1
|
Yu H, Ren L, Wang Y, Wang H, Zhang M, Pan C, Yuan L, Zhang J, Epstein IR, Gao Q. Chiral Locomotion Transitions of an Active Gel and Their Chemomechanical Origin. J Am Chem Soc 2025; 147:5182-5188. [PMID: 39876696 DOI: 10.1021/jacs.4c15550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Transitions between chiral rotational locomotion modes occur in a variety of active individuals and populations, such as sidewinders, self-propelled chiral droplets, and dense bacterial suspensions. Despite recent progress in the study of active matter, general principles governing rotational chiral transition remain elusive. Here, we study, experimentally and theoretically, rotational locomotion and its chiral transition in a 2D polyacrylamide (PAAm)-based BZ gel driven by Belousov-Zhabotinsky reaction-diffusion waves. Analysis reveals that the phase difference (Δφ) between orthogonal components of kinematic quantities, such as chemomechanical force, displacement, and velocity, determines rotational chirality, i.e., chiral locomotion transition occurs when Δφ changes sign. This criterion is illustrated with a kinematic equation, which can be applied to biological and physical systems, including super-rotational/superhelical locomotion reported recently during E. gracilis swimming and sperm navigation. This work has potential applications for the design of functional materials and intelligent robots.
Collapse
Affiliation(s)
- Haodi Yu
- College of Chemical Engineering, China University of Mining and Technology, Xuzhou 221116, Jiangsu, P.R. China
| | - Lin Ren
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, Zhejiang, P.R. China
| | - Yunjie Wang
- College of Chemical Engineering, China University of Mining and Technology, Xuzhou 221116, Jiangsu, P.R. China
| | - Hui Wang
- College of Chemical Engineering, China University of Mining and Technology, Xuzhou 221116, Jiangsu, P.R. China
| | - Meng Zhang
- College of Chemical Engineering, China University of Mining and Technology, Xuzhou 221116, Jiangsu, P.R. China
| | - Changwei Pan
- College of Chemical Engineering, China University of Mining and Technology, Xuzhou 221116, Jiangsu, P.R. China
| | - Ling Yuan
- College of Chemical Engineering, China University of Mining and Technology, Xuzhou 221116, Jiangsu, P.R. China
| | - Jiujun Zhang
- College of Chemical Engineering, China University of Mining and Technology, Xuzhou 221116, Jiangsu, P.R. China
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, Fujian, P.R. China
| | - Irving R Epstein
- Department of Chemistry and Volen Center for Complex Systems, Brandeis University, Waltham 02454-9110, Massachusetts, United States
| | - Qingyu Gao
- College of Chemical Engineering, China University of Mining and Technology, Xuzhou 221116, Jiangsu, P.R. China
| |
Collapse
|
2
|
Salinas G, Safarik T, Meneghello M, Bichon S, Gounel S, Mano N, Kuhn A. Magnetohydrodynamic Enhancement of Biofuel Cell Performance. Chemistry 2025; 31:e202403329. [PMID: 39559962 DOI: 10.1002/chem.202403329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/11/2024] [Accepted: 11/19/2024] [Indexed: 11/20/2024]
Abstract
Biofuel cells have become an interesting alternative for the design of sustainable energy conversion systems with multiple applications ranging from biosensing and bioelectronics to autonomously moving devices. However, as an electrochemical system, their performance is intimately related to mass transport conditions. In this work, the magnetohydrodynamic (MHD) effect is studied as an easy and straightforward alternative to enhance the performance of a biofuel cell based on the enzymes glucose oxidase (GOx) and bilirubin oxidase (BOD). The synergetic effect between the electric and ionic currents, produced by the enzymatic redox reactions, and a magnetic field orthogonal to the surface of the electrodes, leads to the formation of localized magnetohydrodynamic vortexes. Such an integrated convective regime generates an increase of the bioelectrocatalytic current and its concomitant power output in the presence of the external magnetic field. In addition, by fine-tuning the spatial arrangement of the anode and cathode, it is possible to benefit from the sum of anodic and cathodic MHD vortexes, leading to an enhanced power output of up to 300 %.
Collapse
Affiliation(s)
- Gerardo Salinas
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM UMR 5255, 33607, Pessac, France
| | - Tatjana Safarik
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM UMR 5255, 33607, Pessac, France
- Centre de Recherche Paul Pascal, Univ. Bordeaux, CNRS, UMR 5031, Pessac, France
| | - Marta Meneghello
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM UMR 5255, 33607, Pessac, France
| | - Sabrina Bichon
- Centre de Recherche Paul Pascal, Univ. Bordeaux, CNRS, UMR 5031, Pessac, France
| | - Sebastien Gounel
- Centre de Recherche Paul Pascal, Univ. Bordeaux, CNRS, UMR 5031, Pessac, France
| | - Nicolas Mano
- Centre de Recherche Paul Pascal, Univ. Bordeaux, CNRS, UMR 5031, Pessac, France
| | - Alexander Kuhn
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM UMR 5255, 33607, Pessac, France
| |
Collapse
|
3
|
Er H, Bai Y, Matsuo M, Nakata S. Oscillatory Motion of a Camphor Disk on a Water Phase with an Ionic Liquid Sensitive to Transition Metal Ions. J Phys Chem B 2025; 129:592-597. [PMID: 39725557 PMCID: PMC11726673 DOI: 10.1021/acs.jpcb.4c07310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
We investigated oscillatory motion of a camphor disk floating on water containing 5 mM hexylethylenediaminium trifluoroacetate (HHexen-TFA) as an ionic liquid (IL). The frequency of the oscillatory motion increased with increasing concentrations of the transition metal ions Cu2+ and Ni2+ but was insensitive to Na+, Ca2+, and Mg2+, the typical metal ions in the water phase. The surface tension of the water phase containing 5 mM HHexen-TFA also increased with increasing concentrations of Cu2+ and Ni2+ but was insensitive to Na+, Ca2+, and Mg2+. Based on density functional theory, metal-ion species-dependent frequency response is discussed with regard to surface tension as the force of self-propulsion and complex formation between HHexen-TFA and metal ions. These results suggest that complex formation between the transition metal ions (Cu2+, Ni2+) and the ethylenediamine group in the IL increases the surface tension around the camphor disk, resulting in an increase in the frequency of oscillatory motion with increasing concentrations of Cu2+ or Ni2+. The present study suggests that the nature of self-propulsion can be created by complexation, which changes the force of self-propulsion.
Collapse
Affiliation(s)
- Hua Er
- School
of Chemistry and Chemical Engineering, Ningxia Key Laboratory of Solar
Chemical Conversion Technology, Key Laboratory for Chemical Engineering
and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, P. R. China
| | - Yukang Bai
- School
of Chemistry and Chemical Engineering, Ningxia Key Laboratory of Solar
Chemical Conversion Technology, Key Laboratory for Chemical Engineering
and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, P. R. China
| | - Muneyuki Matsuo
- Graduate
School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Hiroshima, Japan
- Graduate
School of Arts and Sciences, The University
of Tokyo, 3-8-1 Komaba,
Meguro, Tokyo 153-8902, Japan
| | - Satoshi Nakata
- Graduate
School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Hiroshima, Japan
| |
Collapse
|
4
|
Lozon C, Cornet A, Reculusa S, Garrigue P, Kuhn A, Salinas G. Chemically-Driven Autonomous Janus Electromagnets as Magnetotactic Swimmers. Angew Chem Int Ed Engl 2024; 63:e202408198. [PMID: 38924323 DOI: 10.1002/anie.202408198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/11/2024] [Accepted: 06/26/2024] [Indexed: 06/28/2024]
Abstract
An electromagnet is a particular device that takes advantage of electrical currents to produce concentrated magnetic fields. The most well-known example is a conventional solenoid, having the form of an elongated coil and creating a strong magnetic field through its center when it is connected to a current source. Spontaneous redox reactions located at opposite ends of an anisotropic Janus swimmer can effectively mimic a standard power source, due to their ability to wirelessly generate a local electric current. Herein, we propose the coupling of thermodynamically spontaneous redox reactions occurring at the extremities of a hybrid Mg/Pt Janus swimmer with a solenoidal geometry to generate significant magnetic fields. These chemically driven electromagnets spontaneously transform the redox-induced electric current into a magnetic field with a strength in the range of μT upon contact with an acidic medium. Such on-board magnetization allows them to perform compass-like rotational motion and magnetotactic displacement in the presence of external magnetic field gradients, without the need of using ferromagnetic materials for the swimmer design. The torque force experienced by the swimmer is proportional to the internal redox current, and by varying the composition of the solution, it is possible to fine-tune its angular velocity.
Collapse
Affiliation(s)
- Cara Lozon
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM UMR 5255, 33607, Pessac, France
| | - Antoine Cornet
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM UMR 5255, 33607, Pessac, France
| | - Stephane Reculusa
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM UMR 5255, 33607, Pessac, France
| | - Patrick Garrigue
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM UMR 5255, 33607, Pessac, France
| | - Alexander Kuhn
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM UMR 5255, 33607, Pessac, France
| | - Gerardo Salinas
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM UMR 5255, 33607, Pessac, France
| |
Collapse
|
5
|
Xu Y, Kang J, Sun M, Shan J, Guo W, Zhang Q. Insights into characteristic motions and negative chemotaxis of the inanimate motor sensitive to sodium chloride. J Colloid Interface Sci 2024; 660:953-960. [PMID: 38281476 DOI: 10.1016/j.jcis.2024.01.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/22/2023] [Accepted: 01/06/2024] [Indexed: 01/30/2024]
Abstract
Inanimate motors, driven by the difference in surface tension, provide platforms for studying the physics of characteristic motion and mimicking the complex behaviors of biological systems. However, it is challenging to endow inanimate motors with high autonomy, with an emphasis on simulating the behavior of living organisms in response to external stimuli. Herein, by applying sodium chloride (NaCl) as an external stimulus, we achieve the regulation of motion mode and chemotaxis in a self-propelled camphor system. We present a comprehensive surface/interface understanding of motion bifurcation with the increase of concentration NaCl, i.e., continuous motion to no motion via oscillatory motion. The features of motions (the speed and frequency) and the mechanisms are elucidated depending on the concentrations of NaCl and sodium dodecyl sulfate (SDS). Furthermore, the characteristic motion and chemotaxis to the salt stimulus are correlated to the dynamic breaking/reforming of the surface tension balance and gradient-type distribution phenomenon triggered by dynamic camphor dissolution, surfactant adsorption /diffusion and camphor-surfactant interaction. This work sheds light on the typical motions of inanimate motors and scrutinizes the synergy between dual additives, which will boost the design of advanced self-propelled systems with nonlinear characteristic motion.
Collapse
Affiliation(s)
- Yu Xu
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Chang'an District, Xi'an, Shaanxi 710129, China
| | - Jiaxiang Kang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Chang'an District, Xi'an, Shaanxi 710129, China
| | - Mingming Sun
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Chang'an District, Xi'an, Shaanxi 710129, China
| | - Jiahui Shan
- Queen Mary University of London Engineering School, Northwestern Polytechnical University, Chang'an District, Xi'an, Shaanxi 710129, China
| | - Wei Guo
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Chang'an District, Xi'an, Shaanxi 710129, China.
| | - Qiuyu Zhang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Chang'an District, Xi'an, Shaanxi 710129, China.
| |
Collapse
|
6
|
Hua E, Gao J, Xu Y, Matsuo M, Nakata S. Self-propelled motion controlled by ionic liquids. Phys Chem Chem Phys 2024; 26:8488-8493. [PMID: 38411193 DOI: 10.1039/d3cp05630a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
We studied the self-propulsion of a camphor disk floating on a water surface using two types of ionic liquids (hexylammonium-trifluoroacetate (HHexam-TFA) and hexylethylenediaminium-trifluoroacetate (HHexen-TFA)). Bifurcation between continuous, oscillatory, and no motion was observed depending on the concentration of the ionic liquid. The bifurcation concentration between oscillatory and no motion for HHexam-TFA was lower than that for HHexen-TFA. The different bifurcation concentrations are discussed in relation to the surface tension and Fourier transform infrared spectra of the mixtures of camphor and ionic liquids. These results suggest that the interaction between the ionic liquid molecules at the air/water interface is weakened by the addition of camphor molecules and the features of self-propulsion vary due to the change in the driving force.
Collapse
Affiliation(s)
- Er Hua
- Chemical Science and Engineering College, Key Laboratory of Chemical Technology of State Ethnic Affairs Commission, North Minzu University, 204 Wenchang North Street, Xixia District, Yinchuan City, Ningxia 750021, China.
| | - Jun Gao
- Chemical Science and Engineering College, Key Laboratory of Chemical Technology of State Ethnic Affairs Commission, North Minzu University, 204 Wenchang North Street, Xixia District, Yinchuan City, Ningxia 750021, China.
| | - Yu Xu
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Chang'an Campus 1 Dongxiang Road, Chang'an District, Xi'an Shaanxi 710129, China
| | - Muneyuki Matsuo
- Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan.
- Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| | - Satoshi Nakata
- Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan.
| |
Collapse
|
7
|
Tieriekhov K, Sojic N, Bouffier L, Salinas G, Kuhn A. Wireless Magnetoelectrochemical Induction of Rotational Motion. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306635. [PMID: 38126582 PMCID: PMC10916613 DOI: 10.1002/advs.202306635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/05/2023] [Indexed: 12/23/2023]
Abstract
Electromagnetically induced rotation is a key process of many technological systems that are used in daily life, especially for energy conversion. In this context, the Lorentz force-induced deviation of charges is a crucial physical phenomenon to generate rotation. Herein, they combine the latter with the concept of bipolar electrochemistry to design a wireless magnetoelectrochemical rotor. Such a device can be considered as a wet analog of a conventional electric motor. The main driving force that propels this actuator is the result of the synergy between the charge-compensating ion flux along a bipolar electrode and an external magnetic field applied orthogonally to the surface of the object. The trajectory of the wirelessly polarized rotor can be controlled by the orientation of the magnetic field relative to the direction of the global electric field, producing a predictable clockwise or anticlockwise motion. Fine-tuning of the applied electric field allows for addressing conducting objects having variable characteristic lengths.
Collapse
Affiliation(s)
| | - Neso Sojic
- University of BordeauxCNRSBordeaux INPISM, UMR 5255Talence33400France
| | - Laurent Bouffier
- University of BordeauxCNRSBordeaux INPISM, UMR 5255Talence33400France
| | - Gerardo Salinas
- University of BordeauxCNRSBordeaux INPISM, UMR 5255Talence33400France
| | - Alexander Kuhn
- University of BordeauxCNRSBordeaux INPISM, UMR 5255Talence33400France
| |
Collapse
|
8
|
Lee SY, Schönhöfer PWA, Glotzer SC. Complex motion of steerable vesicular robots filled with active colloidal rods. Sci Rep 2023; 13:22773. [PMID: 38123626 PMCID: PMC10733302 DOI: 10.1038/s41598-023-49314-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
While the collective motion of active particles has been studied extensively, effective strategies to navigate particle swarms without external guidance remain elusive. We introduce a method to control the trajectories of two-dimensional swarms of active rod-like particles by confining the particles to rigid bounding membranes (vesicles) with non-uniform curvature. We show that the propelling agents spontaneously form clusters at the membrane wall and collectively propel the vesicle, turning it into an active superstructure. To further guide the motion of the superstructure, we add discontinuous features to the rigid membrane boundary in the form of a kinked tip, which acts as a steering component to direct the motion of the vesicle. We report that the system's geometrical and material properties, such as the aspect ratio and Péclet number of the active rods as well as the kink angle and flexibility of the membrane, determine the stacking of active particles close to the kinked confinement and induce a diverse set of dynamical behaviors of the superstructure, including linear and circular motion both in the direction of, and opposite to, the kink. From a systematic study of these various behaviors, we design vesicles with switchable and reversible locomotions by tuning the confinement parameters. The observed phenomena suggest a promising mechanism for particle transportation and could be used as a basic element to navigate active matter through complex and tortuous environments.
Collapse
Affiliation(s)
- Sophie Y Lee
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Philipp W A Schönhöfer
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Sharon C Glotzer
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan, 48109, USA.
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, 48109, USA.
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, 48109, USA.
| |
Collapse
|
9
|
Frank B, Antonietti M, Giusto P, Zeininger L. Photocharging of Carbon Nitride Thin Films for Controllable Manipulation of Droplet Force Gradient Sensors. J Am Chem Soc 2023; 145. [PMID: 37934048 PMCID: PMC10655103 DOI: 10.1021/jacs.3c09084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 11/08/2023]
Abstract
Intentional generation, amplification, and discharging of chemical gradients is central to many nano- and micromanipulative technologies. We describe a straightforward strategy to direct chemical gradients inside a solution via local photoelectric surface charging of organic semiconducting thin films. We observed that the irradiation of carbon nitride thin films with ultraviolet light generates local and sustained surface charges in illuminated regions, inducing chemical gradients in adjacent solutions via charge-selective immobilization of surfactants onto the substrate. We studied these gradients using droplet force gradient sensors, complex emulsions with simultaneous and independent responsive modalities to transduce information on transient gradients in temperature, chemistry, and concentration via tilting, morphological reconfiguration, and chemotaxis. Fine control over the interaction between local, photoelectrically patterned, semiconducting carbon nitride thin films and their environment yields a new method to design chemomechanically responsive materials, potentially applicable to micromanipulative technologies including microfluidics, lab-on-a-chip devices, soft robotics, biochemical assays, and the sorting of colloids and cells.
Collapse
Affiliation(s)
- Bradley
D. Frank
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Markus Antonietti
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Paolo Giusto
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Lukas Zeininger
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| |
Collapse
|
10
|
Salinas G, Arnaboldi S, Garrigue P, Bonetti G, Cirilli R, Benincori T, Kuhn A. Magnetic field-enhanced redox chemistry on-the-fly for enantioselective synthesis. Faraday Discuss 2023; 247:34-44. [PMID: 37470179 DOI: 10.1039/d3fd00041a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Chemistry on-the-fly is an interesting concept, extensively studied in recent years due to its potential use for recognition, quantification and conversion of chemical species in solution. In this context, chemistry on-the-fly for asymmetric synthesis is a promising field of investigation, since it can help to overcome mass transport limitations, present for example in conventional organic electrosynthesis. Herein, the synergy between a magnetic field-enhanced self-electrophoretic propulsion mechanism and enantioselective redox chemistry on-the-fly is proposed as an efficient method to boost stereoselective conversion. We employ Janus swimmers as redox-active elements, exhibiting a well-controlled clockwise or anticlockwise motion with a speed that can be increased by one order of magnitude in the presence of an external magnetic field. While moving, these bifunctional objects convert spontaneously on-the-fly a prochiral molecule into a specific enantiomer with high enantiomeric excess. The magnetic field-enhanced self-mixing of the swimmers, based on the formation of local magnetohydrodynamic vortices, leads to a significant improvement of the reaction yield and the conversion rate.
Collapse
Affiliation(s)
- Gerardo Salinas
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM UMR 5255, 33607 Pessac, France.
| | - Serena Arnaboldi
- Dip. Di Chimica, Univ. degli Studi di Milano, 20133 Milan, Italy
| | - Patrick Garrigue
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM UMR 5255, 33607 Pessac, France.
| | - Giorgia Bonetti
- Dip. di Scienza e Alta Tecnologia, Univ. degli Studi dell'Insubria, 22100 Como, Italy
| | - Roberto Cirilli
- Istituto Superiore di Sanità, Centro Nazionale per il Controllo e la Valutazione dei Farmaci, 00161 Rome, Italy
| | - Tiziana Benincori
- Dip. di Scienza e Alta Tecnologia, Univ. degli Studi dell'Insubria, 22100 Como, Italy
| | - Alexander Kuhn
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM UMR 5255, 33607 Pessac, France.
| |
Collapse
|
11
|
Gao R, Beladi-Mousavi SM, Salinas G, Garrigue P, Zhang L, Kuhn A. Spatial Precision Tailoring the Catalytic Activity of Graphene Monolayers for Designing Janus Swimmers. NANO LETTERS 2023; 23:8180-8185. [PMID: 37642420 DOI: 10.1021/acs.nanolett.3c02314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Graphene monolayers have interesting applications in many fields due to their intrinsic physicochemical properties, especially when they can be postmodified with high precision. Herein, we describe the highly site-selective functionalization of freestanding graphene monolayers with platinum (Pt) clusters by bipolar electrochemistry. The deposition of such metal spots leads to catalytically active hybrid two-dimensional (2D) nanomaterials. Their catalytic functionality is illustrated by the spatially controlled decomposition of hydrogen peroxide, inducing motion at the water/air interface due to oxygen bubble evolution. A series of such 2D Janus structures with Pt deposition at predefined positions (corners and edges) is studied with respect to the generation of autonomous motion. The type and speed of motion can be fine-tuned by controlling the deposition time and location of the Pt clusters. These proof-of-principle experiments indicate that this type of hybrid 2D object opens up interesting perspectives in terms of applications, such as environmental detection or remediation.
Collapse
Affiliation(s)
- Ruchao Gao
- Engineering Research Center for Nanomaterials, Henan University, 475000 Kaifeng, China
- University of Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, 33607 Pessac, France
| | | | - Gerardo Salinas
- University of Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, 33607 Pessac, France
| | - Patrick Garrigue
- University of Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, 33607 Pessac, France
| | - Lin Zhang
- Engineering Research Center for Nanomaterials, Henan University, 475000 Kaifeng, China
| | - Alexander Kuhn
- Engineering Research Center for Nanomaterials, Henan University, 475000 Kaifeng, China
- University of Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, 33607 Pessac, France
| |
Collapse
|
12
|
Salinas G, Kuhn A, Arnaboldi S. Self-Sustained Rotation of Lorentz Force-Driven Janus Systems. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:14704-14710. [PMID: 37554549 PMCID: PMC10405271 DOI: 10.1021/acs.jpcc.3c01597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/12/2023] [Indexed: 08/10/2023]
Abstract
Rotation is an interesting type of motion that is currently involved in many technological applications. In this frame, different and sophisticated external stimuli to induce rotation have been developed. In this work, we have designed a simple and original self-propelled bimetallic Janus rotor powered by the synergy between a spontaneous electric and ionic current, produced by two coupled redox reactions, and a magnetic field, placed orthogonal to the surface of the device. Such a combination induces a magnetohydrodynamic vortex at each extremity of the rotor arm, which generates an overall driving force able to propel the rotor. Furthermore, the motion of the self-polarized object can be controlled by the direction of the spontaneous electric current or the orientation of the external magnetic field, resulting in a predictable clockwise or anticlockwise motion. In addition, these devices exhibit directional corkscrew-type displacement, when representing their displacement as a function of time, producing time-space specular behavior. The concept can be used to design alternative self-mixing systems for a variety of (micro)fluidic equipment.
Collapse
Affiliation(s)
- Gerardo Salinas
- Université
Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33607 Pessac, France
| | - Alexander Kuhn
- Université
Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33607 Pessac, France
| | - Serena Arnaboldi
- Dipartimento
di Chimica, Universita degli Studi di Milano, 20133 Milano, Italy
| |
Collapse
|
13
|
Arnaboldi S, Salinas G, Bonetti G, Garrigue P, Cirilli R, Benincori T, Kuhn A. Autonomous Chiral Microswimmers with Self‐mixing Capabilities for Highly Efficient Enantioselective Synthesis. Angew Chem Int Ed Engl 2022; 61:e202209098. [DOI: 10.1002/anie.202209098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Serena Arnaboldi
- Univ. Bordeaux CNRS, Bordeaux INP, ISM UMR 5255 33607 Pessac France
- Dip. Di Chimica Univ. degli Studi di Milano 20133 Milan Italy
| | - Gerardo Salinas
- Univ. Bordeaux CNRS, Bordeaux INP, ISM UMR 5255 33607 Pessac France
| | - Giorgia Bonetti
- Dip. di Scienza e Alta Tecnologia Univ. degli Studi dell'Insubria 22100 Como Italy
| | - Patrick Garrigue
- Univ. Bordeaux CNRS, Bordeaux INP, ISM UMR 5255 33607 Pessac France
| | - Roberto Cirilli
- Istituto Superiore di Sanità Centro Nazionale per il Controllo e la Valutazione dei Farmaci 00161 Rome Italy
| | - Tiziana Benincori
- Dip. di Scienza e Alta Tecnologia Univ. degli Studi dell'Insubria 22100 Como Italy
| | - Alexander Kuhn
- Univ. Bordeaux CNRS, Bordeaux INP, ISM UMR 5255 33607 Pessac France
| |
Collapse
|
14
|
Arnaboldi S, Salinas G, Bonetti G, Garrigue P, Cirilli R, Benincori T, Kuhn A. Autonomous Chiral Microswimmers with Self‐mixing Capabilities for Highly Efficient Enantioselective Synthesis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Serena Arnaboldi
- University of Milan–Bicocca: Universita degli Studi di Milano-Bicocca Di Chimica ITALY
| | - Gerardo Salinas
- University of Bordeaux: Universite de Bordeaux Institute of Molecular Science FRANCE
| | - Giorgia Bonetti
- Insubria University - Como Campus: Universita degli Studi dell'Insubria - Sede di Como di Scienza e Alta Tecnologia ITALY
| | - Patrick Garrigue
- University of Bordeaux: Universite de Bordeaux Institute of Molecular Science FRANCE
| | - Roberto Cirilli
- Instituto superiore di santa Centro nazionale per il controlo e la valutazione dei Farmaci ITALY
| | - Tiziana Benincori
- Insubria University - Como Campus: Universita degli Studi dell'Insubria - Sede di Como di chimica ITALY
| | - Alexander Kuhn
- Bordeaux INP Chemistry ENSCBP 16 avenue Pey Berland 33607 Pessac FRANCE
| |
Collapse
|
15
|
Gas generation due to photocatalysis as a method to reduce the resistance force in the process of motors motion at the air-liquid interface. J Colloid Interface Sci 2022; 627:774-782. [PMID: 35901558 DOI: 10.1016/j.jcis.2022.07.073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 11/20/2022]
Abstract
HYPOTHESIS The problem of the development of miniature motors able to move on the air-liquid interface at low Reynolds numbers is a crucial challenge due to dominating role of viscous force. To solve this problem the chemical generation of gas can be used. Generated gas pushes liquid out from the surfer surface, so the resistance force is reduced. EXPERIMENTS Surfer composed of TiO2 nanoparticles and ferromagnetic cobalt microparticles moves at the interface of an aqueous solution of hydrogen peroxide under the action of magnetic force. After irradiation with UV or visible light, the gas cavern is formed at the surfer surface due to photo-catalytic decomposition of hydrogen peroxide. As a result, the area of surfer contact with liquid is reduced. FINDINGS The resistance force acting on the surfer is reduced due to the liquid pushing out from the surfer surface. This effect is strengthened with the increase in the intensity of gas generation. The resistance force is increased when increasing the liquid viscosity or using a surfactant. The proposed method allows control of the velocity of the motors in a rather wide range by changing the gradient of the magnetic field and parameters of light.
Collapse
|
16
|
Wang D, Chen C, Sun J, Ao H, Xiao W, Ju H, Wu J. Refillable Fuel-Loading Microshell Motors for Persistent Motion in a Fuel-Free Environment. ACS APPLIED MATERIALS & INTERFACES 2022; 14:27074-27082. [PMID: 35666913 DOI: 10.1021/acsami.2c05442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Artificial micro-/nanomotors that harvest environmental energy to move require energy surroundings; thus, their motion generally occurs in fuel solutions or under the real-time stimuli of external energy sources. Herein, inspired by vehicles, a refillable fuel-loading micromotor is proposed based on a 2 μm hemispherical multimetallic shell using catalase or platinum on its concave surface as the engine and the bowl structure as the fuel tank. H2O2 fuel is drawn into the microbowl by capillary action and restricted inside the bowl space through a self-generated O2 bubble cap on the microshell mouth. The periodic growth and burst of the O2 cap cause the enhanced diffusion motion of micromotors. This motion behavior can last for at least 30 min in a fuel-free environment with one H2O2 fueling. Additionally, the micromotor can be refilled repeatedly to achieve permanent motion. This demonstration of a refillable fuel-loading micromotor provides a model design of an energy built-in micromotor.
Collapse
Affiliation(s)
- Dong Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Chengtao Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Jun Sun
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Hang Ao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Wencheng Xiao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Jie Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
17
|
Kichatov B, Korshunov A, Sudakov V, Petrov O, Gubernov V, Korshunova E, Kolobov A, Kiverin A. Magnetic Nanomotors in Emulsions for Locomotion of Microdroplets. ACS APPLIED MATERIALS & INTERFACES 2022; 14:10976-10986. [PMID: 35179020 DOI: 10.1021/acsami.1c23910] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The locomotion of droplets in emulsions is of practical significance for fields related to medicine and chemical engineering, which can be done with a magnetic field to move droplets containing magnetic materials. Here, we demonstrate a new method of droplet locomotion in the oil-in-water emulsion with the help of a nonuniform magnetic field in the case where magnetic nanoparticles (MNPs) are dispersed in the continuous phase of the emulsion. The paper analyses the motion of the droplets in a liquid film and in a capillary for various diameters of droplets, their number density, and viscosity of the continuous phase of the emulsion. It is established that the mechanism of droplet locomotion in the emulsion largely depends on the wettability of MNPs. Hydrophobic nanoparticles are adsorbed on the droplet surfaces, forming the agglomerates of MNPs with the droplets. Such agglomerates move at much higher velocities than passive droplets. Hydrophilic nanoparticles are not adsorbed at the surfaces of the droplets but form mobile magnetic clusters dispersed in the continuous phase of the emulsion. Mobile magnetic clusters set the surrounding liquid and droplets in motion. The results obtained in this paper can be used in drug delivery.
Collapse
Affiliation(s)
- Boris Kichatov
- Lebedev Physical Institute, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexey Korshunov
- Lebedev Physical Institute, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Vladimir Sudakov
- Lebedev Physical Institute, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Oleg Petrov
- Joint Institute for High Temperatures, Russian Academy of Sciences, 125412 Moscow, Russia
| | - Vladimir Gubernov
- Lebedev Physical Institute, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Elena Korshunova
- Lebedev Physical Institute, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Andrei Kolobov
- Lebedev Physical Institute, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexey Kiverin
- Joint Institute for High Temperatures, Russian Academy of Sciences, 125412 Moscow, Russia
- Moscow State Technical University by N.E. Bauman, 105005 Moscow, Russia
| |
Collapse
|