1
|
Lv J, Sun R, Gao X. Emerging devices based on chiral nanomaterials. NANOSCALE 2025. [PMID: 39750744 DOI: 10.1039/d4nr03998j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
As advanced materials, chiral nanomaterials have recently gained vast attention due to their special geometry-based physical and chemical properties. The fast development of the related science and technology means that various devices involving polarization-based information encryption, photoelectronic and spintronic devices, 3D displays, biomedical sensors and measurement, photonic engineering, electronic engineering, solar devices, etc., been explored extensively. These fields are at their beginning, and much effort needs to be made, including improving the optical, electronic, and magnetic properties of advanced chiral nanomaterials, precisely designing materials, and developing more efficient construction methods. This review tries to offer a whole picture of these state-of-the-art conditions in these fields and offers perspectives on future development.
Collapse
Affiliation(s)
- Jiawei Lv
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China.
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Rui Sun
- Postgraduate training base Alliance of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Xiaoqing Gao
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China.
- Postgraduate training base Alliance of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| |
Collapse
|
2
|
Rahman AU, Wang Y, Xu T, Reddy KD, Jin S, Yan JX, Yuan Q, Unruh D, Liang R, Li G. Discovery of Staircase Chirality through the Design of Unnatural Amino Acid Derivatives. RESEARCH (WASHINGTON, D.C.) 2024; 7:0550. [PMID: 39703778 PMCID: PMC11658802 DOI: 10.34133/research.0550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 12/21/2024]
Abstract
Chirality has garnered significant attention in the scientific community since its discovery by Louis Pasteur over a century ago. It has been showing a profound impact on chemical, biomedical, and materials sciences. Significant progress has been made in controlling molecular chirality, as evidenced by the several Nobel Prizes in chemistry awarded in this area, particularly for advancements in the asymmetric catalytic synthesis of molecules with central and axial chirality. However, the exploration of new types of chirality has been largely stagnant for more than half a century, likely due to the complexity and challenges inherent in this field. In this work, we present the discovery of a novel type of chirality-staircase chirality as inspired by the design and synthesis of unnatural amino acid derivatives. The architecture of staircase chirality is characterized by 2 symmetrical phenyl rings anchored by a naphthyl pier, with the rings asymmetrically displaced due to the influence of chiral auxiliaries at their para positions. This unique staircase chiral framework has been thoroughly characterized using spectroscopic techniques, with its absolute configuration definitively confirmed by x-ray diffraction analysis. Remarkably, one of the staircase molecules exhibits 4 distinct types of chirality: central, orientational, turbo, and staircase chirality, a combination that has not been previously documented in the literature. Computational studies using density functional theory (DFT) calculations were conducted to analyze the relative energies of individual staircase isomers, and the results are in agreement with our experimental findings. We believe that this discovery will open up a new research frontier in asymmetric synthesis and catalysis, with the potential to make a substantial impact on the fields of chemistry, medicine, and materials science.
Collapse
Affiliation(s)
- Anis U. Rahman
- School of Chemistry and Chemical Engineering,
Nanjing University, Nanjing 210093, China
| | - Yu Wang
- School of Chemistry and Chemical Engineering,
Nanjing University, Nanjing 210093, China
| | - Ting Xu
- School of Chemistry and Chemical Engineering,
Nanjing University, Nanjing 210093, China
| | - Kambham Devendra Reddy
- Department of Chemistry and Biochemistry,
Texas Tech University, Lubbock, TX 79409-1061, USA
| | - Shengzhou Jin
- School of Chemistry and Chemical Engineering,
Nanjing University, Nanjing 210093, China
| | - Jasmine X. Yan
- Department of Chemistry and Biochemistry,
Texas Tech University, Lubbock, TX 79409-1061, USA
| | - Qingkai Yuan
- Department of Chemistry and Biochemistry,
Texas Tech University, Lubbock, TX 79409-1061, USA
| | - Daniel Unruh
- Iowa Advanced Technology Laboratories,
University of Iowa, Iowa City, IA 52242, USA
| | - Ruibin Liang
- Department of Chemistry and Biochemistry,
Texas Tech University, Lubbock, TX 79409-1061, USA
| | - Guigen Li
- School of Chemistry and Chemical Engineering,
Nanjing University, Nanjing 210093, China
- Department of Chemistry and Biochemistry,
Texas Tech University, Lubbock, TX 79409-1061, USA
| |
Collapse
|
3
|
Li C, Liu Y, Han Z, Wang Z, Ding K. Pd/Cu Catalyzed Asymmetric Allylation for Stereodivergent Synthesis of Glutamic Acid Derivatives. Chemistry 2024:e202404209. [PMID: 39668114 DOI: 10.1002/chem.202404209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/06/2024] [Accepted: 12/12/2024] [Indexed: 12/14/2024]
Abstract
A synergistic Pd/Cu catalyst system has been developed for stereodivergent transformation of Morita-Baylis-Hillman (MBH) carbonates and Schiff bases derived from simple amino acids to afford a series of optically active β-branched γ-methyleneglutamic acid derivatives with adjacent tertiary/tertiary and quaternary/tertiary stereocenters in high yields (up to 96 %) with excellent diastereo- and enantioselectivities (>20/1 dr and >99 % ee in most cases) under mild conditions. The use of SKP ligand is disclosed to be crucial for the success of the transformation, and in particular allowing the reaction to proceed at low catalyst loading (0.02 mol % for Pd and 0.08 mol % for Cu). The high efficiency of the catalysis was attributed to the formation of intimate ion pair complex A1, composed of Pd-phosphonium cation and a t-butoxide anion, which would facilitate the subsequent deprotonation and C-C coupling events. All four stereoisomers of the β-branched glutamic acid derivatives were readily prepared by permutation of the catalyst enantiomers. Synthetic utility of the methodology was exemplified by efficient synthesis of a fused pyrrolooxazolidinone with three contiguous chiral centers, highlighting the power of synergistic Pd/Cu catalysis for asymmetric allylic alkylation with MBH carbonates.
Collapse
Affiliation(s)
- Chaopeng Li
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yong Liu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Zhaobin Han
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Zheng Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Kuiling Ding
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
4
|
Zsigulics B, Angyal P, Mészáros BB, Daru J, Varga S, Soós T. Bioinspired Synthesis of (-)-Hunterine A: Deciphering the Key Step in the Biogenetic Pathway. Chemistry 2024:e202404501. [PMID: 39665524 DOI: 10.1002/chem.202404501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 12/13/2024]
Abstract
A concise, bioinspired, and enantioselective synthesis of (-)-hunterine A, an odd 6/7/6/6/5 pentacyclic natural product, is described. The key step in the synthesis of this complex structure is an interim-template directed 6-exo selective epoxide ring-opening reaction, which is interwoven with a hydrolysis step of the indolenine hemiaminal template to create the unusual 7-membered azepine bridge motif. Our work not only refines the previously proposed biogenetic pathway, but also reveals the possible stereochemical prerequisite of the unique skeletal rearrangement, which provides a vantage point for understanding how (-)-hunterine A is likely to be generated in nature.
Collapse
Affiliation(s)
- Bálint Zsigulics
- Organocatalysis Research Group, Institute of Organic Chemistry, HUN-REN Research Centre for Natural Sciences, 2. Magyar tudósok krt., H-1117, Budapest, Hungary
- Hevesy György PhD School of Chemistry, Eötvös Loránd University, 1/a Pázmány Péter sétány, H-1117, Budapest, Hungary
| | - Péter Angyal
- Organocatalysis Research Group, Institute of Organic Chemistry, HUN-REN Research Centre for Natural Sciences, 2. Magyar tudósok krt., H-1117, Budapest, Hungary
- Hevesy György PhD School of Chemistry, Eötvös Loránd University, 1/a Pázmány Péter sétány, H-1117, Budapest, Hungary
| | - Bence Balázs Mészáros
- Organocatalysis Research Group, Institute of Organic Chemistry, HUN-REN Research Centre for Natural Sciences, 2. Magyar tudósok krt., H-1117, Budapest, Hungary
- Hevesy György PhD School of Chemistry, Eötvös Loránd University, 1/a Pázmány Péter sétány, H-1117, Budapest, Hungary
- Department of Chemistry, Eötvös Loránd University, 1/a Pázmány Péter sétány, H-1117, Budapest, Hungary
| | - János Daru
- Department of Chemistry, Eötvös Loránd University, 1/a Pázmány Péter sétány, H-1117, Budapest, Hungary
| | - Szilárd Varga
- Organocatalysis Research Group, Institute of Organic Chemistry, HUN-REN Research Centre for Natural Sciences, 2. Magyar tudósok krt., H-1117, Budapest, Hungary
| | - Tibor Soós
- Organocatalysis Research Group, Institute of Organic Chemistry, HUN-REN Research Centre for Natural Sciences, 2. Magyar tudósok krt., H-1117, Budapest, Hungary
| |
Collapse
|
5
|
Liu Y, Ji P, Zou G, Liu Y, Yang BM, Zhao Y. Dynamic Asymmetric Diamination of Allylic Alcohols through Borrowing Hydrogen Catalysis: Diastereo-Divergent Synthesis of Tetrahydrobenzodiazepines. Angew Chem Int Ed Engl 2024; 63:e202410351. [PMID: 39305276 DOI: 10.1002/anie.202410351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Indexed: 11/03/2024]
Abstract
We present herein a catalytic enantioconvergent diamination of racemic allylic alcohols with the construction of two C-N bonds and 1,3-nonadjacent stereocenters. This iridium/chiral phosphoric acid cooperative catalytic system operates through an atom-economical borrowing hydrogen amination/aza-Michael cascade, and converts readily available phenylenediamines and racemic allylic alcohols to 1,5-tetrahydrobenzodiazepines in high enantioselectivity. An intriguing solvent-dependent switch of diastereoselectivity was also observed. Mechanistic studies suggested a dynamic kinetic resolution process involving racemization through a reversible Michael addition, making the last step of asymmetric imine reduction the enantiodetermining step of this cascade process.
Collapse
Affiliation(s)
- Yufeng Liu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, 350207, Fuzhou, China
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Republic of Singapore
| | - Peng Ji
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, 350207, Fuzhou, China
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Republic of Singapore
| | - Gongfeng Zou
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, 350207, Fuzhou, China
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Republic of Singapore
| | - Yongbing Liu
- Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Material Science, Hebei Normal University, 050024, Shijiazhuang, China
| | - Bin-Miao Yang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, 350207, Fuzhou, China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 730000, Lanzhou, China
| | - Yu Zhao
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, 350207, Fuzhou, China
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Republic of Singapore
| |
Collapse
|
6
|
Das P, Ghosh D, Mukherjee S. Catalytic Enantioselective Friedel-Crafts Allenylation. Angew Chem Int Ed Engl 2024; 63:e202413609. [PMID: 39108038 DOI: 10.1002/anie.202413609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 08/06/2024] [Indexed: 10/15/2024]
Abstract
The first enantioselective Friedel-Crafts (FC) allenylation reaction for the creation of central chirality is developed under cooperative Ir(I)/(phosphoramidite,olefin) and Lewis acid catalysis. This enantioconvergent reaction utilizes racemic allenylic alcohol as the electrophile and shows compatibility with a variety of electron-rich arenes and heteroarenes. The resulting highly enantioenriched (up to >99.5 : 0.5 e.r.) 1,1-disubstituted allenylic methanes, bearing a benzylic carbon stereocenter, are obtained with complete regiocontrol - both on (hetero)arenes as well as on the allenylic fragment. This protocol allows for the enantioselective formal introduction of a 4-carbon alkyl chain into (hetero)arenes, along with the creation of a benzylic stereocenter. Judicious synthetic elaborations not only lead to formal enantioselective FC alkylation products of less electron-rich arenes but also of substituted arenes in ortho- and even meta-selective fashion. An intramolecular version of this FC allenylation is shown to proceed with promising enantioselectivity under the same catalytic conditions. Mechanistic studies revealed the involvement of dynamic kinetic asymmetric transformation (DyKAT) of racemic allenylic alcohols in this reaction.
Collapse
Affiliation(s)
- Priyotosh Das
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560 012, India
| | - Debangshu Ghosh
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560 012, India
| | - Santanu Mukherjee
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560 012, India
| |
Collapse
|
7
|
Hou Y, Luo Y, Tang P. Rhodium-Catalyzed Trifluoromethoxylation of Allenylic Trichloroacetimidates. Org Lett 2024; 26:9764-9768. [PMID: 39497333 DOI: 10.1021/acs.orglett.4c03676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The first rhodium-catalyzed trifluoromethoxylation of allenylic trichloroacetimidates has been reported. The products were obtained through a procedure using trifluoromethyl arylsulfonate (TFMS) as the trifluoromethoxy source with a yield up to 76% by identifying the ligand of diene. The reaction proceeds under mild reaction conditions with excellent functional group tolerance and complete regiocontrol.
Collapse
Affiliation(s)
- Yangdong Hou
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry Nankai University, Tianjin 300071, China
| | - Yicheng Luo
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry Nankai University, Tianjin 300071, China
| | - Pingping Tang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry Nankai University, Tianjin 300071, China
| |
Collapse
|
8
|
Gaucherand A, Yen-Pon E, Domain A, Bourhis A, Rodriguez J, Bonne D. Enantioselective synthesis of molecules with multiple stereogenic elements. Chem Soc Rev 2024; 53:11165-11206. [PMID: 39344998 DOI: 10.1039/d3cs00238a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
This review explores the fascinating world of molecules featuring multiple stereogenic elements, unraveling the different strategies designed over the years for their enantioselective synthesis. Specifically, (dynamic) kinetic resolutions, desymmetrisations and simultaneous installation of stereogenic elements exploiting either metal- or organo-catalysis are the principal approaches to efficiently create and control the three-dimensional shapes of these attractive molecules. Although most molecules presented in this review possess a stereogenic carbon atom in combination with a stereogenic axis, other combinations with helices or planes of chirality have started to emerge, as well as molecules displaying more than two different stereogenic elements.
Collapse
Affiliation(s)
| | | | - Antoine Domain
- Aix Marseille Univ, CNRS, Centrale Med, Marseille, ISM2, France
| | - Alix Bourhis
- Aix Marseille Univ, CNRS, Centrale Med, Marseille, ISM2, France
| | - Jean Rodriguez
- Aix Marseille Univ, CNRS, Centrale Med, Marseille, ISM2, France
| | - Damien Bonne
- Aix Marseille Univ, CNRS, Centrale Med, Marseille, ISM2, France
| |
Collapse
|
9
|
Tang Y, Huang M, Jin J, Sun S, Wang L, Tan Y, Sun X, Guo H. Asymmetric Construction of Chiral 2-Azetines and Axially Chiral Tetrasubstituted Allenes Via Phosphine Catalysis. Angew Chem Int Ed Engl 2024:e202415787. [PMID: 39523451 DOI: 10.1002/anie.202415787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/01/2024] [Accepted: 11/10/2024] [Indexed: 11/16/2024]
Abstract
Chiral 2-azetines and allenes are highly valuable structural units in natural products and useful chemicals. However, enantioselective synthesis of both 2-azetines and allenes has been extremely challenging. Herein, we present asymmetric construction of chiral 2-azetines (70-98 % yields and up to 96 % ee) through chiral phosphine-catalyzed [2+2] annulation of yne-enones with sulfamate-derived cyclic imines. These 2-azetines were easily transformed into chiral allenes upon treatment with Et3SiH, BF3 ⋅ Et2O and water at rt for 2 minutes. Based on the above transformations, a concise one-pot synthetic procedure combining [2+2] annulation of yne-enones and sulfamate-derived cyclic imines under phosphine catalysis and sequential reduction/isomerization/ring-opening reaction through Et3SiH, BF3 ⋅ Et2O and water was thus set up, providing axially chiral tetrasubstituted allenes in satisfactory yields and enantioselectivities (56-90 % yields and up to 91 % ee).
Collapse
Affiliation(s)
- Yi Tang
- Department of Chemistry, China Agricultural University, 2 West Yuanmingyuan Road, Beijing, 100193, P. R. China
| | - Mingxia Huang
- Department of Chemistry, China Agricultural University, 2 West Yuanmingyuan Road, Beijing, 100193, P. R. China
| | - Jingrong Jin
- Department of Chemistry, China Agricultural University, 2 West Yuanmingyuan Road, Beijing, 100193, P. R. China
| | - Shitao Sun
- School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Lan Wang
- Department of Chemistry, China Agricultural University, 2 West Yuanmingyuan Road, Beijing, 100193, P. R. China
| | - Yu Tan
- Department of Chemistry, China Agricultural University, 2 West Yuanmingyuan Road, Beijing, 100193, P. R. China
| | - Xiaojing Sun
- Department of Chemistry, China Agricultural University, 2 West Yuanmingyuan Road, Beijing, 100193, P. R. China
| | - Hongchao Guo
- Department of Chemistry, China Agricultural University, 2 West Yuanmingyuan Road, Beijing, 100193, P. R. China
| |
Collapse
|
10
|
Luo P, Li J, Deng YH, Yu P, Wang Y, Peng F, Shao Z. Switchable Chemo-, Regio- and Pseudo-Stereodivergence in Palladium-Catalyzed Cycloaddition of Allenes. Angew Chem Int Ed Engl 2024; 63:e202412179. [PMID: 38990010 DOI: 10.1002/anie.202412179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/12/2024]
Abstract
Here, we report a strategy enabling triple switchable chemo-, regio-, and stereodivergence in newly developed palladium-catalyzed cycloadditions of allenes. An asymmetric pseudo-stereodivergent cycloaddition of allenes bearing a primary leaving group at the α-position, where a dynamic kinetic asymmetric hydroalkoxylation of racemic unactivated allenes was the enantio-determining step, is realized, providing four stereoisomers [(Z,R), (Z,S), (E,S), and (E,R)] containing a di-substituted alkene scaffold and a stereogenic center. By tuning reaction conditions, a mechanistically distinctive cycloaddition is uncovered selectively with the same set of substrates. By switching the position of the leaving group of allenes, a cycloaddition involving an intermolecular O-attack is disclosed. Diverse mechanisms of the cycloaddition reactions of allenes enable rapid access to structurally and stereochemically diverse 3,4-dihydro-2H-1,4-benzoxazines in high efficiency and selectivity.
Collapse
Affiliation(s)
- Pengfei Luo
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, and State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650500, China
| | - Jinxia Li
- Department of Chemistry and Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Yu-Hua Deng
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, and State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650500, China
| | - Peiyuan Yu
- Department of Chemistry and Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Yingcheng Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, and State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650500, China
| | - Fangzhi Peng
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, and State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650500, China
| | - Zhihui Shao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, and State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650500, China
- Southwest United Graduate School, Kunming, 650092, China
| |
Collapse
|
11
|
Chen T, Xiong Q, Xu H, Xiao L, Wang ZF, Chang X, Dang Y, Dong XQ, Wang CJ. Rational Design and Stereodivergent Construction of Enantioenriched Tetrahydro-β-Carbolines Containing Multistereogenic Centers. J Am Chem Soc 2024; 146:29928-29942. [PMID: 39418542 DOI: 10.1021/jacs.4c11731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Chiral tetrahydro-β-carbolines, as one of the most intriguing subtypes of indole alkaloids, have emerged as the privileged units in plenty of natural products and biologically active molecules with an impressive range of bioactive properties. However, the stereodivergent construction of these valuable skeletons containing multistereogenic centers from readily available starting materials remains very challenging, especially, in view of the introduction of an axial chirality. Herein, we developed an efficient method toward enantioenriched tetrahydro-β-carbolines with readily available tryptophan-derived aldimine esters and allylic carbonates under mild reaction conditions. The reaction proceeds in a sequential fashion involving synergistic Cu/Ir-catalyzed stereodivergent allylation and the Brønsted acid-promoted stereospecific Pictet-Spengler reaction, affording a wide range of chiral tetrahydro-β-carbolines bearing up to four stereogenic centers in good yields with excellent stereoselectivity control. When N-aryl-substituted tryptophan-derived aldimine esters were utilized, notably, a unique C-N heterobiaryl axis could be simultaneously constructed with the formation of the third point stereogenic center in the last cyclization step through dynamic kinetic resolution (DKR). Computational mechanistic studies established a plausible synergistic mechanism for dual Cu/Ir-catalyzed asymmetric allylation and the succeeding protonation-assisted Pictet-Spengler cyclization to complete the annulation. Structure-activity relationship analyses unveil the origins of stereochemistry for the building of one axis and three point stereogenic centers.
Collapse
Affiliation(s)
- Taotao Chen
- Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Qi Xiong
- Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Hui Xu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University, Tianjin 300072, China
| | - Lu Xiao
- Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Zuo-Fei Wang
- Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xin Chang
- Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yanfeng Dang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University, Tianjin 300072, China
| | - Xiu-Qin Dong
- Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Chun-Jiang Wang
- Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
12
|
Shi B, Xiao M, Zhao JP, Zhang Z, Xiao WJ, Lu LQ. Synthesis of Chiral Endocyclic Allenes and Alkynes via Pd-Catalyzed Asymmetric Higher-Order Dipolar Cycloaddition. J Am Chem Soc 2024; 146:26622-26629. [PMID: 39293040 DOI: 10.1021/jacs.4c10328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
A Pd-catalyzed asymmetric higher-order dipolar cycloaddition between allenyl carbonates and azadienes is achieved by exploiting novel alkylidene-π-allyl-Pd dipoles. This research provides a modular platform for the synthesis of challenging chiral endocyclic allenes bearing a medium-sized heterocyclic motif and a centrally chiral stereocenter in good yields with high enantio- and diastereoselectivities (29 examples, up to 97% yield, 97:3 er and >19:1 dr). Experimental and computational studies elucidate the possible reaction mechanism and the observed stereochemical results. Based on the mechanistic understanding, a new π-propargyl-Pd dipole was designed to further extend the success of the higher order dipolar cycloaddition strategy to the synthesis of 10-membered endocyclic alkynes from propargyl carbonates and azadienes (13 examples, up to 98% yield and 94.5:5.5 er).
Collapse
Affiliation(s)
- Bin Shi
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
| | - Meng Xiao
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
| | - Jin-Pu Zhao
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
| | - Zhihan Zhang
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
| | - Wen-Jing Xiao
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
- Wuhan Institute of Photochemistry and Technology, Wuhan, Hubei 430082, P. R. China
| | - Liang-Qiu Lu
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, P. R. China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| |
Collapse
|
13
|
Zhang WQ, Lin Z, Wu D, Wang Y, Hirao H, Gong LZ. Nickel-Catalyzed Enantioconvergent Allenylic Amination of Allenols Activated by Hydrogen-Bonding Interaction with Methanol. Angew Chem Int Ed Engl 2024; 63:e202410743. [PMID: 38963024 DOI: 10.1002/anie.202410743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/30/2024] [Accepted: 07/03/2024] [Indexed: 07/05/2024]
Abstract
The ubiquitous nature of amines in drug compounds, bioactive molecules and natural products has fueled intense interest in their synthesis. Herein, we introduce a nickel-catalyzed enantioconvergent allenylic amination of methanol-activated allenols. This protocol affords a diverse array of functionalized allenylic amines in high yields and with excellent enantioselectivities. The synthetic potential of this method is demonstrated by employing bioactive amines as nucleophiles and conducting gram-scale reactions. Furthermore, mechanistic investigations and DFT calculations elucidate the role of methanol as an activator in the nickel-catalyzed reaction, facilitating the oxidative addition of the C-O bond of allenols through hydrogen-bonding interactions. The remarkable outcomes arise from a rapid racemization of allenols enabled by the nickel catalyst and from highly enantioselective dynamic kinetic asymmetric transformation of η3-alkadienylnickel intermediates.
Collapse
Affiliation(s)
- Wen-Qian Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Zihan Lin
- Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Danxing Wu
- Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Yuhao Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Hajime Hirao
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, 518172, China
| | - Liu-Zhu Gong
- Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
14
|
Zhang C, Wu X, Qu J, Chen Y. A General Enantioselective α-Alkyl Amino Acid Derivatives Synthesis Enabled by Cobalt-Catalyzed Reductive Addition. J Am Chem Soc 2024; 146:25918-25926. [PMID: 39264330 DOI: 10.1021/jacs.4c09556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Enantioenriched unnatural amino acids represent a prevalent motif in organic chemistry, with profound applications in biochemistry, medicinal chemistry, and materials science. Herein, we report a cobalt-catalyzed aza-Barbier reaction of dehydroglycines with unactivated alkyl halides to afford unnatural α-amino esters with high enantioselectivity. This catalytic reductive alkylative addition protocol circumvents the use of moisture-, air-sensitive organometallic reagents, and stoichiometric chiral auxiliaries, enabling the conversion of a variety of primary, secondary, and even tertiary unactivated alkyl halides to α-alkyl-amino esters under mild conditions, thus leading to broad functional group tolerance. The expedient access to biologically active motifs demonstrates the practicality of this protocol by reducing the number of synthetic steps and enhancing the reaction efficiency.
Collapse
Affiliation(s)
- Chengxi Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xianqing Wu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jingping Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yifeng Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
15
|
Zhu W, Han C, Yang G, Huo X, Zhang W. Pd/Cu-Cocatalyzed Enantio- and Diastereodivergent Wacker-Type Dicarbofunctionalization of Unactivated Alkenes. J Am Chem Soc 2024; 146:26121-26130. [PMID: 39099165 DOI: 10.1021/jacs.4c06788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
The Wacker and Wacker-type reactions are some of the most fundamental and powerful transformations in organic chemistry for their ability to efficiently produce valuable chemicals. Remarkable progress has been achieved in asymmetric oxy/aza-Wacker-type reactions; however, asymmetric Wacker-type dicarbofunctionalization remains underdeveloped, especially for the concurrent construction of two stereocenters. Herein, we report a Pd/Cu-cocatalyzed enantio- and diastereodivergent Wacker-type dicarbofunctionalization of alkene-tethered aryl triflates with imino esters. A series of 2-indanyl motifs bearing adjacent carbon stereocenters could be easily synthesized in moderate to excellent yields and with good to excellent diastereo- and enantioselectivities (up to >20:1 dr and >99% ee). Density functional theory calculations revealed that the origin of diastereoselectivity in this Pd/Cu synergistic catalytic system is jointly determined by both the intermolecular anti-carbopalladation of alkenes and the reductive elimination processes, in accordance with the Curtin-Hammett principle.
Collapse
Affiliation(s)
- Wenzhi Zhu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Chongyu Han
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Guoqiang Yang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xiaohong Huo
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
16
|
Tran MK, Ready JM. Chemoselective and Stereoselective Allylation of Bis(alkenyl)boronates. Angew Chem Int Ed Engl 2024; 63:e202407824. [PMID: 38781007 PMCID: PMC11347121 DOI: 10.1002/anie.202407824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 05/25/2024]
Abstract
Bis(alkenyl)boronates react with optically active Ir(π-allyl) species in a process that involves allylation of the more substituted olefin and 1,2-metalate shift of the less substituted olefin. The method constructs valuable enantioenriched tertiary allylic boronic esters with high chemoselectivity, enantioselectivity and diastereoselectivity. Allylic functionalization reactions transform the 1,3-stereodiad to 1,5- and 1,6-stereochemical relationships.
Collapse
Affiliation(s)
- Minh-Khoa Tran
- Department of Biochemistry, Division of Chemistry, UT Southwestern Medical Center 5323 Harry Hines Blvd., Dallas, TX 75390-0938 (USA)
| | - Joseph M. Ready
- Department of Biochemistry, Division of Chemistry, UT Southwestern Medical Center 5323 Harry Hines Blvd., Dallas, TX 75390-0938 (USA)
| |
Collapse
|
17
|
Chang X, Zhang J, Cheng X, Lv X, Guo C. Ni/Cu Dual-Catalyzed Propargylation for the Stereodivergent Synthesis of Methohexital. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406764. [PMID: 39049712 PMCID: PMC11423103 DOI: 10.1002/advs.202406764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/17/2024] [Indexed: 07/27/2024]
Abstract
The development of efficient methodologies for the controlled manufacture of specific stereoisomers bearing quaternary stereocenters has prompted advances in a variety of scientific disciplines including pharmaceutical chemistry, materials science, and chemical biology. However, complete control of the absolute and relative stereochemical configurations of alkyne derivatives remains an unmet synthetic challenge. Herein, a Ni/Cu dual-catalyzed asymmetric propargylic substitution reaction is presented to produce propargylated products with all-carbon quaternary stereocenters in high yields with significant diastereo- and enantioselectivities (up to >20:1 dr, >99% ee). The synthesis of all stereochemical variants of methohexital, a widely used sedative-hypnotic drug, exemplifies the efficacy of dual-catalyzed stereodivergent propargylation.
Collapse
Affiliation(s)
- Xihao Chang
- College of Materials and Chemistry & School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Jiayin Zhang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Xiang Cheng
- College of Materials and Chemistry & School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Xianhai Lv
- College of Materials and Chemistry & School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Chang Guo
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
18
|
Li P, Zheng E, Li G, Luo Y, Huo X, Ma S, Zhang W. Stereodivergent access to non-natural α-amino acids via enantio- and Z/ E-selective catalysis. Science 2024; 385:972-979. [PMID: 39208090 DOI: 10.1126/science.ado4936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024]
Abstract
The precise control of Z and E configurations of the carbon-carbon double bond in alkene synthesis has long been a fundamental challenge in synthetic chemistry, even more pronounced when simultaneously striving to achieve enantioselectivity [(Z,R), (Z,S), (E,R), (E,S)]. Moreover, enantiopure non-natural α-amino acids are highly sought after in organic and medicinal chemistry. In this study, we report a ligand-controlled stereodivergent synthesis of non-natural α-quaternary amino acids bearing trisubstituted alkene moieties in high yields with excellent enantioselectivity and Z/E selectivities. This success is achieved through a palladium/copper-cocatalyzed three-component assembly of readily available aryl iodides, allenes, and aldimine esters by simply tuning the chiral ligands of the palladium and copper catalysts.
Collapse
Affiliation(s)
- Panpan Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - En Zheng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Guanlin Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yicong Luo
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaohong Huo
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shengming Ma
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
- Research Centre for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
19
|
Li P, Liu Z, Huo X, Zhang W. Stereodivergent Construction of 1,5/1,7-Nonadjacent Tetrasubstituted Stereocenters Enabled by Pd/Cu-Cocatalyzed Asymmetric Heck Cascade Reaction. Angew Chem Int Ed Engl 2024; 63:e202407498. [PMID: 38752892 DOI: 10.1002/anie.202407498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Indexed: 06/28/2024]
Abstract
The construction of chiral motifs containing nonadjacent stereocenters in an enantio- and diastereoselective manner has long been a challenging task in synthetic chemistry, especially with respect to their stereodivergent synthesis. Herein, we describe a protocol that enables the enantio- and diastereoselective construction of 1,5/1,7-nonadjacent tetrasubstituted stereocenters through a Pd/Cu-cocatalyzed Heck cascade reaction. Notably, a C=C bond relay strategy involving the shift of the π-allyl palladium intermediate was successfully applied in the asymmetric construction of 1,7-nonadjacent stereocenters. The current method allows for the efficient preparation of chiral molecules bearing two privileged scaffolds, oxindoles and non-natural α-amino acids, with good functional group tolerance. The full complement of the four stereoisomers of products bearing 1,5/1,7-nonadjacent stereocenters could be readily accessed by a simple combination of two chiral metal catalysts with different enantiomers.
Collapse
Affiliation(s)
- Panpan Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, China
| | - Zijiao Liu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, China
| | - Xiaohong Huo
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, China
| |
Collapse
|
20
|
Yang HR, Cheng X, Chang X, Wang ZF, Dong XQ, Wang CJ. Copper/ruthenium relay catalysis enables 1,6-double chiral inductions with stereodivergence. Chem Sci 2024; 15:10135-10145. [PMID: 38966363 PMCID: PMC11220595 DOI: 10.1039/d4sc01804d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/11/2024] [Indexed: 07/06/2024] Open
Abstract
The dual catalysis strategy is an efficient and powerful tool to fulfill the stereodivergent synthesis of stereoisomeric products from the same set of starting materials. Great attention has been given to the construction of chiral compounds with two contiguous stereocenters. However, the synthesis of two remote noncontiguous stereocenters is more challenging and is less developed, despite the high demand for synthetic tactics. We herein developed an unprecedented example of the stereodivergent preparation of synthetically useful and biologically important chiral ζ-hydroxy amino ester derivatives containing remote 1,6-noncontiguous stereocenters and a unique β,γ-unsaturation moiety. This cascade dehydrogenation/1,6-Michael addition/hydrogenation protocol between readily-available ketoimine esters and racemic branched dienyl carbinols was rationally realized with bimetallic copper/ruthenium relay catalysis. The key features of the process were atom economy, step economy, and redox-neutrality. All four stereoisomers of chiral ζ-hydroxy amino ester derivatives were easily achieved by the orthogonal permutations of a chiral copper catalyst and chiral ruthenium catalyst. Importantly, a much more challenging stereodivergent synthesis of all eight stereoisomers of chiral peptide products containing three remote stereocenters was accomplished with excellent results through the cooperation of two chiral catalyst pairs and substrate enantiomers.
Collapse
Affiliation(s)
- Hao-Ran Yang
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University Wuhan Hubei 430072 P. R. China
| | - Xiang Cheng
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University Wuhan Hubei 430072 P. R. China
| | - Xin Chang
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University Wuhan Hubei 430072 P. R. China
| | - Zuo-Fei Wang
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University Wuhan Hubei 430072 P. R. China
| | - Xiu-Qin Dong
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University Wuhan Hubei 430072 P. R. China
| | - Chun-Jiang Wang
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University Wuhan Hubei 430072 P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry Shanghai 230021 China
| |
Collapse
|
21
|
Pan Q, Wang K, Xu W, Ai Y, Ping Y, Liu C, Wang M, Zhang J, Kong W. Ligand-Controlled, Nickel-Catalyzed Stereodivergent Construction of 1,3-Nonadjacent Stereocenters. J Am Chem Soc 2024; 146:15453-15463. [PMID: 38795043 DOI: 10.1021/jacs.4c03745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2024]
Abstract
In contrast to the asymmetric synthesis of molecules with a single stereocenter or 1,2-adjacent stereocenters, the simultaneous construction of acyclic 1,3-nonadjacent stereocenters via a single catalyst in an enantioselective and diastereoselective manner remains a formidable challenge. Here, we demonstrate the enantioselective and diastereodivergent construction of 1,3-nonadjacent stereocenters through Ni-catalyzed reductive cyclization/cross-coupling of alkene-tethered aryl bromides and α-bromoamides, which represents the major remaining stereochemical challenge of cyclization/difunctionalization of alkenes. Using Ming-Phos as ligand, a diverse set of oxindoles containing 1,3-nonadjacent stereocenters were obtained with high levels of enantio- and diastereoselectivity. Mechanistic experiments and density functional theory calculations indicate that magnesium salt plays a key role in controlling the diastereoselectivity. Furthermore, another set of complementary stereoisomeric products were constructed from the same set of starting materials using Ph-Phox as ligand.
Collapse
Affiliation(s)
- Qi Pan
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Kuai Wang
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Weipeng Xu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yuqi Ai
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Yuanyuan Ping
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Chuhan Liu
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Minyan Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Junliang Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Wangqing Kong
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| |
Collapse
|
22
|
He J, Li Z, Li R, Kou X, Liu D, Zhang W. Bimetallic Ru/Ru-Catalyzed Asymmetric One-Pot Sequential Hydrogenations for the Stereodivergent Synthesis of Chiral Lactones. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400621. [PMID: 38509867 PMCID: PMC11187880 DOI: 10.1002/advs.202400621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/23/2024] [Indexed: 03/22/2024]
Abstract
Asymmetric sequential hydrogenations of α-methylene γ- or δ-keto carboxylic acids are established in one-pot using a bimetallic Ru/Ru catalyst system, achieving the stereodivergent synthesis of all four stereoisomers of both chiral γ- and δ-lactones with two non-vicinal carbon stereocenters in high yields (up to 99%) and with excellent stereoselectivities (up to >99% ee and >20:1 dr). The compatibility of the two chiral Ru catalyst systems is investigated in detail, and it is found that the basicity of the reaction system plays a key role in the sequential hydrogenation processes. The protocol can be performed on a gram-scale with a low catalyst loading (up to 11000 S/C) and the resulting products allow for many transformations, particularly for the synthesis of several key intermediates useful for the preparation of chiral drugs and natural products.
Collapse
Affiliation(s)
- Jingli He
- Shanghai Key Laboratory for Molecular Engineering of Chiral DrugsSchool of PharmacyShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| | - Zhaodi Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral DrugsSchool of PharmacyShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| | - Ruhui Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral DrugsSchool of PharmacyShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| | - Xuezhen Kou
- Frontiers Science Center for Transformative MoleculesSchool of Chemistry and Chemical EngineeringShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| | - Delong Liu
- Shanghai Key Laboratory for Molecular Engineering of Chiral DrugsSchool of PharmacyShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral DrugsSchool of PharmacyShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
- Frontiers Science Center for Transformative MoleculesSchool of Chemistry and Chemical EngineeringShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| |
Collapse
|
23
|
Wang H, Zhang R, Zi W. Synergistic Palladium/Copper-Catalyzed 1,4-Difunctionalization of 1,3-Dienes for Stereodivergent Construction of 1,5-Nonadjacent Stereocenters. Angew Chem Int Ed Engl 2024; 63:e202402843. [PMID: 38512004 DOI: 10.1002/anie.202402843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/13/2024] [Accepted: 03/21/2024] [Indexed: 03/22/2024]
Abstract
The construction of two distal stereocenters through a single catalytic process is of great interest in organic synthesis. While there are some successful reports regarding stereodivergent preparation of 1,3- or 1,4-stereocenters, the more challenged 1,5-nonadjacent stereocenters have never been achieved in a stereodivergent fashion. Herein we describe a synergistic palladium/copper catalysis for 1,4-difunctionalization reactions of 1,3-dienes, providing access to 1,5-nonadjacent quaternary stereocenters. Because each of the two catalysts separately controlled one of the newly formed stereocenters, stereodivergent synthesis of all four diastereomers of the products could readily be achieved simply by choosing an appropriate combination of chiral catalysts. Experimental and computational studies supported a mechanism involving a Heck/Tsuji-Trost cascade reaction, and the origins of the stereoselectivity were elucidated.
Collapse
Affiliation(s)
- Hongfa Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry,Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China
| | - Ruiyuan Zhang
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry,Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China
| | - Weiwei Zi
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry,Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300071, China
| |
Collapse
|
24
|
Zhang J, Luo Y, Zheng E, Huo X, Ma S, Zhang W. Synergistic Pd/Cu-Catalyzed 1,5-Double Chiral Inductions. J Am Chem Soc 2024; 146:9241-9251. [PMID: 38502927 DOI: 10.1021/jacs.4c00497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Much attention has been focused on the catalytic asymmetric creation of single chiral centers or two adjacent stereocenters. However, the asymmetric construction of two nonadjacent stereocenters is of significant importance but is challenging because of the lack of remote chiral induction models. Herein, based on a C═C bond relay strategy, we report a synergistic Pd/Cu-catalyzed 1,5-double chiral induction model. All four stereoisomers of the target products bearing 1,5-nonadjacent stereocenters involving both allenyl axial and central chirality could be obtained divergently by simply changing the combination of two chiral catalysts with different configurations. Control experiments and DFT calculations reveal a novel mechanism involving 1,5-oxidative addition, contra-thermodynamic η3-allyl palladium shift, and conjugate nucleophilic substitution, which play crucial roles in the control of reactivity, regio-, enantio-, and diastereoselectivity. It is expected that this C═C bond relay strategy may provide a general protocol for the asymmetric synthesis of structural motifs bearing two distant stereocenters.
Collapse
Affiliation(s)
- Jiacheng Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yicong Luo
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - En Zheng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Xiaohong Huo
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Shengming Ma
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
25
|
Lin J, Jia M, Song X, Yu H, Ma S. Pd-Catalyzed Enantioselective Creation of All-Carbon Quaternary Center with 2,3-Allenylic Carbonates. Org Lett 2024. [PMID: 38489519 DOI: 10.1021/acs.orglett.2c02497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
Enantioselective construction of all-carbon quaternary centers has been achieved via the palladium-catalyzed highly enantioselective allenylation of oxindoles with 2,3-allenylic carbonates to afford a variety of optically active allene products, which contain oxindole units with different functional groups, in high ee. The corresponding synthetic applications have also been demonstrated.
Collapse
Affiliation(s)
- Jie Lin
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, P. R. China
| | - Minqiang Jia
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, P. R. China
| | - Xu Song
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, P. R. China
| | - Hao Yu
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, P. R. China
| | - Shengming Ma
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China
| |
Collapse
|
26
|
Fu C, He L, Chang X, Cheng X, Wang ZF, Zhang Z, Larionov VA, Dong XQ, Wang CJ. Copper/Ruthenium Relay Catalysis for Stereodivergent Access to δ-Hydroxy α-Amino Acids and Small Peptides. Angew Chem Int Ed Engl 2024; 63:e202315325. [PMID: 38155608 DOI: 10.1002/anie.202315325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/12/2023] [Accepted: 12/27/2023] [Indexed: 12/30/2023]
Abstract
An atom- and step-economical and redox-neutral cascade reaction enabled by asymmetric bimetallic relay catalysis by merging a ruthenium-catalyzed asymmetric borrowing-hydrogen reaction with copper-catalyzed asymmetric Michael addition has been realized. A variety of highly functionalized 2-amino-5-hydroxyvaleric acid esters or peptides bearing 1,4-non-adjacent stereogenic centers have been prepared in high yields with excellent enantio- and diastereoselectivity. Judicious selection and rational modification of the Ru catalysts with careful tuning of the reaction conditions played a pivotal role in stereoselectivity control as well as attenuating undesired α-epimerization, thus enabling a full complement of all four stereoisomers that were otherwise inaccessible in previous work. Concise asymmetric stereodivergent synthesis of the key intermediates for biologically important chiral molecules further showcases the synthetic utility of this methodology.
Collapse
Affiliation(s)
- Cong Fu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Ling He
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Xin Chang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Xiang Cheng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Zuo-Fei Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Zongpeng Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Vladimir A Larionov
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Moscow, 119334, Russian Federation
- Peoples' Friendship University of Russia, Moscow, 117198, Russian Federation
| | - Xiu-Qin Dong
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Chun-Jiang Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
- State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
27
|
Wang H, Zhang Q, Zi W. Synergistic Catalysis Involving Palladium for Stereodivergent Csp3-Csp3 Coupling Reactions. Acc Chem Res 2024. [PMID: 38295513 DOI: 10.1021/acs.accounts.3c00639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
ConspectusTransition-metal-catalyzed coupling reactions of dienes (such as 1,3-dienes, alkoxyallenes, and aminoallenes) with carbon nucleophiles have proven to be a highly effective method for creating Csp3-Csp3 bonds. These reactions have perfect atom economy and typically occur under mild reaction conditions. By using chiral metal complexes as catalysts, it is possible to create enantioenriched molecules bearing allylic stereocenters with high enantioselectivities. However, challenges arise when Csp3-Csp3 bonds bearing two vicinal stereocenters are constructed through this type of coupling reaction. Due to the inherent diastereoselectivities, only the kinetically favored diastereoisomers (either the syn- or anti-product) are usually obtained through the transition-metal catalyst system. Achieving complementary stereoisomers with high selectivity, which require complete control of both absolute and relative configurations of multiple chiral centers in a single chemical transformation, is usually impossible.Over the past decade, significant advancements have been made in stereodivergent synthesis. Notably, iridium-related synergistic catalysis has been rapidly developed for stereodivergent allylic alkylation reactions. However, these systems were limited to using allylic alcohol derivatives as electrophilic partners. Finding ways to extend the use of synergistic catalysis to other types of stereodivergent reactions is a crucial issue that needs to be addressed.In 2019, we reported the first palladium-mediated synergistic system for the stereodivergent Csp3-Csp3 coupling between 1,3-dienes and aldimine esters. Lately, this strategy has proven successful in accessing stereodivergent coupling with diverse substrate patterns. In this Account, we will summarize our laboratory's efforts in developing a range of palladium-involved synergistic catalysis systems for the stereodivergent Csp3-Csp3 coupling reactions of dienes. We discovered several synergistic catalysis systems, including Pd/Cu(Ag), Pd/amine, Pd/Lewis base, and Pd/PTC. Additionally, we developed diverse dienes, such as 1,3-dienes, alkoxyallenes, and aminoallenes, to serve as suitable coupling partners for stereodivergent coupling. These processes provide an efficient method for constructing a range of chiral scaffolds bearing vicinal stereocenters. Density functional theory (DFT) calculations have been performed to elucidate the reaction mechanism and to rationalize the origins of the stereochemistry for some of the synergistic catalyst systems. Finally, the synthetic application of these methods has been demonstrated in the concise total synthesis of a number of natural products and bioactive molecules. It is anticipated that an increasing number of chemists will join in the research on stereodivergent Csp3-Csp3 coupling reactions and contribute to more elegant examples in this area. We believe future development will further push the boundary of asymmetric catalysis and find more innovative applications soon for synthesizing complex chiral molecules.
Collapse
Affiliation(s)
- Hongfa Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Qinglong Zhang
- School of Chemistry and Chemical Engineering, Nanchang University, Jiangxi 330031, China
| | - Weiwei Zi
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300071, China
| |
Collapse
|
28
|
Zhang J, Zhu W, Chen Z, Zhang Q, Guo C. Dual-Catalyzed Stereodivergent Electrooxidative Homocoupling of Benzoxazolyl Acetate. J Am Chem Soc 2024; 146:1522-1531. [PMID: 38166394 DOI: 10.1021/jacs.3c11429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
The development of a reliable strategy for stereodivergent radical reactions that allows convenient access to all stereoisomers of homocoupling adducts with multiple stereogenic centers remains an unmet goal in organic synthesis. Herein, we describe a dual-catalyzed electrooxidative C(sp3)-H/C(sp3)-H homocoupling with complete absolute and relative stereocontrol for the synthesis of molecules with contiguous quaternary stereocenters in a general and predictable manner. The stereodivergent electrooxidative homocoupling reaction is achieved by synergistically utilizing two distinct chiral catalysts that convert identical racemic substrates into inherently distinctive reactive chiral intermediates, dictate enantioselective radical addition, and allow access to the full complement of stereoisomeric products via simple catalyst permutation. The successful execution of the dual-electrocatalytic strategy programmed via electrooxidative activation provides a significant conceptual advantage and will serve as a useful foundation for further research into cooperative stereocontrolled radical transformations and diversity-oriented synthesis.
Collapse
Affiliation(s)
- Jiayin Zhang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Wangjie Zhu
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Ziting Chen
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Qinglin Zhang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Chang Guo
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
29
|
Zhang H, Wen W, Lu ZX, Wu ZL, Cai T, Guo QX. Core Structure-Oriented Asymmetric α-Allenylic Alkylation of Amino Acid Esters Enabled by Chiral Aldehyde/Palladium Catalysis. Org Lett 2024; 26:153-159. [PMID: 38133484 DOI: 10.1021/acs.orglett.3c03762] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Aiming at the reported chiral synthons leading to manzacidins A and D, here we report a highly efficient catalytic asymmetric α-allenylic alkylation reaction of NH2-unprotected amino acid esters that is promoted by combined chiral aldehyde/palladium catalysis. Fifty examples of unnatural α,α-disubstituted amino acid esters are reported with good-to-excellent yields and stereoselectivities. Based on this methodology, a key intermediate leading to manzacidin C and its other three stereoisomers is prepared accordingly.
Collapse
Affiliation(s)
- Hao Zhang
- Key Laboratory of Applied Chemistry of Chongqing Municipality and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Wei Wen
- Key Laboratory of Applied Chemistry of Chongqing Municipality and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Ze-Xi Lu
- Key Laboratory of Applied Chemistry of Chongqing Municipality and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Zhu-Lian Wu
- Key Laboratory of Applied Chemistry of Chongqing Municipality and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Tian Cai
- Key Laboratory of Applied Chemistry of Chongqing Municipality and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Qi-Xiang Guo
- Key Laboratory of Applied Chemistry of Chongqing Municipality and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| |
Collapse
|
30
|
Yamanomoto K, Yamamoto K, Yoshida S, Sato S, Akiyama T. Enantioselective synthesis of 3-( N-indolyl)quinolines containing axial and central chiralities. Chem Commun (Camb) 2024; 60:582-585. [PMID: 38095093 DOI: 10.1039/d3cc05142k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Quinoline and indole are important core structures in biologically active compounds and materials. Atropisomeric biaryls consisting of quinoline and indole are a unique class of axially chiral molecules. We report herein enantioselective synthesis of 3-(N-indolyl)quinolines having both C-N axial chirality and carbon central chirality by a photoredox Minisci-type addition reaction catalyzed by a chiral lithium phosphate/Ir-photoredox complex. The catalytic system enabled access to a unique class of 3-(N-indolyl)quinolines with high chemo-, regio-, and stereoselectivities in good yields through the appropriate choice of an acid catalyst and a photocatalyst. This is the first example of the synthesis of 3-(N-indolyl)quinoline atropisomers in a highly enantioselective manner.
Collapse
Affiliation(s)
- Ken Yamanomoto
- Department of Chemistry, Faculty of Science, Gakushuin University, Mejiro, Toshima-ku, Tokyo 171-8588, Japan.
- Department of Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Kota Yamamoto
- Department of Chemistry, Faculty of Science, Gakushuin University, Mejiro, Toshima-ku, Tokyo 171-8588, Japan.
| | - Satoshi Yoshida
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Sota Sato
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Division of Advanced Molecular Science, Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| | - Takahiko Akiyama
- Department of Chemistry, Faculty of Science, Gakushuin University, Mejiro, Toshima-ku, Tokyo 171-8588, Japan.
| |
Collapse
|
31
|
Fu C, He L, Xu H, Zhang Z, Chang X, Dang Y, Dong XQ, Wang CJ. Modular access to chiral bridged piperidine-γ-butyrolactones via catalytic asymmetric allylation/aza-Prins cyclization/lactonization sequences. Nat Commun 2024; 15:127. [PMID: 38167331 PMCID: PMC10762176 DOI: 10.1038/s41467-023-44336-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024] Open
Abstract
Chiral functionalized piperidine and lactone heterocycles are widely spread in natural products and drug candidates with promising pharmacological properties. However, there remains no general asymmetric methodologies that enable rapid assemble both critical biologically important units into one three-dimensional chiral molecule. Herein, we describe a straightforward relay strategy for the construction of enantioenriched bridged piperidine-γ-butyrolactone skeletons incorporating three skipped stereocenters via asymmetric allylic alkylation and aza-Prins cyclization/lactonization sequences. The excellent enantioselectivity control in asymmetric allylation with the simplest allylic precursor is enabled by the synergistic Cu/Ir-catalyzed protocol; the success of aza-Prins cyclization/lactonization can be attributed to the pivotal role of the ester substituent, which acts as a preferential intramolecular nucleophile to terminate the aza-Prins intermediacy of piperid-4-yl cation species. The resulting chiral piperidine-γ-butyrolactone bridged-heterocyclic products show impressive preliminary biological activities against a panel of cancer cell lines.
Collapse
Affiliation(s)
- Cong Fu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
- State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Ling He
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Hui Xu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University, Tianjin, 300072, China
| | - Zongpeng Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Xin Chang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Yanfeng Dang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University, Tianjin, 300072, China.
| | - Xiu-Qin Dong
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.
| | - Chun-Jiang Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.
- State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
32
|
Tian K, Chang X, Xiao L, Dong XQ, Wang CJ. Stereodivergent synthesis of α-fluoro α-azaaryl γ-butyrolactones via cooperative copper and iridium catalysis. FUNDAMENTAL RESEARCH 2024; 4:77-85. [PMID: 38933830 PMCID: PMC11197661 DOI: 10.1016/j.fmre.2022.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/14/2022] [Accepted: 07/20/2022] [Indexed: 10/16/2022] Open
Abstract
The development of stereodivergent synthetic methods to access all four stereoisomers of biologically important α-fluoro γ-butyrolactones containing vicinal stereocenters is of great importance and poses a formidable challenge owing to ring strain and steric hindrance. Herein, a novel asymmetric [3+2] annulation of α-fluoro α-azaaryl acetates with vinylethylene carbonate was successfully developed through Cu/Ir-catalyzed cascade allylic alkylation/lactonization, affording a variety of enantioenriched α-fluoro γ-butyrolactones bearing vicinal stereogenic centers with high reaction efficiency and excellent levels of both stereoselectivity and regioselectivity (up to 98% yield, generally >20:1 dr and >99% ee). Notably, all four stereoisomers of these pharmaceutically valuable molecules could be accessed individually via simple permutations of two enantiomeric catalysts. In addition, other azaaryl acetates bearing α-methyl, α-chlorine or α-phenyl group were tolerated well in this transformation. Reaction mechanistic investigations were conducted to explore the process of this bimetallic catalysis based on the results of reaction intermediates, isotopic labelling experiments, and kinetic studies.
Collapse
Affiliation(s)
- Kui Tian
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, Wuhan 430072, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai 230021, China
| | - Xin Chang
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Lu Xiao
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Xiu-Qin Dong
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, Wuhan 430072, China
- Suzhou Institute of Wuhan University, Suzhou 215123, China
| | - Chun-Jiang Wang
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, Wuhan 430072, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai 230021, China
| |
Collapse
|
33
|
Jiang XM, Ji CL, Ge JF, Zhao JH, Zhu XY, Gao DW. Asymmetric Synthesis of Chiral 1,2-Bis(Boronic) Esters Featuring Acyclic, Non-Adjacent 1,3-Stereocenters. Angew Chem Int Ed Engl 2023:e202318441. [PMID: 38098269 DOI: 10.1002/anie.202318441] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Indexed: 12/30/2023]
Abstract
The construction of acyclic, non-adjacent 1,3-stereogenic centers, prevalent motifs in drugs and bioactive molecules, has been a long-standing synthetic challenge due to acyclic nucleophiles being distant from the chiral environment. In this study, we successfully synthesized highly valuable 1,2-bis(boronic) esters featuring acyclic and nonadjacent 1,3-stereocenters. Notably, this reaction selectively produces migratory coupling products rather than alternative deborylative allylation or direct allylation byproducts. This approach introduces a new activation mode for selective transformations of gem-diborylmethane in asymmetric catalysis. Additionally, we found that other gem-diborylalkanes, previously challenging due to steric hindrance, also successfully participated in this reaction. The incorporation of 1,2-bis(boryl)alkenes facilitated the diversification of the alkenyl and two boron moieties in our target compounds, thereby enabling access to a broad array of versatile molecules. DFT calculations were performed to elucidate the reaction mechanism and shed light on the factors responsible for the observed excellent enantioselectivity and diastereoselectivity. These were determined to arise from ligand-substrate steric repulsions in the syn-addition transition state.
Collapse
Affiliation(s)
- Xia-Min Jiang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Chong-Lei Ji
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Jian-Fei Ge
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Jia-Hui Zhao
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, P. R. China
| | - Xin-Yuan Zhu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - De-Wei Gao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
34
|
Gao L, Wang YQ, Zhang YQ, Fu YH, Liu YY, Zhang QW. Nickel-Catalyzed Enantioselective Synthesis of Dienyl Sulfoxide. Angew Chem Int Ed Engl 2023:e202317626. [PMID: 38085222 DOI: 10.1002/anie.202317626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Indexed: 12/29/2023]
Abstract
Sulfoxides are widely used in the pharmaceutical industry and as ligands in asymmetric catalysis. However, the efficient asymmetric synthesis of this structural motif remains limited. In this study, we disclosed a Ni-catalyzed enantioconvergent reaction that utilizes both racemic allenyl carbonates and β-sulfinyl esters. Our method employs cheap and more sustainable Ni(II) as a precatalyst and successfully overcomes the challenging poisoning effect and instability of sulfenate generated in situ. This enables the synthesis of a series of dienyl sulfoxides with enantioselectivity of up to 98 % ee. The product exhibits tremendous potential in various applications, including diastereoselective Diels-Alder reactions, coordination with transition metals, and incorporation into medicinal compounds, among others. Using a combination of experimental and computational methods, we have uncovered an interesting associated outersphere mechanism that contrasts with conventional mechanisms commonly observed in asymmetric transition metal catalysis.
Collapse
Affiliation(s)
- Li Gao
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Yin-Qi Wang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Ya-Qian Zhang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Yi-Han Fu
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Yi-Yu Liu
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Qing-Wei Zhang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, Anhui, China
| |
Collapse
|
35
|
Xie F, Zhao J, Ren D, Xue J, Wang J, Zhao Q, Liu L, Liu X. Enantio- and Diastereoselective Copper-Catalyzed Synthesis of Chiral Aziridines with Vicinal Tetrasubstituted Stereocenters. Org Lett 2023; 25:8530-8534. [PMID: 37975634 DOI: 10.1021/acs.orglett.3c03565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
A Cu-catalyzed coupling of cyclic imino esters with 2H-azirines has been developed to synthesize novel optically active aziridines in high yields with excellent levels of diastereo- and enantioselectivities under mild conditions. This novel protocol features a broad substrate scope and good functional group compatibility, and it enriches the existing reaction type of rapid synthesis of optically active aziridines bearing vicinal tetrasubstituted stereogenic carbon centers.
Collapse
Affiliation(s)
- Fang Xie
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, People's Republic of China
| | - Jie Zhao
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, People's Republic of China
| | - Deyue Ren
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, People's Republic of China
| | - Jianming Xue
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, People's Republic of China
| | - Jingyi Wang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, People's Republic of China
| | - Qin Zhao
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, People's Republic of China
| | - Lu Liu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, People's Republic of China
| | - Xiaodan Liu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, People's Republic of China
| |
Collapse
|
36
|
Li B, Xu H, Dang Y. Dispersion Interactions in Asymmetric Induction for Constructing Vicinal Stereogenic Centers. Acc Chem Res 2023; 56:3260-3270. [PMID: 37902311 DOI: 10.1021/acs.accounts.3c00519] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
ConspectusVicinal stereogenic centers are prevalent structural motifs of primary functional relevance in natural products and bioactive molecules. The quest for the rapid and controllable construction of vicinal stereogenic centers stands as a frontier endeavor in asymmetric organic synthesis. Over the past decade, stereodivergent synthesis has been intensely researched within the realm of bimetallic catalysis, aiming at establishing novel transition-metal dual-catalytic reactions that efficiently generate all stereochemical combinations of multichiral molecules from identical starting materials, thus offering new opportunities toward rapid complexity building and diversity-oriented chiral compound library generation. In this Account, we summarize our recent advancements in computational investigations of stereodivergent asymmetric allylic alkylation, an important reaction class heavily studied for the purpose of constructing vicinal stereogenic centers. Our discussions focus on synergistic bimetallic catalysis for the syntheses of α,α-disubstituted α-amino acids and cascade allylation/cyclization toward enantiomerically enriched indole-containing heterocycles. We describe our series of studies that converge in establishing the molecular mechanism of asymmetric induction for chiral copper-azomethine ylide, a nucleophile that holds widespread utility and is characterized by a distinctive, sterically biased surrounding enveloping the prochiral center. Notably, our studies revealed that attacks at the prochiral site by allylmetal species are significantly favored by dispersion attraction from one face (-PPh2) but blocked by steric repulsion and associated structural distortions on the opposite face (oxazoline), therefore building up a multimodal and highly robust face-selective stereoinduction. We showcase how a suite of systematic computational analyses generates precise atomistic insights into a number of systems of relevance. We also discuss how the same methodologies can be applied to chiral intermediates with shared interaction patterns, including the rhodium-Josiphos catalyst in asymmetric hydrogenation to create two continuous stereocenters. In the selectivity-controlling migratory insertion step, our computational models unveiled that the reaction is favored by ligand-substrate dispersion attraction on the -PPh2 side and hindered by steric repulsion on the opposite -PtBu2 side. These noncovalent interactions along with the distal ligand-auxiliary structural distortions enable strictly oriented three-dimensional stereoinduction. Our analysis of ligand-substrate dispersion interactions and steric effects in competing pathways highlights certain interaction-level similarities between PHOX-type and Josiphos-type ligands in asymmetric induction. In summary, this Account underscores the foundational significance and broad applicability of nonbonded dispersion interactions in asymmetric inductions for the construction of vicinal stereogenic centers. We envisage that the computational methodologies employed in these studies will shift toward a paradigm of interaction-based rational molecular and reaction design.
Collapse
Affiliation(s)
- Bo Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Hui Xu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Yanfeng Dang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| |
Collapse
|
37
|
Liu LX, Huang WJ, Yu CB, Zhou YG. Palladium-catalyzed stereoselective construction of chiral allenes bearing nonadjacent axial and two central chirality. Org Biomol Chem 2023; 21:8516-8520. [PMID: 37853833 DOI: 10.1039/d3ob01315d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
It is challenging to enantioselectively construct molecules bearing multiple nonadjacent stereocenters, in contrast to those bearing a single stereocenter or adjacent stereocenters. Herein, we report an enantio- and diastereoselective synthesis of substituted chiral allenes with nonadjacent axial and two central chiral centers through a combination of retro-oxa-Michael addition and palladium-catalyzed asymmetric allenylic alkylation. This methodology exhibits good functional-group compatibility, and the corresponding allenylic alkylated compounds, including flavonoid frameworks, are obtained with good yields and diastereoselectivities and excellent enantioselectivities (all >95% ee). Furthermore, the scalability of the current synthetic protocol was proven by performing a gram-scale reaction.
Collapse
Affiliation(s)
- Li-Xia Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wen-Jun Huang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Chang-Bin Yu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Yong-Gui Zhou
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
38
|
Moser D, Schmidt TA, Sparr C. Diastereodivergent Catalysis. JACS AU 2023; 3:2612-2630. [PMID: 37885579 PMCID: PMC10598570 DOI: 10.1021/jacsau.3c00216] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 10/28/2023]
Abstract
Alongside enantioselective catalysis, synthetic chemists are often confronted by the challenge of achieving catalyst control over the relative configuration to stereodivergently access desired diastereomers. Typically, these approaches iteratively or simultaneously control multiple stereogenic units for which dual catalytic methods comprising sequential, relay, and synergistic catalysis emerged as particularly efficient strategies. In this Perspective, the benefits and challenges of catalyst-controlled diastereodivergence in the construction of carbon stereocenters are discussed on the basis of illustrative examples. The concepts are then transferred to diastereodivergent catalysis for atropisomeric systems with twofold and higher-order stereogenicity as well as diastereodivergent catalyst control over E- and Z-configured alkenes.
Collapse
Affiliation(s)
| | | | - Christof Sparr
- Department of Chemistry, University
of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| |
Collapse
|
39
|
Ghosh S, Mukherjee S. Ligand-Controlled Diastereodivergency in Propargylic Alkylation of Vinylogous Aza-Enamines: Construction of 1,3-Stereocenters. Org Lett 2023; 25:7304-7309. [PMID: 37782956 DOI: 10.1021/acs.orglett.3c02614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
The first diastereodivergent propargylic alkylation reaction is developed. This Cu(I)-catalyzed formal decarboxylative [4+2] cycloaddition between ethynyl benzoxazinanone and vinylogous aza-enamine delivers each diastereomer of tetrahydroquinoline derivatives, bearing 1,3-stereocenters, using either i-Pr-Pybox or BINAP as the ligand under otherwise identical reaction conditions. This is the first application of vinylogous aza-enamines in a transition metal-catalyzed transformation and the first example of the creation of 1,3-stereocenters in a propargylic substitution reaction.
Collapse
Affiliation(s)
- Suman Ghosh
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Santanu Mukherjee
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
40
|
Luo P, Li L, Mao X, Sun Z, Wang Y, Peng F, Shao Z. Chemodivergence in Pd-catalyzed desymmetrization of allenes: enantioselective [4+3] cycloaddition, desymmetric allenylic substitution and enynylation. Chem Sci 2023; 14:10812-10823. [PMID: 37829037 PMCID: PMC10566515 DOI: 10.1039/d3sc04581a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 09/20/2023] [Indexed: 10/14/2023] Open
Abstract
A class of prochiral allenylic di-electrophiles have been introduced for the first time as three-atom synthons in cycloadditions, and a new type of [4+3] cycloaddition involving transition metal-catalyzed enantioselective sequential allenylic substitution has been successfully developed, enabling challenging seven-membered exocyclic axially chiral allenes to be accessed in good yields with good enantioselectivity. Through the addition of a catalytic amount of ortho-aminoanilines or ortho-aminophenols, the racemization of the [4+3] cycloaddition products is effectively suppressed. Mechanistic studies reveal that elusive Pd-catalyzed enantioselective intramolecular allenylic substitution rather than intermolecular allenylic substitution is the enantio-determining step in this cycloaddition. By tuning the ligands, a Pd-catalyzed enantioselective desymmetric allenylic substitution leading to linear axially chiral tri-substituted allenes or a Pd-catalyzed tandem desymmetric allenylic substitution/β-vinylic hydrogen elimination (formal enynylation) leading to multi-functionalized 1,3-enynes is achieved chemodivergently.
Collapse
Affiliation(s)
- Pengfei Luo
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan Provincial Center for Research & Development of Natural Products, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University Kunming 650091 China
| | - Long Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan Provincial Center for Research & Development of Natural Products, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University Kunming 650091 China
| | - Xinfang Mao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan Provincial Center for Research & Development of Natural Products, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University Kunming 650091 China
| | - Zheng Sun
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan Provincial Center for Research & Development of Natural Products, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University Kunming 650091 China
| | - Yingcheng Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan Provincial Center for Research & Development of Natural Products, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University Kunming 650091 China
| | - Fangzhi Peng
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan Provincial Center for Research & Development of Natural Products, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University Kunming 650091 China
| | - Zhihui Shao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan Provincial Center for Research & Development of Natural Products, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University Kunming 650091 China
| |
Collapse
|
41
|
Jiang F, Meng T, Zhou Y, Xiong Z, Zhao Y, Guo W. Pseudo-Diastereodivergent Synthesis of Chiral Fluorenes Bearing Bis-1,3-Nonadjacent Stereogenic Centers via Organocatalytic Desymmetrization of meso-Epoxides. Org Lett 2023; 25:6006-6011. [PMID: 37526278 DOI: 10.1021/acs.orglett.3c02150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
We report an enantio- and diastereodivergent synthesis of enantioenriched fluorenes bearing bis-1,3-nonadjacent stereocenters with broad substrate scope and high enantioselectivity (up to 99% ee) under low catalyst loading (0.1 mol %). The key to the success of this method is the pseudo-diastereodivergent desymmetrization of stereoisomers of meso-epoxides enabled by the same organocatalyst. Furthermore, some of the chiral fluorenes obtained exhibit high fluorescence quantum yields (up to 76.6%), as evidenced by photophysical properties studies.
Collapse
Affiliation(s)
- Feng Jiang
- School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Tengfei Meng
- School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Ying Zhou
- School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Zhenying Xiong
- School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Yupei Zhao
- School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Wengang Guo
- School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| |
Collapse
|
42
|
Wang Y, Zhu X, Pan D, Jing J, Wang F, Mi R, Huang G, Li X. Rhodium-catalyzed enantioselective and diastereodivergent access to diaxially chiral heterocycles. Nat Commun 2023; 14:4661. [PMID: 37537163 PMCID: PMC10400608 DOI: 10.1038/s41467-023-39968-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 07/03/2023] [Indexed: 08/05/2023] Open
Abstract
N-N axially chiral biaryls represent a rarely explored class of atropisomers. Reported herein is construction of diverse classes of diaxially chiral biaryls containing N-N and C-N/C-C diaxes in distal positions in excellent enantioselectivity and diastereoselectivity. The N-N chiral axis in the products provides a handle toward solvent-driven diastereodivergence, as has been realized in the coupling of a large scope of benzamides and sterically hindered alkynes, affording diaxes in complementary diastereoselectivity. The diastereodivergence has been elucidated by computational studies which revealed that the hexafluoroisopropanol (HFIP) solvent molecule participated in an unusual manner as a solvent as well as a ligand and switched the sequence of two competing elementary steps, resulting in switch of the stereoselectivity of the alkyne insertion and inversion of the configuration of the C-C axis. Further cleavage of the N-directing group in the diaxial chiral products transforms the diastereodivergence to enantiodivergence.
Collapse
Affiliation(s)
- Yishou Wang
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Sciences, Shandong University, 266237, Qingdao, China
| | - Xiaohan Zhu
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, 710062, Xi'an, China
| | - Deng Pan
- Department of Chemistry, School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, 300072, Tianjin, China
| | - Jierui Jing
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, 710062, Xi'an, China
| | - Fen Wang
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, 710062, Xi'an, China.
| | - Ruijie Mi
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Sciences, Shandong University, 266237, Qingdao, China
| | - Genping Huang
- Department of Chemistry, School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, 300072, Tianjin, China.
| | - Xingwei Li
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Sciences, Shandong University, 266237, Qingdao, China.
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, 710062, Xi'an, China.
| |
Collapse
|
43
|
Jiang J, Zhou J, Li Y, Peng C, He G, Huang W, Zhan G, Han B. Silver/chiral pyrrolidinopyridine relay catalytic cycloisomerization/(2 + 3) cycloadditions of enynamides to asymmetrically synthesize bispirocyclopentenes as PDE1B inhibitors. Commun Chem 2023; 6:128. [PMID: 37337043 DOI: 10.1038/s42004-023-00921-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/05/2023] [Indexed: 06/21/2023] Open
Abstract
Significant progress has been made in asymmetric synthesis through the use of transition metal catalysts combined with Lewis bases. However, the use of a dual catalytic system involving 4-aminopyridine and transition metal has received little attention. Here we show a metal/Lewis base relay catalytic system featuring silver acetate and a modified chiral pyrrolidinopyridine (PPY). It was successfully applied in the cycloisomerization/(2 + 3) cycloaddition reaction of enynamides. Bispirocyclopentene pyrazolone products could be efficiently synthesized in a stereoselective and economical manner (up to >19:1 dr, 99.5:0.5 er). Transformations of the product could access stereodivergent diastereoisomers and densely functionalized polycyclic derivatives. Mechanistic studies illustrated the relay catalytic model and the origin of the uncommon chemoselectivity. In subsequent bioassays, the products containing a privileged drug-like scaffold exhibited isoform-selective phosphodiesterase 1 (PDE1) inhibitory activity in vitro. The optimal lead compound displayed a good therapeutic effect for ameliorating pulmonary fibrosis via inhibiting PDE1 in vivo.
Collapse
Affiliation(s)
- Jing Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, P.R. China
| | - Jin Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, P.R. China
| | - Yang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, P.R. China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, P.R. China
| | - Gu He
- State Key Laboratory of Biotherapy and Department of Pharmacy, West China Hospital Sichuan University, Chengdu, 610041, P.R. China
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, P.R. China
| | - Gu Zhan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, P.R. China.
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, P.R. China.
| |
Collapse
|
44
|
Liu LX, Bai YQ, Li X, Yu CB, Zhou YG. Palladium-catalyzed asymmetric allenylic alkylation: construction of multiple chiral thiochromanone derivatives. Chem Sci 2023; 14:5477-5482. [PMID: 37234894 PMCID: PMC10208048 DOI: 10.1039/d3sc01060k] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
The development of a new strategy for the construction of chiral cyclic sulfide-containing multiple stereogenic centers is highly desirable. Herein, by the combination of base-promoted retro-sulfa-Michael addition and palladium-catalyzed asymmetric allenylic alkylation, the streamlined synthesis of chiral thiochromanones containing two central chiralities (including a quaternary stereogenic center) and an axial chirality (allene unit) was successfully realized with up to 98% yield, 49.0 : 1 dr and >99% ee.
Collapse
Affiliation(s)
- Li-Xia Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Yu-Qing Bai
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Xiang Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Chang-Bin Yu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Yong-Gui Zhou
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| |
Collapse
|
45
|
You C, Shi M, Mi X, Luo S. Asymmetric α-allylic allenylation of β-ketocarbonyls and aldehydes by synergistic Pd/chiral primary amine catalysis. Nat Commun 2023; 14:2911. [PMID: 37217465 DOI: 10.1038/s41467-023-38488-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/27/2023] [Indexed: 05/24/2023] Open
Abstract
We herein describe an asymmetric α-allylic allenylation of β-ketocarbonyls and aldehydes with 1,3-enynes. A synergistic chiral primary amine/Pd catalyst was identified to facilitate the utilization of 1,3-enynes as atom-economic and achiral allene precursors. The synergistic catalysis enables the construction of all-carbon quaternary centers-tethered allenes bearing non-adjacent 1,3-axial central stereogenic centers in high level of diastereo- and enantio-selectivity. By switching the configurations of ligands and aminocatalysts, diastereodivergence can be achieved and any of the four diastereoisomers can be accessed in high diastereo- and enantio- selectivity.
Collapse
Affiliation(s)
- Chang You
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Mingying Shi
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Xueling Mi
- College of Chemistry, Beijing Normal University, Beijing, 100875, China.
| | - Sanzhong Luo
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
46
|
Ahmad T, Gao F, Li J, Zhang Z, Song T, Yuan Q, Zhang W. Synergistic Li/Li Bimetallic System for the Asymmetric Synthesis of Antituberculosis Drug TBAJ-587. J Org Chem 2023. [PMID: 37125776 DOI: 10.1021/acs.joc.3c00705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
TBAJ-587, an analogue of the antituberculosis drug bedaquiline (BDQ), bearing a diarylquinoline skeleton retains the high bacterial potency, is less toxic, and has a better pharmacokinetic profile than the parent molecule, which has entered phase I clinical trials. In contrast to its fascinating bioactivity, however, the highly efficient synthesis of this molecule is still an unsolved challenge. Herein, the first asymmetric synthesis of TBAJ-587 based on a synergistic Li/Li bimetallic system is reported. The product could be obtained in an excellent yield of 90% and an enantiomeric ratio (er) of 80:20. Furthermore, the reaction could be conducted on a 5 g scale, and the product was obtained with 99.9:0.1 er after a simple recrystallization. The realization of this protocol will greatly aid the demand for clinical drug production.
Collapse
Affiliation(s)
- Tanveer Ahmad
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Feng Gao
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jing Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zhenfeng Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Tao Song
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Qianjia Yuan
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Wanbin Zhang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
47
|
Zhu BK, Xu H, Xiao L, Chang X, Wei L, Teng H, Dang Y, Dong XQ, Wang CJ. Enantio- and diastereodivergent synthesis of fused indolizines enabled by synergistic Cu/Ir catalysis. Chem Sci 2023; 14:4134-4142. [PMID: 37063803 PMCID: PMC10094240 DOI: 10.1039/d3sc00118k] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/13/2023] [Indexed: 03/15/2023] Open
Abstract
Highly diastereo-/enantioselective assembly of 2,3-fused indolizine derivatives could be easily available through a cascade allylation/Friedel-Crafts type reaction enabled by a synergistic Cu/Ir catalysis. This designed protocol provides an unprecedented and facile route to enantioenriched indolizines bearing three stereogenic centers in moderate to high yields with excellent stereoselective control, which also featured broad substrate generality. Remarkably, four stereoisomers of the 2,3-fused indolizine products could be efficiently constructed in a predictable manner through the pairwise combination of copper and iridium catalysts. The synthetic utility of this method was readily elaborated by a gram-scale reaction, and synthetic transformations to other important chiral indolizine derivatives. Quantum mechanical explorations constructed a plausible synergetic catalytic cycle, revealed the origins of stereodivergence, and rationalized the protonation-stimulated stereoselective Friedel-Crafts type cyclization to form the indolizine products.
Collapse
Affiliation(s)
- Bing-Ke Zhu
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University Wuhan Hubei 430072 P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry Shanghai 230021 China
| | - Hui Xu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University Tianjin 300072 China
| | - Lu Xiao
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University Wuhan Hubei 430072 P. R. China
| | - Xin Chang
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University Wuhan Hubei 430072 P. R. China
| | - Liang Wei
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University Wuhan Hubei 430072 P. R. China
| | - Huailong Teng
- College of Science, Huazhong Agricultural University Wuhan 430070 P. R. China
| | - Yanfeng Dang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University Tianjin 300072 China
| | - Xiu-Qin Dong
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University Wuhan Hubei 430072 P. R. China
| | - Chun-Jiang Wang
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University Wuhan Hubei 430072 P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry Shanghai 230021 China
| |
Collapse
|
48
|
Xue A, Wei X, Huang Y, Qu J, Wang B. Palladium-Catalyzed Stereoselective Construction of 1,3-Stereocenters Displaying Axial and Central Chirality via Asymmetric Alkylations. Molecules 2023; 28:molecules28072927. [PMID: 37049689 PMCID: PMC10096308 DOI: 10.3390/molecules28072927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/22/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
The concurrent construction of 1,3-stereocenters remains a challenge. Herein, we report the development of stereoselective union of a point chiral center with allenyl axial chirality in 1,3-position by Pd-catalyzed asymmetric allenylic alkylation between racemic allenyl carbonates and indanone-derived β-ketoesters. Various target products bearing a broad range of functional groups were afforded in high yield (up to 99%) with excellent enantioselectivities (up to 98% ee) and good diastereoselectivities (up to 13:1 dr).
Collapse
|
49
|
Li C, Zhou Z, Li Y, Guo Y, Ma S. Reactivity of vinylidene-π-allyl palladium(II) species. Chem Commun (Camb) 2023; 59:3727-3730. [PMID: 36892480 DOI: 10.1039/d2cc06871k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
The reactivity of a new type of organometallic intermediate, vinylidene-π-allyl palladium species, has been demonstrated: the reaction between 4-alken-2-ynyl carbonates and stabilized carbon nucleophiles afforded functionalized 1,2,3,-butatriene compounds in moderate to high yields and excellent regioselectivities.
Collapse
Affiliation(s)
- Can Li
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhengnan Zhou
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yuling Li
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yinlong Guo
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shengming Ma
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China.
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, P. R. China
| |
Collapse
|
50
|
Xie JH, Hou YM, Feng Z, You SL. Stereodivergent Construction of 1,3-Chiral Centers via Tandem Asymmetric Conjugate Addition and Allylic Substitution Reaction. Angew Chem Int Ed Engl 2023; 62:e202216396. [PMID: 36597878 DOI: 10.1002/anie.202216396] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/05/2023]
Abstract
Herein, we report a synthesis of cyclohexanones bearing multi-continuous stereocenters by combining copper-catalyzed asymmetric conjugate addition of dialkylzinc reagents to cyclic enones with iridium-catalyzed asymmetric allylic substitution reaction. Good to excellent yields, diastereoselectivity and enantioselectivity can be obtained. Unlike the stereodivergent construction of adjacent stereocenters (1,2-position) reported in the literature, the current reaction can achieve the stereodivergent construction of nonadjacent stereocenters (1,3-position) by a proper combination of two chiral catalysts with different enantiomers.
Collapse
Affiliation(s)
- Jia-Hao Xie
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, 200032, Shanghai, China
| | - Yi-Ming Hou
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, 200032, Shanghai, China
| | - Zuolijun Feng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, 200032, Shanghai, China
| | - Shu-Li You
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, 200032, Shanghai, China
| |
Collapse
|