular and Macromolecular Chemistry, Graduate School of Engineering
and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| |
Collapse
|
9
|
Ismael AK, Al-Jobory A. Energy gap and aromatic molecular rings. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231533. [PMID: 38577212 PMCID: PMC10987978 DOI: 10.1098/rsos.231533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/04/2024] [Accepted: 02/13/2024] [Indexed: 04/06/2024]
Abstract
The manuscript combines rational density functional theory simulations and experimental data to investigate the electrical properties of eight polycyclic aromatic hydrocarbons (PAHs). The optimized geometries reveal a preference for one-row, two-row and three-row ring distributions. Band structure plots demonstrate an inverse correlation between the number of aromatic rings and band gap size, with a specific order observed across the PAHs. Gas phase simulations support these findings, though differences in values are noted compared to the literature. Introducing a two-row ring distribution concept resolves discrepancies, particularly in azulene. The B3LYP function successfully bridges theoretical and experimental gaps, particularly in large PAHs. The manuscript highlights the potential for designing electronic devices based on different-sized PAHs, emphasizing a multi-ring distribution approach and opening new avenues for practical applications.
Collapse
Affiliation(s)
- Ali K. Ismael
- Department of Physics, Lancaster University, LancasterLA1 4YB, UK
- Department of Physics, College of Education for Pure Science, Tikrit University, Tikrit, Salah Al Deen34001, Iraq
| | - Alaa Al-Jobory
- Department of Physics, Lancaster University, LancasterLA1 4YB, UK
- Department of Physics, College of Science, University of Anbar, Al Rumadi, Al Anbar31001, Iraq
| |
Collapse
|
10
|
Shil S, Bhattacharya D, Misra A, Bytautas L. Antiaromatic Molecules as Magnetic Couplers: A Computational Quest. J Phys Chem A 2024; 128:815-828. [PMID: 38267395 PMCID: PMC10860145 DOI: 10.1021/acs.jpca.3c05784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 01/26/2024]
Abstract
In this study, we investigate a set of organic diradical structures in which two oxo-verdazyl radicals are selected as radical spin centers that are connected (coupled) via six coupler molecules (CM), resulting in various magnetic (ferromagnetic (FM) or antiferromagnetic (AFM)) characteristics, as reflected by their exchange coupling constants (J). We have designed 12 diradicals with 6-antiaromatic couplers coupled with bis-oxo-verdazyl diradicals with meta-meta (m-m) and para-meta (p-m) positional connectivities. The nature of the magnetic coupling (ferromagnetic, nonmagnetic, or antiferromagnetic) and the magnitude of the exchange constant J depend on the type of coupler, the connecting point between each radical center and CM, the degree of aromaticity of the coupler, and the length of the through-bond distance between radical centers. The computed magnetic exchange coupling constants J for these diradicals at the B3LYP/6-311++G(d,p) and MN12SX/6-311++G(d,p) levels of theory are large for many of these structures, indicating strong ferromagnetic coupling (with positive J values). In some cases, magnetic couplings are observed with J > 1000 cm-1 (B3LYP/6-311++G(d,p)) and strong antiferromagnetic coupling (with negative J values) with J < -1000 cm-1 (B3LYP/6-311++G(d,p)). Similarly, in some cases, magnetic couplings are observed with J > 289 cm-1 (MN12SX/6-311++G(d,p)) and strong antiferromagnetic coupling (with negative J values) with J < -568 cm-1 (MN12SX/6-311++G(d,p)). Furthermore, while numerous studies have reported that the degree of aromaticity of molecular couplers often favors strong ferromagnetic coupling, displaying the high-spin character of diradicals in their ground states, the couplers chosen in this study are characterized as antiaromatic or nonaromatic. The current investigation provides evidence that, remarkably, antiaromatic couplers are able to enhance stability by favoring electronic diradical structures with very strong ferromagnetic coupling when the length of the through-bond distance and connectivity pattern between radical centers are selected in such a way that the FM coupling is optimized. The findings in this study offer new strategies in the design of novel organic materials with interesting magnetic properties for practical applications.
Collapse
Affiliation(s)
- Suranjan Shil
- Manipal
Centre for Natural Sciences (Centre of Excellence), Manipal Academy of Higher Education, Manipal 576104, India
| | | | - Anirban Misra
- Department
of Chemistry, University of North Bengal, Raja Rammohunpur, Siliguri 734013, India
| | - Laimutis Bytautas
- Department
of Chemistry, Galveston College, 4015 Avenue Q, Galveston, Texas 77550, United States
| |
Collapse
|
11
|
Lee H, Lee D. Assembling Molecular Clips To Build π-Stacks. Chemistry 2023; 29:e202302523. [PMID: 37658276 DOI: 10.1002/chem.202302523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/01/2023] [Accepted: 09/01/2023] [Indexed: 09/03/2023]
Abstract
Nature utilizes an intimate stacking of aromatic motifs to construct functional structures, as demonstrated in protein folding and polynucleotide assembly. However, organized π-stacks of artificial molecules are difficult to build, primarily due to the weak, non-directional, and context-sensitive nature of van der Waals forces. To overcome these challenges, chemists have invented ingenious architectural designs to construct π-stacked supramolecular assemblies using clip-like molecules. This Concept article focuses on molecular clips that enable precise spatial control over assembly patterns, beyond the scope of simple host-guest chemistry. Different design strategies are analyzed and compared that leverage non-covalent interactions to create multi-layer π-stacks. Particular emphasis is placed on the choice of spine units as they play a crucial role in controlling the (i) spacing, (ii) orientation, and (iii) conformational pre-organization of linked aromatics to achieve long-range spatial ordering.
Collapse
Affiliation(s)
- Hyun Lee
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea
| | - Dongwhan Lee
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea
| |
Collapse
|
12
|
Tsuji Y, Okazawa K, Yoshizawa K. Hückel Molecular Orbital Analysis for Stability and Instability of Stacked Aromatic and Stacked Antiaromatic Systems. J Org Chem 2023; 88:14887-14898. [PMID: 37846097 DOI: 10.1021/acs.joc.3c01167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Face-to-face stacking of aromatic compounds leads to stacked antiaromaticity, while that of antiaromatic compounds leads to stacked aromaticity. This is a prediction with a long history; in the late 2000s, the prediction was confirmed by high-precision quantum chemical calculations, and finally, in 2016, a π-conjugated system with stacked aromaticity was synthesized. Several variations have since been reported, but essentially, they are all the same molecule. To realize stacked aromaticity in a completely new and different molecular system and to trigger an extension of the concept of stacked aromaticity, it is important to understand the origin of stacked aromaticity. The Hückel method, which has been successful in giving qualitatively correct results for π-conjugated systems despite its bold assumptions, is well suited for the analysis of stacked aromaticity. We use this method to model the face-to-face stacking systems of benzene and cyclobutadiene molecules and discuss their stacked antiaromaticity and stacked aromaticity on the basis of their π-electron energies. By further developing the discussion, we search for clues to realize stacked aromaticity in synthesizable molecular systems.
Collapse
Affiliation(s)
- Yuta Tsuji
- Faculty of Engineering Sciences, Kyushu University, Kasuga, Fukuoka 816-8580, Japan
| | - Kazuki Okazawa
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kazunari Yoshizawa
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
13
|
Lee S, Wang Y, Dutta R, Lee CH, Sessler JL, Kim D. Xanthene-Separated 24 π-Electron Antiaromatic Rosarin Dimer. Chemistry 2023; 29:e202301501. [PMID: 37205632 DOI: 10.1002/chem.202301501] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 05/21/2023]
Abstract
Antiaromatic molecules have recently received attention because of their intrinsic properties, such as high reactivity and their narrow HOMO-LUMO gaps. Stacking of antiaromatic molecules has been predicted to induce three-dimensional aromaticity via frontier orbital interactions. Here, we report a covalently linked π-π stacked rosarin dimer that has been examined experimentally by steady-state absorption and transient absorption measurements and theoretically by quantum chemical calculations, including time-dependent density functional theory, anisotropy of induced current density, and nucleus-independent chemical shift calculations. Relative to the corresponding monomer, the dimer exhibits diminished antiaromaticity upon lowering the temperature to 77 K, a finding ascribed to intramolecular interactions between the macrocyclic rosarin subunits.
Collapse
Affiliation(s)
- Seokwon Lee
- Department of Chemistry, Spectroscopy Laboratory for Functional π-Electronic Systems, Yonsei University, Seoul, 03722, Korea
| | - Yuying Wang
- Department of Chemistry, The University of Texas at Austin, Austin, Texas, 78712-1224, USA
| | - Ranjan Dutta
- School of Applied Science and Humanities, Haldia Institute of Technology, Haldia, West Bengal, 721657, India
| | - Chang-Hee Lee
- Department of Chemistry, Kangwon National University, Chun Cheon, 200-701, Korea
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin, Austin, Texas, 78712-1224, USA
| | - Dongho Kim
- Department of Chemistry, Spectroscopy Laboratory for Functional π-Electronic Systems, Yonsei University, Seoul, 03722, Korea
| |
Collapse
|
14
|
Xie R, Hu Y, Lee SL. A Paradigm Shift from 2D to 3D: Surface Supramolecular Assemblies and Their Electronic Properties Explored by Scanning Tunneling Microscopy and Spectroscopy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300413. [PMID: 36922729 DOI: 10.1002/smll.202300413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/21/2023] [Indexed: 06/15/2023]
Abstract
Exploring supramolecular architectures at surfaces plays an increasingly important role in contemporary science, especially for molecular electronics. A paradigm of research interest in this context is shifting from 2D to 3D that is expanding from monolayer, bilayers, to multilayers. Taking advantage of its high-resolution insight into monolayers and a few layers, scanning tunneling microscopy/spectroscopy (STM/STS) turns out a powerful tool for analyzing such thin films on a solid surface. This review summarizes the representative efforts of STM/STS studies of layered supramolecular assemblies and their unique electronic properties, especially at the liquid-solid interface. The superiority of the 3D molecular networks at surfaces is elucidated and an outlook on the challenges that still lie ahead is provided. This review not only highlights the profound progress in 3D supramolecular assemblies but also provides researchers with unusual concepts to design surface supramolecular structures with increasing complexity and desired functionality.
Collapse
Affiliation(s)
- Rongbin Xie
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yi Hu
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| | - Shern-Long Lee
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
15
|
Okazawa K, Tsuji Y, Yoshizawa K. Frontier Orbital Views of Stacked Aromaticity. J Phys Chem A 2023. [PMID: 37243683 DOI: 10.1021/acs.jpca.3c00360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Recent studies have theoretically and experimentally demonstrated that antiaromatic molecules with 4n π electrons exhibit stacked aromaticity according to π-π stacking when arranged in a face-to-face manner. However, the mechanism of its occurrence has not been clearly studied. In this study, we investigated the mechanism of stacked aromaticity using cyclobutadiene. When the antiaromatic molecules are stacked in a face-to-face manner, the orbital interactions between the degenerate singly occupied molecular orbitals (SOMOs) of the monomer unit cause a larger energy gap between the degenerate highest-occupied molecular orbitals (HOMOs) and the lowest-unoccupied molecular orbitals (LUMOs) of the dimer. However, the antiaromatic molecules are more stable in less symmetric conformations, mainly because of pseudo-Jahn-Teller distortions. In the case of cyclobutadiene, the two SOMOs of the monomer unit split into HOMO and LUMO because of the bond alternation. When the molecules are stacked in a face-to-face manner, the HOMO-LUMO gap of the dimer is smaller than that of the monomer due to the interactions between the HOMOs and LUMOs of the two monomer units. When the monomer units are within a specific distance of each other, the HOMO and LUMO of the dimer, which correspond to antibonding and bonding between the units, respectively, are interchanged. This alternation of molecular orbitals may result in an increase in the bond strength between the monomer units, exhibiting stacked aromaticity. We demonstrated that it is possible to control the distance exhibited by stacked aromaticity by engineering the HOMO-LUMO gap of the monomer units.
Collapse
Affiliation(s)
- Kazuki Okazawa
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yuta Tsuji
- Faculty of Engineering Sciences, Kyushu University, Kasuga, Fukuoka 816-8580, Japan
| | - Kazunari Yoshizawa
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
16
|
Lv X, Gao H, Wu F, Liu N, Ueno S, Yang X, Zhang T, Aratani N, Yamada H, Qiu F, Shen Z, Xue S. Highly Robust and Antiaromatic Rhenium(I) Rosarin. Inorg Chem 2023; 62:4747-4751. [PMID: 36920034 DOI: 10.1021/acs.inorgchem.3c00061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
1ReH•Cl, a highly robust and antiaromatic rhenium(I) complex of triarylrosarin, is synthesized. The 1H NMR spectrum of 1ReH•Cl shows upfield-shifted pyrrole protons and highly downfield-shifted inner protons that confirm its antiaromatic nature, with density functional theory calculations strongly supporting this interpretation. Antiaromatic 1ReH•Cl absorbs from the UV to near-IR region of the optical spectrum; cyclic voltammetry, thin-layer UV-vis spectroelectrochemistry, and spin-density distributions clearly reveal that the rosarin backbone of 1ReH•Cl undergoes redox chemistry. The X-ray structure of 1ReH•Cl shows a fully coordinated and protonated inner cavity that effectively prevents proton-coupled electron transfer when treated with an acid. A remarkably negative NICS(0) value, clockwise anisotropy of the induced current density ring current, and the aromatic shielded inner cavity in the 2D ICSS(0) map reveal that the T1 state of 1ReH•Cl is aromatic based on Baird's rule.
Collapse
Affiliation(s)
- Xiaojuan Lv
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Hu Gao
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Fan Wu
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Ningchao Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - So Ueno
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Xiaoliang Yang
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Tao Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Naoki Aratani
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Hiroko Yamada
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Fengxian Qiu
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Zhen Shen
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Songlin Xue
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| |
Collapse
|
17
|
Sprachmann J, Wachsmuth T, Bhosale M, Burmeister D, Smales GJ, Schmidt M, Kochovski Z, Grabicki N, Wessling R, List-Kratochvil EJW, Esser B, Dumele O. Antiaromatic Covalent Organic Frameworks Based on Dibenzopentalenes. J Am Chem Soc 2023; 145:2840-2851. [PMID: 36701177 DOI: 10.1021/jacs.2c10501] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Despite their inherent instability, 4n π systems have recently received significant attention due to their unique optical and electronic properties. In dibenzopentalene (DBP), benzanellation stabilizes the highly antiaromatic pentalene core, without compromising its amphoteric redox behavior or small HOMO-LUMO energy gap. However, incorporating such molecules in organic devices as discrete small molecules or amorphous polymers can limit the performance (e.g., due to solubility in the battery electrolyte solution or low internal surface area). Covalent organic frameworks (COFs), on the contrary, are highly ordered, porous, and crystalline materials that can provide a platform to align molecules with specific properties in a well-defined, ordered environment. We synthesized the first antiaromatic framework materials and obtained a series of three highly crystalline and porous COFs based on DBP. Potential applications of such antiaromatic bulk materials were explored: COF films show a conductivity of 4 × 10-8 S cm-1 upon doping and exhibit photoconductivity upon irradiation with visible light. Application as positive electrode materials in Li-organic batteries demonstrates a significant enhancement of performance when the antiaromaticity of the DBP unit in the COF is exploited in its redox activity with a discharge capacity of 26 mA h g-1 at a potential of 3.9 V vs. Li/Li+. This work showcases antiaromaticity as a new design principle for functional framework materials.
Collapse
Affiliation(s)
- Josefine Sprachmann
- Department of Chemistry & IRIS Adlershof, Humboldt University of Berlin, 12489 Berlin, Germany
| | - Tommy Wachsmuth
- Department of Chemistry & IRIS Adlershof, Humboldt University of Berlin, 12489 Berlin, Germany
| | - Manik Bhosale
- Institute of Organic Chemistry II and Advanced Materials, Ulm University, 89081 Ulm, Germany
| | - David Burmeister
- Department of Chemistry & IRIS Adlershof, Humboldt University of Berlin, 12489 Berlin, Germany.,Institut für Physik, Humboldt-Universität zu Berlin, IRIS Adlershof, 12489 Berlin, Germany
| | - Glen J Smales
- Bundesanstalt für Materialforschung und -prüfung (BAM), 12205 Berlin, Germany
| | - Maximilian Schmidt
- Institute of Organic Chemistry II and Advanced Materials, Ulm University, 89081 Ulm, Germany
| | - Zdravko Kochovski
- Department for Electrochemical Energy Storage, Helmholtz-Zentrum Berlin für Materialien und Energie, 14109 Berlin, Germany
| | - Niklas Grabicki
- Department of Chemistry & IRIS Adlershof, Humboldt University of Berlin, 12489 Berlin, Germany
| | - Robin Wessling
- Institute of Organic Chemistry II and Advanced Materials, Ulm University, 89081 Ulm, Germany.,Institute of Organic Chemistry, University of Freiburg, 79104 Freiburg, Germany
| | - Emil J W List-Kratochvil
- Department of Chemistry & IRIS Adlershof, Humboldt University of Berlin, 12489 Berlin, Germany.,Institut für Physik, Humboldt-Universität zu Berlin, IRIS Adlershof, 12489 Berlin, Germany
| | - Birgit Esser
- Institute of Organic Chemistry II and Advanced Materials, Ulm University, 89081 Ulm, Germany
| | - Oliver Dumele
- Department of Chemistry & IRIS Adlershof, Humboldt University of Berlin, 12489 Berlin, Germany
| |
Collapse
|
18
|
Passadis S, Hadjithoma S, Fairbairn NJ, Hedley GJ, Bandeira NAG, Tsipis AC, Miras HN, Keramidas AD, Kabanos TA. Hafnium(IV) Chemistry with Imide-Dioxime and Catecholate-Oxime Ligands: Unique {Hf 5} and Metalloaromatic {Hf 6}-Oxo Clusters Exhibiting Fluorescence. Inorg Chem 2022; 61:20253-20267. [PMID: 36461927 PMCID: PMC9768755 DOI: 10.1021/acs.inorgchem.2c01768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Hafnium(IV) molecular species have gained increasing attention due to their numerous applications ranging from high-resolution nanolithography, heterogeneous catalysis, and electronics to the design of molecule-based building blocks in metal-organic frameworks (MOFs), with applications in gas separation, sorption, luminescence sensing, and interim storage of radioactive waste. Despite great potential, their chemistry is relatively underdeveloped. Here, we use strong chelators (2Z-6Z)-piperidine-2,6-dione (H3pidiox) and 2,3-dihydroxybenzaldehyde oxime (H3dihybo) to synthesize the first ever reported pentanuclear {Hf5/H3pidiox} and hexanuclear {Hf6/H3dihybo} clusters (HfOCs). The {Hf6} clusters adopt unique core structures [Hf6IV(μ3-O)2(μ-O)3] with a trigonal-prismatic arrangement of the six hafnium atoms and have been characterized via single-crystal X-ray diffraction analysis, UV-vis spectroscopy in the solid state, NMR, fluorescence spectroscopy, and high-resolution mass spectrometry in solution. One-dimensional (1D) and two-dimensional (2D) 1H NMR and mass spectroscopies reveal the exceptional thermodynamic stability of the HfOCs in solution. Interestingly, the conjunction of the oxime group with the catechol resulted in the remarkable reduction of the clusters' band gap, below 2.51 eV. Another prominent feature is the occurrence of pronounced metalloaromaticity of the triangular {Hf3} metallic component revealed by its NICSzz scan curve calculated by means of density functional theory (DFT). The NICSzz(1) value of -44.6 ppm is considerably higher than the -29.7 ppm found at the same level of theory for the benzene ring. Finally, we investigated the luminescence properties of the clusters where 1 emits light in the violet region despite the lack of fluorescence of the free H3pidiox ligand, whereas the {Hf6} 3 shifts the violet-emitting light of the H3dihybo to lower energy. DFT calculations show that this fluorescence behavior stems from ligand-centered molecular orbital transitions and that HfIV coordination has a modulating effect on the photophysics of these HfOCs. This work not only represents a significant milestone in the construction of stable low-band-gap multinuclear HfIV clusters with unique structural features and metal-centered aromaticity but also reveals the potential of Hf(IV) molecule-based materials with applications in sensing, catalysis, and electronic devices.
Collapse
Affiliation(s)
- Stamatis
S. Passadis
- Section
of Inorganic and Analytical Chemistry, University
of Ioannina, Ioannina45110, Greece
| | - Sofia Hadjithoma
- Department
of Chemistry, University of Cyprus, Nicosia1678, Cyprus
| | | | - Gordon J. Hedley
- WestCHEM,
School of Chemistry, University of Glasgow, GlasgowG12 8QQ, U.K.
| | - Nuno A. G. Bandeira
- BioISI—BioSystems
and Integrative Sciences Institute, Faculdade
de Ciências da Universidade de Lisboa, Campo Grande, 1749-016Lisboa, Portugal,
| | - Athanassios C. Tsipis
- Section
of Inorganic and Analytical Chemistry, University
of Ioannina, Ioannina45110, Greece,
| | - Haralampos N. Miras
- WestCHEM,
School of Chemistry, University of Glasgow, GlasgowG12 8QQ, U.K.,
| | | | - Themistoklis A. Kabanos
- Section
of Inorganic and Analytical Chemistry, University
of Ioannina, Ioannina45110, Greece,
| |
Collapse
|
19
|
Chen TM, Tanaka Y, Kametani Y, Cheng K, Lin C, Lin YR, Hsu T, Chen Z, Hao J, Mori S, Shiota Y, Yoshizawa K, Furuta H, Shimizu S, Chen C. Spontaneous Assembly and Three‐Dimensional Stacking of Antiaromatic 5,15‐Dioxaporphyrin on HOPG. Angew Chem Int Ed Engl 2022; 61:e202212726. [DOI: 10.1002/anie.202212726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Tsang‐Wei Matt Chen
- Department of Chemistry and Center for Emerging Material and Advanced Devices National Taiwan University Taipei 10617 Taiwan
| | - Yuki Tanaka
- Department of Applied Chemistry Graduate School of Engineering and Center for Molecular Systems (CMS) Kyushu University Fukuoka 819-0395 Japan
| | - Yohei Kametani
- Institute for Materials Chemistry and Engineering and Integrated Research Consortium on Chemical Science Kyushu University Fukuoka 819-0395 Japan
| | - Kum‐Yi Cheng
- Department of Chemistry and Center for Emerging Material and Advanced Devices National Taiwan University Taipei 10617 Taiwan
| | - Chih‐Hsun Lin
- Department of Chemistry and Center for Emerging Material and Advanced Devices National Taiwan University Taipei 10617 Taiwan
| | - Yi Rick Lin
- Department of Chemistry and Center for Emerging Material and Advanced Devices National Taiwan University Taipei 10617 Taiwan
| | - Ting‐Rong Hsu
- Department of Chemistry and Center for Emerging Material and Advanced Devices National Taiwan University Taipei 10617 Taiwan
| | - Zuqian Chen
- Department of Applied Chemistry Graduate School of Engineering and Center for Molecular Systems (CMS) Kyushu University Fukuoka 819-0395 Japan
| | - Jiping Hao
- Department of Applied Chemistry Graduate School of Engineering and Center for Molecular Systems (CMS) Kyushu University Fukuoka 819-0395 Japan
| | - Shigeki Mori
- Advanced Research Center (ADRES) Ehime University Matsuyama 790-8577 Japan
| | - Yoshihito Shiota
- Institute for Materials Chemistry and Engineering and Integrated Research Consortium on Chemical Science Kyushu University Fukuoka 819-0395 Japan
| | - Kazunari Yoshizawa
- Institute for Materials Chemistry and Engineering and Integrated Research Consortium on Chemical Science Kyushu University Fukuoka 819-0395 Japan
| | - Hiroyuki Furuta
- Department of Applied Chemistry Graduate School of Engineering and Center for Molecular Systems (CMS) Kyushu University Fukuoka 819-0395 Japan
| | - Soji Shimizu
- Department of Applied Chemistry Graduate School of Engineering and Center for Molecular Systems (CMS) Kyushu University Fukuoka 819-0395 Japan
| | - Chun‐hsien Chen
- Department of Chemistry and Center for Emerging Material and Advanced Devices National Taiwan University Taipei 10617 Taiwan
| |
Collapse
|
20
|
Liu SY, Kishida N, Kim J, Fukui N, Haruki R, Niwa Y, Kumai R, Kim D, Yoshizawa M, Shinokubo H. Realization of Stacked-Ring Aromaticity in a Water-Soluble Micellar Capsule. J Am Chem Soc 2022; 145:2135-2141. [PMID: 36210512 PMCID: PMC9896547 DOI: 10.1021/jacs.2c08795] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Stacked-ring aromaticity arising from the close stacking of antiaromatic π-systems has recently received considerable attention. Here, we realize stacked-ring aromaticity via a rational supramolecular approach. A nanocapsule composed of bent polyaromatic amphiphiles was employed to encapsulate several antiaromatic norcorrole Ni(II) complexes (NCs) in water. The resulting micellar capsules display high stability toward heating and concentration change. The encapsulation resulted in the appearance of a broad absorption band in the near-infrared region, which is characteristic of norcorroles with close face-to-face stacking. Importantly, a meso-isopropyl NC, which does not exhibit π-stacking even in a concentrated solution or the crystalline phase, adopted π-stacking with stacked-ring aromaticity in the supramolecular micellar capsule.
Collapse
Affiliation(s)
- Si-Yu Liu
- Department
of Molecular and Macromolecular Chemistry, Graduate School of Engineering,
and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Natsuki Kishida
- Laboratory
for Chemistry and Life Science, Institute
of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta,
Midori-ku, Yokohama 226-8503, Japan
| | - Jinseok Kim
- Spectroscopy
Laboratory for Functional π-Electronic Systems and Department
of Chemistry, Yonsei University, Seoul 03722, Korea
| | - Norihito Fukui
- Department
of Molecular and Macromolecular Chemistry, Graduate School of Engineering,
and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan,PRESTO,
Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan
| | - Rie Haruki
- Photon
Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801, Japan
| | - Yasuhiro Niwa
- Photon
Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801, Japan
| | - Reiji Kumai
- Photon
Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801, Japan
| | - Dongho Kim
- Spectroscopy
Laboratory for Functional π-Electronic Systems and Department
of Chemistry, Yonsei University, Seoul 03722, Korea,
| | - Michito Yoshizawa
- Laboratory
for Chemistry and Life Science, Institute
of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta,
Midori-ku, Yokohama 226-8503, Japan,
| | - Hiroshi Shinokubo
- Department
of Molecular and Macromolecular Chemistry, Graduate School of Engineering,
and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan,
| |
Collapse
|
21
|
Xin S, Han Y, Fan W, Wang X, Ni Y, Wu J. Enhanced Aromaticity and Open‐Shell Diradical Character in the Dianions of 9‐Fluorenylidene‐Substituted Expanded Radialenes. Angew Chem Int Ed Engl 2022; 61:e202209448. [DOI: 10.1002/anie.202209448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Shan Xin
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City Fuzhou 350507 China
- Department of chemistry, National University of Singapore 3 Science Drive 3 117543 Singapore Singapore
| | - Yi Han
- Department of chemistry, National University of Singapore 3 Science Drive 3 117543 Singapore Singapore
| | - Wei Fan
- Department of chemistry, National University of Singapore 3 Science Drive 3 117543 Singapore Singapore
| | - Xuhui Wang
- Department of chemistry, National University of Singapore 3 Science Drive 3 117543 Singapore Singapore
| | - Yong Ni
- Department of chemistry, National University of Singapore 3 Science Drive 3 117543 Singapore Singapore
| | - Jishan Wu
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City Fuzhou 350507 China
- Department of chemistry, National University of Singapore 3 Science Drive 3 117543 Singapore Singapore
| |
Collapse
|
22
|
Kalapos P, Mayer PJ, Gazdag T, Demeter A, Oruganti B, Durbeej B, London G. Photoswitching of Local (Anti)Aromaticity in Biphenylene-Based Diarylethene Molecular Switches. J Org Chem 2022; 87:9532-9542. [PMID: 35849785 PMCID: PMC9361354 DOI: 10.1021/acs.joc.2c00504] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Indexed: 02/02/2023]
Abstract
Photoinduced tuning of (anti)aromaticity and associated molecular properties is currently in the focus of attention for both tailoring photochemical reactivity and designing new materials. Here, we report on the synthesis and spectroscopic characterization of diarylethene-based molecular switches embedded in a biphenylene structure composed of rings with different levels of local (anti)aromaticity. We show that it is possible to modulate and control the (anti)aromatic character of each ring through reversible photoswitching of the aryl units of the system between open and closed forms. Remarkably, it is shown that the irreversible formation of an annulated bis(dihydro-thiopyran) side-product that hampers the photoswitching can be efficiently suppressed when the aryl core formed by thienyl groups in one switch is replaced by thiazolyl groups in another.
Collapse
Affiliation(s)
- Péter
Pál Kalapos
- MTA
TTK Lendület Functional Organic Materials Research Group, Institute
of Organic Chemistry, Research Centre for
Natural Sciences, Magyar tudósok krt. 2, 1117 Budapest, Hungary
| | - Péter J. Mayer
- MTA
TTK Lendület Functional Organic Materials Research Group, Institute
of Organic Chemistry, Research Centre for
Natural Sciences, Magyar tudósok krt. 2, 1117 Budapest, Hungary
- Institute
of Chemistry, University of Szeged, Rerrich tér 1, 6720 Szeged, Hungary
| | - Tamás Gazdag
- MTA
TTK Lendület Functional Organic Materials Research Group, Institute
of Organic Chemistry, Research Centre for
Natural Sciences, Magyar tudósok krt. 2, 1117 Budapest, Hungary
- Hevesy
György PhD School of Chemistry, Eötvös
Loránd University, Pázmány Péter sétány 1/a, Budapest 1117, Hungary
| | - Attila Demeter
- Institute
of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar tudósok krt. 2, 1117 Budapest, Hungary
| | - Baswanth Oruganti
- Department
of Chemistry and Biomedical Sciences, Faculty of Health and Life Sciences, Linnaeus University, SE-45041 Kalmar, Sweden
| | - Bo Durbeej
- Division
of Theoretical Chemistry, IFM, Linköping
University, SE-58183 Linköping, Sweden
| | - Gábor London
- MTA
TTK Lendület Functional Organic Materials Research Group, Institute
of Organic Chemistry, Research Centre for
Natural Sciences, Magyar tudósok krt. 2, 1117 Budapest, Hungary
| |
Collapse
|
23
|
Xin S, Han Y, Fan W, Wang X, Ni Y, Wu J. Enhanced Aromaticity and Open‐shell Diradical Character in The Dianions of 9‐Fluorenylidene Substituted Expanded Radialenes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Shan Xin
- National University of Singapore Chemistry SINGAPORE
| | - Yi Han
- National University of Singapore Chemistry SINGAPORE
| | - Wei Fan
- National University of Singapore Chemistry SINGAPORE
| | - Xuhui Wang
- National University of Singapore Chemistry SINGAPORE
| | - Yong Ni
- National University of Singapore Chemistry SINGAPORE
| | - Jishan Wu
- National University of Singapore Chemistry 3 Science Drive 3 117543 Singapore SINGAPORE
| |
Collapse
|
24
|
Fan Z, Sun W, Yang Y, Guo J, Dou C, Wang Y. Organoborane cyclophanes with flexible linkers: Dynamic coordination and photo-responsive fluorescence. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
25
|
Wypych K, Dimitrova M, Sundholm D, Pawlicki M. Diagnosing Ring Current(s) in Figure-Eight Skeletons: A 3D Through-Space Conjugation in the Two-Loops Crossing. Org Lett 2022; 24:4876-4880. [PMID: 35796415 PMCID: PMC9348834 DOI: 10.1021/acs.orglett.2c01625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
The macrocyclic structures
with local conjugation readily undergo
a redox-triggered change in the diatropic character, leading to a
global current–density pathway of the doubly charged systems.
The figure-eight geometry of the neutral dimer does not significantly
change upon oxidation according to the spectroscopic and computational
data. The oxidation leads to 3D cross-conjugation at the intersection
of the two ethylene bridges resulting in a global ring current.
Collapse
Affiliation(s)
- Katarzyna Wypych
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland.,Department of Chemistry, University of Wrocław, F. Joliot-Curie 14, 503833 Wrocław, Poland
| | - Maria Dimitrova
- Department of Chemistry, University of Helsinki, P.O. Box 55, A. I. Virtasen aukio 1, FIN-00014 Helsinki, Finland
| | - Dage Sundholm
- Department of Chemistry, University of Helsinki, P.O. Box 55, A. I. Virtasen aukio 1, FIN-00014 Helsinki, Finland
| | - Miłosz Pawlicki
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| |
Collapse
|
26
|
El Bakouri O, Szczepanik DW, Jorner K, Ayub R, Bultinck P, Solà M, Ottosson H. Three-Dimensional Fully π-Conjugated Macrocycles: When 3D-Aromatic and When 2D-Aromatic-in-3D? J Am Chem Soc 2022; 144:8560-8575. [PMID: 35523019 PMCID: PMC9121391 DOI: 10.1021/jacs.1c13478] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
![]()
Several fully π-conjugated
macrocycles with puckered or cage-type
structures were recently found to exhibit aromatic character according
to both experiments and computations. We examine their electronic
structures and put them in relation to 3D-aromatic molecules (e.g., closo-boranes) and to 2D-aromatic
polycyclic aromatic hydrocarbons. Using qualitative theory combined
with quantum chemical calculations, we find that the macrocycles explored
hitherto should be described as 2D-aromatic with three-dimensional
molecular structures (abbr. 2D-aromatic-in-3D) and not as truly 3D-aromatic.
3D-aromatic molecules have highly symmetric structures (or nearly
so), leading to (at least) triply degenerate molecular orbitals, and
for tetrahedral or octahedral molecules, an aromatic closed-shell
electronic structure with 6n + 2 electrons. Conversely,
2D-aromatic-in-3D structures exhibit aromaticity that results from
the fulfillment of Hückel’s 4n + 2
rule for each macrocyclic path, yet their π-electron counts
are coincidentally 6n + 2 numbers for macrocycles
with three tethers of equal lengths. It is notable that 2D-aromatic-in-3D
macrocyclic cages can be aromatic with tethers of different lengths, i.e., with π-electron counts different from 6n + 2, and they are related to naphthalene. Finally, we
identify tetrahedral and cubic π-conjugated molecules that fulfill
the 6n + 2 rule and exhibit significant electron
delocalization. Yet, their properties resemble those of analogous
compounds with electron counts that differ from 6n + 2. Thus, despite the fact that these molecules show substantial
π-electron delocalization, they cannot be classified as true
3D-aromatics.
Collapse
Affiliation(s)
- Ouissam El Bakouri
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, Uppsala 751 20, Sweden.,Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, C/ Maria Aurèlia Capmany 6, Girona, Catalonia 17003, Spain
| | - Dariusz W Szczepanik
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, C/ Maria Aurèlia Capmany 6, Girona, Catalonia 17003, Spain.,K. Guminski Department of Theoretical Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, Kraków 30-387, Poland
| | - Kjell Jorner
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, Uppsala 751 20, Sweden
| | - Rabia Ayub
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, Uppsala 751 20, Sweden
| | - Patrick Bultinck
- Department of Chemistry, Ghent University, Krijgslaan 281 S3, Gent 9000, Belgium
| | - Miquel Solà
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, C/ Maria Aurèlia Capmany 6, Girona, Catalonia 17003, Spain
| | - Henrik Ottosson
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, Uppsala 751 20, Sweden
| |
Collapse
|
27
|
Gao H, Wu F, Zhao Y, Zhi X, Sun Y, Shen Z. Highly Stable Neutral Corrole Radical: Amphoteric Aromatic-Antiaromatic Switching and Efficient Photothermal Conversion. J Am Chem Soc 2022; 144:3458-3467. [PMID: 35170957 DOI: 10.1021/jacs.1c11716] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The preparation of novel stable radical systems that survive and may be manipulated under harsh conditions is essential for their practical applications, such as energy storage and conversion materials. Here, we present a facile synthesis of an electrically neutral benzo-fused nickel corrole radical that shows remarkable photo- and thermal stability. The carbon-based organic radical character was confirmed using electron spin resonance and spin population analyses. This radical may be reversibly converted to its aromatic or antiaromatic ion via a one-electron redox process, as indicated by nuclear magnetic resonance chemical shifts and theoretical calculations. Notably, the antiaromatic state is stable, showing intense ring currents with complex pathways. The spectroscopic characteristics and calculated molecular orbitals of the corrole radical exhibit a combination of aromatic and antiaromatic features. On the basis of the aromatic light-harvesting property and antiaromatic emission-free character, the corrole radical exhibits highly robust, efficient photothermal energy conversion in water after encapsulation within nanoparticles, with the unpaired spin simultaneously retained. These results provide a fundamental understanding of the relationship between the (anti)aromaticity and photophysical properties of a porphyrinoid radical and a promising platform for the design of radical-based functional materials.
Collapse
Affiliation(s)
- Hu Gao
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Fan Wu
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xu Zhi
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yufen Sun
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zhen Shen
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
28
|
Hu X, Wang Y, Zuping X, Song P, Wang AJ, Qian Z, Yuan PX, Zhao T, Feng JJ. Novel Aggregation-Enhanced PEC Photosensitizer Based on Electrostatic Linkage of Ionic Liquid with Protoporphyrin IX for Ultrasensitive Detection of Molt-4 Cells. Anal Chem 2022; 94:3708-3717. [PMID: 35172575 DOI: 10.1021/acs.analchem.1c05578] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nowadays, aggregation quenching of most organic photosensitizers in aqueous media seriously restricts analytical and biomedical applications of photoelectrochemical (PEC) sensors. In this work, an aggregation-enhanced PEC photosensitizer was prepared by electrostatically bonding protoporphyrin IX (PPIX) with an ionic liquid of 1-butyl-3-methylimidazole tetrafluoroborate ([BMIm][BF4]), termed as PPIX-[BMIm] for clarity. The resultant PPIX-[BMIm] showed weak photocurrent in pure dimethyl sulfoxide (DMSO, good solvent), while the PEC signals displayed a 44.1-fold enhancement in a water (poor solvent)/DMSO binary solvent with a water fraction (fw) of 90%. Such PEC-enhanced mechanism was critically studied by electrochemistry and density functional theory (DFT) calculation in some detail. Afterward, a label-free PEC cytosensor was built for ultrasensitive bioassay of acute lymphoblastic leukemia (molt-4) cells by electrodepositing Au nanoparticles (Au NPs) on the PPIX-[BMIm] aggregates and sequential assembly of protein tyrosine kinase (PTK) aptamer DNA (aptDNA). The resultant cytosensor showed a wide linear range (300 to 3 × 105 cells mL-1) with a limit of detection (LOD) as low as 63 cells mL-1. The aggregation-enhanced PEC performance offers a valuable and practical pathway for synthesis of advanced organic photosensitizer to explore its PEC applications in early diagnosis of tumors.
Collapse
Affiliation(s)
- Xiang Hu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Ying Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Xiong Zuping
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Pei Song
- Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, China
| | - Ai-Jun Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Zhaosheng Qian
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Pei-Xin Yuan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Tiejun Zhao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Jiu-Ju Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
29
|
Ukai S, Takamatsu A, Nobuoka M, Tsutsui Y, Fukui N, Ogi S, Seki S, Yamaguchi S, Shinokubo H. A Supramolecular Polymer Constituted of Antiaromatic Ni
II
Norcorroles. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Shusaku Ukai
- Department of Molecular and Macromolecular Chemistry Graduate School of Engineering Nagoya University, Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| | - Aiko Takamatsu
- Department of Chemistry Graduate School of Science Nagoya University, Furo-cho, Chikusa-ku Nagoya 464-8602 Japan
| | - Masaki Nobuoka
- Department of Molecular Engineering Graduate School of, Engineering Kyoto University, Nishikyo-ku Kyoto 615-8510 Japan
| | - Yusuke Tsutsui
- Department of Molecular Engineering Graduate School of, Engineering Kyoto University, Nishikyo-ku Kyoto 615-8510 Japan
| | - Norihito Fukui
- Department of Molecular and Macromolecular Chemistry Graduate School of Engineering Nagoya University, Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| | - Soichiro Ogi
- Department of Chemistry Graduate School of Science Nagoya University, Furo-cho, Chikusa-ku Nagoya 464-8602 Japan
| | - Shu Seki
- Department of Molecular Engineering Graduate School of, Engineering Kyoto University, Nishikyo-ku Kyoto 615-8510 Japan
| | - Shigehiro Yamaguchi
- Department of Chemistry Graduate School of Science Nagoya University, Furo-cho, Chikusa-ku Nagoya 464-8602 Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM) Nagoya University, Furo-cho, Chikusa-ku Nagoya 464-8601 Japan
| | - Hiroshi Shinokubo
- Department of Molecular and Macromolecular Chemistry Graduate School of Engineering Nagoya University, Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| |
Collapse
|
30
|
Li S, Sun Y, Meng Y, Li X, Zhang S. Progress in the Synthesis and Derivatization of Norcorrole. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202202039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
31
|
Okujima T, Inaba H, Mori S, Takase M, Uno H, Chino Y, Okada Y, Kobayashi N. Synthesis of Non- or Antiaromatic Dicarbaamethyrin: [24]Diazulihexaphyrin(0.1.0.0.1.0). Org Lett 2021; 24:234-239. [PMID: 34931838 DOI: 10.1021/acs.orglett.1c03882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A "3+3" condensation reaction of 1,3-di(2-pyrrolyl)azulene with aryl aldehyde followed by an oxidative aromatization afforded diazuliamethyrin, [24]diazulihexaphyrin(0.1.0.0.1.0). X-ray diffraction analysis revealed a relatively planar structure of diprotonated diazuliamethyrin with a mean plane deviation of 0.37 Å. A 24π non- or antiaromatic character was confirmed by 1H NMR, absorption, MCD spectra, and TD-DFT calculations that included the NICS values and ACID plots.
Collapse
Affiliation(s)
- Tetsuo Okujima
- Graduate School of Science and Engineering, Ehime University, Matsuyama 790-8577, Japan.,Research Unit for Power Generation and Storage Materials, Ehime University, Matsuyama 790-8577, Japan
| | - Hayato Inaba
- Graduate School of Science and Engineering, Ehime University, Matsuyama 790-8577, Japan
| | - Shigeki Mori
- Research Unit for Power Generation and Storage Materials, Ehime University, Matsuyama 790-8577, Japan.,Advanced Research Support Center, Ehime University, Matsuyama 790-8577, Japan
| | - Masayoshi Takase
- Graduate School of Science and Engineering, Ehime University, Matsuyama 790-8577, Japan
| | - Hidemitsu Uno
- Graduate School of Science and Engineering, Ehime University, Matsuyama 790-8577, Japan
| | - Yoshiaki Chino
- Faculty of Textile Science and Technology, Shinshu University, Ueda 386-8567, Japan
| | - Yusuke Okada
- Faculty of Textile Science and Technology, Shinshu University, Ueda 386-8567, Japan
| | - Nagao Kobayashi
- Faculty of Textile Science and Technology, Shinshu University, Ueda 386-8567, Japan
| |
Collapse
|
32
|
Ukai S, Takamatsu A, Nobuoka M, Tsutsui Y, Fukui N, Ogi S, Seki S, Yamaguchi S, Shinokubo H. A Supramolecular Polymer Constituted of Antiaromatic Ni II Norcorroles. Angew Chem Int Ed Engl 2021; 61:e202114230. [PMID: 34862699 DOI: 10.1002/anie.202114230] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Indexed: 11/10/2022]
Abstract
For the creation of next-generation organic electronic materials, the integration of π-systems has recently become a central theme. Such functional materials can be assembled by supramolecular polymerization when aromatic π-systems are used as monomers, and the properties of the resulting supramolecular polymer strongly depend on the electronic structure of the monomers. Here, we demonstrate the construction of a supramolecular polymer consisting of an antiaromatic π-system as the monomer. An amide-functionalized NiII norcorrole derivative formed a one-dimensional supramolecular polymer through π-π stacking and hydrogen-bonding interactions, ensuring the persistency of the conducting pathway against thermal perturbation, which results in higher charge mobility along the tightly bound linear aggregates than that of the aromatic analogue composed of ZnII porphyrins.
Collapse
Affiliation(s)
- Shusaku Ukai
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Aiko Takamatsu
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Masaki Nobuoka
- Department of Molecular Engineering, Graduate School of, Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Yusuke Tsutsui
- Department of Molecular Engineering, Graduate School of, Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Norihito Fukui
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Soichiro Ogi
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Shu Seki
- Department of Molecular Engineering, Graduate School of, Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Shigehiro Yamaguchi
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan.,Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Hiroshi Shinokubo
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| |
Collapse
|
33
|
|
34
|
Abstract
A recently developed methodology for calculating, analyzing, and visualizing nuclear magnetic shielding densities is used for studying spatial contributions including ring-current contributions to 1H nuclear magnetic resonance (NMR) chemical shifts of aromatic and anti-aromatic free-base porphyrinoids. Our approach allows a visual inspection of the spatial origin of the positive (shielding) and negative (deshielding) contributions to the nuclear magnetic shielding constants. Diatropic and paratropic current-density fluxes yield both shielding and deshielding contributions implying that not merely the tropicity of the current density determines whether the contribution has a shielding or deshielding character. Instead the shielding or deshielding contribution is determined by the direction of the current-density flux with respect to the studied nucleus.
Collapse
|