1
|
Shang J, Wang Z, Sun C, Wang R, Hua X, Feng L, Yuan C, Liu Z, Zhang HL, Xu J, Shao X. Spiro-Buckybowls: Synthesis and Selective Transformations Toward Chiral and Nonlinear Optical Polycycles. Angew Chem Int Ed Engl 2024; 63:e202414231. [PMID: 39136326 DOI: 10.1002/anie.202414231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 08/12/2024] [Indexed: 10/15/2024]
Abstract
Integration of spirocycles with buckybowls is a promising strategy to construct three-dimensional (3D) curved π-systems and to endow distinctive physicochemical features arising from buckybowls. Herein, a series of carbon-bridged spiro-type heterosumanenes (spiro-HSEs) were synthesized by combining 9,9'-spirobifluorene and dichalcogenasumanenes (DCSs). It is found that spiro-conjugation plays an important role in the geometric and electronic structures of spiro-HSEs. The bowl depth of DCSs moiety becomes larger in the spiro-HSEs. Owing to the Jahn-Teller (J-T) effect, two DCSs segments of spiro-HSEs have different bowl depths accompanied with the unequal distribution of charge in radical cation state. Taking advantage of the typical reactions of DCSs, selective transformations of spiro-HSEs have been adopted in accordance to the nature of chalcogen atoms (S, Se, Te) to bestow the value-added functionalities. The emissive property is enhanced by converting the thiophene rings of S-doped spiro-HSE into thiophene S,S-dioxides. A chiroptical polycycle could be produced by ring-opening of the edge benzene of Se-doped spiro-HSE. The covalent adduct of Te-doped spiro-HSE with Br2 forms non-centrosymmetric halogen-bonded networks, resulting in the high performance second-order nonlinear optics (NLO).
Collapse
Affiliation(s)
- Jihai Shang
- Research Center for Free Radical Chemistry, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Tianshui Southern Road 222, Lanzhou, Gansu Province, China
| | - Zhihua Wang
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, Tianjin, 300350, P. R. China
| | - Chunlin Sun
- Research Center for Free Radical Chemistry, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Tianshui Southern Road 222, Lanzhou, Gansu Province, China
| | - Renjie Wang
- Research Center for Free Radical Chemistry, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Tianshui Southern Road 222, Lanzhou, Gansu Province, China
| | - Xinqiang Hua
- Research Center for Free Radical Chemistry, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Tianshui Southern Road 222, Lanzhou, Gansu Province, China
| | - Lijun Feng
- Research Center for Free Radical Chemistry, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Tianshui Southern Road 222, Lanzhou, Gansu Province, China
| | - Chengshan Yuan
- Research Center for Free Radical Chemistry, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Tianshui Southern Road 222, Lanzhou, Gansu Province, China
| | - Zitong Liu
- Research Center for Free Radical Chemistry, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Tianshui Southern Road 222, Lanzhou, Gansu Province, China
| | - Hao-Li Zhang
- Research Center for Free Radical Chemistry, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Tianshui Southern Road 222, Lanzhou, Gansu Province, China
| | - Jialiang Xu
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, Tianjin, 300350, P. R. China
| | - Xiangfeng Shao
- Research Center for Free Radical Chemistry, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Tianshui Southern Road 222, Lanzhou, Gansu Province, China
| |
Collapse
|
2
|
Schultz JD, Yuly JL, Arsenault EA, Parker K, Chowdhury SN, Dani R, Kundu S, Nuomin H, Zhang Z, Valdiviezo J, Zhang P, Orcutt K, Jang SJ, Fleming GR, Makri N, Ogilvie JP, Therien MJ, Wasielewski MR, Beratan DN. Coherence in Chemistry: Foundations and Frontiers. Chem Rev 2024; 124:11641-11766. [PMID: 39441172 DOI: 10.1021/acs.chemrev.3c00643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Coherence refers to correlations in waves. Because matter has a wave-particle nature, it is unsurprising that coherence has deep connections with the most contemporary issues in chemistry research (e.g., energy harvesting, femtosecond spectroscopy, molecular qubits and more). But what does the word "coherence" really mean in the context of molecules and other quantum systems? We provide a review of key concepts, definitions, and methodologies, surrounding coherence phenomena in chemistry, and we describe how the terms "coherence" and "quantum coherence" refer to many different phenomena in chemistry. Moreover, we show how these notions are related to the concept of an interference pattern. Coherence phenomena are indeed complex, and ambiguous definitions may spawn confusion. By describing the many definitions and contexts for coherence in the molecular sciences, we aim to enhance understanding and communication in this broad and active area of chemistry.
Collapse
Affiliation(s)
- Jonathan D Schultz
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Jonathon L Yuly
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08540, United States
- Department of Physics, Duke University, Durham, North Carolina 27708, United States
| | - Eric A Arsenault
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Kelsey Parker
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Sutirtha N Chowdhury
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Reshmi Dani
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Sohang Kundu
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Hanggai Nuomin
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Zhendian Zhang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Jesús Valdiviezo
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Sección Química, Departamento de Ciencias, Pontificia Universidad Católica del Perú, San Miguel, Lima 15088, Peru
| | - Peng Zhang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Kaydren Orcutt
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Bioproducts Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 800 Buchanan Street, Albany, California 94710, United States
| | - Seogjoo J Jang
- Department of Chemistry and Biochemistry, Queens College, City University of New York, Queens, New York 11367, United States
- Chemistry and Physics PhD programs, Graduate Center, City University of New York, New York, New York 10016, United States
| | - Graham R Fleming
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Nancy Makri
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
- Department of Physics, University of Illinois, Urbana, Illinois 61801, United States
- Illinois Quantum Information Science and Technology Center, University of Illinois, Urbana, Illinois 61801, United States
| | - Jennifer P Ogilvie
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Michael J Therien
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Michael R Wasielewski
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - David N Beratan
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Physics, Duke University, Durham, North Carolina 27708, United States
- Department of Biochemistry, Duke University, Durham, North Carolina 27710, United States
| |
Collapse
|
3
|
Parida S, Patra SK, Mishra S. Structure-Spectroscopy Correlation in the Self-Assembled Perylene Diimide-Based Dimers via Inter-Chromophore Coupling. J Phys Chem B 2024; 128:9873-9888. [PMID: 39236114 DOI: 10.1021/acs.jpcb.4c04181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
The impact of conformational change on the ground and excited states of seven perylene diimide (PDI)-based dimeric systems is examined by introducing longitudinal shift, transverse shift, and rotation of one monomer with respect to another. The minimum energy conformations are compared via an energy decomposition analysis. The heteroatom-substituted dimeric systems, such as B2 N2-embedded PDI, trans-thio-PDI (trans-S2-PDI), and N-PDI, show BN···π, C═S···π, and N···H interactions that survive over a longer range of longitudinal and transverse shifts. The excitonic coupling analysis reveals that both Coulomb- and CT-mediated couplings are crucial for understanding aggregate absorption spectra. While the Coulomb coupling exhibits a monotonic behavior with conformation changes, the CT component changes significantly with minor geometrical deviations. The interplay between the two couplings leads to J-type, H-type, and null aggregates, depending on the conformations of the dimers. The overall trend of both couplings is consistent across all systems, although they differ in magnitude. The trans-S2-PDI shows the strongest Coulomb and CT couplings, while it is weak in perylene and B2N2-PDI dimers. The resonant model for strongly coupled Frenkel excitonic (FE) and CT states successfully characterizes the single- and double-band nature of absorption spectra in dimers. In strong coupling regions, the dimers show blue-shifted single-band excitation to the upper FE state. In contrast, excitation to the lower FE and upper CT states produces a red-shifted two-band spectrum in the weakly coupled regions. The intensity of the CT band diminishes with the monomer separation. In most cases, the perpendicularly stacked structures show null-aggregate behavior with no spectral shift due to the absence of Coulomb and CT couplings. The exciton relaxation pathway of the heteroatom-substituted PDIs is found to be influenced by the presence of nπ* states between the FE and CT states.
Collapse
Affiliation(s)
- Sanjukta Parida
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Sanjib K Patra
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Sabyashachi Mishra
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
4
|
Gao Y, Sun Y, Guo Z, Yu G, Wang Y, Wan Y, Han Y, Yang W, Zhao D, Ma X. Facilitating intrinsic delayed fluorescence of conjugated emitters by inter-chromophore interaction. Chem Sci 2024:d4sc05494f. [PMID: 39430944 PMCID: PMC11484929 DOI: 10.1039/d4sc05494f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 09/19/2024] [Indexed: 10/22/2024] Open
Abstract
Delayed fluorescence (DF) is a unique emitting phenomenon of great interest for important applications in organic optoelectronics. In general, DF requires well-separated frontier orbitals, inherently corresponding to charge transfer (CT)-type emitters. However, facilitating intrinsic DF for local excited (LE)-type conjugated emitters remains very challenging. Aiming to overcome this obstacle, we demonstrate a new molecular design strategy with a DF-inactive B,N-multiple resonance (MR) emitter as a model system. Without the necessity of doping with heavy atoms, we synthesized a co-facial dimer in which an excimer-like state (Sexc) was expected to facilitate efficient reverse intersystem crossing (RISC, T1 → Sexc) and intrinsic DF. Benefiting from greatly enhanced SOC and reduced ΔE ST, the proof-of-concept emitter Np-2CzB exhibited k RISC up to 6.5 × 105 s-1 and intrinsic DF with >35% contribution (Φ DF/Φ F) in dilute solution. Further investigation indicated that Sexc state formation relies on an optimized co-facial distance (d = ∼4.7 Å), strong inter-chromophore interaction (J coul > 450 cm-1) and a rigid structure (Γ S1→S0 < 350 cm-1). Although our strategy was demonstrated with a B,N-MR emitter, it can be applicable to many LE-type conjugated emitters without intrinsic DF. By triggering potential DF emission, many classic emitters might play a more important role in optoelectronics.
Collapse
Affiliation(s)
- Yixuan Gao
- Institute of Molecular Plus, Tianjin University Tianjin 300072 P. R. China
| | - Yingman Sun
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 P. R. China
| | - Zilong Guo
- Institute of Molecular Plus, Tianjin University Tianjin 300072 P. R. China
| | - Guo Yu
- Institute of Molecular Plus, Tianjin University Tianjin 300072 P. R. China
| | - Yaxin Wang
- Institute of Molecular Plus, Tianjin University Tianjin 300072 P. R. China
| | - Yan Wan
- College of Chemistry, Beijing Normal University Beijing 100875 P. R. China
| | - Yandong Han
- Engineering Research Center for Nanomaterials, Henan University Kaifeng 475004 P. R. China
| | - Wensheng Yang
- Engineering Research Center for Nanomaterials, Henan University Kaifeng 475004 P. R. China
| | - Dongbing Zhao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 P. R. China
| | - Xiaonan Ma
- Institute of Molecular Plus, Tianjin University Tianjin 300072 P. R. China
| |
Collapse
|
5
|
Gutiérrez-Vílchez AM, Ileperuma CV, Navarro-Pérez V, Karr PA, Fernández-Lázaro F, D'Souza F. Excited Charge Transfer Promoted Electron Transfer in all Perylenediimide Derived, Wide-Band Capturing Conjugates: A Mimicry of the Early Events of Natural Photosynthesis. Chempluschem 2024:e202400348. [PMID: 38856517 DOI: 10.1002/cplu.202400348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/11/2024]
Abstract
Fundamental discoveries in electron transfer advance scientific and technological advancements. It is suggested that in plant and bacterial photosynthesis, the primary donor, a chlorophyll or bacteriochlorophyll dimer, forms an initial excited symmetry-breaking charge transfer state (1CT*) upon photoexcitation that subsequently promotes sequential electron transfer (ET) events. This is unlike monomeric photosensitizer-bearing donor-acceptor dyads where ET occurs from the excited donor or acceptor (1D* or 1A*). In the present study, we successfully demonstrated the former photochemical event using an excited charge transfer molecule as a donor. Electron-deficient perylenediimide (PDI) is functionalized with three electron-rich piperidine entities at the bay positions, resulting in a far-red emitting CT molecule (DCT). Further, this molecule is covalently linked to another PDI (APDI) carrying no substituents at the bay positions, resulting in wide-band capturing DCT-APDI conjugates. Selective excitation of the CT band of DCT in these conjugates leads to an initial 1DCT* that undergoes subsequent ET involving APDI, resulting in DCT +-APDI - charge separation product (kCS~109 s-1). Conversely, when APDI was directly excited, ultrafast energy transfer (ENT) from 1APDI* to DCT (kENT~1011 s-1) followed by ET from 1DCT* to PDI is witnessed. While increasing solvent polarity improved kCS rates, for a given solvent, the magnitude of the kCS values was almost the same, irrespective of the excitation wavelengths. The present findings demonstrate ET from an initial CT state to an acceptor is key to understanding the intricate ET events in complex natural and bacterial photosynthetic systems possessing multiple redox- and photoactive entities.
Collapse
Affiliation(s)
- Ana M Gutiérrez-Vílchez
- División de Química Orgánica, Instituto de Bioingeniería, Universidad Miguel Hernández, Avda. de la Universidad s/n, 03203, Elche, Spain
| | - Chamari V Ileperuma
- Department of Chemistry, University of North Texas at Denton, 1155 Union Circle, #305070, Denton, TX 76203-5017, USA
| | - Valeria Navarro-Pérez
- División de Química Orgánica, Instituto de Bioingeniería, Universidad Miguel Hernández, Avda. de la Universidad s/n, 03203, Elche, Spain
| | - Paul A Karr
- Department of Physical Sciences and Mathematics, Wayne State College, 111 Main Street, Wayne, Nebraska, 68787, USA
| | - Fernando Fernández-Lázaro
- División de Química Orgánica, Instituto de Bioingeniería, Universidad Miguel Hernández, Avda. de la Universidad s/n, 03203, Elche, Spain
| | - Francis D'Souza
- Department of Chemistry, University of North Texas at Denton, 1155 Union Circle, #305070, Denton, TX 76203-5017, USA
| |
Collapse
|
6
|
Mazumder A, Vinod K, Maret PD, Das PP, Hariharan M. Symmetry-Breaking Charge Separation Mediated Triplet Population in a Perylenediimide Trimer at the Single-Molecule Level. J Phys Chem Lett 2024; 15:5896-5904. [PMID: 38805687 DOI: 10.1021/acs.jpclett.4c01201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Herein, we demonstrate triplet excited-state population in a conformationally rigid perylenediimide trimer (PDI-T) via intramolecular symmetry-breaking charge separation (SB-CS) at the single-molecule level. The single-molecule fluorescence intensity trajectories of PDI-T in nonpolar polystyrene matrix (ε = 2.60) exhibit prolonged fluorescence with infrequent dark states, representing the triplet and/or the charge transfer states. In contrast, in a poly(vinyl alcohol) matrix (ε = 7.80), erratic blinking dynamics resulting in low photon counts were observed, corroborating the feasibility of charge separation in a polar environment. In agreement with the single-molecule measurements, transient absorption spectroscopy of PDI-T reveals ultrafast SB-CS (τCS < 5 ps) in polar tetrahydrofuran (ε = 7.58) and acetone (ε = 20.70), with the population of the triplet excited-state through charge recombination. The current investigation shows the utility of rigid and weakly coupled molecular constructs in controlling triplet generation and SB-CS for potential applications in optoelectronic devices.
Collapse
Affiliation(s)
- Aniruddha Mazumder
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala P.O., Vithura, Thiruvananthapuram, Kerala 695551, India
| | - Kavya Vinod
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala P.O., Vithura, Thiruvananthapuram, Kerala 695551, India
| | - Philip Daniel Maret
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala P.O., Vithura, Thiruvananthapuram, Kerala 695551, India
| | - Pallavi Panthakkal Das
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala P.O., Vithura, Thiruvananthapuram, Kerala 695551, India
| | - Mahesh Hariharan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala P.O., Vithura, Thiruvananthapuram, Kerala 695551, India
| |
Collapse
|
7
|
Gorman J, Hart SM, John T, Castellanos MA, Harris D, Parsons MF, Banal JL, Willard AP, Schlau-Cohen GS, Bathe M. Sculpting photoproducts with DNA origami. Chem 2024; 10:1553-1575. [PMID: 38827435 PMCID: PMC11138899 DOI: 10.1016/j.chempr.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Natural light-harvesting systems spatially organize densely packed dyes in different configurations to either transport excitons or convert them into charge photoproducts, with high efficiency. In contrast, artificial photosystems like organic solar cells and light-emitting diodes lack this fine structural control, limiting their efficiency. Thus, biomimetic multi-dye systems are needed to organize dyes with the sub-nanometer spatial control required to sculpt resulting photoproducts. Here, we synthesize 11 distinct perylene diimide (PDI) dimers integrated into DNA origami nanostructures and identify dimer architectures that offer discrete control over exciton transport versus charge separation. The large structural-space and site-tunability of origami uniquely provides controlled PDI dimer packing to form distinct excimer photoproducts, which are sensitive to interdye configurations. In the future, this platform enables large-scale programmed assembly of dyes mimicking natural systems to sculpt distinct photophysical products needed for a broad range of optoelectronic devices, including solar energy converters and quantum information processors.
Collapse
Affiliation(s)
- Jeffrey Gorman
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- These authors contributed equally
| | - Stephanie M. Hart
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- These authors contributed equally
| | - Torsten John
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Maria A. Castellanos
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Dvir Harris
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Molly F. Parsons
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - James L. Banal
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Adam P. Willard
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Mark Bathe
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Lead contact
| |
Collapse
|
8
|
Roy R, Chawla S, Sharma V, Pal AK, Silori Y, Datta A, De AK, Koner AL. Ultrafast symmetry-breaking charge separation in Perylenemonoimide-embedded multichromophores: impact of regioisomerism. Chem Sci 2024; 15:6363-6377. [PMID: 38699268 PMCID: PMC11062123 DOI: 10.1039/d3sc05325c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 03/20/2024] [Indexed: 05/05/2024] Open
Abstract
Symmetry-breaking charge separation (SB-CS) has recently evolved as an emerging concept offering its potential to the latest generation of organic photovoltaics. However there are several concerns that need to be addressed to reach the state-of-the-art in SB-CS chemistry, for instance, the desirable molecular geometry, interchromophoric distance and extent of electronic coupling. To shed light on those features, it is reported herein, that ortho-functionalized perylene monoimide (PMI) constituted regioisomeric dimer and trimer derivatives with varied molecular twisting and electronic conjugation have been synthesized. In steady-state photophysical studies, all the dimers and trimer derivatives exhibit a larger bathochromic shift in the emission spectra and a significant reduction of fluorescence quantum yield in polar DMF. Among the series of multichromophores, ortho- and self-coupled dimers display the strikingly different optical feature of SB-CS with a very fast charge separation rate (τCS = 80.2 ps) upon photoexcitation in DMF, which is unveiled by femtosecond transient absorption (fs-TA) studies. The SB-CS for two dimers is well-supported by the formation of PMI˙+ and PMI˙- bands in the fs-TA spectra. Further analysis of fs-TA data revealed that, among the other multichromophores the trimer also exhibits a clear charge separation, whereas SB-CS signatures are less prominent, but can not be completely disregarded, for the meta- and para-dimers. Additionally, the charge separation dynamics of those above-mentioned PMI derivatives are devoid of a kinetically favorable excimer or triplet formation. The evidence of a profound charge transfer phenomenon in the ortho-dimer is characterized by density functional theory (DFT) calculations on excited state electronic structures. The excitonic communications in the excited state electronic arrangements unravel the key role of dihedral twisting in SB-CS. The thermodynamic feasibility of CS (ΔGCS) and activation barrier (ΔG≠) of the derivatives in DMF are established from the Rehm-Weller equation and Marcus's theory, respectively. This work is an in-depth study of the effect of mutual orientation of PMIs and regioisomerism in determining sustainable guidelines for using SB-CS.
Collapse
Affiliation(s)
- Rupam Roy
- Bionanotechnology Lab, Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal Madhya Pradesh 462066 India
| | - Sakshi Chawla
- Condensed Phase Dynamics Group, Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali Knowledge City, Sector 81, SAS Nagar Punjab 140 306 India
| | - Vikas Sharma
- Bionanotechnology Lab, Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal Madhya Pradesh 462066 India
| | - Arun K Pal
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A and 2B Raja S. C. Mullick Road, Jadavpur Kolkata West Bengal 700032 India
| | - Yogita Silori
- Condensed Phase Dynamics Group, Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali Knowledge City, Sector 81, SAS Nagar Punjab 140 306 India
- Department of Physics, University of Michigan Ann Arbor Michigan 48109 USA
| | - Ayan Datta
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A and 2B Raja S. C. Mullick Road, Jadavpur Kolkata West Bengal 700032 India
| | - Arijit K De
- Condensed Phase Dynamics Group, Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali Knowledge City, Sector 81, SAS Nagar Punjab 140 306 India
| | - Apurba Lal Koner
- Bionanotechnology Lab, Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal Madhya Pradesh 462066 India
| |
Collapse
|
9
|
Su F, Hong Y, Zhang G, Wu K, Kim J, Chen Z, Zhang HJ, Kim D, Lin J. Two-dimensional radial-π-stacks in solution. Chem Sci 2024; 15:5604-5611. [PMID: 38638221 PMCID: PMC11023034 DOI: 10.1039/d4sc00195h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/11/2024] [Indexed: 04/20/2024] Open
Abstract
Highly organized π-aggregate architectures can strongly affect electronic couplings, leading to important photophysical behaviors. With the escalating interest in two-dimensional (2D) materials attributed to their exceptional electronic and optical characteristics, there is growing anticipation that 2D radial-π-stacks built upon radial π-conjugation nanorings, incorporating intra- and inter-ring electronic couplings within the confines of a 2D plane, will exhibit superior topological attributes and distinct properties. Despite their immense potential, the design and synthesis of 2D π-stacks have proven to be a formidable challenge due to the insufficient π-π interactions necessary for stable stacking. In this study, we present the successful preparation of single-layer 2D radial-π-stacks in a solution. Pillar-shaped radially π-conjugated [4]cyclo-naphthodithiophene diimide ([4]C-NDTIs) molecules were tetragonally arranged via in-plane intermolecular π-π interactions. These 2D π-stacks have a unique topology that differs from that of conventional 1D π-stacks and exhibit notable properties, such as acting as a 2D template capable of absorbing C60 guest molecules and facilitating the formation of 2D radial-π-stacks comprising [4]C-NDTI-C60 complexes, rapid exciton delocalization across the 2D plane, and efficient excitation energy funneling towards a trap.
Collapse
Affiliation(s)
- Feng Su
- Department of Chemistry, College of Chemistry and Chemical Engineering, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University Xiamen 361005 P. R. China
| | - Yongseok Hong
- Department of Chemistry, Yonsei University Seoul 03722 Korea
| | - Guilan Zhang
- Department of Chemistry, College of Chemistry and Chemical Engineering, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University Xiamen 361005 P. R. China
| | - Kongchuan Wu
- Department of Chemistry, College of Chemistry and Chemical Engineering, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University Xiamen 361005 P. R. China
| | - Juno Kim
- Department of Chemistry, Yonsei University Seoul 03722 Korea
| | - Zhi Chen
- College of Chemistry and Environmental Engineering, Shenzhen University Shenzhen 518060 China
| | - Hui-Jun Zhang
- Department of Chemistry, College of Chemistry and Chemical Engineering, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University Xiamen 361005 P. R. China
| | - Dongho Kim
- Department of Chemistry, Yonsei University Seoul 03722 Korea
- Division of Energy Materials, Pohang University of Science and Technology (POSTECH) Pohang 37673 Korea
| | - Jianbin Lin
- Department of Chemistry, College of Chemistry and Chemical Engineering, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University Xiamen 361005 P. R. China
| |
Collapse
|
10
|
Kang S, Choi W, Ahn J, Kim T, Oh JH, Kim D. Impact of Packing Geometry on Excimer Characteristics and Mobility in Perylene Bisimide Polycrystalline Films. ACS APPLIED MATERIALS & INTERFACES 2024; 16:18134-18143. [PMID: 38554079 DOI: 10.1021/acsami.3c19140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/01/2024]
Abstract
Efficient exciton transport is essential for high-performance optoelectronics. Considerable efforts have been focused on improving the exciton mobility in organic materials. While it is feasible to improve mobility in organic systems by forming well-ordered stacks, the formation of trap states, particularly the lower-lying states referred to as excimers, remains a significant challenge to enhancing mobility. The mobility of excimer excitons intricately depends on the strength of excitonic coupling in terms of Förster-type diffusive exciton transfer processes. Given that the formation and mobility of excimer excitons are highly sensitive to molecular arrangements (packing geometries), conducting comprehensive investigations into the structure-property relationship in organic systems is crucial. In this study, we prepared three types of polycrystalline films of perylene bisimide (PBI) by varying substituents at the imide and bay positions, which allowed us to tailor the properties of excimer excitons and their mobility based on packing geometries and excitonic coupling strengths. By utilizing femtosecond transient absorption spectroscopy, we observed ultrafast excimer formation in the higher coupling regime, while in the lower coupling regime, the transition from Frenkel to excimer excitons occurs with a time constant of 500 fs. Under high pump-fluence, exciton-exciton annihilation processes occur, indicating the diffusion of excimer excitons. Intriguingly, employing a three-dimensional diffusion model, we derived a diffusion constant that is 3000 times greater in the high coupling regime than in the low coupling regime. To investigate the optoelectronic properties in the form of a bulk system, we fabricated n-type organic field effect transistors and obtained 8000 times higher mobility in the high coupling regime. Furthermore, photocurrent measurements enable us to investigate the charge carrier transport by mobile excimer excitons, suggesting a 230-fold improvement in external quantum efficiency with tightly packing PBI molecules compared to the low coupling regime. These findings not only offer valuable insights into optimizing organic materials for optoelectronic devices but also unveil the intriguing potential of exciton migration within excimers.
Collapse
Affiliation(s)
- Seongsoo Kang
- Spectroscopy Laboratory for Functional π-Electronic Systems and Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Wonbin Choi
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Jaeyong Ahn
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Taeyeon Kim
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Joon Hak Oh
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Dongho Kim
- Spectroscopy Laboratory for Functional π-Electronic Systems and Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
11
|
Fang L, Huang R, Gong W, Ji Y, Sun Y, Gou S, Zhao J. A Self-Assembly-Induced Exciton Delocalization Strategy for Converting a Perylene Diimide Derivative from a Type-II to Type-I Photosensitizer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307414. [PMID: 37940626 DOI: 10.1002/smll.202307414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/26/2023] [Indexed: 11/10/2023]
Abstract
Type-I photosensitizers have shown advantages in addressing the shortcomings of traditional oxygen-dependent type-II photosensitizers for the photodynamic therapy (PDT) of hypoxic tumors. However, developing type-I photosensitizers is yet a huge challenge because the type-II energy transfer process is much faster than the type-I electron transfer process. Herein, from the fundamental point of view, an effective approach is proposed to improve the electron transfer efficiency of the photosensitizer by lowering the internal reorganization energy and exciton binding energy via self-assembly-induced exciton delocalization. An example proof is presented by the design of a perylene diimide (PDI)-based photosensitizer (PDIMp) that can generate singlet oxygen (1O2) via a type-II energy transfer process in the monomeric state, but induce the generation of superoxide anion (O2˙-) via a type-I electron transfer process in the aggregated state. Significantly, with the addition ofcucurbit[6]uril (CB[6]), the self-assembled PDIMp can convert back to the monomeric state via host-guest complexation and consequently recover the generation of 1O2. The biological evaluations reveal that supramolecular nanoparticles (PDIMp-NPs) derived from PDIMp show superior phototherapeutic performance via synergistic type-I PDT and mild photothermal therapy (PTT) against cancer under either normoxia or hypoxia conditions.
Collapse
Affiliation(s)
- Lei Fang
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research and Pharmaceutical Research Center, School of Chemistry and Chemical Engineering, Institution, Southeast University, Nanjing, 211189, China
| | - Rong Huang
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research and Pharmaceutical Research Center, School of Chemistry and Chemical Engineering, Institution, Southeast University, Nanjing, 211189, China
| | - Wenqi Gong
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research and Pharmaceutical Research Center, School of Chemistry and Chemical Engineering, Institution, Southeast University, Nanjing, 211189, China
| | - Yuanhui Ji
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research and Pharmaceutical Research Center, School of Chemistry and Chemical Engineering, Institution, Southeast University, Nanjing, 211189, China
| | - Yanyan Sun
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Shaohua Gou
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research and Pharmaceutical Research Center, School of Chemistry and Chemical Engineering, Institution, Southeast University, Nanjing, 211189, China
| | - Jian Zhao
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research and Pharmaceutical Research Center, School of Chemistry and Chemical Engineering, Institution, Southeast University, Nanjing, 211189, China
| |
Collapse
|
12
|
Rajasree SS, Fry HC, Gosztola DJ, Saha B, Krishnan R, Deria P. Symmetry-Breaking Charge Transfer in Metal-Organic Frameworks. J Am Chem Soc 2024; 146:5543-5549. [PMID: 38354300 DOI: 10.1021/jacs.3c13764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
High quantum-yield charge carrier generation from the initially prepared excitons defines a key step in the light-harvesting and conversion scheme. Photoinduced charge transfer in molecular electron donor-acceptor assemblies is driven by a sizable ΔG0, which compromises the potential of the generated carriers. Reminiscent of the special pair at the reaction center of the natural light-harvesting complex, symmetry-breaking charge transfer (SBCT) within a pair of identical struts of metal-organic framework (MOF) will facilitate the efficient generation of long-lived charge carriers with maximized potentials without incorporating any foreign redox species. We report SBCT in pyrene-based zirconium metal-organic framework (MOF) NU-1000 that leads to efficient generation of radical ions in a polar solvent and bound CT states in a low-polar solvent. The probe unveils the role of the low-lying non-Franck-Condon excitonic states as intermediates in the formation of the SBCT state from the initially prepared Franck-Condon S1 states. Ultrafast and transient spectroscopy─probed over 200 fs-30 μs time scale─evinces a kSBCT = (110 ps)-1 in polar media (εs = 37.5) forming solvated radical ions with recombination rate kCR = (∼45 ns)-1. A slower rate with kSBCT = (203 ps)-1 was recorded in low-polar (εs = 7.0) solvent manifesting a bound [TBAPy•+ TBAPy•-] state with kCR ≈ (17 μs)-1. This discovery, along with other unique photophysical features relevant to light harvesting, should define a MOF-based platform for developing heterogeneous artificial photon energy conversion systems.
Collapse
Affiliation(s)
- Sreehari Surendran Rajasree
- School of Chemical and Biomolecular Science, Southern Illinois University, 1245 Lincoln Drive, Carbondale, Illinois 62901, United States
| | - H Christopher Fry
- Center for Nanoscale Materials, Argonne National Laboratory, 9700 S Cass Avenue, Lemont, Illinois 60439, United States
| | - David J Gosztola
- Center for Nanoscale Materials, Argonne National Laboratory, 9700 S Cass Avenue, Lemont, Illinois 60439, United States
| | - Bapan Saha
- School of Chemical and Biomolecular Science, Southern Illinois University, 1245 Lincoln Drive, Carbondale, Illinois 62901, United States
| | - Riya Krishnan
- School of Chemical and Biomolecular Science, Southern Illinois University, 1245 Lincoln Drive, Carbondale, Illinois 62901, United States
| | - Pravas Deria
- School of Chemical and Biomolecular Science, Southern Illinois University, 1245 Lincoln Drive, Carbondale, Illinois 62901, United States
| |
Collapse
|
13
|
Thakur K, Datta S, Blom PWM, Chaudhuri D, Ramanan C. Competitive Charge Separation Pathways in a Flexible Molecular Folda-Dimer. J Phys Chem B 2024; 128:1760-1770. [PMID: 38340068 PMCID: PMC10895663 DOI: 10.1021/acs.jpcb.3c07134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
We report the photophysical properties of a molecular folda-dimer system PDI-AnEt2-PDI, where the electron-donating N,N-diethylaniline (AnEt2) moiety bridges two electron-accepting perylene diimide (PDI) chromophores. The conformationally flexible PDI-AnEt2-PDI adopts either an open (two PDIs far apart) or folded (two PDIs within π-stacking distance) conformation, depending on the solvent environment. We characterized the photoinduced charge separation dynamics of both open and folded forms in solvents of varying polarity. The open form undergoes charge separation to give PDI•--AnEt2•+-PDI (Bridge electron transfer) independent of solvent polarity. The folded form exhibits two charge separation photoproducts, yielding both PDI•--AnEt2•+-PDI and PDI•--AnEt2-PDI•+, the latter of which is formed via symmetry-breaking charge separation (SBCS) between the two π-stacked PDI chromophores. Our results further indicate that the conformational flexibility of the folda-dimer leads to unexpected excimer formation in some open form conditions. In contrast, no excimer formation is observed in the folded form, indicating that this geometry preferentially yields the SBCS instead. Our results provide insight into how conformationally flexible folda-dimer systems can be designed and built to tune competitive photophysical pathways.
Collapse
Affiliation(s)
- Kalyani Thakur
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Saptarshi Datta
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, India
| | - Paul W M Blom
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Debangshu Chaudhuri
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, India
| | - Charusheela Ramanan
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081HV Amsterdam, Netherlands
| |
Collapse
|
14
|
Yahagh A, Kaswan RR, Kazemi S, Karr PA, D'Souza F. Symmetry breaking charge transfer leading to charge separation in a far-red absorbing bisstyryl-BODIPY dimer. Chem Sci 2024; 15:906-913. [PMID: 38239676 PMCID: PMC10793208 DOI: 10.1039/d3sc05034c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/14/2023] [Indexed: 01/22/2024] Open
Abstract
Symmetry breaking charge transfer is one of the important photo-events occurring in photosynthetic reaction centers that is responsible for initiating electron transfer leading to a long-lived charge-separated state and has been successfully employed in light-to-electricity converting optoelectronic devices. In the present study, we report a newly synthesized, far-red absorbing and emitting BODIPY-dimer to undergo symmetry-breaking charge transfer leading to charge-separated states of appreciable lifetimes in polar solvents. Compared to its monomer analog, both steady-state and time-resolved fluorescence originating from the S1 state of the dimer revealed quenching which increased with an increase in solvent polarity. The electrostatic potential map from DFT and the time-dependent DFT calculations suggested the existence of a quadrupolar type charge transfer state in polar solvents, and the singlet excited state to be involved in the charge separation process. The electrochemically determined redox gap being smaller than the energy of the S1 state supported the thermodynamic feasibility of the envisioned symmetry-breaking charge transfer and separation. The spectrum of the charge-separated state arrived from spectroelectrochemical studies, revealing diagnostic peaks helpful for transient spectral interpretation. Finally, ultrafast transient pump-probe spectroscopy provided conclusive evidence of diabatic charge separation in polar solvents by far-red pulsed laser light irradiation. The measured lifetime of the final charge-separated states was found to be 165 ps in dichlorobenzene, 140 ps in benzonitrile, and 43 ps in dimethyl sulfoxide, revealing their significance in light energy harvesting, especially from the less-explored far-red region.
Collapse
Affiliation(s)
- Aida Yahagh
- Department of Chemistry, University of North Texas 1155 Union Circle #305070 Denton TX 76203-5017 USA
| | - Ram R Kaswan
- Department of Chemistry, University of North Texas 1155 Union Circle #305070 Denton TX 76203-5017 USA
| | - Shahrzad Kazemi
- Department of Chemistry, University of North Texas 1155 Union Circle #305070 Denton TX 76203-5017 USA
| | - Paul A Karr
- Department of Physical Sciences and Mathematics, Wayne State College 111 Main Street Wayne NE 68787 USA
| | - Francis D'Souza
- Department of Chemistry, University of North Texas 1155 Union Circle #305070 Denton TX 76203-5017 USA
| |
Collapse
|
15
|
Mathew R, Mazumder A, Kumar P, Matula J, Mohamed S, Brazda P, Hariharan M, Thomas B. Unveiling the topology of partially disordered micro-crystalline nitro-perylenediimide with X-aggregate stacking: an integrated approach. Chem Sci 2024; 15:490-499. [PMID: 38179523 PMCID: PMC10762722 DOI: 10.1039/d3sc05514k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/23/2023] [Indexed: 01/06/2024] Open
Abstract
Profound knowledge of the molecular structure and supramolecular organization of organic molecules is essential to understand their structure-property relationships. Herein we demonstrate the packing arrangement of partially disordered nitro-perylenediimide (NO2-PDI), revealing that the perylenediimide units exhibit an X-shaped packing pattern. The packing of NO2-PDI is derived using a complementary approach that utilises solid-state NMR (ssNMR) and 3D electron diffraction (3D ED) techniques. Perylenediimide (PDI) molecules are captivating due to their high luminescence efficiency and optoelectronic properties, which are related to supramolecular self-assembly. Increasing the alkyl chain length on the imide substituent poses a more significant challenge in crystallizing the resulting molecule. In addition to the alkyl tails, other functional groups, like the nitro group attached as a bay substituent, can also cause disorder. Such heterogeneity could lead to diffuse scattering, which then complicates the interpretation of diffraction experiment data, where perfect periodicity is expected. As a result, there is an unmet need to develop a methodology for solving the structures of difficult-to-crystallize materials. A synergistic approach is utilised in this manuscript to understand the packing arrangement of the disordered material NO2-PDI by making use of 3D ED, ssNMR and density functional theory calculations (DFT). The combination of these experimental and theoretical approaches provides great promise in enabling the structural investigation of novel materials with customized properties across various applications, which are, due to the internal disorder, very difficult to study by diffraction techniques. By effectively addressing these challenges, our methodology opens up new avenues for material characterization, thereby driving exciting advancements in the field.
Collapse
Affiliation(s)
- Renny Mathew
- Science Division, New York University Abu Dhabi P.O. Box 129188 Abu Dhabi United Arab Emirates
| | - Aniruddha Mazumder
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM) Maruthamala P.O., Vithura Thiruvananthapuram 695551 Kerala India
| | - Praveen Kumar
- Science Division, New York University Abu Dhabi P.O. Box 129188 Abu Dhabi United Arab Emirates
| | - Julie Matula
- Science Division, New York University Abu Dhabi P.O. Box 129188 Abu Dhabi United Arab Emirates
| | - Sharmarke Mohamed
- Department of Chemistry, Green Chemistry & Materials Modelling Laboratory, Khalifa University of Science and Technology P.O. Box 127788 Abu Dhabi United Arab Emirates
- Advanced Materials Chemistry Center (AMCC), Khalifa University of Science and Technology P.O. Box 127788 Abu Dhabi United Arab Emirates
| | - Petr Brazda
- Institute of Physics of the Czech Academy of Sciences Na Slovance 2/1999 18200 Prague 8 Czech Republic
| | - Mahesh Hariharan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM) Maruthamala P.O., Vithura Thiruvananthapuram 695551 Kerala India
| | - Brijith Thomas
- Science Division, New York University Abu Dhabi P.O. Box 129188 Abu Dhabi United Arab Emirates
| |
Collapse
|
16
|
Lin N, Mani T. Anti-Arrhenius behavior of electron transfer reactions in molecular dimers. Chem Sci 2023; 14:13095-13107. [PMID: 38023507 PMCID: PMC10664467 DOI: 10.1039/d3sc03609j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/29/2023] [Indexed: 12/01/2023] Open
Abstract
Rates of chemical reactions typically accelerate as the temperature rises, following the Arrhenius law. However, electron transfer reactions may exhibit weak temperature dependence or counterintuitive behavior, known as anti-Arrhenius behavior, wherein reaction rates decrease as temperature increases. Solvent reorganization energy and torsion-induced changes in electronic couplings could contribute to this unusual behavior, but how each contributes to the overall temperature dependence is unclear. One can decelerate the charge recombination process in photogenerated radical pairs or charge-separated states by harnessing this often-overlooked phenomenon. This means that we could achieve long-lived radical pairs without relying on conventional cooling. Using a series of homo molecular dimers, we showed that the degree of torsional hindrance dictates temperature-dependent torsion-induced changes in electronic coupling and, therefore, charge recombination rates. The overall temperature dependence is controlled by how changes in electronic coupling and the temperature-dependent solvent reorganization energy contribute to the rates of charge recombination. Our findings pave the way for rationally designing molecules that exhibit anti-Arrhenius behavior to slow down charge recombination, opening possibilities for applications in energy-related and quantum information technologies.
Collapse
Affiliation(s)
- Neo Lin
- Department of Chemistry, University of Connecticut Storrs CT 06269 USA
| | - Tomoyasu Mani
- Department of Chemistry, University of Connecticut Storrs CT 06269 USA
- Chemistry Division, Brookhaven National Laboratory Upton NY 11973 USA
| |
Collapse
|
17
|
Wu GY, Zhu HM, Li H, Zhang K, Zhang X, Yan D, Zhang XD, Lin L, Lu Z. The impact of aggregation of AIE and ACQ moiety-integrating material on the excited state dynamics. RSC Adv 2023; 13:33911-33917. [PMID: 38020029 PMCID: PMC10658659 DOI: 10.1039/d3ra06359c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 10/21/2023] [Indexed: 12/01/2023] Open
Abstract
The investigation of the properties of aggregate materials is highly interesting because the process of aggregation can result in the disappearance of original properties and the emergence of new ones. Here, a novel fluorescent material (TPEIP), which synergistically combines aggregation-induced emission (AIE) and aggregation caused quenching (ACQ) moieties, was first synthesized by the cyclization reaction of 2,3-diamino-phenazine with 4-tetraphenylenthenealdehyde. We controlled the degree of aggregation of TPEIP to shed light on the impact of the aggregation on the excited state dynamics. TPEIP aggregation realized control over the Intersystem Crossing (ISC) rates and, in turn, the suppression of triplet excited states in MeOH, EtOH or via the simple addition of water to TPEIP solutions in DMSO. From global target analysis, the time scale was 966.2 ps for ISC for TPEIP in DMSO, but it was 860 ps in the case of TPEIP solutions featuring 5% water. The dynamics of TPEIP excited states undergo significant changes as the degree of aggregation increases. Notably, the lifetime of singlet excited states decreases, and there was a gradual diminishment in triplet states.
Collapse
Affiliation(s)
- Gui-Yuan Wu
- Anhui Province Key Laboratory of Optoelectronic Material Science and Technology, School of Physics and Electronic Information, Anhui Normal University Wuhu 241002 China
| | - Hui-Min Zhu
- Anhui Province Key Laboratory of Optoelectronic Material Science and Technology, School of Physics and Electronic Information, Anhui Normal University Wuhu 241002 China
| | - Hao Li
- Anhui Province Key Laboratory of Optoelectronic Material Science and Technology, School of Physics and Electronic Information, Anhui Normal University Wuhu 241002 China
| | - Kai Zhang
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University Jinan 250014 China
| | - Xianyi Zhang
- Anhui Province Key Laboratory of Optoelectronic Material Science and Technology, School of Physics and Electronic Information, Anhui Normal University Wuhu 241002 China
| | - Dong Yan
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University Wuhu 241002 China
| | - Xiu-Du Zhang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University Wuhu 241002 China
| | - Lili Lin
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University Jinan 250014 China
| | - Zhou Lu
- Anhui Province Key Laboratory of Optoelectronic Material Science and Technology, School of Physics and Electronic Information, Anhui Normal University Wuhu 241002 China
| |
Collapse
|
18
|
Lijina MP, Benny A, Sebastian E, Hariharan M. Keeping the chromophores crossed: evidence for null exciton splitting. Chem Soc Rev 2023; 52:6664-6679. [PMID: 37606527 DOI: 10.1039/d3cs00176h] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Fundamental understanding of the supramolecular assemblies of organic chromophores and the development of design strategies have seen endless ripples of interest owing to their exciting photophysical properties and optoelectronic applications. The independent discovery of dye aggregates by Jelley and Scheibe was the commencement of the remarkable advancement in the field of aggregate photophysics. Subsequent research warranted an exceptional model for defining the exciton interactions in aggregates, proposed by Davydov, Kasha and co-workers, independently, based on the long-range Coulombic coupling. Fascinatingly, the orthogonally cross-stacked molecular transition dipole arrangement was foretold by Kasha to possess null exciton interaction leading to spectroscopically uncoupled molecular assembly, which lacked an experimental signature for decades. There have been several attempts to identify and probe atypical molecular aggregates for decoding their optical behaviour. Herein, we discuss the recent efforts in experimentally verifying the unusual exciton interactions supported with quantum chemical computations, primarily focusing on the less explored null exciton splitting. Exciton engineering can be realized through synthetic modifications that can additionally offer control over the assorted non-covalent interactions for orchestrating precise supramolecular assembly, along with molecular editing. The task of attaining a minimal excitonic coupling through an orthogonally cross-stacked crystalline architecture envisaged to offer a monomer-like optical behaviour was first reported in 1,7-dibromoperylene-3,4,9,10-tetracarboxylic tetrabutylester (PTE-Br2). The attempt to stitch molecules covalently in an orthogonal fashion to possess null excitonic character culminated in a spiro-conjugated perylenediimide dimer exhibiting a monomer-like spectroscopic signature. The computational and experimental efforts to map the emergent properties of the cross-stacked architecture are also discussed here. Using the null aggregates formed by the interference effects between CT-mediated and Coulombic couplings in the molecular array is another strategy for achieving monomer-like spectroscopic properties in molecular assemblies. Moreover, identifying supramolecular assemblies with precise angle-dependent properties can have implications in functional material design, and this review can provide insights into the uncharted realm of null exciton splitting.
Collapse
Affiliation(s)
- M P Lijina
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala P. O., Vithura, Thiruvananthapuram, Kerala, 695551, India.
| | - Alfy Benny
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala P. O., Vithura, Thiruvananthapuram, Kerala, 695551, India.
| | - Ebin Sebastian
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala P. O., Vithura, Thiruvananthapuram, Kerala, 695551, India.
| | - Mahesh Hariharan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala P. O., Vithura, Thiruvananthapuram, Kerala, 695551, India.
| |
Collapse
|
19
|
Maret PD, Sasikumar D, Sebastian E, Hariharan M. Symmetry-Breaking Charge Separation in a Chiral Bis(perylenediimide) Probed at Ensemble and Single-Molecule Levels. J Phys Chem Lett 2023; 14:8667-8675. [PMID: 37733055 DOI: 10.1021/acs.jpclett.3c01889] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Chiral molecular assemblies exhibiting symmetry-breaking charge separation (SB-CS) are potential candidates for the development of chiral organic semiconductors. Herein, we explore the excited-state dynamics of a helically chiral perylenediimide bichromophore (Cy-PDI2) exhibiting SB-CS at the ensemble and single-molecule levels. Solvent polarity-tunable interchromophoric excitonic coupling in chiral Cy-PDI2 facilitates the interplay of SB-CS and excimer formation in the ensemble domain. Analogous to the excited-state dynamics of Cy-PDI2 at the ensemble level, single-molecule fluorescence lifetime traces of Cy-PDI2 depicted long-lived off-states characteristic of the radical ion pair-mediated dark states. The discrete electron transfer and charge separation dynamics in Cy-PDI2 at the single-molecule level are governed by the distinct influence of the local environment. The present study aims at understanding the fundamental excited-state dynamics in chiral organic bichromophores for designing efficient chiral organic semiconductors and applications toward charge transport materials.
Collapse
Affiliation(s)
- Philip Daniel Maret
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala P.O., Vithura, Thiruvananthapuram, Kerala 695551, India
| | - Devika Sasikumar
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala P.O., Vithura, Thiruvananthapuram, Kerala 695551, India
| | - Ebin Sebastian
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala P.O., Vithura, Thiruvananthapuram, Kerala 695551, India
| | - Mahesh Hariharan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala P.O., Vithura, Thiruvananthapuram, Kerala 695551, India
| |
Collapse
|
20
|
Imai T, Sakamaki D, Aoyagi S, Amaya T. Intramolecular Electron Transfer in Multi-Redox Systems Based on Cyclic [3]Spirobifluorenylene Compound. Chemistry 2023:e202302670. [PMID: 37740416 DOI: 10.1002/chem.202302670] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/22/2023] [Accepted: 09/22/2023] [Indexed: 09/24/2023]
Abstract
Cyclic [3]spirobifluorenylene with bulky alkyl groups at the ends (1) was designed and synthesized to investigate the electron transfer phenomena in a π-conjugated system including orthogonal π-conjugated chains. The three bifluorenyl units in 1 are conjugated to each other via spiro-conjugation, resulting in the splitting of the HOMO levels to a small extent. Therefore, the SOMO-HOMO gap of the radical cation species is small, which is considered to allow the facile intramolecular electron transfer. The electronic properties of 1 and its partial structures were characterized by absorption and fluorescence measurements and electrochemical analysis. From the electrochemical oxidation, the interchain Coulombic repulsion was observed. In the TD-DFT calculations for the radical cation species of 1, the geometry-featured interchain electronic transitions were visualized by NTO calculations. The radical cation species of 1 generated by chemical oxidation with SbCl5 exhibited a broadened and lower-energy NIR absorption band exceeding 2000 nm. Considering the results of the TD-DFT calculations, the NIR band of the radical cation of 1 was attributed to the intramolecular electron transfer processes among the bifluorenyl units in the macrocycle. ESR experiments also indicated the delocalization of a spin of 1⋅+ in the whole molecule via hole hopping in the ESR time scale at room temperature. This work demonstrates the usefulness of spiro-conjugation as a bridging unit in molecular wires to facilitate smooth electron transfer.
Collapse
Affiliation(s)
- Tomoya Imai
- Department of Information and Basic Science, Graduate School of Science, Nagoya City University, 1 Yamanohata, Mizuho-cho, Mizuho-ku, Nagoya, Aichi, 467-8501, Japan
| | - Daisuke Sakamaki
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University Naka-ku, Sakai, Osaka, 599-8531, Japan
| | - Shinobu Aoyagi
- Department of Information and Basic Science, Graduate School of Science, Nagoya City University, 1 Yamanohata, Mizuho-cho, Mizuho-ku, Nagoya, Aichi, 467-8501, Japan
| | - Toru Amaya
- Department of Information and Basic Science, Graduate School of Science, Nagoya City University, 1 Yamanohata, Mizuho-cho, Mizuho-ku, Nagoya, Aichi, 467-8501, Japan
| |
Collapse
|
21
|
Zhang M, Johnson CE, Ilic A, Schwarz J, Johansson MB, Lomoth R. High-Efficiency Photoinduced Charge Separation in Fe(III)carbene Thin Films. J Am Chem Soc 2023; 145:19171-19176. [PMID: 37616472 PMCID: PMC10485928 DOI: 10.1021/jacs.3c05404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Indexed: 08/26/2023]
Abstract
Symmetry-breaking charge separation in molecular materials has attracted increasing attention for optoelectronics based on single-material active layers. To this end, Fe(III) complexes with particularly electron-donating N-heterocyclic carbene ligands offer interesting properties with a 2LMCT excited state capable of oxidizing or reducing the complex in its ground state. In this Communication, we show that the corresponding symmetry-breaking charge separation occurs in amorphous films of pristine [Fe(III)L2]PF6 (L = [phenyl(tris(3-methylimidazol-2-ylidene))borate]-). Excitation of the solid material with visible light leads to ultrafast electron transfer quenching of the 2LMCT excited state, generating Fe(II) and Fe(IV) products with high efficiency. Sub-picosecond charge separation followed by recombination in about 1 ns could be monitored by transient absorption spectroscopy. Photoconductivity measurements of films deposited on microelectrode arrays demonstrated that photogenerated charge carriers can be collected at external contacts.
Collapse
Affiliation(s)
- Minli Zhang
- Department
of Chemistry - Ångström Laboratory, Uppsala University, Box 523, SE-75120 Uppsala, Sweden
| | - Catherine E. Johnson
- Department
of Chemistry - Ångström Laboratory, Uppsala University, Box 523, SE-75120 Uppsala, Sweden
| | - Aleksandra Ilic
- Center
for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Jesper Schwarz
- Center
for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | - Malin B. Johansson
- Department
of Chemistry - Ångström Laboratory, Uppsala University, Box 523, SE-75120 Uppsala, Sweden
| | - Reiner Lomoth
- Department
of Chemistry - Ångström Laboratory, Uppsala University, Box 523, SE-75120 Uppsala, Sweden
| |
Collapse
|
22
|
Bo Y, Hou P, Wan J, Cao H, Liu Y, Xie L, Guldi DM. One-Pot Synthesis and Excited-State Dynamics of Null Exciton-Coupled Diketopyrrolopyrroles Oligo-Grids. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302664. [PMID: 37289569 DOI: 10.1002/adma.202302664] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/02/2023] [Indexed: 06/10/2023]
Abstract
Exciton coupling in molecular aggregates plays a vital role in impacting and fine-tuning optoelectronic materials and their efficiencies in devices. A versatile platform to decipher aggregation-property relationships is built around multichromophoric architectures. Here, a series of cyclic diketopyrrolopyrrole (DPP) oligomers featuring nanoscale gridarene structures and rigid bifluorenyl spacers are designed and synthesized via one-pot Friedel-Crafts reaction. DPP dimer [2]Grid and trimer [3]Grid, which are cyclic rigid nanoarchitectures of rather different sizes, are further characterized via steady-state and time-resolved absorption and fluorescence spectroscopies. They exhibit monomer-like spectroscopic signatures in the steady-state measurements, from which null exciton couplings are derived. Moreover, in an apolar solvent, high fluorescence quantum yields and excited-state dynamics that resembled DPP monomer are gathered. In a polar solvent, the localized singlet excited state on a single DPP dissociates into the adjacent null coupling DPP with charge transfer characteristics. This pathway facilitates the evolution of the symmetry-broken charge-separated state (SB-CS). Notable is the fact that the SB-CS of [2]Grid is, on one hand, in equilibrium with the singlet excited state and promotes, on the other hand, the formation of the triplet excited state with a yield of 32% via charge recombination.
Collapse
Affiliation(s)
- Yifan Bo
- Department of Chemistry and Pharmacy, Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058, Erlangen, Germany
| | - Pengfei Hou
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials, Center for Molecular Systems and Organic Devices (CMSOD), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Jun Wan
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials, Center for Molecular Systems and Organic Devices (CMSOD), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Hongtao Cao
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials, Center for Molecular Systems and Organic Devices (CMSOD), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Yuyu Liu
- College of Electrical Engineering, Nanjing Vocational University of Industry Technology, 1 Yangshan North Road, Nanjing, 210023, China
| | - Linghai Xie
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials, Center for Molecular Systems and Organic Devices (CMSOD), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Dirk M Guldi
- Department of Chemistry and Pharmacy, Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058, Erlangen, Germany
| |
Collapse
|
23
|
Sandoval JS, Gong Q, Jiao L, McCamant DW. Stimulated Resonance Raman and Excited-State Dynamics in an Excitonically Coupled Bodipy Dimer: A Test for TD-DFT and the Polarizable Continuum Model. J Phys Chem A 2023; 127:7156-7167. [PMID: 37594191 PMCID: PMC10476205 DOI: 10.1021/acs.jpca.3c02978] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/27/2023] [Indexed: 08/19/2023]
Abstract
Bodipy is one of the most versatile and studied functional dyes due to its myriad applications and tunable spectral properties. One of the strategies to adjust their properties is the formation of Bodipy dimers and oligomers whose properties differ significantly from the corresponding monomer. Recently, we have developed a novel strategy for synthesizing α,α-ethylene-bridged Bodipy dimers; however, their excited-state dynamics was heretofore unknown. This work presents the ultrafast excited-state dynamics of a novel α,α-ethylene-bridge Bodipy dimer and its monomeric parent. The dimer's steady-state absorption and fluorescence suggest a Coulombic interaction between the monomeric units' transition dipole moments (TDMs), forming what is often termed a "J-dimer". The excited-state properties of the dimer were studied using molecular excitonic theory and time-dependent density functional theory (TD-DFT). We chose the M06 exchange-correlation functional (XCF) based on its ability to reproduce the experimental oscillator strength and resonance Raman spectra. Ultrafast laser spectroscopy reveals symmetry-breaking charge separation (SB-CS) in the dimer in polar solvents and the subsequent population of the charge-separated ion-pair state. The charge separation rate falls into the normal regime, while the charge recombination is in the inverted regime. Conversely, in nonpolar solvents, the charge separation is thermodynamically not feasible. In contrast, the monomer's excited-state dynamics shows no dependence on the solvent polarity. Furthermore, we found no evidence of significant structural rearrangement upon photoexcitation, regardless of the deactivation pathway. After an extensive analysis of the electronic transitions, we concluded that the solvent fluctuations in the local environment around the dimer create an asymmetry that drives and stabilizes the charge separation. This work sheds light on the charge-transfer process in this new set of molecular systems and how excited-state dynamics can be modeled by combining the experiment and theory.
Collapse
Affiliation(s)
- Juan S. Sandoval
- Department
of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, United States
| | - Qingbao Gong
- School
of Chemistry and Materials Science, Anhui
Normal University, Wuhu 241002, China
| | - Lijuan Jiao
- School
of Chemistry and Materials Science, Anhui
Normal University, Wuhu 241002, China
| | - David W. McCamant
- Department
of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, United States
| |
Collapse
|
24
|
Sebastian E, Hariharan M. A Symmetry-Broken Charge-Separated State in the Marcus Inverted Region. Angew Chem Int Ed Engl 2023; 62:e202216482. [PMID: 36697363 DOI: 10.1002/anie.202216482] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/23/2022] [Accepted: 01/24/2023] [Indexed: 01/27/2023]
Abstract
We report a long-lived charge-separated state in a chromophoric pair (DC-PDI2 ) that uniquely integrates the advantages of fundamental processes of photosynthetic reaction centers: i) Symmetry-breaking charge-separation (SB-CS) and ii) Marcus-inverted-region dependence. The near-orthogonal bichromophoric DC-PDI2 manifests an ultrafast evolution of the SB-CS state with a time constant of τ S B - C S ${{\tau }_{{\rm S}{\rm B}-{\rm C}{\rm S}}}$ =0.35±0.02 ps and a slow charge recombination (CR) kinetics with τ C R ${{\tau }_{{\rm C}{\rm R}}}$ =4.09±0.01 ns in ACN. The rate constant of CR of DC-PDI2 is 11 686 times slower than SB-CS in ACN, as the CR of the PDI radical ion-pair occurs in the deep inverted region of the Marcus parabola ( - Δ G C R ${{-{\rm \Delta }G}_{{\rm C}{\rm R}}}$ >λ). In contrast, an analogous benzyloxy (BnO)-substituted DC-BPDI2 showcases a ≈10-fold accelerated CR kinetics with τ C R / τ S B - C S ${{\tau }_{{\rm C}{\rm R}}/{\tau }_{{\rm S}{\rm B}-{\rm C}{\rm S}}}$ lowering to ≈1536 in ACN, by virtue of a decreased CR driving force. The present investigation demonstrates a control of molecular engineering to tune the energetics and kinetics of the SB-CS material, which is essential for next-generation optoelectronic devices.
Collapse
Affiliation(s)
- Ebin Sebastian
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Maruthamala P.O., Vithura, Thiruvananthapuram, 695551, Kerala, India
| | - Mahesh Hariharan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Maruthamala P.O., Vithura, Thiruvananthapuram, 695551, Kerala, India
| |
Collapse
|
25
|
Swathi K, Sujith M, Divya PS, P MV, Delledonne A, Phan Huu DKA, Di Maiolo F, Terenziani F, Lapini A, Painelli A, Sissa C, Thomas KG. From symmetry breaking to symmetry swapping: is Kasha's rule violated in multibranched phenyleneethynylenes? Chem Sci 2023; 14:1986-1996. [PMID: 36845926 PMCID: PMC9945429 DOI: 10.1039/d2sc05206g] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 01/12/2023] [Indexed: 01/15/2023] Open
Abstract
The phenomenon of excited-state symmetry breaking is often observed in multipolar molecular systems, significantly affecting their photophysical and charge separation behavior. As a result of this phenomenon, the electronic excitation is partially localized in one of the molecular branches. However, the intrinsic structural and electronic factors that regulate excited-state symmetry breaking in multibranched systems have hardly been investigated. Herein, we explore these aspects by adopting a joint experimental and theoretical investigation for a class of phenyleneethynylenes, one of the most widely used molecular building blocks for optoelectronic applications. The large Stokes shifts observed for highly symmetric phenyleneethynylenes are explained by the presence of low-lying dark states, as also established by two-photon absorption measurements and TDDFT calculations. In spite of the presence of low-lying dark states, these systems show an intense fluorescence in striking contrast to Kasha's rule. This intriguing behavior is explained in terms of a novel phenomenon, dubbed "symmetry swapping" that describes the inversion of the energy order of excited states, i.e., the swapping of excited states occurring as a consequence of symmetry breaking. Thus, symmetry swapping explains quite naturally the observation of an intense fluorescence emission in molecular systems whose lowest vertical excited state is a dark state. In short, symmetry swapping is observed in highly symmetric molecules having multiple degenerate or quasi-degenerate excited states that are prone to symmetry breaking.
Collapse
Affiliation(s)
- K. Swathi
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di ParmaParco Area delle Scienze 17A43124ParmaItaly,School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM)VithuraThiruvananthapuram695 551India
| | - Meleppatt Sujith
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM) Vithura Thiruvananthapuram 695 551 India
| | - P. S. Divya
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM)VithuraThiruvananthapuram695 551India
| | - Merin Varghese P
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM) Vithura Thiruvananthapuram 695 551 India
| | - Andrea Delledonne
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma Parco Area delle Scienze 17A 43124 Parma Italy
| | - D. K. Andrea Phan Huu
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di ParmaParco Area delle Scienze 17A43124ParmaItaly
| | - Francesco Di Maiolo
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma Parco Area delle Scienze 17A 43124 Parma Italy
| | - Francesca Terenziani
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma Parco Area delle Scienze 17A 43124 Parma Italy
| | - Andrea Lapini
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma Parco Area delle Scienze 17A 43124 Parma Italy
| | - Anna Painelli
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma Parco Area delle Scienze 17A 43124 Parma Italy
| | - Cristina Sissa
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma Parco Area delle Scienze 17A 43124 Parma Italy
| | - K. George Thomas
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM)VithuraThiruvananthapuram695 551India
| |
Collapse
|
26
|
Wang Z, Liu T, Peng H, Fang Y. Advances in Molecular Design and Photophysical Engineering of Perylene Bisimide-Containing Polyads and Multichromophores for Film-Based Fluorescent Sensors. J Phys Chem B 2023; 127:828-837. [PMID: 36692385 DOI: 10.1021/acs.jpcb.2c07815] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Film-based fluorescent sensors (FFSs) represent an important chemistry technology for meeting the urgent needs of on-site and real-time analysis, thereby enabling significant applications in environmental and health monitoring. As the core of FFSs, innovative design of sensing fluorophores and their intrinsic excited-state-related response nature endow FFSs with superior sensing performances in an endless expansion. In this Perspective, we specifically focus on perylene bisimide (PBI)-containing polyads and multichromophores with rigid configuration and notable photochemical stability for developing high-performance FFSs. These nonplanar structures mitigate aggregation and create abundant gaps for the sake of mass transfer and availability of the sensing units in the adlayer of the sensing films. We also comprehensively discuss how to adjust electronic coupling governing the excited-state events by appropriate functionalization strategies, thus providing a plethora of valuable insights for the exploration of the structure-property relationships in these orchestrated molecular systems. Throughout this Perspective, we also identify opportunities for FFSs in the future developments.
Collapse
Affiliation(s)
- Zhaolong Wang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.,State Key Laboratory of Molecular Reaction Dynamics and Dynamics Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Taihong Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Haonan Peng
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| |
Collapse
|
27
|
Ma L, Kuang Z, Wang Z, Zhao H, Wan Y, Zhang XF, Li Y, Xia A. Ultrafast Charge Separation Driven by Torsional Motion in Orthogonal Boron Dipyrromethene Dimer. J Phys Chem Lett 2023; 14:702-708. [PMID: 36646067 DOI: 10.1021/acs.jpclett.2c03581] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In this work, the photoinduced charge separation (CS) via symmetry breaking in an orthogonal meso-β-linked boron dipyrromethene (BODIPY) dimer was investigated by polarized transient absorption spectroscopy. The time constant about 0.76 ps of the CS reaction determined in dimethyl sulfoxide is much faster than the solvation dynamics. The observed transient anisotropy of the BODIPY anion band implies that both hole and electron transfers occur with similar probabilities. The bidirectional charge transfer processes suggest that the locally excited state is weakly coupled to the polar solvent, and the solvation coupled excited-state structural relaxation within the BODIPY monomeric unit is rather limited. In combination with the electronic excitation analysis based on time-dependent density-functional theory calculations, we deduced that the CS in the orthogonal BODIPY dimer is enabled via the torsional motion associated with covalently connected BODIPY units, promoting the electronic coupling, and irrelevant to the dynamic solvent relaxation.
Collapse
Affiliation(s)
- Lin Ma
- State Key Laboratory of Information Photonic and Optical Communications and School of Science, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, People's Republic of China
| | - Zhuoran Kuang
- State Key Laboratory of Information Photonic and Optical Communications and School of Science, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, People's Republic of China
| | - Zeming Wang
- State Key Laboratory of Information Photonic and Optical Communications and School of Science, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, People's Republic of China
| | - Hongmei Zhao
- State Key Laboratory of Information Photonic and Optical Communications and School of Science, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, People's Republic of China
| | - Yan Wan
- College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Xian-Fu Zhang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, People's Republic of China
| | - Yang Li
- State Key Laboratory of Information Photonic and Optical Communications and School of Science, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, People's Republic of China
| | - Andong Xia
- State Key Laboratory of Information Photonic and Optical Communications and School of Science, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, People's Republic of China
| |
Collapse
|
28
|
Dnyaneshwar Veer S, Chandrakant Wakchaure V, Asokan K, Dixit R, Goswami T, Saha R, Gonnade R, Ghosh HN, Santhosh Babu S. Oligothiophene-Ring-Strapped Perylene Bisimides: Functionalizable Coaxial Donor-Acceptor Macrocycles. Angew Chem Int Ed Engl 2023; 62:e202212934. [PMID: 36266975 DOI: 10.1002/anie.202212934] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/20/2022] [Accepted: 10/20/2022] [Indexed: 12/14/2022]
Abstract
Aesthetic designs from nature enable new knowledge to be gained and, at the same time, inspire scientific models. In this context, multicomponent macrocycles embody the advantage of precisely positioning the structural units to achieve efficient communication between them. However, the construction of a functionalizable macrocycle for ultrafast charge separation and stabilization has not been attempted. Herein, we report the synthesis, crystal structure, and transient absorption of a new functionalizable macrocycle consisting of an oligothiophene-ring-strapped perylene bisimide. Transient absorption results point to a sequential improvement in charge separation and stabilization from the macrocycle to the corresponding linear dimer and 2D polymer due to the unique design. Our macrocycle design with a supportive spatial arrangement of the donor and acceptor units will inspire the development of more complex synthetic systems with exciting electron-transfer and charge-separation features.
Collapse
Affiliation(s)
- Sairam Dnyaneshwar Veer
- Organic Chemistry Division, National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411 008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Vivek Chandrakant Wakchaure
- Organic Chemistry Division, National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411 008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Kiran Asokan
- Organic Chemistry Division, National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411 008, India
| | - Ruchi Dixit
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India.,Physical and Materials Chemistry Division, National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411 008, India
| | - Tanmay Goswami
- Institute of Nanoscience and Nanotechnology (INST), Sector 81, Mohali, 411008, Punjab, India
| | - Ramchandra Saha
- Institute of Nanoscience and Nanotechnology (INST), Sector 81, Mohali, 411008, Punjab, India
| | - Rajesh Gonnade
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India.,Physical and Materials Chemistry Division, National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411 008, India
| | - Hirendra N Ghosh
- Institute of Nanoscience and Nanotechnology (INST), Sector 81, Mohali, 411008, Punjab, India.,Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Sukumaran Santhosh Babu
- Organic Chemistry Division, National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411 008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| |
Collapse
|
29
|
Wang J, Li H, Zhu Y, Yang M, Huang J, Zhu X, Yu ZP, Lu Z, Zhou H. Unveiling upsurge of photogenerated ROS: control of intersystem crossing through tuning aggregation patterns. Chem Sci 2023; 14:323-330. [PMID: 36687347 PMCID: PMC9811492 DOI: 10.1039/d2sc06445f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Photo-induced reactive oxygen species (ROS) generation by organic photosensitizers (PSs), which show potential in significant fields such as photodynamic therapy (PDT), are highly dependent on the formation of the excited triplet state through intersystem crossing (ISC). The current research on ISC of organic PSs generally focuses on molecular structure optimization. In this manuscript, the influence of aggregation patterns on ISC was investigated by constructing homologous monomers (S-TPA-PI and L-TPA-PI) and their homologous dimers (S-2TPA-2PI and L-2TPA-2PI). In contrast to J-aggregated S-TPA-PI, S-2TPA-2PI-aggregate forming "end-to-end" stacking through π-π interaction could generate ROS more efficiently, due to a prolonged exciton lifetime and enhanced ISC rate constant (k ISC), which were revealed by femtosecond transient absorption spectroscopy and theoretical calculations. This finding was further validated by the regulation of aggregation patterns induced by host-guest interaction. Moreover, S-2TPA-2PI could target mitochondria and achieve rapid mitophagy to cause more significant cancer cell suppression. Overall, the delicate supramolecular dimerization tactics not only revealed the structure-property relationship of organic PSs but also shed light on the development of a universal strategy in future PDT and photocatalysis fields.
Collapse
Affiliation(s)
- Junjun Wang
- School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of EducationHefei230601P.R. China
| | - Hao Li
- Anhui Province Key Laboratory of Optoelectronic Material Science and Technology School of Physics and Electronic Information, Anhui Normal UniversityWuhu 241002China
| | - Yicai Zhu
- School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of EducationHefei230601P.R. China
| | - Mingdi Yang
- School of Materials and Chemical Engineering, Anhui Jianzhu UniversityHefei 230601P. R. China
| | - Jing Huang
- School of Materials and Chemical Engineering, Anhui Jianzhu UniversityHefei 230601P. R. China
| | - Xiaojiao Zhu
- School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of EducationHefei230601P.R. China
| | - Zhi-Peng Yu
- School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of EducationHefei230601P.R. China
| | - Zhou Lu
- Anhui Province Key Laboratory of Optoelectronic Material Science and Technology School of Physics and Electronic Information, Anhui Normal UniversityWuhu 241002China
| | - Hongping Zhou
- School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of EducationHefei230601P.R. China
| |
Collapse
|
30
|
Xiang H, Valandro SR, Hill EH. Layered silicate edge-linked perylene diimides: Synthesis, self-assembly and energy transfer. J Colloid Interface Sci 2023; 629:300-306. [PMID: 36155925 DOI: 10.1016/j.jcis.2022.09.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/02/2022] [Accepted: 09/11/2022] [Indexed: 11/16/2022]
Abstract
The control over intermolecular interactions between chromophores at nanomaterial interfaces is important for sensing and light-harvesting applications. To that aim, inorganic nanoparticles with anisotropic shape and surface chemistry can serve as useful supports for organic modification. Herein, novel asymmetric perylene diimides with aspartic acid and oleyl terminal groups were grafted to the edges of the layered silicate clay Laponite, a water-dispersible discoidal nanoparticle. The photophysical properties and solvent-dependent self-assembly of the nanoclay-grafted perylenes were investigated, revealing that the polarity of the terminating ligand dictates the aggregation behavior in aqueous solution, where increased water content generally led to the formation of perylene H-aggregates. The anionic basal surface of the nanoclay provided a binding site for a cationic fluorophore, leading to energy transfer from the face-bound donor to the edge-bound perylene acceptor. This study encourages further research on the use of functional ligands for the formation of organic-inorganic hybrids, particularly where inorganic template particles with specific surface chemistry can be exploited to study intermolecular interactions. Overall, these findings should advance further design and implementation of novel semiconducting ligands towards inorganic-organic hybrids, with potential applications in sensing and energy harvesting.
Collapse
Affiliation(s)
- Hongxiao Xiang
- Institute of Physical Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | - Silvano R Valandro
- Institute of Physical Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany; The Hamburg Center for Ultrafast Imaging (CUI), Luruper Chausee 149, 22761 Hamburg, Germany
| | - Eric H Hill
- Institute of Physical Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany; The Hamburg Center for Ultrafast Imaging (CUI), Luruper Chausee 149, 22761 Hamburg, Germany.
| |
Collapse
|
31
|
Deng H, Guo Z, Wang Y, Li K, Zhou Q, Ge C, Xu Z, Sato S, Ma X, Sun Z. Modular synthesis, host-guest complexation and solvation-controlled relaxation of nanohoops with donor-acceptor structures. Chem Sci 2022; 13:14080-14089. [PMID: 36540830 PMCID: PMC9728570 DOI: 10.1039/d2sc05804a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/07/2022] [Indexed: 11/29/2023] Open
Abstract
Carbon nanohoops with donor-acceptor (D-A) structures are attractive electronic materials and biological fluorophores, but their synthesis is usually challenging. Moreover, the preparation of D-A nanohoop fluorophores exhibiting high fluorescence quantum yields beyond 500 nm remains a key challenge. This study presents a modular synthetic approach based on an efficient metal-free cyclocondensation reaction that readily produced nine congeners with D-A or donor-acceptor-donor' (D-A-D') structures, one of which is water-soluble. The tailored molecular design of nanohoops enabled a systematic and detailed study of their host-guest complexation with fullerene, optical properties, and charge transfer (CT) dynamics using X-ray crystallography, fluorescence titration, steady and ultrafast transient absorption spectroscopy, and theoretical calculations. The findings revealed intriguing physical properties associated with D-A motifs, such as tight binding with fullerene, moderate fluorescence quantum yields (37-67%) beyond 540 nm, and unique solvation-controlled CT relaxation of D-A-D' nanohoops, where two CT states (D-A and A-D') can be effectively tuned by solvation, resulting in dramatically changed relaxation pathways in different solvents.
Collapse
Affiliation(s)
- Han Deng
- Department of Chemistry, Institute of Molecular Plus 92 Weijin Road Tianjin 300072 China
| | - Zilong Guo
- Department of Chemistry, Institute of Molecular Plus 92 Weijin Road Tianjin 300072 China
| | - Yaxin Wang
- Department of Chemistry, Institute of Molecular Plus 92 Weijin Road Tianjin 300072 China
| | - Ke Li
- Department of Chemistry, Institute of Molecular Plus 92 Weijin Road Tianjin 300072 China
| | - Qin Zhou
- Department of Chemistry, Institute of Molecular Plus 92 Weijin Road Tianjin 300072 China
| | - Chang Ge
- Department of Chemistry, Institute of Molecular Plus 92 Weijin Road Tianjin 300072 China
| | - Zhanqiang Xu
- Department of Chemistry, Institute of Molecular Plus 92 Weijin Road Tianjin 300072 China
| | - Sota Sato
- Department of Applied Chemistry, Integrated Molecular Structure Analysis Laboratory, Social Cooperation Program, The University of Tokyo Hongo Bunkyo-ku Tokyo 113-8656 Japan
| | - Xiaonan Ma
- Department of Chemistry, Institute of Molecular Plus 92 Weijin Road Tianjin 300072 China
| | - Zhe Sun
- Department of Chemistry, Institute of Molecular Plus 92 Weijin Road Tianjin 300072 China
- Haihe Laboratory of Sustainable Chemical Transformations Tianjin 300072 China
| |
Collapse
|
32
|
Hart SM, Banal JL, Castellanos MA, Markova L, Vyborna Y, Gorman J, Häner R, Willard AP, Bathe M, Schlau-Cohen GS. Activating charge-transfer state formation in strongly-coupled dimers using DNA scaffolds. Chem Sci 2022; 13:13020-13031. [PMID: 36425503 PMCID: PMC9667922 DOI: 10.1039/d2sc02759c] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 10/04/2022] [Indexed: 09/16/2023] Open
Abstract
Strongly-coupled multichromophoric assemblies orchestrate the absorption, transport, and conversion of photonic energy in natural and synthetic systems. Programming these functionalities involves the production of materials in which chromophore placement is precisely controlled. DNA nanomaterials have emerged as a programmable scaffold that introduces the control necessary to select desired excitonic properties. While the ability to control photophysical processes, such as energy transport, has been established, similar control over photochemical processes, such as interchromophore charge transfer, has not been demonstrated in DNA. In particular, charge transfer requires the presence of close-range interchromophoric interactions, which have a particularly steep distance dependence, but are required for eventual energy conversion. Here, we report a DNA-chromophore platform in which long-range excitonic couplings and short-range charge-transfer couplings can be tailored. Using combinatorial screening, we discovered chromophore geometries that enhance or suppress photochemistry. We combined spectroscopic and computational results to establish the presence of symmetry-breaking charge transfer in DNA-scaffolded squaraines, which had not been previously achieved in these chromophores. Our results demonstrate that the geometric control introduced through the DNA can access otherwise inaccessible processes and program the evolution of excitonic states of molecular chromophores, opening up opportunities for designer photoactive materials for light harvesting and computation.
Collapse
Affiliation(s)
- Stephanie M Hart
- Department of Chemistry, Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - James L Banal
- Department of Biological Engineering, Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Maria A Castellanos
- Department of Chemistry, Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Larysa Markova
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern Freiestrasse 3, CH-3012 Bern Switzerland
| | - Yuliia Vyborna
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern Freiestrasse 3, CH-3012 Bern Switzerland
| | - Jeffrey Gorman
- Department of Biological Engineering, Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Robert Häner
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern Freiestrasse 3, CH-3012 Bern Switzerland
| | - Adam P Willard
- Department of Chemistry, Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Mark Bathe
- Department of Biological Engineering, Massachusetts Institute of Technology Cambridge MA 02139 USA
| | | |
Collapse
|
33
|
Sebastian E, Sunny J, Hariharan M. Excimer evolution hampers symmetry-broken charge-separated states. Chem Sci 2022; 13:10824-10835. [PMID: 36320683 PMCID: PMC9491171 DOI: 10.1039/d2sc04387d] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 08/18/2022] [Indexed: 08/26/2023] Open
Abstract
Achieving long-lived symmetry-broken charge-separated states in chromophoric assemblies is quintessential for enhanced performance of artificial photosynthetic mimics. However, the occurrence of energy trap states hinders exciton and charge transport across photovoltaic devices, diminishing power conversion efficiency. Herein, we demonstrate unprecedented excimer formation in the relaxed excited-state geometry of bichromophoric systems impeding the lifetime of symmetry-broken charge-separated states. Core-annulated perylenediimide dimers (SC-SPDI2 and SC-NPDI2) prefer a near-orthogonal arrangement in the ground state and a π-stacked foldamer structure in the excited state. The prospect of an excimer-like state in the foldameric arrangement of SC-SPDI2 and SC-NPDI2 has been rationalized by fragment-based excited state analysis and temperature-dependent photoluminescence measurements. Effective electronic coupling matrix elements in the Franck-Condon geometry of SC-SPDI2 and SC-NPDI2 facilitate solvation-assisted ultrafast symmetry-breaking charge-separation (SB-CS) in a high dielectric environment, in contrast to unrelaxed excimer formation (Ex*) in a low dielectric environment. Subsequently, the SB-CS state dissociates into an undesired relaxed excimer state (Ex) due to configuration mixing of a Frenkel exciton (FE) and charge-separated state in the foldamer structure, downgrading the efficacy of the charge-separated state. The decay rate constant of the FE to SB-CS (k FE→SB-CS) in polar solvents is 8-17 fold faster than that of direct Ex* formation (k FE→Ex*) in non-polar solvent (k FE→SB-CS≫k FE→Ex*), characterized by femtosecond transient absorption (fsTA) spectroscopy. The present investigation establishes the impact of detrimental excimer formation on the persistence of the SB-CS state in chromophoric dimers and offers the requisite of conformational rigidity as one of the potential design principles for developing advanced molecular photovoltaics.
Collapse
Affiliation(s)
- Ebin Sebastian
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram Maruthamala P.O., Vithura Thiruvananthapuram Kerala 695551 India
| | - Jeswin Sunny
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram Maruthamala P.O., Vithura Thiruvananthapuram Kerala 695551 India
| | - Mahesh Hariharan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram Maruthamala P.O., Vithura Thiruvananthapuram Kerala 695551 India
| |
Collapse
|
34
|
Wang Z, Gou X, Shi Q, Liu K, Chang X, Wang G, Xu W, Lin S, Liu T, Fang Y. Through‐Space Charge Transfer: A New Way to Develop a High‐Performance Fluorescence Sensing Film towards Opto‐Electronically Inert Alkanes. Angew Chem Int Ed Engl 2022; 61:e202207619. [DOI: 10.1002/anie.202207619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Zhaolong Wang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 P. R. China
| | - Xinyu Gou
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 P. R. China
| | - Qiyuan Shi
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 P. R. China
| | - Ke Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 P. R. China
| | - Xingmao Chang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 P. R. China
| | - Gang Wang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 P. R. China
| | - Wenjun Xu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 P. R. China
| | - Simin Lin
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 P. R. China
| | - Taihong Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 P. R. China
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 P. R. China
| |
Collapse
|
35
|
Hong Y, Schlosser F, Kim W, Würthner F, Kim D. Ultrafast Symmetry-Breaking Charge Separation in a Perylene Bisimide Dimer Enabled by Vibronic Coupling and Breakdown of Adiabaticity. J Am Chem Soc 2022; 144:15539-15548. [PMID: 35951363 DOI: 10.1021/jacs.2c03916] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Perylene bisimides (PBIs) have received great attention in their applicability to optoelectronics. Especially, symmetry-breaking charge separation (SB-CS) in PBIs has been investigated to mimic the efficient light capturing and charge generation in natural light-harvesting systems. However, unlike ultrafast CS dynamics in donor-acceptor heterojunction materials, ultrafast SB-CS in a stacked homodimer has still been challenging due to excimer formation in the absence of rigidifying surroundings such as a special pair in the natural systems. Herein, we present the detailed mechanism of ultrafast photoinduced SB-CS occurring in a 1,7-bis(N-pyrrolidinyl) PBI dimer within a cyclophane. Through narrow-band and broad-band transient absorption spectroscopy, we demonstrate that ultrafast SB-CS in the dimer is enabled by the combination of (1) vibrationally coherent charge-transfer resonance-enhanced excimer formation and (2) breakdown of adiabaticity (formation of SB-CS diabats) in the excimer state via structural and solvent fluctuation. Quantum chemical calculations also underpin that the participation of strong electron-donating substituents in overall vibrational modes plays a crucial role in triggering the ultrafast SB-CS. Therefore, our work provides an alternative route to facilitate ultrafast SB-CS in PBIs and thereby establishes a novel strategy for the design of optoelectronic materials.
Collapse
Affiliation(s)
- Yongseok Hong
- Department of Chemistry, Yonsei University, Seoul 03722, Korea
| | - Felix Schlosser
- Institut für Organische Chemie & Center for Nanosystems Chemistry, Universitat Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Woojae Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Korea
| | - Frank Würthner
- Institut für Organische Chemie & Center for Nanosystems Chemistry, Universitat Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Dongho Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Korea.,Division of Energy Materials, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| |
Collapse
|
36
|
Hong Y, Rudolf M, Kim M, Kim J, Schembri T, Krause AM, Shoyama K, Bialas D, Röhr MIS, Joo T, Kim H, Kim D, Würthner F. Steering the multiexciton generation in slip-stacked perylene dye array via exciton coupling. Nat Commun 2022; 13:4488. [PMID: 35918327 PMCID: PMC9345863 DOI: 10.1038/s41467-022-31958-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/08/2022] [Indexed: 11/29/2022] Open
Abstract
Dye arrays from dimers up to larger oligomers constitute the functional units of natural light harvesting systems as well as organic photonic and photovoltaic materials. Whilst in the past decades many photophysical studies were devoted to molecular dimers for deriving structure-property relationship to unravel the design principles for ideal optoelectronic materials, they fail to accomplish the subsequent processes of charge carrier generation or the detachment of two triplet species in singlet fission (SF). Here, we present a slip-stacked perylene bisimide trimer, which constitutes a bridge between hitherto studied dimer and solid-state materials, to investigate SF mechanisms. This work showcases multiple pathways towards the multiexciton state through direct or excimer-mediated mechanisms by depending upon interchromophoric interaction. These results suggest the comprehensive role of the exciton coupling, exciton delocalization, and excimer state to facilitate the SF process. In this regard, our observations expand the fundamental understanding the structure-property relationship in dye arrays. Understanding structure-property relationship of dye arrays is of great importance for designing organic photonic and photovoltaic materials. Here, authors present a slip-stacked perylene bisimide array as a model system to investigate singlet fission mechanisms by depending upon interchromophoric interaction.
Collapse
Affiliation(s)
- Yongseok Hong
- Spectroscopy Laboratory for Functional π-Electronic Systems and Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| | - Maximilian Rudolf
- Universitat Würzburg, Institut für Organische Chemie, Am Hubland, 97074, Würzburg, Germany
| | - Munnyon Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Juno Kim
- Spectroscopy Laboratory for Functional π-Electronic Systems and Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| | - Tim Schembri
- Universität Würzburg, Center for Nanosystems Chemistry, Theodor-Boveri Weg, 97074, Würzburg, Germany
| | - Ana-Maria Krause
- Universität Würzburg, Center for Nanosystems Chemistry, Theodor-Boveri Weg, 97074, Würzburg, Germany
| | - Kazutaka Shoyama
- Universität Würzburg, Center for Nanosystems Chemistry, Theodor-Boveri Weg, 97074, Würzburg, Germany
| | - David Bialas
- Universitat Würzburg, Institut für Organische Chemie, Am Hubland, 97074, Würzburg, Germany
| | - Merle I S Röhr
- Universität Würzburg, Center for Nanosystems Chemistry, Theodor-Boveri Weg, 97074, Würzburg, Germany.
| | - Taiha Joo
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
| | - Hyungjun Kim
- Department of Chemistry and Research Institute of Basic Sciences, Incheon National University, Incheon, 22012, Republic of Korea.
| | - Dongho Kim
- Spectroscopy Laboratory for Functional π-Electronic Systems and Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea. .,Division of Energy Materials, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
| | - Frank Würthner
- Universitat Würzburg, Institut für Organische Chemie, Am Hubland, 97074, Würzburg, Germany. .,Universität Würzburg, Center for Nanosystems Chemistry, Theodor-Boveri Weg, 97074, Würzburg, Germany.
| |
Collapse
|
37
|
Wang Z, Gou X, Shi Q, Liu K, Chang X, Wang G, Xu W, Lin S, Liu T, Fang Y. Through‐Space Charge Transfer: A New Way to Develop High‐Performance Fluorescence Sensing Film towards Opto‐Electronically Inert Alkanes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zhaolong Wang
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Xinyu Gou
- Shaanxi Normal University Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education CHINA
| | - Qiyuan Shi
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Ke Liu
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Xingmao Chang
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Gang Wang
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Wenjun Xu
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Simin Lin
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Taihong Liu
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Yu Fang
- Shaanxi Normal University School of Chemistry and Chemical Engineering 199 South Chang'an Road 710119 Xi'an CHINA
| |
Collapse
|
38
|
Kim T, Lin C, Schultz JD, Young RM, Wasielewski MR. π-Stacking-Dependent Vibronic Couplings Drive Excited-State Dynamics in Perylenediimide Assemblies. J Am Chem Soc 2022; 144:11386-11396. [PMID: 35699940 DOI: 10.1021/jacs.2c03993] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Vibronic coupling, the interplay of electronic and nuclear vibrational motion, is considered a critical mechanism in photoinduced reactions such as energy transfer, charge transfer, and singlet fission. However, our understanding of how particular vibronic couplings impact excited-state dynamics is lacking due to the limited number of experimental studies of model molecular systems. Herein, we use two-dimensional electronic spectroscopy (2DES) to launch and interrogate a range of vibronic coherences in two distinct types of perylenediimide slip stacks─along the short and long molecular axes, which form either an excimer or a mixed state between the Frenkel exciton (FE) and charge transfer states. We explore the functionality of these vibronic coherences using quantum beatmaps, which display the Fourier amplitude signal oscillations as a function of pump and probe frequencies, along with knowledge of the characteristic signatures of the FE, ionic, and excimer species. We find that a low-frequency vibrational mode of the short-axis slip stack appears concomitantly with the formation of the excimer state, survives 2-fold longer than in the FE state in the reference monomer, and shows a phase shift compared to other modes. For the long-axis slip stacks, a pair of low-frequency modes coupled to a high-frequency coordinate of the FE state were found to play a critical role in mixed-state generation. Our findings thus experimentally reveal the complex and varying roles of vibronic couplings in tightly packed multimers undergoing a range of photoinduced processes.
Collapse
Affiliation(s)
- Taeyeon Kim
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Chenjian Lin
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Jonathan D Schultz
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Ryan M Young
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Michael R Wasielewski
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
39
|
Feng W, Jiang Q, Wang Z, Zang J, Wang G, Liu K, Peng H, Liu T, Ding L, Fang Y. Rigid Bay-Conjugated Perylene Bisimide Rotors: Solvent-Induced Excited-State Symmetry Breaking and Resonance-Enhanced Two-Photon Absorption. J Phys Chem B 2022; 126:4939-4947. [PMID: 35754397 DOI: 10.1021/acs.jpcb.2c02620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Intramolecular charge transfer and excited-state symmetry breaking have a significant effect on the nonlinear optical properties of multipolar chromophores. Rigid and nonplanar perylene bisimide derivatives (PBIs) functionalized at bay positions were comparatively and comprehensively investigated. In apolar solvents, two quadrupolar molecular rotors showed an obvious decrease of the A0-0/A0-1 ratios, suggesting strong exciton coupling with the adjacent PBI units initiated by the π-π stacking. The vanishment of the preferable dimer emission in polar solvents supported the plausible phenomena of excited-state symmetry breaking, thanks to the facile rotation around the rigid linkers. Comparative femtosecond transition absorption studies confirmed their notable differences in relaxation dynamics and the generation of radical anions (PBI•-) and cations (PBI•+). The maxima two-photon absorption (2PA) wavelengths obtained for the molecular rotors were slightly red-shifted to 670 nm with intrinsic resonance-enhanced characteristics, reflecting the synergistic effect of functional positions and molecular architectures. Meanwhile, the obvious increase of significant 2PA cross-section values in polar solvents illustrated the stabilization of the symmetry-broken dipolar states. Further femtosecond Z-scan also manifested the contribution of excited-state dynamics on the nonlinear optical properties of multipolar chromophores.
Collapse
Affiliation(s)
- Wan Feng
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, People's Republic of China
| | - Qingwei Jiang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, People's Republic of China
| | - Zhaolong Wang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, People's Republic of China
| | - Jianyang Zang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, People's Republic of China
| | - Gang Wang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, People's Republic of China
| | - Ke Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, People's Republic of China
| | - Haonan Peng
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, People's Republic of China
| | - Taihong Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, People's Republic of China
| | - Liping Ding
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, People's Republic of China
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, People's Republic of China
| |
Collapse
|
40
|
Estergreen L, Mencke AR, Cotton DE, Korovina NV, Michl J, Roberts ST, Thompson ME, Bradforth SE. Controlling Symmetry Breaking Charge Transfer in BODIPY Pairs. Acc Chem Res 2022; 55:1561-1572. [PMID: 35604637 DOI: 10.1021/acs.accounts.2c00044] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
ConspectusSymmetry breaking charge transfer (SBCT) is a process in which a pair of identical chromophores absorb a photon and use its energy to transfer an electron from one chromophore to the other, breaking the symmetry of the chromophore pair. This excited state phenomenon is observed in photosynthetic organisms where it enables efficient formation of separated charges that ultimately catalyze biosynthesis. SBCT has also been proposed as a means for developing photovoltaics and photocatalytic systems that operate with minimal energy loss. It is known that SBCT in both biological and artificial systems is in part made possible by the local environment in which it occurs, which can move to stabilize the asymmetric SBCT state. However, how environmental degrees of freedom act in concert with steric and structural constraints placed on a chromophore pair to dictate its ability to generate long-lived charge pairs via SBCT remain open topics of investigation.In this Account, we compare a broad series of dipyrrin dimers that are linked by distinct bridging groups to discern how the spatial separation and mutual orientation of linked chromophores and the structural flexibility of their linker each impact SBCT efficiency. Across this material set, we observe a general trend that SBCT is accelerated as the spatial separation between dimer chromophores decreases, consistent with the expectation that the electronic coupling between these units varies exponentially with their separation. However, one key observation is that the rate of charge recombination following SBCT was found to slow with decreasing interchromophore separation, rather than speed up. This stems from an enhancement of the dimer's structural rigidity due to increasing steric repulsion as the length of their linker shrinks. This rigidity further inhibits charge recombination in systems where symmetry has already enforced zero HOMO-LUMO overlap. Additionally, for the forward transfer, the active torsion is shown to increase LUMO-LUMO coupling, allowing for faster SBCT within bridging groups.By understanding trends for how rates of SBCT and charge recombination depend on a dimer's internal structure and its environment, we identify design guidelines for creating artificial systems for driving sustained light-induced charge separation. Such systems can find application in solar energy technologies and photocatalytic applications and can serve as a model for light-induced charge separation in biological systems.
Collapse
Affiliation(s)
- Laura Estergreen
- Department of Chemistry, University of Southern California, Los Angeles California 90089, United States
| | - Austin R. Mencke
- Department of Chemistry, University of Southern California, Los Angeles California 90089, United States
| | - Daniel E. Cotton
- Department of Chemistry, University of Texas at Austin, Austin Texas 78712, United States
| | - Nadia V. Korovina
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Josef Michl
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Sean T. Roberts
- Department of Chemistry, University of Texas at Austin, Austin Texas 78712, United States
| | - Mark E. Thompson
- Department of Chemistry, University of Southern California, Los Angeles California 90089, United States
| | - Stephen E. Bradforth
- Department of Chemistry, University of Southern California, Los Angeles California 90089, United States
| |
Collapse
|
41
|
Han Y, Xiao J, Wu X, Wang Y, Zhang X, Song Y. Synthesis and Ultrafast Broadband Optical Limiting Properties of a Two-Branched Twistacene. Molecules 2022; 27:molecules27113564. [PMID: 35684501 PMCID: PMC9181967 DOI: 10.3390/molecules27113564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/27/2022] [Accepted: 05/28/2022] [Indexed: 11/16/2022] Open
Abstract
A novel two-branched twistacene (PyDN) has been designed and synthesized for application on ultrafast optical limiting. This twistacene exhibits excellent two photon absorption and two photon absorption-induced excited singlet state absorption, which was systematically investigated with a femtosecond Z-scan experiment, transient absorption spectrum, and two-photon excited fluorescence experiments. The admirable two photon absorption is attributed to the high degree of π electron delocalization in twistacene which is caused by introduction of two strong donors. The excited singlet state absorption cooperates with two-photon absorption to provide an excellent ultrafast optical limiting behavior with high linear transmittance, where the thresholds are 2.3-5.3 mJ/cm2 in the spectral region of 532-800 nm of femtosecond laser and 133 mJ/cm2 for picosecond pulse at 532 nm. These thresholds are lower than that of most of the optical limiters reported previously, which indicates PyDN is a promising candidate for ultrafast optical limiting.
Collapse
Affiliation(s)
- Yanbing Han
- Department of Physics, Harbin Institute of Technology, Harbin 150001, China; (Y.H.); (Y.W.); (X.Z.)
| | - Jinchong Xiao
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China;
| | - Xingzhi Wu
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China;
| | - Yuxiao Wang
- Department of Physics, Harbin Institute of Technology, Harbin 150001, China; (Y.H.); (Y.W.); (X.Z.)
| | - Xueru Zhang
- Department of Physics, Harbin Institute of Technology, Harbin 150001, China; (Y.H.); (Y.W.); (X.Z.)
| | - Yinglin Song
- Department of Physics, Harbin Institute of Technology, Harbin 150001, China; (Y.H.); (Y.W.); (X.Z.)
- Correspondence:
| |
Collapse
|
42
|
Patra S, Tiwari V. Vibronic resonance along effective modes mediates selective energy transfer in excitonically coupled aggregates. J Chem Phys 2022; 156:184115. [PMID: 35568533 DOI: 10.1063/5.0088855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We recently proposed effective normal modes for excitonically coupled aggregates that exactly transform the energy transfer Hamiltonian into a sum of one-dimensional Hamiltonians along the effective normal modes. Identifying physically meaningful vibrational motions that maximally promote vibronic mixing suggested an interesting possibility of leveraging vibrational-electronic resonance for mediating selective energy transfer. Here, we expand on the effective mode approach, elucidating its iterative nature for successively larger aggregates, and extend the idea of mediated energy transfer to larger aggregates. We show that energy transfer between electronically uncoupled but vibronically resonant donor-acceptor sites does not depend on the intermediate site energy or the number of intermediate sites. The intermediate sites simply mediate electronic coupling such that vibronic coupling along specific promoter modes leads to direct donor-acceptor energy transfer, bypassing any intermediate uphill energy transfer steps. We show that the interplay between the electronic Hamiltonian and the effective mode transformation partitions the linear vibronic coupling along specific promoter modes to dictate the selectivity of mediated energy transfer with a vital role of interference between vibronic couplings and multi-particle basis states. Our results suggest a general design principle for enhancing energy transfer through synergistic effects of vibronic resonance and weak mediated electronic coupling, where both effects individually do not promote efficient energy transfer. The effective mode approach proposed here paves a facile route toward four-wavemixing spectroscopy simulations of larger aggregates without severely approximating resonant vibronic coupling.
Collapse
Affiliation(s)
- Sanjoy Patra
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Vivek Tiwari
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, Karnataka 560012, India
| |
Collapse
|
43
|
Wang K, Shao G, Peng S, You X, Chen X, Xu J, Huang H, Wang H, Wu D, Xia J. Achieving Symmetry-Breaking Charge Separation in Perylenediimide Trimers: The Effect of Bridge Resonance. J Phys Chem B 2022; 126:3758-3767. [PMID: 35559687 DOI: 10.1021/acs.jpcb.2c02387] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Symmetry-breaking charge separation (SB-CS) provides a very promising option to engineer a novel light conversion scheme, while it is still a challenge to realize SB-CS in a nonpolar environment. The strength of electronic coupling plays a crucial role in determining the exciton dynamics of organic semiconductors. Herein, we describe how to mediate interchromophore coupling to achieve SB-CS in a nonpolar solvent by the use of two perylenediimide (PDI)-based trimers, 1,7-tri-PDI and 1,6-tri-PDI. Although functionalization at the N-atom decreases electronic coupling between PDI units, our strategy takes advantage of "bridge resonance", in which the frontier orbital energies are nearly degenerate with those of the covalently linked PDI units, leading to enhanced interchromophore electronic coupling. Tunable electronic coupling was realized by the judicious combination of "bridge resonance" with N-functionalization. The enhanced mixing between the S1 state and CT/CS states results in direct observation of the CT band in the steady-state UV-vis absorption and negative free energy of charge separation (ΔGCS) in both chloroform and toluene for the two trimers. Using transient absorption spectroscopy, we demonstrated that photoinduced SB-CS in a nonpolar solvent is feasible. This work highlights that the use of "bridge resonance" is an effective way to control exciton dynamics of organic semiconductors.
Collapse
Affiliation(s)
- Kangwei Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China
| | - Guangwei Shao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China
| | - Shaoqian Peng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China
| | - Xiaoxiao You
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China
| | - Xingyu Chen
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Jingwen Xu
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Huaxi Huang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China.,School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China
| | - Huan Wang
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Di Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China.,School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China
| | - Jianlong Xia
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China.,School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
44
|
Accelerating symmetry-breaking charge separation in a perylenediimide trimer through a vibronically coherent dimer intermediate. Nat Chem 2022; 14:786-793. [PMID: 35469005 DOI: 10.1038/s41557-022-00927-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 03/10/2022] [Indexed: 11/08/2022]
Abstract
Understanding the photophysics and photochemistry of molecular π-stacked chromophores is important for utilizing them as functional photonic materials. However, these investigations have been mostly limited to covalent molecular dimers, which can only approximate the electronic and vibronic interactions present in the higher oligomers typical of functional organic materials. Here we show that a comparison of the excited-state dynamics of a covalent slip-stacked perylenediimide dimer (2) and trimer (3) provides fundamental insights into electronic state mixing and symmetry-breaking charge separation (SB-CS) beyond the dimer limit. We find that coherent vibronic coupling to high-frequency modes facilitates ultrafast state mixing between the Frenkel exciton (FE) and charge-transfer (CT) states. Subsequently, solvent fluctuations and interchromophore low-frequency vibrations promote CT character in the coherent FE/CT mixed state. The coherent FE/CT mixed state persists in 2, but, in 3, low-frequency vibronic coupling collapses the coherence, resulting in ultrafast SB-CS between the distal perylenediimide units.
Collapse
|
45
|
Zeb J, Ran G, Denis PA, Ghani U, Liu J, Yuan Q, Ullah R, Zhu H, Zhang W. Ultrafast dynamics of the liquid deposited blend film of porphyrin donor and perylene diimide acceptor. Chem Phys 2022. [DOI: 10.1016/j.chemphys.2022.111547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
46
|
Mazumder A, Sebastian E, Hariharan M. Solvent dielectric delimited nitro–nitrito photorearrangement in a perylenediimide derivative. Chem Sci 2022; 13:8860-8870. [PMID: 35975155 PMCID: PMC9350666 DOI: 10.1039/d2sc02979k] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/04/2022] [Indexed: 12/04/2022] Open
Abstract
The discovery of vibrant excited-state dynamics and distinctive photochemistry has established nitrated polycyclic aromatic hydrocarbons as an exhilarating class of organic compounds. Herein, we report the atypical photorearrangement of nitro-perylenediimide (NO2-PDI) to nitrito-perylenediimide (ONO-PDI), triggered by visible-light excitation and giving rise to linkage isomers in the polar aprotic solvent acetonitrile. ONO-PDI has been isolated and unambiguously characterized using standard spectroscopic, spectrometric, and elemental composition techniques. Although nitritoaromatic compounds are conventionally considered to be crucial intermediates in the photodissociation of nitroaromatics, experimental evidence for this has not been observed heretofore. Ultrafast transient absorption spectroscopy combined with computational investigations revealed the prominence of a conformationally relaxed singlet excited-state (SCR1) of NO2-PDI in the photoisomerization pathway. Theoretical transition state (TS) analysis indicated the presence of a six-membered cyclic TS, which is pivotal in connecting the SCR1 state to the photoproduct state. This article addresses prevailing knowledge gaps in the field of organic linkage isomers and provides a comprehensive understanding of the unprecedented photoisomerization mechanism operating in the case of NO2-PDI. The unprecedented photorearrangement of nitro-perylenediimide (NO2-PDI) to nitrito-perylenediimide (ONO-PDI) is shown to occur through a cyclic six-membered transition state triggered by visible-light excitation.![]()
Collapse
Affiliation(s)
- Aniruddha Mazumder
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala P.O., Vithura, Thiruvananthapuram, Kerala, India 695551
| | - Ebin Sebastian
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala P.O., Vithura, Thiruvananthapuram, Kerala, India 695551
| | - Mahesh Hariharan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala P.O., Vithura, Thiruvananthapuram, Kerala, India 695551
| |
Collapse
|
47
|
Su R, Huang Z. "H-Type" Like Constructed Dimer: Another Way to Enhance the Thermally Activated Delayed Fluorescence Effect. J Phys Chem Lett 2021; 12:11497-11502. [PMID: 34797082 DOI: 10.1021/acs.jpclett.1c03044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Thermally activated delayed fluorescence (TADF) materials are an essential part of TADF-based organic light-emitting diodes (OLEDs). All the reported methods to improve the performance of TADF materials were focused on achieving a high reverse intersystem crossing rate (kRISC) and oscillator strength (f), but most of them were studies on single molecular states. In this paper, we have discovered a new dimer architecture called the "H-type" like dimer and proved that the "H-type" like dimer is another way to improve the performance of TADF materials by calculation and experiment. The calculated energy levels of excited states only provided 1.72-5.46% relative errors (RE) compare with the measured values, which indicated that the methods we chose were suitable for predicting the properties. The intermolecular interactions of the "H-type" like dimer endow it with much larger f and kRISC properties than monomer states, proving that the "H-type" like dimer could improve the performance of TADF emitters.
Collapse
Affiliation(s)
- Rongchuan Su
- Department of Pharmacology, North Sichuan Medical College, Nanchong 637100, China
| | - Zhenmei Huang
- College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| |
Collapse
|