1
|
Wang J, Wang X, Li M, Wang H, Gao H, Zheng X, Liu G, Niu C, Liu Q, Hu Z, Zhou Y, Zhao Z, Yang J, Liu L. Stimuli-responsive AIEgens with an ultra acidochromic scope for self-reporting soft actuators. Biosens Bioelectron 2024; 263:116582. [PMID: 39038401 DOI: 10.1016/j.bios.2024.116582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/23/2024] [Accepted: 07/16/2024] [Indexed: 07/24/2024]
Abstract
This study develops a series of NBI-based acidochromic AIEgens engineered for ultra-wide acidochromic scope in self-reporting soft actuators, establishing the relationship between the photophysical properties and structural configurations of the AIEgens, further investigating their acidochromic behavior and fabricating acidity monitoring chips. The acidochromic behaviors were thoroughly investigated, and high-precision acidity monitoring chips were fabricated. We confirmed the protonation order of nitrogen atoms within the molecules and elucidated the acidochromic mechanisms through DFT and 1H NMR analyses. Utilizing these findings, we designed acid-driven hydrogel-based biomimetic actuators that can self-report and control the release of heavy loads under acidic conditions. These actuators hold significant potential for applications in targeted drug delivery within acidic biological environments, controlled release systems, and specialized transportation of heavy loads under acidic conditions.
Collapse
Affiliation(s)
- Jinjin Wang
- College of Science, Henan Agricultural University, 63 Agricultural Road, Zhengzhou, Henan, 450002, China
| | - Xingxiao Wang
- College of Science, Henan Agricultural University, 63 Agricultural Road, Zhengzhou, Henan, 450002, China
| | - Mengzhen Li
- College of Science, Henan Agricultural University, 63 Agricultural Road, Zhengzhou, Henan, 450002, China
| | - Haoran Wang
- Faculty of Materials Science, Shenzhen MSU-BIT University, Shenzhen, 518115, China
| | - Haoyu Gao
- College of Science, Henan Agricultural University, 63 Agricultural Road, Zhengzhou, Henan, 450002, China
| | - Xin Zheng
- College of Science, Henan Agricultural University, 63 Agricultural Road, Zhengzhou, Henan, 450002, China
| | - Guoxing Liu
- College of Science, Henan Agricultural University, 63 Agricultural Road, Zhengzhou, Henan, 450002, China
| | - Caoyuan Niu
- College of Science, Henan Agricultural University, 63 Agricultural Road, Zhengzhou, Henan, 450002, China
| | - Qian Liu
- Department of Urology, Tianjin First Central Hospital, Tianjin 300192, China
| | - Zhiyuan Hu
- Henan Engineering Research Center of Green Synthesis for Pharmaceuticals, School of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China
| | - Yuanyuan Zhou
- School of Materials Science and Engineering, Henan Engineering Research Center of Design and Recycle for Advanced Electrochemical Energy Storage Materials, Henan Normal University, Xinxiang, 453007, China
| | - Zheng Zhao
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong Shenzhen (CUHK-Shenzhen), Guangdong, 518172, China.
| | - Jinglei Yang
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, China.
| | - Lijie Liu
- College of Science, Henan Agricultural University, 63 Agricultural Road, Zhengzhou, Henan, 450002, China; Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, China.
| |
Collapse
|
2
|
Xu K, Gao H, Li Y, Jin Y, Zhao R, Huang Y. Synthetic Peptides with Genetic-Codon-Tailored Affinity for Assembling Tetraspanin CD81 at Cell Interfaces and Inhibiting Cancer Metastasis. Angew Chem Int Ed Engl 2024; 63:e202400129. [PMID: 38409630 DOI: 10.1002/anie.202400129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 02/28/2024]
Abstract
Probing biomolecular interactions at cellular interfaces is crucial for understanding and interfering with life processes. Although affinity binders with site specificity for membrane proteins are unparalleled molecular tools, a high demand remains for novel multi-functional ligands. In this study, a synthetic peptide (APQQ) with tight and specific binding to the untargeted extracellular loop of CD81 evolved from a genetically encoded peptide pool. With tailored affinity, APQQ flexibly accesses, site-specifically binds, and forms a complex with CD81, enabling in-situ tracking of the dynamics and activity of this protein in living cells, which has rarely been explored because of the lack of ligands. Furthermore, APQQ triggers the relocalization of CD81 from diffuse to densely clustered at cell junctions and modulates the interplay of membrane proteins at cellular interfaces. Motivated by these, efficient suppression of cancer cell migration, and inhibition of breast cancer metastasis were achieved in vivo.
Collapse
Affiliation(s)
- Kun Xu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Han Gao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongming Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yulong Jin
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rui Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanyan Huang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
3
|
Wang RX, Ou Y, Chen Y, Ren TB, Yuan L, Zhang XB. Rational Design of NIR-II G-Quadruplex Fluorescent Probes for Accurate In Vivo Tumor Metastasis Imaging. J Am Chem Soc 2024; 146:11669-11678. [PMID: 38644738 DOI: 10.1021/jacs.3c13851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Accurate in vivo imaging of G-quadruplexes (G4) is critical for understanding the emergence and progression of G4-associated diseases like cancer. However, existing in vivo G4 fluorescent probes primarily operate within the near-infrared region (NIR-I), which limits their application accuracy due to the short emission wavelength. The transition to second near-infrared (NIR-II) fluorescent imaging has been of significant interest, as it offers reduced autofluorescence and deeper tissue penetration, thereby facilitating more accurate in vivo imaging. Nonetheless, the advancement of NIR-II G4 probes has been impeded by the absence of effective probe design strategies. Herein, through a "step-by-step" rational design approach, we have successfully developed NIRG-2, the first small-molecule fluorescent probe with NIR-II emission tailored for in vivo G4 detection. Molecular docking calculations reveal that NIRG-2 forms stable hydrogen bonds and strong π-π interactions with G4 structures, which effectively inhibit twisted intramolecular charge transfer (TICT) and, thereby, selectively illuminate G4 structures. Due to its NIR-II emission (940 nm), large Stokes shift (90 nm), and high selectivity, NIRG-2 offers up to 47-fold fluorescence enhancement and a tissue imaging depth of 5 mm for in vivo G4 detection, significantly outperforming existing G4 probes. Utilizing NIRG-2, we have, for the first time, achieved high-contrast visualization of tumor metastasis through lymph nodes and precise tumor resection. Furthermore, NIRG-2 proves to be highly effective and reliable in evaluating surgical and drug treatment efficacy in cancer lymphatic metastasis models. We are optimistic that this study not only provides a crucial molecular tool for an in-depth understanding of G4-related diseases in vivo but also marks a promising strategy for the development of clinical NIR-II G4-activated probes.
Collapse
Affiliation(s)
- Ren-Xuan Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yifeng Ou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yushi Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Tian-Bing Ren
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
4
|
Ojha M, Banerjee M, Mandal M, Singha T, Ray S, Datta PK, Mandal M, Anoop A, Singh NDP. Two-Photon-Responsive "TICT + AIE" Active Naphthyridine-BF 2 Photoremovable Protecting Group: Application for Specific Staining and Killing of Cancer Cells. ACS APPLIED MATERIALS & INTERFACES 2024; 16:21486-21497. [PMID: 38640485 DOI: 10.1021/acsami.4c00299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
The combined effects of twisted intramolecular charge transfer (TICT) and aggregation-induced emission (AIE) phenomena have demonstrated a significant influence on excited-state chemistry. These combined TICT and AIE features have been extensively utilized to enhance photodynamic and photothermal therapy. Herein, we demonstrated the synergistic capabilities of TICT and AIE phenomena in the design of the photoremovable protecting group (PRPG), namely, NMe2-Napy-BF2. This innovative PRPG incorporates TICT and AIE characteristics, resulting in four remarkable properties: (i) red-shifted absorption wavelength, (ii) strong near-infrared (NIR) emission, (iii) viscosity-sensitive emission property, and (iv) accelerated photorelease rate. Inspired by these intriguing attributes, we developed a nanodrug delivery system (nano-DDS) using our PRPG for cancer treatment. In vitro studies showed that our nano-DDS manifested effective cellular internalization, specific staining of cancer cells, high-resolution confocal imaging of cancerous cells in the NIR region, and controlled release of the anticancer drug chlorambucil upon exposure to light, leading to cancer cell eradication. Most notably, our nano-DDS exhibited a substantially increased two-photon (TP) absorption cross section (435 GM), exhibiting its potential for in vivo applications. This development holds promise for significant advancements in cancer treatment strategies.
Collapse
Affiliation(s)
- Mamata Ojha
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Moumita Banerjee
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Madhurima Mandal
- Department of School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Tara Singha
- Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Souvik Ray
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Prasanta K Datta
- Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Mahitosh Mandal
- Department of School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Anakuthil Anoop
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - N D Pradeep Singh
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
5
|
Deng Z, Ding J, Bu J, Li J, Liu H, Gao P, Gong Z, Qin X, Yang Y, Zhong S. Fluorophore Label-Free Light-up Near Infrared Deoxyribonucleic Acid Nanosensor for Monitoring Extracellular Potassium Levels. Anal Chem 2024; 96:4023-4030. [PMID: 38412242 DOI: 10.1021/acs.analchem.3c03881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Fluorescent DNA nanosensors have been widely used due to their unique advantages, among which the near-infrared (NIR) imaging mode can provide deeper penetration depth and lower biological background for the nanosensors. However, efficient NIR quenchers require ingenious design, complex synthesis, and modification, which severely limit the development of NIR DNA nanosensors. Label-free strategies based on G-quadruplex (G4) and NIR G4 dyes were first introduced into in situ extracellular imaging, and a novel NIR sensing strategy for the specific detection of extracellular targets is proposed. The strategy avoids complex synthesis and site-specific modification by controlling the change of the NIR signal through the formation of a G4 nanostructure. A light-up NIR DNA nanosensor based on potassium ion (K+)-sensitive G4 chain PS2.M was constructed to verify the strategy. PS2.M forms a stable G4 nanostructure in the presence of K+ and activates the NIR G4 dye CSTS, thus outputting NIR signals. The nanosensor can rapidly respond to K+ with a linear range of 5-50 mM and has good resistance to interference. The nanosensor with cholesterol can provide feedback on the changes in extracellular K+ concentration in many kinds of cells, serving as a potential tool for the study of diseases such as epilepsy and cancer, as well as the development of related drugs. The strategy can be potentially applied to the NIR detection of a variety of extracellular targets with the help of functional DNAs such as aptamer and DNAzyme.
Collapse
Affiliation(s)
- Zhiwei Deng
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
| | - Jiacheng Ding
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
| | - Jiaqi Bu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
| | - Jiacheng Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
| | - Hui Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
| | - Peiru Gao
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
| | - Zan Gong
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
| | - Xiangxiang Qin
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
| | - Yanjing Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
| | - Shian Zhong
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, the "Double-First Class" Application Characteristic Discipline of Hunan Province (Pharmaceutical Science), Changsha Medical University, Changsha 410219, PR China
| |
Collapse
|
6
|
Reja SI, Minoshima M, Hori Y, Kikuchi K. Recent advancements of fluorescent biosensors using semisynthetic probes. Biosens Bioelectron 2024; 247:115862. [PMID: 38147718 DOI: 10.1016/j.bios.2023.115862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/07/2023] [Accepted: 11/17/2023] [Indexed: 12/28/2023]
Abstract
Fluorescent biosensors are crucial experimental tools for live-cell imaging and the quantification of different biological analytes. Fluorescent protein (FP)-based biosensors are widely used for imaging applications in living systems. However, the use of FP-based biosensors is hindered by their large size, poor photostability, and laborious genetic manipulations required to improve their properties. Recently, semisynthetic fluorescent biosensors have been developed to address the limitations of FP-based biosensors using chemically modified fluorescent probes and self-labeling protein tag/peptide tags or DNA/RNA-based hybrid systems. Semisynthetic biosensors have unique advantages, as they can be easily modified using different probes. Moreover, the self-labeling protein tag, which labels synthetically developed ligands via covalent bonds, has immense potential for biosensor development. This review discusses the recent progress in different types of fluorescent biosensors for metabolites, protein aggregation and degradation, DNA methylation, endocytosis and exocytosis, membrane tension, and cellular viscosity. Here, we explain in detail the design strategy and working principle of these biosensors. The information presented will help the reader to create new biosensors using self-labeling protein tags for various applications.
Collapse
Affiliation(s)
- Shahi Imam Reja
- Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, 565-0871, Japan
| | - Masafumi Minoshima
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yuichiro Hori
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka, 819-0395, Japan
| | - Kazuya Kikuchi
- Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, 565-0871, Japan; Division of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
7
|
Ruan N, Qiu Q, Wei X, Liu J, Wu L, Jia N, Huang C, James TD. De Novo Green Fluorescent Protein Chromophore-Based Probes for Capturing Latent Fingerprints Using a Portable System. J Am Chem Soc 2024; 146:2072-2079. [PMID: 38189785 PMCID: PMC10811623 DOI: 10.1021/jacs.3c11277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/07/2023] [Accepted: 12/07/2023] [Indexed: 01/09/2024]
Abstract
Rapid visualization of latent fingerprints, preferably at their point of origin, is essential for effective crime scene evaluation. Here, we present a new class of green fluorescent protein chromophore-based fluorescent dyes (LFP-Yellow and LFP-Red) that can be used for real-time visualization of LFPs within 10 s. Compared with traditional chemical reagents for LFPs, these fluorescent dyes are completely water-soluble, exhibit low cytotoxicity, and are harmless to users. Level 1-3 details of the LFPs could be clearly revealed through "off-on" fluorescence signal readout. Additionally, the fluorescent dyes were constructed based on an imidazolinone core and so do not contain pyridine groups or metal ions, which ensures that the DNA is not contaminated during extraction and identification after the LFPs are treated with the dyes. Combined with our as-developed portable system for capturing LFPs, LFP-Yellow and LFP-Red enabled the rapid capture of LFPs. Therefore, these green fluorescent protein chromophore-based probes provide an approach for the rapid identification of individuals who were present at a crime scene.
Collapse
Affiliation(s)
- Nanan Ruan
- The
Education Ministry Key Laboratory of Resource Chemistry, Shanghai
Key Laboratory of Rare Earth Functional Materials, Shanghai Frontiers
Science Research Base of Biomimetic Catalysis, Department of Chemistry, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China
| | - Qianfang Qiu
- The
Education Ministry Key Laboratory of Resource Chemistry, Shanghai
Key Laboratory of Rare Earth Functional Materials, Shanghai Frontiers
Science Research Base of Biomimetic Catalysis, Department of Chemistry, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China
| | - Xiaoqin Wei
- The
Education Ministry Key Laboratory of Resource Chemistry, Shanghai
Key Laboratory of Rare Earth Functional Materials, Shanghai Frontiers
Science Research Base of Biomimetic Catalysis, Department of Chemistry, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China
| | - Jiajia Liu
- The
Education Ministry Key Laboratory of Resource Chemistry, Shanghai
Key Laboratory of Rare Earth Functional Materials, Shanghai Frontiers
Science Research Base of Biomimetic Catalysis, Department of Chemistry, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China
| | - Luling Wu
- The
Education Ministry Key Laboratory of Resource Chemistry, Shanghai
Key Laboratory of Rare Earth Functional Materials, Shanghai Frontiers
Science Research Base of Biomimetic Catalysis, Department of Chemistry, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China
- Department
of Chemistry, University of Bath, Bath BA2 7AY, U.K.
| | - Nengqin Jia
- The
Education Ministry Key Laboratory of Resource Chemistry, Shanghai
Key Laboratory of Rare Earth Functional Materials, Shanghai Frontiers
Science Research Base of Biomimetic Catalysis, Department of Chemistry, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China
| | - Chusen Huang
- The
Education Ministry Key Laboratory of Resource Chemistry, Shanghai
Key Laboratory of Rare Earth Functional Materials, Shanghai Frontiers
Science Research Base of Biomimetic Catalysis, Department of Chemistry, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China
| | - Tony D. James
- The
Education Ministry Key Laboratory of Resource Chemistry, Shanghai
Key Laboratory of Rare Earth Functional Materials, Shanghai Frontiers
Science Research Base of Biomimetic Catalysis, Department of Chemistry, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China
- Department
of Chemistry, University of Bath, Bath BA2 7AY, U.K.
- School
of Chemistry and Chemical Engineering, Henan
Normal University, Xinxiang 453007, China
| |
Collapse
|
8
|
Jin L, Mao Z. Living virus-based nanohybrids for biomedical applications. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1923. [PMID: 37619605 DOI: 10.1002/wnan.1923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023]
Abstract
Living viruses characterized by distinctive biological functions including specific targeting, gene invasion, immune modulation, and so forth have been receiving intensive attention from researchers worldwide owing to their promising potential for producing numerous theranostic modalities against diverse pathological conditions. Nevertheless, concerns during applications, such as rapid immune clearance, altering immune activation modes, insufficient gene transduction efficiency, and so forth, highlight the crucial issues of excessive therapeutic doses and the associated biosafety risks. To address these concerns, synthetic nanomaterials featuring unique physical/chemical properties are frequently exploited as efficient drug delivery vehicles or treatments in biomedical domains. By constant endeavor, researchers nowadays can create adaptable living virus-based nanohybrids (LVN) that not only overcome the limitations of virotherapy, but also combine the benefits of natural substances and nanotechnology to produce novel and promising therapeutic and diagnostic agents. In this review, we discuss the fundamental physiochemical properties of the viruses, and briefly outline the basic construction methodologies of LVN. We then emphasize their distinct diagnostic and therapeutic performances for various diseases. Furthermore, we survey the foreseeable challenges and future perspectives in this interdisciplinary area to offer insights. This article is categorized under: Biology-Inspired Nanomaterials > Protein and Virus-Based Structures Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Lulu Jin
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
9
|
Muraoka Y, Muramoto J, Yasuhara Y, Kawatake M, Sakamoto T. Near-Infrared Fluorescent Switch-On Probe for Guanine-Quadruplex Imaging with Extremely Large Stokes Shift. Anal Chem 2023; 95:17162-17165. [PMID: 37955574 DOI: 10.1021/acs.analchem.3c04318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
To visualize the guanine-quadruplex (G4) nucleic acids in cells or in biological tissues, near-infrared (NIR) fluorescent probes that can respond specifically to G4 nucleic acids are required. Herein, an NIR fluorescence switch-on probe for G4 imaging having higher selectivity and extremely large Stokes shift (ca. 220 nm) was successfully developed by the modification of our original tripodal quinone-cyanine fluorescent dye. The target binding-induced intramolecular stacking interaction of the probe might cause red shifting of the fluorescence emission. The NIR fluorescence switch-on probe developed here might contribute largely to revealing the behaviors of G4 nucleic acids not only in cells but also in biological tissues.
Collapse
Affiliation(s)
- Yuka Muraoka
- Graduate School of Systems Engineering, Wakayama University, 930 Sakaedani, Wakayama 640-8510, Japan
| | - Junya Muramoto
- Graduate School of Systems Engineering, Wakayama University, 930 Sakaedani, Wakayama 640-8510, Japan
| | - Yu Yasuhara
- Faculty of Systems Engineering, Wakayama University, 930 Sakaedani, Wakayama 640-8510, Japan
| | - Mayuko Kawatake
- Faculty of Systems Engineering, Wakayama University, 930 Sakaedani, Wakayama 640-8510, Japan
| | - Takashi Sakamoto
- Graduate School of Systems Engineering, Wakayama University, 930 Sakaedani, Wakayama 640-8510, Japan
- Faculty of Systems Engineering, Wakayama University, 930 Sakaedani, Wakayama 640-8510, Japan
| |
Collapse
|
10
|
Pratihar S, Bhagavath KK, Govindaraju T. Small molecules and conjugates as theranostic agents. RSC Chem Biol 2023; 4:826-849. [PMID: 37920393 PMCID: PMC10619134 DOI: 10.1039/d3cb00073g] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/28/2023] [Indexed: 11/04/2023] Open
Abstract
Theranostics, the integration of therapy and diagnostics into a single entity for the purpose of monitoring disease progression and treatment response. Diagnostics involves identifying specific characteristics of a disease, while therapeutics refers to the treatment of the disease based on this identification. Advancements in medicinal chemistry and technology have led to the development of drug modalities that provide targeted therapeutic effects while also providing real-time updates on disease progression and treatment. The inclusion of imaging in therapy has significantly improved the prognosis of devastating diseases such as cancer and neurodegeneration. Currently, theranostic treatment approaches are based on nuclear medicine, while nanomedicine and a wide diversity of macromolecular systems such as gels, polymers, aptamers, and dendrimer-based agents are being developed for the purpose. Theranostic agents have significant roles to play in both early-stage drug development and clinical-stage therapeutic-containing drug candidates. This review will briefly outline the pros and cons of existing and evolving theranostic approaches before comprehensively discussing the role of small molecules and their conjugates.
Collapse
Affiliation(s)
- Sumon Pratihar
- Bioorganic Chemistry Laboratory, New Chemistry Unit, and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur P.O. Bengaluru 560064 Karnataka India
| | - Krithi K Bhagavath
- Bioorganic Chemistry Laboratory, New Chemistry Unit, and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur P.O. Bengaluru 560064 Karnataka India
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit, and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur P.O. Bengaluru 560064 Karnataka India
| |
Collapse
|
11
|
Zhi X, Sun Y, Cai F, Wang S, Gao H, Wu F, Zhang L, Shen Z. Oxidized Low-Density Lipoprotein (Ox-LDL)-Triggered Double-Lock Probe for Spatiotemporal Lipoprotein Oxidation and Atherosclerotic Plaque Imaging. Adv Healthc Mater 2023; 12:e2301595. [PMID: 37557912 DOI: 10.1002/adhm.202301595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/25/2023] [Indexed: 08/11/2023]
Abstract
Low-density lipoprotein (LDL), especially oxidative modified LDL (Ox-LDL), is the key risk factor for plaque accumulation and the development of cardiovascular disease. Herein, a highly specific Ox-LDL-triggered fluorogenic-colorimetric probe Pro-P1 is developed for visualizing the oxidation and aggregation progress of lipoproteins and plaque. A series of green fluorescent protein chromophores with modified donor-acceptor structures, containing carbazole as an electron donor and various substituents including pyridine-vinyl (P1), phenol-vinyl (P2), N, N-dimethylaniline-vinyl (P3), and thiophene-vinyl (P4), have been synthesized and evaluated. Emission spectroscopy and theoretical calculations of P1-P4 indicate that P1 shows enhanced green fluorescence (λem = 560 nm) by inhibiting its twisted intramolecular charge transfer in the presence of Ox-LDL. This feature allows the selection of P1 as a sensitive probe to directly visualize ferroptosis and Cu2+ -mediated LDL oxidative aggregation via in situ formation of fluorophore-bound Ox-LDL in living cells. The red-emissive probe Pro-P1 (λem = 660 nm) is prepared via borate protection of P1, which can be cleaved into P1 under high expression of HOCl and Ox-LDL condition at the lesion site, resulting in enhanced green emission. The plaque area and size with clear boundaries can be delineated by colorimetric fluorescence imaging and fluorescence lifetime imaging with precise differentiation.
Collapse
Affiliation(s)
- Xu Zhi
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yufen Sun
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Fangjian Cai
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Sisi Wang
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Hu Gao
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Fan Wu
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Lei Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Zhen Shen
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
12
|
Jin H, Shen D, Jing B, Zhang Z, Wang Z, Sun R, Zhang H, Sun J, Lyu H, Liu Y, Wang L. An epoxide-based covalent sensor to detect cardiac proteome aggregation in a cardio-oncology model. Anal Chim Acta 2023; 1278:341704. [PMID: 37709448 DOI: 10.1016/j.aca.2023.341704] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/25/2023] [Accepted: 08/08/2023] [Indexed: 09/16/2023]
Abstract
Covalent sensors to detect and capture aggregated proteome in stressed cells are rare. Herein, we construct a series of covalent fluorogenic sensors for aggregated proteins by structurally modulating GFP chromophore and arming it with an epoxide warhead. Among them, P2 probe selectively modifies aggregated proteins over folded ones and turns on fluorescence as evidenced by biochemical and mass spectrometry results. The coverage of this epoxide-based covalent chemistry is demonstrated using different types of aggregated proteins. Finally, the covalent fluorescent sensor P2 allows for direct visualization and capture of aggregated proteome in stressed cardiomyocytes and cardiac tissue samples from a cardio-oncology mouse model. The epoxide-based covalent sensor developed herein may become useful for future chemical proteomics analysis of aggregated proteins to dissect the mechanism underlying cardio-oncology.
Collapse
Affiliation(s)
- Hao Jin
- The Second Hospital of Dalian Medical University, Dalian, 116023, PR China; CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China
| | - Di Shen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China
| | - Biao Jing
- The Second Hospital of Dalian Medical University, Dalian, 116023, PR China; CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China
| | - Zhenduo Zhang
- The Second Hospital of Dalian Medical University, Dalian, 116023, PR China; CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China
| | - Zhiming Wang
- The Second Hospital of Dalian Medical University, Dalian, 116023, PR China; CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China
| | - Rui Sun
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Huaiyue Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Jialu Sun
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China
| | - Haochen Lyu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China
| | - Yu Liu
- The Second Hospital of Dalian Medical University, Dalian, 116023, PR China.
| | - Lili Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China.
| |
Collapse
|
13
|
Zhang Z, Gao C, Lu Z, Xie X, You J, Li Z. Sunlight-directed fluorophore-switch in photosynthesis of cyanine subcellular organelle markers for bio-imaging. Biosens Bioelectron 2023; 237:115485. [PMID: 37348191 DOI: 10.1016/j.bios.2023.115485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/24/2023]
Abstract
The photoconvertible fluorophore synthesis enables the light controlled imaging channels switch for accurate tracking the quantity and localization of intracellular biomolecules in chemical biology. Herein, we repurposed the photochemistry of Fischer's base and developed a sunlight-directed fluorophore-switch strategy for high-efficiency trimethine cyanine (Cy3.5/Cy3) synthesis. The unexpected sunlight-directed photoconversion of Fischer's base proceeds in conventional solvents and accelerates in chloroform via photo-oxidation and hydrogen atom transfer without using extra additives, and the heterogenous dimerization mechanism was proposed and confirmed by isolation of the reactive intermediates. The reliable strategy is employed in the photosynthesis of commercially available cytomembrane marker (DiI) and other cyanine based organelle markers with appreciable yields. Sunlight-controlled fluorophore-switch of subcellular organelle markers in living cells validated the feasibility of our strategy with cell-tolerant character. Moreover, remote control synthesis of Cy3.5 in vivo directed via sunlight further demonstrated the extended application of our strategy. Therefore, this sunlight-directed strategy will facilitate exploitation of cyanine-based probes with switched fluorescence imaging channels and further enable precise description of the dynamic variations in living cells with minimal autofluorescence and cellular disturbance.
Collapse
Affiliation(s)
- Zhiyong Zhang
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, PR China; State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China
| | - Chunyu Gao
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, PR China; State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China
| | - Zhihao Lu
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, PR China
| | - Xiunan Xie
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, PR China
| | - Jinmao You
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, PR China
| | - Zan Li
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, PR China; State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China.
| |
Collapse
|
14
|
He C, Peng J, Li Z, Yang Q, Zhang Y, Luo X, Liu Z, Feng G, Fang J. Engineering a Red Fluorescent Protein Chromophore for Visualization of RNA G-Quadruplexes. Biochemistry 2023. [PMID: 37376793 DOI: 10.1021/acs.biochem.3c00149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Synthetic red fluorescent protein (RFP) chromophores have emerged as valuable tools for biological imaging and therapeutic applications, but their application in the visualization of endogenous RNA G-quadruplexes (G4s) in living cells has been rarely reported so far. Here, by integrating the group of the excellent G4 dye ThT, we modulate RFP chromophores to create a novel fluorescent probe DEBIT with red emission. DEBIT selectively recognizes the G4 structure with the advantage of strong binding affinity, high selectivity, and excellent photostability. Using DEBIT as a fluorescent indicator, the real-time monitoring of RNA G4 in biological systems can be achieved. In summary, our work expands the application of synthetic RFP chromophores and provides an essential dye category to the classical G4 probes.
Collapse
Affiliation(s)
- Chang He
- School of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Jiasheng Peng
- School of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Zheng Li
- School of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Qinghui Yang
- School of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Ying Zhang
- School of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Xingyu Luo
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China
| | - Zekai Liu
- School of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Guangfu Feng
- School of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Jun Fang
- School of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
15
|
Yanagi S, Matsumoto A, Toriumi N, Tanaka Y, Miyamoto K, Muranaka A, Uchiyama M. A Switchable Near-Infrared-Absorbing Dye Based on Redox-Bistable Benzitetraazaporphyrin. Angew Chem Int Ed Engl 2023; 62:e202218358. [PMID: 36670047 DOI: 10.1002/anie.202218358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/13/2023] [Accepted: 01/20/2023] [Indexed: 01/22/2023]
Abstract
Activatable near-infrared (NIR) dyes responsive to external stimuli are used in medical and other applications. Here, we describe the design and synthesis of bench-stable 18π- and 20π-electron benzitetraazaporphyrins (BzTAPs) possessing redox-switchable NIR properties. X-Ray, NMR, and UV/Visible-NIR analyses revealed that 20π-electron BzTAP 1 exhibits NIR absorption and antiaromaticity with a paratropic ring-current, while 18π-electron BzTAP 2 shows weakly aromatic character with NIR inertness. Notably, the NIR-silent BzTAP 2 was readily converted to the NIR-active BzTAP 1 in the presence of mild reducing agents such as amine. The intense NIR absorption band of BzTAP 1 is in sharp contrast to the very weak absorption bands of previously reported antiaromatic porphyrinoids. Molecular orbital analysis revealed that symmetry-lowering perturbation of the 20π-electron porphyrinoid skeleton enables the HOMO-LUMO transition of 1 to be electric-dipole-allowed. BzTAPs are expected to be useful for constructing activatable NIR probes working in reductive environments.
Collapse
Affiliation(s)
- Shunsuke Yanagi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Akihisa Matsumoto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Naoyuki Toriumi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yusuke Tanaka
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kazunori Miyamoto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Atsuya Muranaka
- Advanced Elements Chemistry Laboratory, Cluster for Pioneering Research (CPR), RIKEN, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan
| | - Masanobu Uchiyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Advanced Elements Chemistry Laboratory, Cluster for Pioneering Research (CPR), RIKEN, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan.,Research Initiative for Supra-Materials (RISM), Shinshu University, 3-15-1 Tokida, Ueda, Nagano, 386-8567, Japan
| |
Collapse
|
16
|
Huang W, Feng S, Liu J, Liang B, Zhou Y, Yu M, Liang J, Huang J, Lü X, Huang W. Configuration-Induced Multichromism of Phenanthridine Derivatives: A Type of Versatile Fluorescent Probe for Microenvironmental Monitoring. Angew Chem Int Ed Engl 2023; 62:e202219337. [PMID: 36602266 DOI: 10.1002/anie.202219337] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/06/2023]
Abstract
Fluorescent probes are attractive in diagnosis and sensing. However, most reported fluorophores can only detect one or few analytes/parameters, notably limiting their applications. Here we have designed three phenanthridine-based fluorophores (i.e., B1, F1, and T1 with 1D, 2D, and 3D molecular configuration, respectively) capable of monitoring various microenvironments. In rigidifying media, all fluorophores show bathochromic emissions but with different wavelength and intensity changes. Under compression, F1 shows a bathochromic emission of over 163 nm, which results in organic fluorophore-based full-color piezochromism. Moreover, both B1 and F1 exhibit an aggregation-caused quenching (ACQ) behavior, while T1 is an aggregation-induced emission (AIE) fluorophore. Further, F1 and T1 selectively concentrate in cell nucleus, whereas B1 mainly stains the cytoplasm in live cell imaging. This work provides a general design strategy of versatile fluorophores for microenvironmental monitoring.
Collapse
Affiliation(s)
- Wei Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, Fujian 350002, P. R. China
| | - Shiyu Feng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, Fujian 350002, P. R. China.,Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, P. R. China.,University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing, 100049, P. R. China
| | - Jie Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, Fujian 350002, P. R. China
| | - Baoshuai Liang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, Fujian 350002, P. R. China.,University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing, 100049, P. R. China
| | - Ya Zhou
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Mengya Yu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Jiayuan Liang
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai, 201203, P. R. China
| | - Jiaguo Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Xujie Lü
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai, 201203, P. R. China
| | - Weiguo Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, Fujian 350002, P. R. China.,Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, P. R. China.,University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing, 100049, P. R. China
| |
Collapse
|
17
|
Nucleic acid-assisted CRISPR-Cas systems for advanced biosensing and bioimaging. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
18
|
Tang H, Peng J, Peng S, Wang Q, Jiang X, Xue X, Tao Y, Xiang L, Ji Q, Liu SM, Weng X, Zhou X. Live-cell RNA imaging using the CRISPR-dCas13 system with modified sgRNAs appended with fluorescent RNA aptamers. Chem Sci 2022; 13:14032-14040. [PMID: 36540819 PMCID: PMC9728512 DOI: 10.1039/d2sc04656c] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 11/06/2022] [Indexed: 09/10/2023] Open
Abstract
The development of RNA imaging strategies in live cells is essential to improve our understanding of their role in various cellular functions. We report an efficient RNA imaging method based on the CRISPR-dPspCas13b system with fluorescent RNA aptamers in sgRNA (CasFAS) in live cells. Using modified sgRNA attached to fluorescent RNA aptamers that showed reduced background fluorescence, this approach provides a simple, sensitive way to image and track endogenous RNA with high accuracy and efficiency. In addition, color switching can be easily achieved by changing the fluorogenic dye analogues in living cells through user-friendly washing and restaining operations. CasFAS is compatible with orthogonal fluorescent aptamers, such as Broccoli and Pepper, enabling multiple colors RNA labeling or intracellular RNA-RNA interaction imaging. Finally, the visualization of severe fever with thrombocytopenia syndrome virus (SFTSV) was achieved by CasFAS, which may facilitate further studies on this virus.
Collapse
Affiliation(s)
- Heng Tang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, The Institute for Advanced Studies, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University Wuhan 430072 Hubei P. R. China
| | - Junran Peng
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, The Institute for Advanced Studies, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University Wuhan 430072 Hubei P. R. China
| | - Shuang Peng
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, The Institute for Advanced Studies, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University Wuhan 430072 Hubei P. R. China
| | - Qi Wang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, The Institute for Advanced Studies, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University Wuhan 430072 Hubei P. R. China
| | - Xin Jiang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, The Institute for Advanced Studies, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University Wuhan 430072 Hubei P. R. China
| | - Xiaocheng Xue
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, The Institute for Advanced Studies, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University Wuhan 430072 Hubei P. R. China
| | - Yanxin Tao
- Department of Clinical Laboratory, Center for Gene Diagnosis, and Program of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University Wuhan 430072 Hubei P. R. China
| | - Limin Xiang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, The Institute for Advanced Studies, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University Wuhan 430072 Hubei P. R. China
| | - Quanjiang Ji
- School of Physical Science and Technology, ShanghaiTech University Shanghai 201210 P. R. China
| | - Song-Mei Liu
- Department of Clinical Laboratory, Center for Gene Diagnosis, and Program of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University Wuhan 430072 Hubei P. R. China
| | - Xiaocheng Weng
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, The Institute for Advanced Studies, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University Wuhan 430072 Hubei P. R. China
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, The Institute for Advanced Studies, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University Wuhan 430072 Hubei P. R. China
| |
Collapse
|
19
|
Advances in
G
‐quadruplexes‐based fluorescent imaging. Biopolymers 2022; 113:e23528. [DOI: 10.1002/bip.23528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/16/2022] [Accepted: 11/16/2022] [Indexed: 12/03/2022]
|
20
|
Human telomeric G-quadruplex DNA enabled preferential recognition of copper (II) and Iron (III) ions sensed by a red emissive probe. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
21
|
Zhao L, Ahmed F, Zeng Y, Xu W, Xiong H. Recent Developments in G-Quadruplex Binding Ligands and Specific Beacons on Smart Fluorescent Sensor for Targeting Metal Ions and Biological Analytes. ACS Sens 2022; 7:2833-2856. [PMID: 36112358 DOI: 10.1021/acssensors.2c00992] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The G-quadruplex structure is crucial in several biological processes, including DNA replication, transcription, and genomic maintenance. G-quadruplex-based fluorescent probes have recently gained popularity because of their ease of use, low cost, excellent selectivity, and sensitivity. This review summarizes the latest applications of G-quadruplex structures as detectors of genome-wide, enantioselective catalysts, disease therapeutics, promising drug targets, and smart fluorescence probes. In every section, sensing of G-quadruplex and employing G4 for the detection of other analytes were introduced, respectively. Since the discovery of the G-quadruplex structure, several studies have been conducted to investigate its conformations, biological potential, stability, reactivity, selectivity for chemical modification, and optical properties. The formation mechanism and advancements for detecting different metal ions (Na+, K+, Ag+, Tl+, Cu+/Cu2+, Hg2+, and Pb2+) and biomolecules (AMP, ATP, DNA/RNA, microRNA, thrombin, T4 PNK, RNase H, ALP, CEA, lipocalin 1, and UDG) using fluorescent sensors based on G-quadruplex modification, such as dye labels, artificial nucleobase moieties, dye complexes, intercalating dyes, and bioconjugated nanomaterials (AgNCs, GO, QDs, CDs, and MOF) is described herein. To investigate these extremely efficient responsive agents for diagnostic and therapeutic applications in medicine, fluorescence sensors based on G-quadruplexes have also been employed as a quantitative visualization technique.
Collapse
Affiliation(s)
- Long Zhao
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China.,College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Farid Ahmed
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yating Zeng
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Weiqing Xu
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Hai Xiong
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
| |
Collapse
|
22
|
Verma S, Patidar RK, Tiwari K, Tiwari R, Baranwal J, Velayutham R, Ranjan N. Preferential Recognition of Human Telomeric G-Quadruplex DNA by a Red-Emissive Molecular Rotor. J Phys Chem B 2022; 126:7298-7309. [DOI: 10.1021/acs.jpcb.2c04418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Smita Verma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli, New Transit Campus, Lucknow 226002, Uttar Pradesh, India
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Kolkata, Maniktala Main Road, Kolkata 700054, India
| | - Rajesh K. Patidar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli, New Transit Campus, Lucknow 226002, Uttar Pradesh, India
| | - Khushboo Tiwari
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli, New Transit Campus, Lucknow 226002, Uttar Pradesh, India
| | - Ratnesh Tiwari
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli, New Transit Campus, Lucknow 226002, Uttar Pradesh, India
| | - Jaya Baranwal
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli, New Transit Campus, Lucknow 226002, Uttar Pradesh, India
| | - Ravichandiran Velayutham
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Kolkata, Maniktala Main Road, Kolkata 700054, India
| | - Nihar Ranjan
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli, New Transit Campus, Lucknow 226002, Uttar Pradesh, India
| |
Collapse
|
23
|
Lu X, Wu X, Kuang S, Lei C, Nie Z. Visualization of Deep Tissue G-quadruplexes with a Novel Large Stokes-Shifted Red Fluorescent Benzothiazole Derivative. Anal Chem 2022; 94:10283-10290. [PMID: 35776781 DOI: 10.1021/acs.analchem.2c02049] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
G-quadruplex (G4) is a noncanonical nucleic acid secondary structure that has implications for various physiological and pathological processes and is thus essential to exploring new approaches to G4 detection in live cells. However, the deficiency of molecular imaging tools makes it challenging to visualize the G4 in ex vivo tissue samples. In this study, we established a G4 probe design strategy and presented a red fluorescent benzothiazole derivative, ThT-NA, to detect and image G4 structures in living cells and tissue samples. By enhancing the electron-donating group of thioflavin T (ThT) and optimizing molecular structure, ThT-NA shows excellent photophysical properties, including red emission (610 nm), a large Stokes shift (>100 nm), high sensitivity selectivity toward G4s (1600-fold fluorescence turn-on ratio) and robust two-photon fluorescence emission. Therefore, these features enable ThT-NA to reveal the endogenous RNA G4 distribution in living cells and differentiate the cell cycle by monitoring the changes of RNA G4 folding. Significantly, to the best of our knowledge, ThT-NA is the first benzothiazole-derived G4 probe that has been developed for imaging G4s in ex vivo cancer tissue samples by two-photon microscopy techniques.
Collapse
Affiliation(s)
- Xu Lu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, People's Republic of China
| | - Xianhua Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, People's Republic of China
| | - Shi Kuang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, People's Republic of China
| | - Chunyang Lei
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, People's Republic of China
| | - Zhou Nie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, People's Republic of China
| |
Collapse
|
24
|
Dou WT, Han HH, Sedgwick AC, Zhu GB, Zang Y, Yang XR, Yoon J, James TD, Li J, He XP. Fluorescent probes for the detection of disease-associated biomarkers. Sci Bull (Beijing) 2022; 67:853-878. [PMID: 36546238 DOI: 10.1016/j.scib.2022.01.014] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/30/2021] [Accepted: 01/04/2022] [Indexed: 01/10/2023]
Abstract
Fluorescent probes have emerged as indispensable chemical tools to the field of chemical biology and medicine. The ability to detect intracellular species and monitor physiological processes has not only advanced our knowledge in biology but has provided new approaches towards disease diagnosis. In this review, we detail the design criteria and strategies for some recently reported fluorescent probes that can detect a wide range of biologically important species in cells and in vivo. In doing so, we highlight the importance of each biological species and their role in biological systems and for disease progression. We then discuss the current problems and challenges of existing technologies and provide our perspective on the future directions of the research area. Overall, we hope this review will provide inspiration for researchers and prove as useful guide for the development of the next generation of fluorescent probes.
Collapse
Affiliation(s)
- Wei-Tao Dou
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hai-Hao Han
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Adam C Sedgwick
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712-1224, USA
| | - Guo-Biao Zhu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yi Zang
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xin-Rong Yang
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China.
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea.
| | - Tony D James
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China.
| | - Jia Li
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
25
|
Characterization of G-Quadruplexes in Enterovirus A71 Genome and Their Interaction with G-Quadruplex Ligands. Microbiol Spectr 2022; 10:e0046022. [PMID: 35446122 PMCID: PMC9241713 DOI: 10.1128/spectrum.00460-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human enteroviruses cause many diseases; however, there is no specific therapeutic drug. G-quadruplex is an atypical secondary structure formed in the guanine rich region of DNA or RNA, which can exist in the viral genome. The different positions of G-quadruplex play an important role in the regulation of virus replication and infection. Whether G-quadruplexes are present in human enteroviruses is unknown. In current study, we analyzed the potential quadruplex forming sequences of human enteroviruses, especially EV-A71 virus, which causes hand, foot, and mouth disease. The results showed that there were a certain number of potential quadruplex-forming sequences in human enteroviruses. Through a variety of experimental methods, we evaluated the formation potential of EV-A71 encoded G-quadruplex and analyzed the binding ability of G-quadruplex ligands, including BRACO-19, pyridostatin and TMPyP4 to virus encoded G-quadruplexes. G-quadruplex ligands BRACO-19, PDS and TMPyP4 could inhibit the transcription of constructs containing EV-A71 G-quadruplex sequences. Moreover, we found that BRACO-19 was able to inhibit the replication of EV-A71, suggesting that targeting G-quadruplexes in EV-A71 genome by G-quadruplex ligands could be a novel antiviral way against EV-A71. Our finding not only uncovered the G-quadruplexes in human enteroviruses, but also would provide a new strategy for human enteroviruses therapy. IMPORTANCE G-quadruplex is a stable nucleic acid secondary structure formed by the folding of guanine rich nucleic acid. The important regulatory function of G-quadruplex makes it an attractive target of antiviral effect. Human enteroviruses cause a variety of human diseases, including common cold, nervous system diseases, cardiovascular damage, and diabetes. Enterovirus A71 (EV-A71) is one of pathogens causing hand, foot, and mouth disease; however, whether G-quadruplexes are present in the genomes of human enteroviruses is unknown. The function of G-quadruplexes in the EV-A71 genomes is not clear. We predicted and characterized G-quadruplex sequences in EV-A71. G-quadruplex ligands were identified to stabilize EV-A71 G-quadruplexes with high affinities. We also demonstrated G-quadruplex ligand BRACO-19 inhibited EV-A71 replication. Our studies provide a framework for targeting G-quadruplexes in the enteroviruses genome, which will be a new way to develop antiviral agents against human enteroviruses.
Collapse
|
26
|
Lv L, Cui H, Chen Z, Zhou Y, Zhang L. G‐quadruplex ligands inhibit chikungunya virus replication. J Med Virol 2022; 94:2519-2527. [PMID: 35075669 DOI: 10.1002/jmv.27622] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/27/2021] [Accepted: 01/21/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Lu Lv
- Department of Clinical Laboratory MedicineThe First Affifiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan HospitalJinanShandongChina
- Department of Pathogen BiologySchool of Basic Medical SciencesShandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
| | - Haoran Cui
- Department of Clinical Laboratory MedicineThe First Affifiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan HospitalJinanShandongChina
- Department of Pathogen BiologySchool of Basic Medical SciencesShandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
| | - Zhiyang Chen
- Department of Pathogen BiologySchool of Basic Medical SciencesShandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
| | - Yixuan Zhou
- Department of Pathogen BiologySchool of Basic Medical SciencesShandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
| | - Leiliang Zhang
- Department of Clinical Laboratory MedicineThe First Affifiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan HospitalJinanShandongChina
- Department of Pathogen BiologySchool of Basic Medical SciencesShandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
| |
Collapse
|