1
|
Yang Q, Failla AV, Turunen P, Mateos-Maroto A, Gai M, Zuschratter W, Westendorf S, Gelléri M, Chen Q, Goudappagouda, Zhao H, Zhu X, Morsbach S, Scheele M, Yan W, Landfester K, Kabe R, Bonn M, Narita A, Liu X. Reactivatable stimulated emission depletion microscopy using fluorescence-recoverable nanographene. Nat Commun 2025; 16:1341. [PMID: 39904997 PMCID: PMC11794581 DOI: 10.1038/s41467-025-56401-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 01/17/2025] [Indexed: 02/06/2025] Open
Abstract
Stimulated emission depletion (STED) microscopy, a key optical super-resolution imaging method, has extended our ability to view details to resolution levels of tens of nanometers. Its resolution depends on fluorophore de-excitation efficiency, and increases with depletion laser power. However, high-power irradiation permanently turns off the fluorescence due to photo-bleaching of the fluorophores. As a result, there is a trade-off between spatial resolution and imaging time. Here, we overcome this limitation by introducing reactivatable STED (ReSTED) based on the photophysical properties of the nanographene dibenzo[hi,st]ovalene (DBOV). In contrast to the photo-induced decomposition of other fluorophores, the fluorescence of DBOV is only temporarily deactivated and can be reactivated by near-infrared light (including the 775 nm depletion beam). As a result, this fluorophore allows for hours-long, high-resolution 3D STED imaging, greatly expanding the applications of STED microscopy.
Collapse
Affiliation(s)
- Qiqi Yang
- Max Planck Institute for Polymer Research, Mainz, Germany
| | - Antonio Virgilio Failla
- UKE Microscopy Imaging Facility, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Petri Turunen
- Institute of Molecular Biology gGmbH, Mainz, Germany
| | | | - Meiyu Gai
- Max Planck Institute for Polymer Research, Mainz, Germany
| | | | - Sophia Westendorf
- Institute of Physical and Theoretical Chemistry, University of Tuebingen, Tuebingen, Germany
| | | | - Qiang Chen
- Max Planck Institute for Polymer Research, Mainz, Germany
| | - Goudappagouda
- Organic and Carbon Nanomaterials Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan
| | - Hao Zhao
- Organic and Carbon Nanomaterials Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan
| | - Xingfu Zhu
- Max Planck Institute for Polymer Research, Mainz, Germany
| | | | - Marcus Scheele
- Institute of Physical and Theoretical Chemistry, University of Tuebingen, Tuebingen, Germany
| | - Wei Yan
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang Province, China
| | | | - Ryota Kabe
- Organic Optoelectronics Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan.
| | - Mischa Bonn
- Max Planck Institute for Polymer Research, Mainz, Germany.
| | - Akimitsu Narita
- Max Planck Institute for Polymer Research, Mainz, Germany.
- Organic and Carbon Nanomaterials Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan.
| | - Xiaomin Liu
- Max Planck Institute for Polymer Research, Mainz, Germany.
| |
Collapse
|
2
|
Wang XY, Bai J, Shen YJ, Li ZA, Gong HY. A Carbazole-Centered Expanded Helicene Stabilized with Hexabenzocoronene (HBC) Units. Angew Chem Int Ed Engl 2025; 64:e202417745. [PMID: 39552120 DOI: 10.1002/anie.202417745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 11/19/2024]
Abstract
The synthesis and stabilization of heteroatom-doped nanocarbon molecules, such as carbazole-containing (super)helicenes, present significant challenges due to the complexities involved in maintaining structural integrity and electronic functionality. In this study, we successfully synthesized a carbazole-centered expanded tris-hexabenzo[7]helicene (1) via a facile FeCl3-mediated Scholl coupling reaction. 1 exhibits both chemical and chiral stability and demonstrates fluorescence at 628 nm with a quantum yield of 0.40. Additionally, the enantiomers of 1 display pronounced chiroptical properties, including a distinct circular dichroism (CD) signal spanning from 300 to 600 nm. The absorption dissymmetry factor (|gabs|) is determined to be 2.98×10-3, while the circularly polarized luminescence brightness (BCPL) is measured as 32.50 M-1 cm-1.
Collapse
Affiliation(s)
- Xin-Yue Wang
- College of Chemistry, Beijing Normal University, No. 19, XinJieKouWai St, HaiDian District, Beijing, 100875, P. R. China
| | - Jinku Bai
- College of Chemistry, Beijing Normal University, No. 19, XinJieKouWai St, HaiDian District, Beijing, 100875, P. R. China
| | - Yun-Jia Shen
- College of Chemistry, Beijing Normal University, No. 19, XinJieKouWai St, HaiDian District, Beijing, 100875, P. R. China
| | - Zhi-Ao Li
- College of Chemistry, Beijing Normal University, No. 19, XinJieKouWai St, HaiDian District, Beijing, 100875, P. R. China
| | - Han-Yuan Gong
- College of Chemistry, Beijing Normal University, No. 19, XinJieKouWai St, HaiDian District, Beijing, 100875, P. R. China
| |
Collapse
|
3
|
Zhang XP, Chen ZC, Tian HR, Zhang WX, Ying SW, Du P, Chen BW, Yao YR, Wu YF, Zhang ML, Deng SL, Zhang Q, Xie SY, Zheng LS. A Pyrrole-Fused Nanographene and its Edge-Perchlorinated Derivative Featuring a Corannulene Core and Five N-doped Heptagons. Angew Chem Int Ed Engl 2025:e202420228. [PMID: 39800658 DOI: 10.1002/anie.202420228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Indexed: 01/21/2025]
Abstract
A pyrrole-fused analogue of warped nanographene, designated as deca-nitrogen doped 'WNG' (azaWNG), was synthesized through the annular fusion of decapyrroylcorannulene. The resulting azaWNG exhibited extremely limited solubility in common organic solvents and was characterized solely by mass spectrometry. Theoretical calculations revealed that azaWNG has a sunflower-like molecular structure with electron-deficient corannulene as the core and electron-rich pyrrole as the petals, demonstrating a significantly narrower energy gap compared to all-carbon WNG. To improve its solubility and facilitate precise structural characterization, iodine monochloride was utilized for edge-perchlorination of azaWNG, enabling successful separation and purification of chlorinated azaWNG in solution phase. X-ray crystallography analysis unequivocally confirmed that edge-perchlorinated azaWNG contains 5 heptagons and 11 pentagons embedded within the warped π skeleton. Cyclic voltammetry measurements indicated that the first oxidation potential of azaWNG is -0.59 V, representing the lowest value reported for any previously studied aza-nanographene. Consequently, azaWNG can be readily oxidized by AgPF6 or even atmospheric oxygen to yield stable oxidation states, as corroborated by UV/Visible absorption spectroscopy; this behavior is attributed to the fusion of ten pyrroles around corannulene. This work marks the first instance of nitrogen doping in WNG (C80H30), underscoring the significant modification to electronic structure induced by such doping.
Collapse
Affiliation(s)
- Xue-Peng Zhang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, Xiamen University, Xiamen, 361005, China
| | - Zuo-Chang Chen
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, Xiamen University, Xiamen, 361005, China
| | - Han-Rui Tian
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, Xiamen University, Xiamen, 361005, China
| | - Wen-Xin Zhang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, Xiamen University, Xiamen, 361005, China
| | - Si-Wei Ying
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, Xiamen University, Xiamen, 361005, China
| | - Peng Du
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, Xiamen University, Xiamen, 361005, China
| | - Bin-Wen Chen
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, Xiamen University, Xiamen, 361005, China
| | - Yang-Rong Yao
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, Xiamen University, Xiamen, 361005, China
| | - Yin-Fu Wu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, Xiamen University, Xiamen, 361005, China
| | - Mei-Lin Zhang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, Xiamen University, Xiamen, 361005, China
| | - Shun-Liu Deng
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, Xiamen University, Xiamen, 361005, China
| | - Qianyan Zhang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, Xiamen University, Xiamen, 361005, China
| | - Su-Yuan Xie
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, Xiamen University, Xiamen, 361005, China
| | - Lan-Sun Zheng
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
4
|
Gao F, Fu Q, Ruan Y, Li C, Wang Y, Li H, Li J, Jiang Y. Elucidating Manganese Single-Atom Doping: Strategies for Fluorescence Enhancement in Water-Soluble Red-Emitting Carbon Dots and Applications for FL/MR Dual Mode Imaging. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2414895. [PMID: 39746856 DOI: 10.1002/advs.202414895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Indexed: 01/04/2025]
Abstract
The absence of the enhancement of fluorescence in carbon dots (CDs) through doping with transition metal atoms (TMAs) hinders the advancement of multi-modal bio-imaging CDs with high photoluminescence quantum yield (PLQY). Herein, Mn-atomically-doped R-CDs (R-Mn-CDs) with a high PLQY of 41.3% in water is presented, enabling efficient in vivo dual-mode fluorescence/magnetic resonance (MR) imaging. The comprehensive characterizations reveal that the incorporation of Mn atoms leads to a Mn-N2O2 coordinating structure, resulting in five significant effects: an increase in sp2 conjugation domains, a reduction in band gap, a decreased oxidation level, an increase in photo-excited electron numbers, and the suppression of non-radiative electron relaxation pathways. Collectively, these factors contribute to the remarkable PLQY of R-Mn-CDs. Additionally, the doping of Mn atoms also endows R-Mn-CDs with superior MR imaging capabilities due to, which highlights their promising prospect as a dual-modal bio-imaging platform for fluorescence/MR imaging. Furthermore, the findings indicate that the introduction of various TMAs, such as Mn, Zn, Ni, and Cu, can universally improve the PLQY of water-soluble CDs through the construction of TMAs─O bonds. This research provides valuable theoretical insights into the mechanisms underlying the fluorescence enhancement induced by TMAs doping and offers guidance for the future design of high PLQY CDs.
Collapse
Affiliation(s)
- Fucheng Gao
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan, 250061, China
| | - Qiang Fu
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250100, China
- Key Laboratory of Urinary Diseases in Universities of Shandong (Shandong First Medical University), Jinan, 250100, China
| | - Ying Ruan
- MOE Key Laboratory of Materials Physics and Chemistry Under Extraordinary Conditions, School of Physical Science and Technology, Northwestern Polytechnical University, Xian, 710072, China
| | - Can Li
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan, 250061, China
| | - Yandong Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan, 250061, China
| | - Hui Li
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan, 250061, China
| | - Jichao Li
- School of Physics Shandong University, Jinan, 250100, China
| | - Yanyan Jiang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan, 250061, China
| |
Collapse
|
5
|
Li R, Lin X, Ding C, Xu B, Tan Q. Heterocoronenes Containing Pyridine and 1,2-Azaborine Units. Org Lett 2024; 26:11028-11033. [PMID: 39652784 DOI: 10.1021/acs.orglett.4c04211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Several coronenes containing pyridine and azaborine units have been readily prepared and structurally confirmed by X-ray crystallographic analysis. The codoping results in interesting findings and properties such as the first observation of BN-H---NPy hydrogen bonds in crystals of BN-PAHs, short π-π stacking distances, lowered HOMO-LUMO levels, narrow band gap, and unique dual response to fluoride ion and proton in solution.
Collapse
Affiliation(s)
- Ruili Li
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Xiaohong Lin
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Changhua Ding
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Bin Xu
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Qitao Tan
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
6
|
Zhao H, Muñoz-Mármol R, Moshniaha L, Yang Q, Bonn M, Liu X, Kabe R, Paternò GM, Narita A. Acid-induced fluorescence enhancement of piperazinylphenyl-substituted nanographene. Chem Commun (Camb) 2024; 60:14645-14648. [PMID: 39569678 DOI: 10.1039/d4cc04926h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
A dibenzo[hi,st]ovalene (DBOV) derivative bay-substituted with two piperazinylphenyl (PZP) groups (DBOV-PZP) was synthesized. Comprehensive investigations of its photophysical properties revealed acid-induced fluorescence enhancement through the protonation of PZP units, leading to the suppression of the photoinduced electron transfer. These results pave the way towards "turn-on" type nanographenes for biosensing and optical imaging.
Collapse
Affiliation(s)
- Hao Zhao
- Organic and Carbon Nanomaterials Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan
| | - Rafael Muñoz-Mármol
- Instituto Universitario de Materiales, University of Alicante, San Vicente del Raspeig 03690, Spain
- Physics Department, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy.
| | - Liliia Moshniaha
- Organic Optoelectronics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan
| | - Qiqi Yang
- Max Planck Institute for Polymer Research Ackermannweg 10, 55128 Mainz, Germany.
| | - Mischa Bonn
- Max Planck Institute for Polymer Research Ackermannweg 10, 55128 Mainz, Germany.
| | - Xiaomin Liu
- Max Planck Institute for Polymer Research Ackermannweg 10, 55128 Mainz, Germany.
| | - Ryota Kabe
- Organic Optoelectronics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan
| | - Giuseppe Maria Paternò
- Physics Department, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy.
- Center for Nanoscience and Technology, Istituto Italiano di Tecnologia, Milano 20134, Italy
| | - Akimitsu Narita
- Organic and Carbon Nanomaterials Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan
- Max Planck Institute for Polymer Research Ackermannweg 10, 55128 Mainz, Germany.
| |
Collapse
|
7
|
Obermann S, Zhou X, Guerrero-León LA, Serra G, Böckmann S, Fu Y, Dmitrieva E, Zhang JJ, Liu F, Popov AA, Lucotti A, Hansen MR, Tommasini M, Li Y, Blom PWM, Ma J, Feng X. Wavy Graphene Nanoribbons Containing Periodic Eight-Membered Rings for Light-Emitting Electrochemical Cells. Angew Chem Int Ed Engl 2024:e202415670. [PMID: 39268646 DOI: 10.1002/anie.202415670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/06/2024] [Accepted: 09/06/2024] [Indexed: 09/17/2024]
Abstract
Precision graphene nanoribbons (GNRs) offer distinctive physicochemical properties that are highly dependent on their geometric topologies, thereby holding great potential for applications in carbon-based optoelectronics and spintronics. While the edge structure and width control has been a popular strategy for engineering the optoelectronic properties of GNRs, non-hexagonal-ring-containing GNRs remain underexplored due to synthetic challenges, despite offering an equally high potential for tailored properties. Herein, we report the synthesis of a wavy GNR (wGNR) by embedding periodic eight-membered rings into its carbon skeleton, which is achieved by the A2B2-type Diels-Alder polymerization between dibenzocyclooctadiyne (6) and dicyclopenta[e,l]pyrene-5,11-dione derivative (8), followed by a selective Scholl reaction of the obtained ladder-type polymer (LTP) precursor. The obtained wGNR, with a length of up to 30 nm, has been thoroughly characterized by solid-state NMR, FT-IR, Raman, and UV/Vis spectroscopy with the support of DFT calculations. The non-planar geometry of wGNR efficiently prevents the inter-ribbon π-π aggregation, leading to photoluminescence in solution. Consequently, the wGNR can function as an emissive layer for organic light-emitting electrochemical cells (OLECs), offering a proof-of-concept exploration in implementing luminescent GNRs into optoelectronic devices. The fast-responding OLECs employing wGNR will pave the way for advancements in OLEC technology and other optoelectronic devices.
Collapse
Affiliation(s)
- Sebastian Obermann
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01069, Dresden, Germany
| | - Xin Zhou
- Max-Planck-Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - L Andrés Guerrero-León
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01069, Dresden, Germany
| | - Gianluca Serra
- Department of Chemistry, Materials, Chemical Engineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| | - Steffen Böckmann
- Institute of Physical Chemistry, University of Münster, 48149, Münster, Germany
| | - Yubin Fu
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01069, Dresden, Germany
| | - Evgenia Dmitrieva
- Leibniz Institute for Solid State and Materials Research, Helmholtzstr. 20, 01069, Dresden, Germany
| | - Jin-Jiang Zhang
- Max-Planck-Institute of Microstructure Physics, Weinberg 2, 06120, Halle, Germany
| | - Fupin Liu
- Leibniz Institute for Solid State and Materials Research, Helmholtzstr. 20, 01069, Dresden, Germany
| | - Alexey A Popov
- Leibniz Institute for Solid State and Materials Research, Helmholtzstr. 20, 01069, Dresden, Germany
| | - Andrea Lucotti
- Department of Chemistry, Materials, Chemical Engineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| | - Michael Ryan Hansen
- Institute of Physical Chemistry, University of Münster, 48149, Münster, Germany
| | - Matteo Tommasini
- Department of Chemistry, Materials, Chemical Engineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| | - Yungui Li
- Max-Planck-Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Paul W M Blom
- Max-Planck-Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Ji Ma
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01069, Dresden, Germany
- College of Materials Science and Opto-Electronic Technology & Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Science, 100049, Beijing, P. R. China
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01069, Dresden, Germany
- Max-Planck-Institute of Microstructure Physics, Weinberg 2, 06120, Halle, Germany
| |
Collapse
|
8
|
Zeng Z, Yang X, Huang Q, Tang M, Liu Y, Huang W, Xu B, Tang Y. Bifunctional Nitrogen-Rich Heterocyclic Compounds: Synthesis, Photoluminescence and Energetic Properties. Chem Asian J 2024:e202400947. [PMID: 39158849 DOI: 10.1002/asia.202400947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/17/2024] [Accepted: 08/19/2024] [Indexed: 08/20/2024]
Abstract
Nitrogen-rich heterocyclic frameworks have attracted enormous interest in organic chemistry and materials science. However, their potential for developing photoluminescent materials remains underexplored due to their relatively low molecular stabilities. In this work, two tricyclic fused nitrogen-rich fluorescent heterocycles were synthesized and characterized. The photophysical properties of the synthesized 4 and 5 were investigated through theoretical and experimental studies. In addition, their physicochemical and energetic properties and the performance as an additive to the perovskite absorption layer of the perovskite solar cell were also studied.
Collapse
Affiliation(s)
- Zhiwei Zeng
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Xiaoxiao Yang
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Qiaoyi Huang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Mingjie Tang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Yuji Liu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Wei Huang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Bo Xu
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Yongxing Tang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| |
Collapse
|
9
|
Heim GP, Hirahara M, Dev VM, Agapie T. Synthesis and electronic properties of nitrogen-rich nanographene. Chem Commun (Camb) 2024; 60:7343-7346. [PMID: 38916042 DOI: 10.1039/d4cc01189a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
A polycyclic aromatic hydrocarbon displaying twelve edge nitrogen centers for a 42 π-electron system is reported. This compound was synthesized via Sonogashira coupling of pyrimidine precursors, [2+2+2] cycloaddition of bis(aryl) alkynes, and anionic cyclodehydrogenation. Spectroscopy, electrochemistry, and computational results suggest a narrowing of the HOMO-LUMO gap compared to the N-free analogue. Metal coordination affects the optical properties of the extended π system.
Collapse
Affiliation(s)
- Gavin P Heim
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E California Blvd MC 127-72, Pasadena, California 91125, USA.
| | - Masanari Hirahara
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E California Blvd MC 127-72, Pasadena, California 91125, USA.
| | - Vidhya M Dev
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E California Blvd MC 127-72, Pasadena, California 91125, USA.
| | - Theodor Agapie
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E California Blvd MC 127-72, Pasadena, California 91125, USA.
| |
Collapse
|
10
|
Dilshener D, Parsons DF, Fiedler J. pH-sensitive spontaneous decay of functionalized carbon dots in solutions. J Chem Phys 2024; 160:214103. [PMID: 38828808 DOI: 10.1063/5.0201261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/10/2024] [Indexed: 06/05/2024] Open
Abstract
Carbon quantum dots have become attractive in various applications, such as drug delivery, biological sensing, photocatalysis, and solar cells. Among these, pH sensing via luminescence lifetime measurements of surface-functionalized carbon dots is one application currently investigated for their long lifetime and autonomous operation. In this article, we explore the theoretical connection between excitation lifetimes and the pH value of the surrounding liquid via the protonation and deprotonation of functional groups. Example calculations applied to m-phenylenediamine, phloroglucinol, and tethered disperse blue 1 are shown by applying a separation approach treating the electronic wave function of functional groups separately from the internal electronic structure of the (large) carbon dot. The bulk of the carbon dot is treated as an environment characterized by its optical spectrum that shifts the transition rates of the functional group. A simple relationship between pH, pKa, and mixed fluorescence lifetime is derived from the transition rates of the protonated and deprotonated states. pH sensitivity improves when the difference in the transition rates is greatest between protonated and deprotonated species, with the greatest sensitivity found where the pKa is close to the pH region of interest. The introduced model can directly be extended to consider multicomponent liquids and multiple protonation states.
Collapse
Affiliation(s)
- Denise Dilshener
- Department of Physics and Technology, University of Bergen, Allégaten 55, 5007 Bergen, Norway
| | - Drew F Parsons
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), Florence, Italy, Unità Operativa University of Cagliari, Italy
- Department of Chemical and Geological Sciences, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, CA, Italy
| | - Johannes Fiedler
- Department of Physics and Technology, University of Bergen, Allégaten 55, 5007 Bergen, Norway
| |
Collapse
|
11
|
Zhu X, Chen Q, Zhao H, Yang Q, Goudappagouda, Gelléri M, Ritz S, Ng D, Koynov K, Parekh SH, Chetty VK, Thakur BK, Cremer C, Landfester K, Müllen K, Terenzio M, Bonn M, Narita A, Liu X. Intrinsic Burst-Blinking Nanographenes for Super-Resolution Bioimaging. J Am Chem Soc 2024; 146:5195-5203. [PMID: 38275287 PMCID: PMC10910517 DOI: 10.1021/jacs.3c11152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 01/27/2024]
Abstract
Single-molecule localization microscopy (SMLM) is a powerful technique to achieve super-resolution imaging beyond the diffraction limit. Although various types of blinking fluorophores are currently considered for SMLM, intrinsic blinking fluorophores remain rare at the single-molecule level. Here, we report the synthesis of nanographene-based intrinsic burst-blinking fluorophores for highly versatile SMLM. We image amyloid fibrils in air and in various pH solutions without any additive and lysosome dynamics in live mammalian cells under physiological conditions. In addition, the single-molecule labeling of nascent proteins in primary sensory neurons was achieved with azide-functionalized nanographenes via click chemistry. SMLM imaging reveals higher local translation at axonal branching with unprecedented detail, while the size of translation foci remained similar throughout the entire network. These various results demonstrate the potential of nanographene-based fluorophores to drastically expand the applicability of super-resolution imaging.
Collapse
Affiliation(s)
- Xingfu Zhu
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Qiang Chen
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Hao Zhao
- Organic
and Carbon Nanomaterials Unit, Okinawa Institute
of Science and Technology Graduate University, Kunigami-gun, Okinawa 904-0495, Japan
| | - Qiqi Yang
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Goudappagouda
- Organic
and Carbon Nanomaterials Unit, Okinawa Institute
of Science and Technology Graduate University, Kunigami-gun, Okinawa 904-0495, Japan
| | - Márton Gelléri
- Institute
of Molecular Biology (IMB), 55128 Mainz, Germany
| | - Sandra Ritz
- Institute
of Molecular Biology (IMB), 55128 Mainz, Germany
| | - David Ng
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Kaloian Koynov
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Sapun H. Parekh
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | | | - Basant Kumar Thakur
- Department
of Pediatrics III, University Hospital Essen, 45147 Essen, Germany
| | - Christoph Cremer
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Institute
of Molecular Biology (IMB), 55128 Mainz, Germany
| | - Katharina Landfester
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Klaus Müllen
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Marco Terenzio
- Molecular
Neuroscience Unit, Okinawa Institute of
Science and Technology Graduate University, Kunigami-gun, Okinawa 904-0495, Japan
| | - Mischa Bonn
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Akimitsu Narita
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Organic
and Carbon Nanomaterials Unit, Okinawa Institute
of Science and Technology Graduate University, Kunigami-gun, Okinawa 904-0495, Japan
| | - Xiaomin Liu
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
12
|
Wang FF, Wang YX, Wu Q, Chai L, Chen XW, Tan YZ. Nanographene with a Nitrogen-Doped Cavity. Angew Chem Int Ed Engl 2024; 63:e202315302. [PMID: 38009464 DOI: 10.1002/anie.202315302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/14/2023] [Accepted: 11/23/2023] [Indexed: 11/28/2023]
Abstract
Nitrogen-doped cavities are pervasive in graphenic materials, and represent key sites for catalytic and electrochemical activity. However, their structures are generally heterogeneous. In this study, we present the synthesis of a well-defined molecular cutout of graphene featuring N-doped cavity. The graphitization of a macrocyclic pyridinic precursor was achieved through photochemical cyclodehydrochlorination. In comparison to its counterpart with pyridinic nitrogen at the edges, the pyridinic nitrogen atoms in this nanographene cavity exhibit significantly reduced basicity and selective binding to Ag+ ion. Analysis of the protonation and coordination equilibria revealed that the tri-N-doped cavity binds three protons, but only one Ag+ ion. These distinct protonation and coordination behaviors clearly illustrate the space confinement effect imparted by the cavities.
Collapse
Affiliation(s)
- Fei-Fan Wang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yu-Xiang Wang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Qiong Wu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Ling Chai
- State Key Laboratory for Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xuan-Wen Chen
- State Key Laboratory for Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yuan-Zhi Tan
- State Key Laboratory for Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
13
|
Zeng X, Wang L, Dai H, Huang T, Du M, Wang D, Zhang D, Duan L. Orbital Symmetry Engineering in Fused Polycyclic Heteroaromatics toward Extremely Narrowband Green Emissions with an FWHM of 13 nm. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211316. [PMID: 36859744 DOI: 10.1002/adma.202211316] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/17/2023] [Indexed: 06/02/2023]
Abstract
Multiresonance (MR) molecules generally face spectral broadening issues with redshifted emissions. Thus, green emitters with full widths at half maximum (FWHMs) of <20 nm are rarely reported, despite being highly desired. Herein, by properly fusing indolo(3,2,1-jk)carbazole (ICZ) and naphthalene moieties, green MR emitters are reported, which have FWHMs of merely 13 nm (0.064 eV) and 14 nm (0.069 eV) in dichloromethane, accompanied by high photoluminescence quantum yields of >95%, which represent not only the smallest FWHMs among all green MR emitters but also the first green emitters based on ICZ MR derivatives. Theoretical studies reveal that the orbital interactions between the antisymmetric sites of the segments play an important role in extending the conjugation length in the fusion architectures while simultaneously maintaining a small FWHM. The corresponding organic light-emitting diodes exhibit green emission peaks at 508-509 nm and the first green electroluminescence FWHM of <20 nm ever reported. Benefiting from the preferential horizontal dipole orientation, a high maximum external quantum efficiency of up to 30.9% is obtained, which remains at 28.9% and 23.2% under luminances of 1000 and 10 000 cd m-2 , respectively, outperforming most reported green devices based on narrowband emitters.
Collapse
Affiliation(s)
- Xuan Zeng
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Lu Wang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Hengyi Dai
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Tianyu Huang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Mingxu Du
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Dong Wang
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Dongdong Zhang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Lian Duan
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
14
|
Sonkaya Ö, Ocakçı Ş, Toksoy A, Pamuk Algi M, Algi F. N-doped carbon nanomaterials as fluorescent pH and metal ion sensors for imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 292:122412. [PMID: 36720189 DOI: 10.1016/j.saa.2023.122412] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 01/04/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Herein we describe the facile synthesis of new N-doped carbon nanoparticles (CNPs) obtained from 1,10-phenanthroline by the solvothermal method. Characterization of CNPs were carried out with transmission electron microscope (TEM), X-ray photoelectron spectra (XPS), Fourier transform infrared spectra (FTIR), UV-vis absorption spectra, and luminescence spectra. CNPs were pH sensitive and exploited as fluorescent chemosensors and imaging agents for Al(III) and Zn(II) ions in real-life samples. Remarkably, we show that CNPs can be used for the detection of Al(III) and Zn(II) ions in water samples. Accordingly, the results indicate that CNPs are highly effective in detecting Zn(II) content of cosmetic creams. We also demonstrated that the CNPs could be used for in vitro imaging of Al(III) and Zn(II) in Human Larynx Squamous Cell Carcinoma (Hep-2). Finally, Al(III) imaging in Angelica Officinalis root tissue was also achieved successfully. The CNPs are promising as luminescent multianalyte (pH, Al(III) and Zn(II)) sensors.
Collapse
Affiliation(s)
- Ömer Sonkaya
- Department of Chemistry & ASUBTAM M. Bilmez BioNanoTech Lab, Aksaray University, TR-68100 Aksaray, Turkey
| | - Şeyma Ocakçı
- Department of Biotechnology & ASUBTAM M. Bilmez BioNanoTech Lab, Aksaray University, TR-68100 Aksaray, Turkey
| | - Alihan Toksoy
- Department of Biotechnology & ASUBTAM M. Bilmez BioNanoTech Lab, Aksaray University, TR-68100 Aksaray, Turkey
| | - Melek Pamuk Algi
- Department of Chemistry & ASUBTAM M. Bilmez BioNanoTech Lab, Aksaray University, TR-68100 Aksaray, Turkey.
| | - Fatih Algi
- Department of Biotechnology & ASUBTAM M. Bilmez BioNanoTech Lab, Aksaray University, TR-68100 Aksaray, Turkey.
| |
Collapse
|
15
|
Izquierdo‐García P, Fernández‐García JM, Perles J, Fernández I, Martín N. Electronic Control of the Scholl Reaction: Selective Synthesis of Spiro vs Helical Nanographenes. Angew Chem Int Ed Engl 2023; 62:e202215655. [PMID: 36495528 PMCID: PMC10107473 DOI: 10.1002/anie.202215655] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
Scholl oxidation has become an essential reaction in the bottom-up synthesis of molecular nanographenes. Herein, we describe a Scholl reaction controlled by the electronic effects on the starting substrate (1 a, b). Anthracene-based polyphenylenes lead to spironanographenes under Scholl conditions. In contrast, an electron-deficient anthracene substrate affords a helically arranged molecular nanographene formed by two orthogonal dibenzo[fg,ij]phenanthro-[9,10,1,2,3-pqrst]pentaphene (DBPP) moieties linked through an octafluoroanthracene core. Density Functional Theory (DFT) calculations predict that electronic effects control either the first formation of spirocycles and subsequent Scholl reaction to form spironanographene 2, or the expected dehydrogenation reaction leading solely to the helical nanographene 3. The crystal structures of four of the new spiro compounds (syn 2, syn 9, anti 9 and syn 10) were solved by single crystal X-ray diffraction. The photophysical properties of the new molecular nanographene 3 reveal a remarkable dual fluorescent emission.
Collapse
Affiliation(s)
- Patricia Izquierdo‐García
- Departamento de Química Orgánica IFacultad de Ciencias QuímicasUniversidad Complutense de MadridAvd. de la Complutense, S/N28040MadridSpain
| | - Jesús M. Fernández‐García
- Departamento de Química Orgánica IFacultad de Ciencias QuímicasUniversidad Complutense de MadridAvd. de la Complutense, S/N28040MadridSpain
| | - Josefina Perles
- Laboratorio de Difracción de Rayos X de MonocristalSIdIUniversidad Autónoma de Madridc/Francisco Tomás y Valiente, 7 Campus de Cantoblanco28049MadridSpain
| | - Israel Fernández
- Departamento de Química Orgánica IFacultad de Ciencias QuímicasUniversidad Complutense de MadridAvd. de la Complutense, S/N28040MadridSpain
| | - Nazario Martín
- Departamento de Química Orgánica IFacultad de Ciencias QuímicasUniversidad Complutense de MadridAvd. de la Complutense, S/N28040MadridSpain
- IMDEA-NanocienciaC/Faraday, 9, Campus de Cantoblanco28049MadridSpain
| |
Collapse
|
16
|
Li Z, Tang Y, Guo J, Zhang J, Deng M, Xiao W, Li F, Yao Y, Xie S, Yang K, Zeng Z. Stair-like narrow N-doped nanographene with unusual diradical character at the topological interface. Chem 2023. [DOI: 10.1016/j.chempr.2023.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
17
|
Toksoy A, Sonkaya Ö, Erkan DS, Gulen RB, Algi MP, Algi F. Norsquaraine endowed with anticancer and antibacterial activities. Photodiagnosis Photodyn Ther 2022; 40:103110. [PMID: 36070851 DOI: 10.1016/j.pdpdt.2022.103110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/10/2022] [Accepted: 09/02/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Photodynamic therapy (PDT) is a method for the treatment of cancer. Furthermore, PDT can also be used for the eradication of bacteria. The photo-sensitizing drug, a.k.a photosensitizer, is critical for the success of PDT. Although norsquaraines are analogs of squaraine dyes, they are overlooked as photosensitizers. METHODS In this work, synthesis, characterization, bioimaging and in vitro PDT applications of a new norsquaraine dye 1 were described. We also prepared nanoparticles from norsquaraine 1 and Pluronic F127 to obtain 1@F127. RESULTS Norsquaraine 1 boosted the generation of reactive oxygen species over a wide range of pH (pH 8.0, 7.0, 6.0, and 2.2.). Furthermore, 1 was internalized by epidermoid laryngeal carcinoma Hep-2 (Hep-2) cells and used for fluorescence imaging. Remarkably, norsquaraine 1 destroyed most of the cancer cells (ca. 77% to 89%) after illumination with red light. Most strikingly, 1 successfully inhibited the growth of Methicillin-resistant Staphylococcus aureus (MRSA) upon illumination. Last but not least, photodynamic sterilization of tomato juice, an acidic beverage, was feasible using 1 as a photo sterilizer. Nano formulation of 1 with Pluronic F127 provided 1@F127 nanoparticles. It is lucid that 1@F127 nanoparticles permeate into Hep-2 cells and boost the generation of ROS upon illumination. CONCLUSION Norsquaraine 1 shows superior features as a photosensitizer pertinent to PDT in a wide range of pH. This norsquaraine is endowed with anticancer and antibacterial activities. Which should be further evaluated.
Collapse
Affiliation(s)
- Alihan Toksoy
- Department of Biotechnology and Molecular Biology & ASUBTAM M. Bilmez BioNanoTech Lab., Aksaray University, TR-68100, Aksaray, Turkey
| | - Ömer Sonkaya
- Department of Chemistry & ASUBTAM M. Bilmez BioNanoTech Lab., Aksaray University, TR-68100, Aksaray, Turkey
| | - Dilek Sadife Erkan
- Department of Biotechnology and Molecular Biology & ASUBTAM M. Bilmez BioNanoTech Lab., Aksaray University, TR-68100, Aksaray, Turkey
| | - Rukiye Boran Gulen
- Health Vocational School & ASUBTAM M. Bilmez BioNanoTech Lab., Aksaray University, TR-68100 Aksaray, Turkey
| | - Melek Pamuk Algi
- Department of Chemistry & ASUBTAM M. Bilmez BioNanoTech Lab., Aksaray University, TR-68100, Aksaray, Turkey.
| | - Fatih Algi
- Department of Biotechnology and Molecular Biology & ASUBTAM M. Bilmez BioNanoTech Lab., Aksaray University, TR-68100, Aksaray, Turkey.
| |
Collapse
|
18
|
Chai L, Ju Y, Xing J, Ma X, Zhao X, Tan Y. Nanographene Metallaprisms: Structure, Stimulated Transformation, and Emission Enhancement. Angew Chem Int Ed Engl 2022; 61:e202210268. [DOI: 10.1002/anie.202210268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Ling Chai
- State Key Laboratory for Physical Chemistry of Solid Surfaces, and Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Yang‐Yang Ju
- State Key Laboratory for Physical Chemistry of Solid Surfaces, and Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Jiang‐Feng Xing
- State Key Laboratory for Physical Chemistry of Solid Surfaces, and Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Xiao‐Hui Ma
- State Key Laboratory for Physical Chemistry of Solid Surfaces, and Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Xin‐Jing Zhao
- State Key Laboratory for Physical Chemistry of Solid Surfaces, and Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Yuan‐Zhi Tan
- State Key Laboratory for Physical Chemistry of Solid Surfaces, and Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| |
Collapse
|
19
|
Bi H, Wang SR. Modular Regiodivergent Synthesis of Benzo-Fused Isocoumarins by a Cyclopropane Aromatization Strategy. Org Lett 2022; 24:6316-6320. [PMID: 35984353 DOI: 10.1021/acs.orglett.2c02535] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Reported herein is an electrophile-modulated aromatization reaction of highly functionalized cyclopropanes to structurally diverse benzoisocoumarins featuring concurrent formation of the benzenoid and α-pyrone rings under mild conditions. An aromatization reaction of the proposed benzonorcaradiene intermediates prepared independently revealed a crucial role of the neighboring olefinic substituents in determining whether the cyclopropane ring expansion is followed by a 1,2-shift of the ester group.
Collapse
|
20
|
Photoluminescence mechanisms of red-emissive carbon dots derived from non-conjugated molecules. Sci Bull (Beijing) 2022; 67:1450-1457. [PMID: 36546188 DOI: 10.1016/j.scib.2022.06.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/28/2022] [Accepted: 05/29/2022] [Indexed: 01/07/2023]
Abstract
Red-emissive carbon dots (R-CDs) have been widely studied because of their potential application in tissue imaging and optoelectronic devices. At present, most R-CDs are synthesized by using aromatic precursors, but the synthesis of R-CDs from non-aromatic precursors is challenging, and the emission mechanism remains unclear. Herein, different R-CDs were rationally synthesized using citric acid (CA), a prototype non-aromatic precursor, with the assistance of ammonia. Their structural evolution and optical mechanism were investigated. The addition of NH3·H2O played a key role in the synthesis of CA-based R-CDs, which shifted the emission wavelength of CA-based CDs from 423 to 667 nm. Mass spectrometry (MS) analysis indicated that the amino groups served as N dopants and promoted the formation of localized conjugated domains through an intermolecular amide ring, thereby inducing a significant emission redshift. The red-emissive mechanism of CDs was further confirmed by control experiments using other CA-like molecules (e.g., aconitic acid, tartaric acid, aspartic acid, malic acid, and maleic acid) as precursors. MS, nuclear magnetic resonance characterization, and computational modeling revealed that the main carbon chain length of CA-like precursors tailored the cyclization mode, leading to hexatomic, pentatomic, unstable three/four-membered ring systems or cyclization failure. Among these systems, the hexatomic ring led to the largest emission redshift (244 nm, known for CA-based CDs). This work determined the origin of red emission in CA-based CDs, which would guide research on the controlled synthesis of R-CDs from other non-aromatic precursors.
Collapse
|
21
|
Chai L, Ju YY, Xing JF, Ma XH, Zhao XJ, Tan YZ. Nanographene Metallaprisms: Structure, Stimulated Transformation, and Emission Enhancement. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | | | | | | | | | - Yuan-Zhi Tan
- Xiamen University Department of Chemistry Siminnan Road 422 361005 Xiamen CHINA
| |
Collapse
|
22
|
Gu Y, Qiu Z, Müllen K. Nanographenes and Graphene Nanoribbons as Multitalents of Present and Future Materials Science. J Am Chem Soc 2022; 144:11499-11524. [PMID: 35671225 PMCID: PMC9264366 DOI: 10.1021/jacs.2c02491] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
As cut-outs from a graphene sheet, nanographenes (NGs) and graphene nanoribbons (GNRs) are ideal cases with which to connect the world of molecules with that of bulk carbon materials. While various top-down approaches have been developed to produce such nanostructures in high yields, in the present perspective, precision structural control is emphasized for the length, width, and edge structures of NGs and GNRs achieved by modern solution and on-surface syntheses. Their structural possibilities have been further extended from "flatland" to the three-dimensional world, where chirality and handedness are the jewels in the crown. In addition to properties exhibited at the molecular level, self-assembly and thin-film structures cannot be neglected, which emphasizes the importance of processing techniques. With the rich toolkit of chemistry in hand, NGs and GNRs can be endowed with versatile properties and functions ranging from stimulated emission to spintronics and from bioimaging to energy storage, thus demonstrating their multitalents in present and future materials science.
Collapse
Affiliation(s)
- Yanwei Gu
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Zijie Qiu
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Shenzhen
Institute of Aggregate Science and Technology, School of Science and
Engineering, The Chinese University of Hong
Kong, Shenzhen 518172, China
| | - Klaus Müllen
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Institute
for Physical Chemistry , Johannes Gutenberg
University Mainz, Duesbergweg
10-14, 55128 Mainz, Germany
| |
Collapse
|
23
|
Liu Z, Fu S, Liu X, Narita A, Samorì P, Bonn M, Wang HI. Small Size, Big Impact: Recent Progress in Bottom-Up Synthesized Nanographenes for Optoelectronic and Energy Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2106055. [PMID: 35218329 PMCID: PMC9259728 DOI: 10.1002/advs.202106055] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/31/2022] [Indexed: 05/20/2023]
Abstract
Bottom-up synthesized graphene nanostructures, including 0D graphene quantum dots and 1D graphene nanoribbons, have recently emerged as promising candidates for efficient, green optoelectronic, and energy storage applications. The versatility in their molecular structures offers a large and novel library of nanographenes with excellent and adjustable optical, electronic, and catalytic properties. In this minireview, recent progress on the fundamental understanding of the properties of different graphene nanostructures, and their state-of-the-art applications in optoelectronics and energy storage are summarized. The properties of pristine nanographenes, including high emissivity and intriguing blinking effect in graphene quantum dots, superior charge transport properties in graphene nanoribbons, and edge-specific electrochemistry in various graphene nanostructures, are highlighted. Furthermore, it is shown that emerging nanographene-2D material-based van der Waals heterostructures provide an exciting opportunity for efficient green optoelectronics with tunable characteristics. Finally, challenges and opportunities of the field are highlighted by offering guidelines for future combined efforts in the synthesis, assembly, spectroscopic, and electrical studies as well as (nano)fabrication to boost the progress toward advanced device applications.
Collapse
Affiliation(s)
- Zhaoyang Liu
- University of StrasbourgCNRSISIS UMR 70068 allée Gaspard MongeStrasbourg67000France
| | - Shuai Fu
- Max Planck Institute for Polymer ResearchAckermannweg 10Mainz55128Germany
| | - Xiaomin Liu
- Max Planck Institute for Polymer ResearchAckermannweg 10Mainz55128Germany
| | - Akimitsu Narita
- Max Planck Institute for Polymer ResearchAckermannweg 10Mainz55128Germany
- Organic and Carbon Nanomaterials UnitOkinawa Institute of Science and Technology Graduate University1919‐1 Tancha, Onna‐sonKunigamiOkinawa904‐0495Japan
| | - Paolo Samorì
- University of StrasbourgCNRSISIS UMR 70068 allée Gaspard MongeStrasbourg67000France
| | - Mischa Bonn
- Max Planck Institute for Polymer ResearchAckermannweg 10Mainz55128Germany
| | - Hai I. Wang
- Max Planck Institute for Polymer ResearchAckermannweg 10Mainz55128Germany
| |
Collapse
|
24
|
Wang B, Wei Z, Sui L, Yu J, Zhang B, Wang X, Feng S, Song H, Yong X, Tian Y, Yang B, Lu S. Electron-phonon coupling-assisted universal red luminescence of o-phenylenediamine-based carbon dots. LIGHT, SCIENCE & APPLICATIONS 2022; 11:172. [PMID: 35668065 PMCID: PMC9170735 DOI: 10.1038/s41377-022-00865-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 05/23/2022] [Accepted: 05/27/2022] [Indexed: 05/14/2023]
Abstract
Due to the complex core-shell structure and variety of surface functional groups, the photoluminescence (PL) mechanism of carbon dots (CDs) remain unclear. o-Phenylenediamine (oPD), as one of the most common precursors for preparing red emissive CDs, has been extensively studied. Interestingly, most of the red emission CDs based on oPD have similar PL emission characteristics. Herein, we prepared six different oPD-based CDs and found that they had almost the same PL emission and absorption spectra after purification. Structural and spectral characterization indicated that they had similar carbon core structures but different surface polymer shells. Furthermore, single-molecule PL spectroscopy confirmed that the multi-modal emission of those CDs originated from the transitions of different vibrational energy levels of the same PL center in the carbon core. In addition, the phenomenon of "spectral splitting" of single-particle CDs was observed at low temperature, which confirmed these oPD-based CDs were unique materials with properties of both organic molecules and quantum dots. Finally, theoretical calculations revealed their potential polymerization mode and carbon core structure. Moreover, we proposed the PL mechanism of red-emitting CDs based on oPD precursors; that is, the carbon core regulates the PL emission, and the polymer shell regulates the PL intensity. Our work resolves the controversy on the PL mechanism of oPD-based red CDs. These findings provide a general guide for the mechanism exploration and structural analysis of other types of CDs.
Collapse
Affiliation(s)
- Boyang Wang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, 450000, Zhengzhou, China
| | - Zhihong Wei
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, 210023, Nanjing, China
| | - Laizhi Sui
- State Key Lab of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| | - Jingkun Yu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, 450000, Zhengzhou, China
| | - Baowei Zhang
- Nanochemistry Department, Istituto Italiano di Tecnologia (IIT), via Morego 30, 16163, Genova, Italy
| | - Xiaoyong Wang
- School of Physics, National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093, Nanjing, China
| | - Shengnan Feng
- School of Physics, National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093, Nanjing, China
| | - Haoqiang Song
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, 450000, Zhengzhou, China
| | - Xue Yong
- Department of Chemistry, University of Sheffield, Sheffield, S3 7HF, UK
| | - Yuxi Tian
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, 210023, Nanjing, China.
| | - Bai Yang
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012, Changchun, China
| | - Siyu Lu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, 450000, Zhengzhou, China.
| |
Collapse
|
25
|
Masani Y, Omura Y, Tachi Y, Kozaki M. Synthesis of Triazabenzo[
a
]pyrenes and Their Photophysical, Acid‐Responsive, and Electrochemical Properties. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yasufumi Masani
- Graduate School of Science Osaka City University 3-3-138 Sugimoto, Sumiyoshi-ku 558-8585 Osaka Osaka Japan
| | - Yuta Omura
- Graduate School of Science Osaka City University 3-3-138 Sugimoto, Sumiyoshi-ku 558-8585 Osaka Osaka Japan
| | - Yoshimitsu Tachi
- Graduate School of Science Osaka City University 3-3-138 Sugimoto, Sumiyoshi-ku 558-8585 Osaka Osaka Japan
| | - Masatoshi Kozaki
- Graduate School of Science Osaka City University 3-3-138 Sugimoto, Sumiyoshi-ku 558-8585 Osaka Osaka Japan
| |
Collapse
|
26
|
Zhou Z, Fernández‐García JM, Zhu Y, Evans PJ, Rodríguez R, Crassous J, Wei Z, Fernández I, Petrukhina MA, Martín N. Site‐Specific Reduction‐Induced Hydrogenation of a Helical Bilayer Nanographene with K and Rb Metals: Electron Multiaddition and Selective Rb
+
Complexation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Zheng Zhou
- Department of Chemistry University at Albany State University of New York Albany NY 12222 USA
- School of Materials Science and Engineering Tongji University 4800 Cao'an Road Shanghai 201804 China
| | - Jesús M. Fernández‐García
- Departamento de Química Orgánica I Facultad de Ciencias Químicas Universidad Complutense de Madrid Ciudad Universitaria s/n 28040 Madrid Spain
| | - Yikun Zhu
- Department of Chemistry University at Albany State University of New York Albany NY 12222 USA
| | - Paul J. Evans
- Departamento de Química Orgánica I Facultad de Ciencias Químicas Universidad Complutense de Madrid Ciudad Universitaria s/n 28040 Madrid Spain
| | - Rafael Rodríguez
- Institut des Sciences Chimiques de Rennes UMR 6226 CNRS—Univ. Rennes Campus de Beaulieu 35042 Rennes Cedex France
| | - Jeanne Crassous
- Institut des Sciences Chimiques de Rennes UMR 6226 CNRS—Univ. Rennes Campus de Beaulieu 35042 Rennes Cedex France
| | - Zheng Wei
- Department of Chemistry University at Albany State University of New York Albany NY 12222 USA
| | - Israel Fernández
- Departamento de Química Orgánica I Facultad de Ciencias Químicas Universidad Complutense de Madrid Ciudad Universitaria s/n 28040 Madrid Spain
| | - Marina A. Petrukhina
- Department of Chemistry University at Albany State University of New York Albany NY 12222 USA
| | - Nazario Martín
- Departamento de Química Orgánica I Facultad de Ciencias Químicas Universidad Complutense de Madrid Ciudad Universitaria s/n 28040 Madrid Spain
- IMDEA-Nanociencia Campus de la Universidad Autónoma de Madrid C/Faraday, 9 28049 Madrid Spain
| |
Collapse
|
27
|
Zhou Z, Fernández‐García JM, Zhu Y, Evans PJ, Rodríguez R, Crassous J, Wei Z, Fernández I, Petrukhina MA, Martín N. Site-Specific Reduction-Induced Hydrogenation of a Helical Bilayer Nanographene with K and Rb Metals: Electron Multiaddition and Selective Rb + Complexation. Angew Chem Int Ed Engl 2022; 61:e202115747. [PMID: 34875130 PMCID: PMC9300088 DOI: 10.1002/anie.202115747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Indexed: 01/01/2023]
Abstract
The chemical reduction of π-conjugated bilayer nanographene 1 (C138 H120 ) with K and Rb in the presence of 18-crown-6 affords [K+ (18-crown-6)(THF)2 ][{K+ (18-crown-6)}2 (THF)0.5 ][C138 H122 3- ] (2) and [Rb+ (18-crown-6)2 ][{Rb+ (18-crown-6)}2 (C138 H122 3- )] (3). Whereas K+ cations are fully solvent-separated from the trianionic core thus affording a "naked" 1.3 - anion, Rb+ cations are coordinated to the negatively charged layers of 1.3 - . According to DFT calculations, the localization of the first two electrons in the helicene moiety leads to an unprecedented site-specific hydrogenation process at the carbon atoms located on the edge of the helicene backbone. This uncommon reduction-induced site-specific hydrogenation provokes dramatic changes in the (electronic) structure of 1 as the helicene backbone becomes more compressed and twisted upon chemical reduction, which results in a clear slippage of the bilayers.
Collapse
Affiliation(s)
- Zheng Zhou
- Department of ChemistryUniversity at AlbanyState University of New YorkAlbanyNY 12222USA
- School of Materials Science and EngineeringTongji University4800 Cao'an RoadShanghai201804China
| | - Jesús M. Fernández‐García
- Departamento de Química Orgánica IFacultad de Ciencias QuímicasUniversidad Complutense de MadridCiudad Universitaria s/n28040MadridSpain
| | - Yikun Zhu
- Department of ChemistryUniversity at AlbanyState University of New YorkAlbanyNY 12222USA
| | - Paul J. Evans
- Departamento de Química Orgánica IFacultad de Ciencias QuímicasUniversidad Complutense de MadridCiudad Universitaria s/n28040MadridSpain
| | - Rafael Rodríguez
- Institut des Sciences Chimiques de RennesUMR 6226 CNRS—Univ. RennesCampus de Beaulieu35042Rennes CedexFrance
| | - Jeanne Crassous
- Institut des Sciences Chimiques de RennesUMR 6226 CNRS—Univ. RennesCampus de Beaulieu35042Rennes CedexFrance
| | - Zheng Wei
- Department of ChemistryUniversity at AlbanyState University of New YorkAlbanyNY 12222USA
| | - Israel Fernández
- Departamento de Química Orgánica IFacultad de Ciencias QuímicasUniversidad Complutense de MadridCiudad Universitaria s/n28040MadridSpain
| | - Marina A. Petrukhina
- Department of ChemistryUniversity at AlbanyState University of New YorkAlbanyNY 12222USA
| | - Nazario Martín
- Departamento de Química Orgánica IFacultad de Ciencias QuímicasUniversidad Complutense de MadridCiudad Universitaria s/n28040MadridSpain
- IMDEA-NanocienciaCampus de la Universidad Autónoma de MadridC/Faraday, 928049MadridSpain
| |
Collapse
|
28
|
Varghese EV, Gao CF, Chang YL, Chen HY, Chen CH. Synthesis of Distorted Nitrogen-Doped Nanographenes by Partially Oxidative Cyclodehydrogenation Reaction. Chem Asian J 2022; 17:e202200114. [PMID: 35137559 DOI: 10.1002/asia.202200114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Indexed: 11/11/2022]
Abstract
A series of partially fused N-doped nanographenes are synthesized via the oxidative cyclodehydrogenation of oligoaryl-substituted dibenzo[ e,l ]pyrene ( 1 ), including compounds ( 2 - 4 ) with five, six, and seven new C-C bonds are formed, respectively, implying stepwise C-C bond fusion and extended π-conjugation. Single-crystal X-ray diffraction analysis of compound 4a revealed that the presence of sterically demanding groups hindered the formation of planar and fully fused nanographene in the oxidative cyclodehydrogenation reaction step. Optical study of compounds 2 to 4 showed that extended π-conjugation leads to a regular stepwise bathochromic shift in the absorption and emission spectra. Furthermore, the HOMO-LUMO gaps of these compounds exhibit a decrease as C-C bond formation proceeds. Thus, the optoelectronic properties of nanographenes are highly dependent on the formation of new C-C bonds in the molecular skeleton.
Collapse
Affiliation(s)
- Eldhose V Varghese
- KMU: Kaohsiung Medical University, Department of Medicinal and Applied Chemistry, TAIWAN
| | - Chen-Feng Gao
- KMU: Kaohsiung Medical University, Department of Medicinal and Applied Chemistry, TAIWAN
| | - Yu-Lun Chang
- KMU: Kaohsiung Medical University, Department of Medicinal and Applied Chemistry, TAIWAN
| | - Hsing-Yin Chen
- KMU: Kaohsiung Medical University, Department of Medicinal and Applied Chemistry, TAIWAN
| | - Chia-Hsiang Chen
- Kaohsiung Medical University, Department of Medicinal and Applied Chemistry, No.100, Shin-Chuan 1st Road, 807, Kaohsiung, TAIWAN
| |
Collapse
|
29
|
Wang J, Shen C, Zhang G, Gan F, Ding Y, Qiu H. Transformation of Crowded Oligoarylene into Perylene‐Cored Chiral Nanographene by Sequential Oxidative Cyclization and 1,2‐Phenyl Migration. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jinghao Wang
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Chengshuo Shen
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Guoli Zhang
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Fuwei Gan
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Yongle Ding
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Huibin Qiu
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 P. R. China
| |
Collapse
|
30
|
Cao H, Qi W, Gao X, Wu Q, Tian L, Wu W. Graphene Quantum Dots prepared by Electron Beam Irradiation for Safe Fluorescence Imaging of Tumor. Nanotheranostics 2022; 6:205-214. [PMID: 34976595 PMCID: PMC8671948 DOI: 10.7150/ntno.67070] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 10/16/2021] [Indexed: 12/24/2022] Open
Abstract
Graphene quantum dots (GQD) have attracted much attention due to their unique properties in biomedical application, such as biosensing, imaging, and drug delivering. However, scale preparing red luminescing GQD is still challenging now. Herein, with the help of electron beam irradiation, a simple, rapid, and efficient up-to-down strategy was developed to synthesize GQD with size of 2.75 nm emitting 610 nm luminescence. GQD were further functionalized with polyethylene glycol (PEG) and exhibited good solubility and biocompatibility. The potential in vivo toxicity of PEGylated GQD could completely be eliminated by the clinic cholesterol-lowering drug simvastatin. PEGylated GQD could selectively accumulate in tumor after intravenous injection as a security, reliable and sensitive tumor fluorescence imaging agent. Therefore, this work presented a new method preparing red luminescing GQD for biomedical application.
Collapse
Affiliation(s)
- Honghong Cao
- Lanzhou University Second Hospital, Lanzhou University, Lanzhou, 730000, China
- Institute of National Nuclear Industry, Lanzhou University, Lanzhou, 730000, China
- Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou, 730000, China
- Lanzhou Resources & Environment Voc-Tech University, Lanzhou, 730000, China
| | - Wei Qi
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Xudong Gao
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, 730000, China
| | - Qiang Wu
- Lanzhou University Second Hospital, Lanzhou University, Lanzhou, 730000, China
| | - Longlong Tian
- Institute of National Nuclear Industry, Lanzhou University, Lanzhou, 730000, China
- Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou, 730000, China
| | - Wangsuo Wu
- Institute of National Nuclear Industry, Lanzhou University, Lanzhou, 730000, China
- Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
31
|
Xu X, Xia T, Chen XL, Hao X, Liang T, Li HR, Gong HY. Tetrabenzo[ b, de, gh, j][1,10]phenanthroline: a nitrogen-doped nanographene as a selective metal cation and proton fluorophore. NEW J CHEM 2022. [DOI: 10.1039/d2nj01861f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A nitrogen-doped nanographene molecule tetrabenzo[b,de,gh,j]-[1,10]phenanthroline (TB(phen)) was generated for selective transition metal cation sensing or as a proton fluorophore.
Collapse
Affiliation(s)
- Xiao Xu
- Department of Chemistry, Renmin University of China, No. 59, Zhongguancun St., HaiDian District, Beijing, 100872, P. R. China
- College of Chemistry, Beijing Normal University, No. 19, XinJieKouWai St., HaiDian District, Beijing 100875, P. R. China
| | - Ting Xia
- Department of Chemistry, Renmin University of China, No. 59, Zhongguancun St., HaiDian District, Beijing, 100872, P. R. China
- College of Chemistry, Beijing Normal University, No. 19, XinJieKouWai St., HaiDian District, Beijing 100875, P. R. China
| | - Xu-Lang Chen
- College of Chemistry, Beijing Normal University, No. 19, XinJieKouWai St., HaiDian District, Beijing 100875, P. R. China
- College of Chemistry and Chemical Engineering, Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, Hubei Normal University, Huangshi 435002, P. R. China
| | - Xiang Hao
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Tongling Liang
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Huan-Rong Li
- Department of Chemistry, Renmin University of China, No. 59, Zhongguancun St., HaiDian District, Beijing, 100872, P. R. China
| | - Han-Yuan Gong
- College of Chemistry, Beijing Normal University, No. 19, XinJieKouWai St., HaiDian District, Beijing 100875, P. R. China
| |
Collapse
|
32
|
Li QQ, Hamamoto Y, Tan CCH, Sato H, Ito S. 1,3-Dipolar cycloaddition of azomethine ylides and imidoyl halides for synthesis of π-extended imidazolium salts. Org Chem Front 2022. [DOI: 10.1039/d2qo00941b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new synthetic approach to π-extended imidazolium salts is developed based on 1,3-dipolar cycloaddition of polycyclic aromatic azomethine ylides with imidoyl chlorides in the presence of cesium fluoride as a key additive.
Collapse
Affiliation(s)
- Qiang-Qiang Li
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Yosuke Hamamoto
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Cheryl Cai Hui Tan
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Hiroyasu Sato
- Rigaku Corporation, 3-9-12 Matsubara-Cho, Akishima, Tokyo 196-8666, Japan
| | - Shingo Ito
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| |
Collapse
|
33
|
Krompiec S, Kurpanik-Wójcik A, Matussek M, Gołek B, Mieszczanin A, Fijołek A. Diels-Alder Cycloaddition with CO, CO 2, SO 2, or N 2 Extrusion: A Powerful Tool for Material Chemistry. MATERIALS (BASEL, SWITZERLAND) 2021; 15:172. [PMID: 35009318 PMCID: PMC8745824 DOI: 10.3390/ma15010172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/16/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
Phenyl, naphthyl, polyarylphenyl, coronene, and other aromatic and polyaromatic moieties primarily influence the final materials' properties. One of the synthetic tools used to implement (hetero)aromatic moieties into final structures is Diels-Alder cycloaddition (DAC), typically combined with Scholl dehydrocondensation. Substituted 2-pyranones, 1,1-dioxothiophenes, and, especially, 1,3-cyclopentadienones are valuable substrates for [4 + 2] cycloaddition, leading to multisubstituted derivatives of benzene, naphthalene, and other aromatics. Cycloadditions of dienes can be carried out with extrusion of carbon dioxide, carbon oxide, or sulphur dioxide. When pyranones, dioxothiophenes, or cyclopentadienones and DA cycloaddition are aided with acetylenes including masked ones, conjugated or isolated diynes, or polyynes and arynes, aromatic systems are obtained. This review covers the development and the current state of knowledge regarding thermal DA cycloaddition of dienes mentioned above and dienophiles leading to (hetero)aromatics via CO, CO2, or SO2 extrusion. Particular attention was paid to the role that introduced aromatic moieties play in designing molecular structures with expected properties. Undoubtedly, the DAC variants described in this review, combined with other modern synthetic tools, constitute a convenient and efficient way of obtaining functionalized nanomaterials, continually showing the potential to impact materials sciences and new technologies in the nearest future.
Collapse
Affiliation(s)
| | - Aneta Kurpanik-Wójcik
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia, Bankowa 14, 40-007 Katowice, Poland; (S.K.); (B.G.); (A.M.); (A.F.)
| | - Marek Matussek
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia, Bankowa 14, 40-007 Katowice, Poland; (S.K.); (B.G.); (A.M.); (A.F.)
| | | | | | | |
Collapse
|
34
|
Wang J, Shen C, Zhang G, Gan F, Ding Y, Qiu H. Transformation of Crowded Oligoarylene into Perylene-Cored Chiral Nanographene by Sequential Oxidative Cyclization and 1,2-Phenyl Migration. Angew Chem Int Ed Engl 2021; 61:e202115979. [PMID: 34854182 DOI: 10.1002/anie.202115979] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Indexed: 01/07/2023]
Abstract
Synthetic innovation for constructing sophisticated nanographenes is of fundamental significance for a variety of advanced applications. Herein, we report a distinctive method to prepare π-extended chiral nanographenes with 29 benzenoid rings and two helical breaches from a highly crowded perylene-cored oligoarylene precursor. Under Scholl's conditions, the reaction predominantly involves the regioselective and sequential cyclization in the peri- and bay regions of the perylene core, and the complanation of the 1-phenyl[5]helicene intermediate module via 1,2-phenyl migration. The resulting chiral nanographenes are configurationally stable at 180 °C due to the high diastereomerization barriers of ca. 45 kcal mol-1 . These molecules also possess globally delocalized π-systems with low HOMO/LUMO gaps, leading to nearly panchromatic absorption, intensive electronic circular dichroism signals and deep-red circularly polarized luminescence.
Collapse
Affiliation(s)
- Jinghao Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Chengshuo Shen
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Guoli Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Fuwei Gan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yongle Ding
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Huibin Qiu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
35
|
An P, Li R, Ma B, He R, Zhang Y, Xiao M, Zhang B. Azepine‐ or Azocine‐Embedded Hexabenzocoronene Derivatives as Nitrogen‐Doped Saddle or Saddle‐Helix Nanographenes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Peng An
- School of Chemical Science and Technology Yunnan University Kunmimg 650500 P. R. China
| | - Ranran Li
- School of Chemical Science and Technology Yunnan University Kunmimg 650500 P. R. China
| | - Bin Ma
- School of Chemical Science and Technology Yunnan University Kunmimg 650500 P. R. China
| | - Run‐Ying He
- School of Chemical Science and Technology Yunnan University Kunmimg 650500 P. R. China
| | - Yi‐Kang Zhang
- School of Chemical Science and Technology Yunnan University Kunmimg 650500 P. R. China
| | - Ming‐Jun Xiao
- School of Chemical Science and Technology Yunnan University Kunmimg 650500 P. R. China
| | - Bin Zhang
- School of Chemical Science and Technology Yunnan University Kunmimg 650500 P. R. China
| |
Collapse
|
36
|
An P, Li R, Ma B, He RY, Zhang YK, Xiao MJ, Zhang B. Azepine- or Azocine-Embedded Hexabenzocoronene Derivatives as Nitrogen-Doped Saddle or Saddle-Helix Nanographenes. Angew Chem Int Ed Engl 2021; 60:24478-24483. [PMID: 34528358 DOI: 10.1002/anie.202110538] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/07/2021] [Indexed: 11/06/2022]
Abstract
Two novel nitrogen-doped, hexa-peri-hexabenzocoronene (HBC)-based nanographenes (NGs) 1 and 2 bearing an azepine and an azocine at the fjord region, respectively, were synthesized and characterized. Notably, structure 1 was synthesized by Diels-Alder reaction of cyclic alkene and tetrachlorothiophene-S,S-dioxide, followed by Suzuki-Miyaura cross-coupling and Scholl-type reactions, which represents a modified strategy to construct NGs. The azo-heptagon-embedded NG 1 leads to a saddle shape, and the azo-octagon-embedded NG 2 exhibits a distorted saddle-helix conformation with the largest torsion angle recorded so far in [5]helicenes. As a result, the different structural topographies for NGs 1 and 2 lead to significant changes in the optical properties including UV absorption and fluorescent emission. Additionally, the 8π-heterocycles azepine and azocine in the NGs 1 and 2 exhibited obvious antiaromatic properties.
Collapse
Affiliation(s)
- Peng An
- School of Chemical Science and Technology, Yunnan University, Kunmimg, 650500, P. R. China
| | - Ranran Li
- School of Chemical Science and Technology, Yunnan University, Kunmimg, 650500, P. R. China
| | - Bin Ma
- School of Chemical Science and Technology, Yunnan University, Kunmimg, 650500, P. R. China
| | - Run-Ying He
- School of Chemical Science and Technology, Yunnan University, Kunmimg, 650500, P. R. China
| | - Yi-Kang Zhang
- School of Chemical Science and Technology, Yunnan University, Kunmimg, 650500, P. R. China
| | - Ming-Jun Xiao
- School of Chemical Science and Technology, Yunnan University, Kunmimg, 650500, P. R. China
| | - Bin Zhang
- School of Chemical Science and Technology, Yunnan University, Kunmimg, 650500, P. R. China
| |
Collapse
|
37
|
Biagiotti G, Perini I, Richichi B, Cicchi S. Novel Synthetic Approach to Heteroatom Doped Polycyclic Aromatic Hydrocarbons: Optimizing the Bottom-Up Approach to Atomically Precise Doped Nanographenes. Molecules 2021; 26:6306. [PMID: 34684887 PMCID: PMC8537472 DOI: 10.3390/molecules26206306] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 11/16/2022] Open
Abstract
The success of the rational bottom-up approach to nanostructured carbon materials and the discovery of the importance of their doping with heteroatoms puts under the spotlight all synthetic organic approaches to polycyclic aromatic hydrocarbons. The construction of atomically precise heteroatom doped nanographenes has evidenced the importance of controlling its geometry and the position of the doping heteroatoms, since these parameters influence their chemical-physical properties and their applications. The growing interest towards this research topic is testified by the large number of works published in this area, which have transformed a once "fundamental research" into applied research at the cutting edge of technology. This review analyzes the most recent synthetic approaches to this class of compounds.
Collapse
Affiliation(s)
- Giacomo Biagiotti
- Department of Chemistry “Ugo Schiff”, Università di Firenze, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy; (G.B.); (I.P.)
| | - Ilaria Perini
- Department of Chemistry “Ugo Schiff”, Università di Firenze, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy; (G.B.); (I.P.)
| | - Barbara Richichi
- Department of Chemistry “Ugo Schiff”, Università di Firenze, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy; (G.B.); (I.P.)
- National Interuniversity Consortium for Materials Science and Technology (INSTM), Via G. Giusti, 9, 50121 Firenze, Italy
| | - Stefano Cicchi
- Department of Chemistry “Ugo Schiff”, Università di Firenze, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy; (G.B.); (I.P.)
- National Interuniversity Consortium for Materials Science and Technology (INSTM), Via G. Giusti, 9, 50121 Firenze, Italy
- Institute of Chemistry of Organometallic Compounds, ICCOM-CNR, Via Madonna del Piano, 10, 50019 Sesto Fiorentino, Italy
| |
Collapse
|