1
|
Dougherty DA. The Cation-π Interaction in Chemistry and Biology. Chem Rev 2025. [PMID: 39977669 DOI: 10.1021/acs.chemrev.4c00707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
The cation-π interaction is an important noncovalent binding force that impacts all areas of chemistry and biology. Extensive computational and gas phase experimental studies have established the potential strength and the essential nature of the interaction. Previous reviews have emphasized studies of model systems and a variety of biological examples. This work includes discussion of those areas but emphasizes other areas that are perhaps less well appreciated. These include the novel cation-π binding ability of alkali metals in water; the application of the cation-π interaction to organic synthesis and chemical biology; cooperative behaviors of multiple cation-π interactions, including adhesive proteins from mussels and similar organisms and the formation and modulation of biomolecular condensates (phase separation); and cation-π interactions involved in recognizing DNA/RNA.
Collapse
Affiliation(s)
- Dennis A Dougherty
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
2
|
Shi J, Xiong Y, Li J, Gao B, Qing G, Sheng Q, Lan M. Utilizing 4-Sulfonylcalix[4]arene as a Selective Mobile Phase Additive for the Capture of Methylated Peptides. Anal Chem 2025; 97:2428-2436. [PMID: 39865840 DOI: 10.1021/acs.analchem.4c06041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Protein methylation has attracted increasing attention due to its significant regulatory roles in various biological processes. However, the diversity of methylation forms, subtle differences between methylated and nonmodified sites, and their ultralow abundances pose substantial challenges for capturing and isolating methylated peptides from biological samples. Herein, we develop a chromatographic method that utilizes 4-sulfonylcalix[4]arene (SC4A) as a mobile phase additive and Click-Maltose as the stationary phase to separate methylated/nonmethylated peptides through the adsorption of the SC4A-K(Me3) complex. By utilization of the interaction between calix[4]arene cavities and trimethylated lysine residues, methylated peptides could be specifically separated from peptide samples. This method significantly improves the signal-to-noise ratio (S/N), even in samples containing a 10-fold excess of bovine serum albumin (BSA) trypsin digests. Additionally, we successfully enriched 12 methylated peptides from histone digests. This study paves the way for the selective enrichment of lysine methylated peptides in post-translational modification proteomics (PTMs), enhancing both the capture efficiency and selectivity of methylated peptides and providing robust technical support for subsequent proteomics research.
Collapse
Affiliation(s)
- Jie Shi
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road, Shanghai 200237, P. R. China
| | - Yuting Xiong
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Junyan Li
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road, Shanghai 200237, P. R. China
| | - Baolei Gao
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road, Shanghai 200237, P. R. China
| | - Guangyan Qing
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Qianying Sheng
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road, Shanghai 200237, P. R. China
| | - Minbo Lan
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road, Shanghai 200237, P. R. China
| |
Collapse
|
3
|
Tikhomirov AD, Egorova KS, Ananikov VP. Designing Effective Antimicrobial Agents: Structural Insights into the Antibiofilm Activity of Ionic Liquids. J Med Chem 2025. [PMID: 39898997 DOI: 10.1021/acs.jmedchem.4c01780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Research concerning biofilm control is critical due to the pervasive and resilient nature of biofilms, which pose significant challenges across the industrial, environmental, and healthcare sectors. Traditional antimicrobial treatments are often ineffective against these robust structures. Here, we explore the antimicrobial properties of ionic liquids (ILs) and their efficacy in biofilm disruption. By examining the structural variations of ILs, we highlight the key role of hydrophobicity, noting that longer alkyl side chains in IL cations enhance biofilm disruption and bacterial death. However, upon reaching a certain optimal chain length─usually C12 to C14─the antimicrobial activity of ILs starts to decrease. Furthermore, the symmetry and size of anions significantly impact biofilm elimination. This Perspective addresses a critical gap in biofilm research, revealing the structure-activity relationships of ILs and providing a foundation for designing more effective biofilm-disrupting agents.
Collapse
Affiliation(s)
- Alexey D Tikhomirov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| | - Ksenia S Egorova
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| | - Valentine P Ananikov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| |
Collapse
|
4
|
Wang K, Yan K, Liu Q, Wang Z, Hu XY. The Versatile Applications of Calix[4]resorcinarene-Based Cavitands. Molecules 2024; 29:5854. [PMID: 39769942 PMCID: PMC11679249 DOI: 10.3390/molecules29245854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/08/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
The advancement of synthetic host-guest chemistry has played a pivotal role in exploring and quantifying weak non-covalent interactions, unraveling the intricacies of molecular recognition in both chemical and biological systems. Macrocycles, particularly calix[4]resorcinarene-based cavitands, have demonstrated significant utility in receptor design, facilitating the creation of intricately organized architectures. Within the realm of macrocycles, these cavitands stand out as privileged scaffolds owing to their synthetic adaptability, excellent topological structures, and unique recognition properties. So far, extensive investigations have been conducted on various applications of calix[4]resorcinarene-based cavitands. In this review, we will elaborate on their diverse functions, including catalysis, separation and purification, polymeric materials, sensing, battery materials, as well as drug delivery. This review aims to provide a holistic understanding of the multifaceted roles of calix[4]resorcinarene-based cavitands across various applications, shedding light on their contributions to advancing the field of supramolecular chemistry.
Collapse
Affiliation(s)
- Kaiya Wang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China; (K.Y.); (Q.L.); (Z.W.); (X.-Y.H.)
| | - Kejia Yan
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China; (K.Y.); (Q.L.); (Z.W.); (X.-Y.H.)
| | - Qian Liu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China; (K.Y.); (Q.L.); (Z.W.); (X.-Y.H.)
| | - Zhiyao Wang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China; (K.Y.); (Q.L.); (Z.W.); (X.-Y.H.)
| | - Xiao-Yu Hu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China; (K.Y.); (Q.L.); (Z.W.); (X.-Y.H.)
- College of Chemistry and Materials, Jiangxi Normal University, Nanchang 330022, China
| |
Collapse
|
5
|
Gao S, Guo Y, Xue J, Dong X, Cao XY, Sue ACH. Isoreticular Covalent Organic Pillars: Engineered Nanotubular Hosts for Tailored Molecular Recognition. J Am Chem Soc 2024. [PMID: 39031612 DOI: 10.1021/jacs.4c05852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2024]
Abstract
In the realm of nanoscale materials design, achieving precise control over the dimensions of nanotubular architectures poses a substantial challenge. In our ongoing pursuit, we have successfully engineered a novel class of single-molecule nanotubes─isoreticular covalent organic pillars (iCOPs)─by stacking formylated macrocycles through multiple dynamic covalent imine bonds, guided by principles of reticular chemistry. Our strategic selection of rigid diamine linkers has facilitated the synthesis of a diverse array of iCOPs, each retaining a homologous structure yet offering distinct cavity shapes influenced by the linker choice. Notably, three of these iCOP variants feature continuous one-dimensional channels, exhibiting length-dependent host-guest interactions with α,ω-dibromoalkanes, and each presenting a distinct critical guest alkyl chain length threshold for efficient guest encapsulation. This newfound capability not only provides a platform for tailoring nanotubular structures with precision, but also opens new avenues for innovative applications in molecular recognition and the purification of complex mixtures.
Collapse
Affiliation(s)
- Shengnan Gao
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China
| | - Yunlong Guo
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China
| | - Jingfeng Xue
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China
| | - Xue Dong
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China
| | - Xiao-Yu Cao
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China
| | - Andrew C-H Sue
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China
| |
Collapse
|
6
|
Chen MM, Li Y, Zhu Y, Geng WC, Chen FY, Li JJ, Wang ZH, Hu XY, Tang Q, Yu Y, Sun T, Guo DS. Supramolecular 3 in 1: A Lubrication and Co-Delivery System for Synergistic Advanced Osteoarthritis Therapy. ACS NANO 2024; 18:13117-13129. [PMID: 38727027 DOI: 10.1021/acsnano.4c01939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The complexity, heterogeneity, and drug resistance of diseases necessitate a shift in therapeutic paradigms from monotherapy to combination therapy, which could augment treatment efficiency. Effective treatment of advanced osteoarthritis (OA) requires addressing three key factors contributing to its deterioration: chronic joint inflammation, lubrication dysfunction, and cartilage-tissue degradation. Herein, we present a supramolecular nanomedicine of multifunctionality via molecular recognition and self-assembly. The employed macrocyclic carrier, zwitterion-modified cavitand (CV-2), not only accurately loads various drugs but also functions as a therapeutic agent with lubricating properties for the treatment of OA. Kartogenin (KGN), a drug for articular cartilage regeneration and protection, and flurbiprofen (FP), an anti-inflammatory agent, were coloaded onto CV-2 assembly, forming a supramolecular nanomedicine KGN&FP@CV-2. The three-in-one combination therapy of KGN&FP@CV-2 addresses the three pathological features for treating OA collectively, and thus provides long-term therapeutic benefits for OA through sustained drug release and intrinsic lubrication in vivo. The multifunctional integration of macrocyclic delivery and therapeutics provides a simple, flexible, and universal platform for the synergistic treatment of diseases involving multiple drugs.
Collapse
Affiliation(s)
- Meng-Meng Chen
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Yuqiao Li
- Spine Surgery, Peking University People's Hospital, Beijing 100044, China
| | - Yujie Zhu
- Center for Supramolecular Chemistry & Catalysis and Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China
| | - Wen-Chao Geng
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Fang-Yuan Chen
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Juan-Juan Li
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Ze-Han Wang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Xin-Yue Hu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Qiong Tang
- Department of Respiratory, Tianjin Union Medical Center, Tianjin 300121, China
| | - Yang Yu
- Center for Supramolecular Chemistry & Catalysis and Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China
| | - Tianwei Sun
- Spine Surgery, Tianjin Union Medical Center, Tianjin 300121, China
| | - Dong-Sheng Guo
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
- Xinjiang Key Laboratory of Novel Functional Materials Chemistry, College of Chemistry and Environmental Sciences, Kashi University, Kashi 844000, China
| |
Collapse
|
7
|
Díaz-Casado L, Villacampa A, Corzana F, Jiménez-Barbero J, Gómez AM, Santana AG, Asensio JL. Illuminating a Solvent-Dependent Hierarchy for Aromatic CH/π Complexes with Dynamic Covalent Glyco-Balances. JACS AU 2024; 4:476-490. [PMID: 38425929 PMCID: PMC10900200 DOI: 10.1021/jacsau.3c00592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 03/02/2024]
Abstract
CH/π interactions are prevalent among aromatic complexes and represent invaluable tools for stabilizing well-defined molecular architectures. Their energy contributions are exceptionally sensitive to various structural and environmental factors, resulting in a context-dependent nature that has led to conflicting findings in the scientific literature. Consequently, a universally accepted hierarchy for aromatic CH/π interactions has remained elusive. Herein, we present a comprehensive experimental investigation of aromatic CH/π complexes, employing a novel approach that involves isotopically labeled glyco-balances generated in situ. This innovative strategy not only allows us to uncover thermodynamic insights but also delves into the often less-accessible domain of kinetic information. Our analyses have yielded more than 180 new free energy values while considering key factors such as solvent properties, the interaction geometry, and the presence and nature of accompanying counterions. Remarkably, the obtained results challenge conventional wisdom regarding the stability order of common aromatic complexes. While it was believed that cationic CH/π interactions held the highest strength, followed by polarized CH/π, nonpolarized CH/π, and finally anionic CH/π interactions, our study reveals that this hierarchy can be subverted depending on the environment. Indeed, the performance of polarized CH/π interactions can match or even outcompete that of cationic CH/π interactions making them a more reliable stabilization strategy across the entire spectrum of solvent polarity. Overall, our results provide valuable guidelines for the selection of optimal interacting partners in every chemical environment, allowing the design of tailored aromatic complexes with applications in supramolecular chemistry, organocatalysis, and/or material sciences.
Collapse
Affiliation(s)
- Laura Díaz-Casado
- Departamento
de Química Bio-Orgánica, Instituto de Química
Orgánica General (IQOG-CSIC), Consejo
Superior de Investigaciones Científicas (CSIC), 28006 Madrid, Spain
| | - Alejandro Villacampa
- Departamento
de Química Bio-Orgánica, Instituto de Química
Orgánica General (IQOG-CSIC), Consejo
Superior de Investigaciones Científicas (CSIC), 28006 Madrid, Spain
| | - Francisco Corzana
- Departamento
de Química, Centro de Investigación en Síntesis
Química, Universidad de La Rioja, 26006 Logroño, Spain
| | - Jesús Jiménez-Barbero
- Basque
Researchand Technology Alliance (BRTA), CIC bioGUNE, 48170 Derio, Spain
- Basque
Foundation for Science, Ikerbasque, 48009 Bilbao, Spain
- Centro
de Investigación Biomédica En Red de Enfermedades Respiratorias, 28029 Madrid, Spain
| | - Ana M. Gómez
- Departamento
de Química Bio-Orgánica, Instituto de Química
Orgánica General (IQOG-CSIC), Consejo
Superior de Investigaciones Científicas (CSIC), 28006 Madrid, Spain
| | - Andrés G. Santana
- Department
of Chemistry of Natural Products and Bioactive Synthetics, Instituto de Productos Naturales y Agrobiología
(IPNA-CSIC), San Cristóbal
de La Laguna, Santa Cruz de Tenerife 38206, Spain
| | - Juan Luis Asensio
- Departamento
de Química Bio-Orgánica, Instituto de Química
Orgánica General (IQOG-CSIC), Consejo
Superior de Investigaciones Científicas (CSIC), 28006 Madrid, Spain
| |
Collapse
|
8
|
Travis CR, Kean KM, Albanese KI, Henriksen HC, Treacy JW, Chao EY, Houk KN, Waters ML. Trimethyllysine Reader Proteins Exhibit Widespread Charge-Agnostic Binding via Different Mechanisms to Cationic and Neutral Ligands. J Am Chem Soc 2024; 146:3086-3093. [PMID: 38266163 PMCID: PMC11140585 DOI: 10.1021/jacs.3c10031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
In the last 40 years, cation-π interactions have become part of the lexicon of noncovalent forces that drive protein binding. Indeed, tetraalkylammoniums are universally bound by aromatic cages in proteins, suggesting that cation-π interactions are a privileged mechanism for binding these ligands. A prominent example is the recognition of histone trimethyllysine (Kme3) by the conserved aromatic cage of reader proteins, dictating gene expression. However, two proteins have recently been suggested as possible exceptions to the conventional understanding of tetraalkylammonium recognition. To broadly interrogate the role of cation-π interactions in protein binding interactions, we report the first large-scale comparative evaluation of reader proteins for a neutral Kme3 isostere, experimental and computational mechanistic studies, and structural analysis. We find unexpected widespread binding of readers to a neutral isostere with the first examples of readers that bind the neutral isostere more tightly than Kme3. We find that no single factor dictates the charge selectivity, demonstrating the challenge of predicting such interactions. Further, readers that bind both cationic and neutral ligands differ in mechanism: binding Kme3 via cation-π interactions and the neutral isostere through the hydrophobic effect in the same aromatic cage. This discovery explains apparently contradictory results in previous studies, challenges traditional understanding of molecular recognition of tetraalkylammoniums by aromatic cages in myriad protein-ligand interactions, and establishes a new framework for selective inhibitor design by exploiting differences in charge dependence.
Collapse
Affiliation(s)
- Christopher R. Travis
- Department of Chemistry, CB 3290, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kelsey M. Kean
- Department of Chemistry, CB 3290, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Katherine I. Albanese
- Department of Chemistry, CB 3290, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Hanne C. Henriksen
- Department of Chemistry, CB 3290, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Joseph W. Treacy
- Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, CA 90095-1569, USA
| | - Elaine Y. Chao
- Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, CA 90095-1569, USA
| | - K. N. Houk
- Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, CA 90095-1569, USA
| | - Marcey L. Waters
- Department of Chemistry, CB 3290, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
9
|
Norjmaa G, Rebek J, Himo F. Modeling Amine Methylation in Methyl Ester Cavitand. Chemistry 2024:e202303911. [PMID: 38224206 DOI: 10.1002/chem.202303911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Indexed: 01/16/2024]
Abstract
Methylation of amines inside an introverted resorcinarene-based deep methyl ester cavitand is investigated by means of molecular dynamics simulations and quantum chemical calculations. Experimentally, the cavitand has been shown to bind a number of amines and accelerate the methylation reaction by more than four orders of magnitude for some of them. Eight different amines are considered in the present study, and the geometries and energies of their binding to the cavitand are first characterized and analyzed. Next, the methyl transfer reactions are investigated and the calculated barriers are found to be in generally good agreement with experimental results. In particular, the experimentally-observed rate acceleration in the cavitand as compared to the solution reaction is well reproduced by the calculations. The origins of this rate acceleration are analyzed by computational modifications made to the structure of the cavitand, and the role of the solvent is discussed.
Collapse
Affiliation(s)
- Gantulga Norjmaa
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Julius Rebek
- The Skaggs Institute for Chemical Biology and Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, 92037, La Jolla, California, United States
- Center for Supramolecular Chemistry and Catalysis, Shanghai University, 200444, Shanghai, P. R. China
| | - Fahmi Himo
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91, Stockholm, Sweden
| |
Collapse
|
10
|
Tobajas-Curiel G, Sun Q, Sanders JKM, Ballester P, Hunter CA. Solvation rules: aromatic interactions outcompete cation-π interactions in synthetic host-guest complexes in water. Chem Commun (Camb) 2023; 59:14146-14148. [PMID: 37955118 DOI: 10.1039/d3cc04399a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Chemical double mutant cycles were used to measure the interaction of a N-methyl pyridinium cation with a π-box in a calix[4]pyrrole receptor. Although the cation-π interaction is attractive (-11 kJ mol-1), it is 7 kJ mol-1 less favourable than the corresponding aromatic interaction with the isosteric but uncharged tolyl group.
Collapse
Affiliation(s)
- Gloria Tobajas-Curiel
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK.
| | - Qingqing Sun
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Av. Països Catalans, 16, 43007, Tarragona, Spain.
- Yangzhou University, School of Chemistry and Chemical Engineering, Yangzhou, Jiangsu 225002, China.
| | - Jeremy K M Sanders
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK.
| | - Pablo Ballester
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Av. Països Catalans, 16, 43007, Tarragona, Spain.
- ICREA, Passeig Lluís Companys 23, Barcelona 08010, Spain
| | - Christopher A Hunter
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK.
| |
Collapse
|
11
|
Xu L, Wang J, Zhang A, Pang Y, Yang D, Lou H, Qiu X. Unveiling the role of long-range and short-range forces in the non-productive adsorption between lignin and cellulases at different temperatures. J Colloid Interface Sci 2023; 647:318-330. [PMID: 37262994 DOI: 10.1016/j.jcis.2023.05.152] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/04/2023] [Accepted: 05/23/2023] [Indexed: 06/03/2023]
Abstract
Quantitatively understanding of interaction mechanism between lignin and cellulases is essential for the efficient improvement of lignocellulose enzymatic hydrolysis. However, the individual contribution of multiple forces between lignin and cellulases to the non-productive adsorption of enzymes still remains deeply ambiguous, especially in situations of near enzymatic hydrolysis temperatures. Herein, atomic force microscopy (AFM) and computational simulations were utilized to quantitatively analyze the intermolecular forces between lignin and enzyme at 25 °C and 40 °C. Our results unveiled that an increase in temperature obviously improved adsorption capacity and total intermolecular forces between lignin and cellulases. This positive relationship mainly comes from the increase in the decay length of hydrophobic forces for lignin-cellulases when temperature increases. Different from the hydrophobic interaction which provides long-range part of attractions, van der Waals forces dominate the intermolecular force only at approaches < 2 nm. On the other hand, electrostatic forces exhibited repulsive effects, and its intensity and distance were limited due to the low surface potential of cellulases. Short-range forces including hydrogen bonding (main) and π-π stacking (minor) stabilize the non-specific binding of enzymes to lignin, but increasing temperature reduces hydrogen bond number. Therefore, the relative contribution of long-range forces increased markedly at higher temperatures, which benefits protein capture and brings lignin and cellulase close together. Finally, the structure-activity relationships between lignin physicochemical properties and its inhibitory effect to enzymes indicated that hydrophobic interactions, hydrogen bonding, and steric effects drive the final adsorption capacity and glucose yields. This work provides quantitative and basic insights into the mechanism of lignin-cellulase interfacial interactions and guides design of saccharification enhancement approaches.
Collapse
Affiliation(s)
- Li Xu
- Guangdong Provincial Key Lab of Green Chemical Product Technology, State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Jingyu Wang
- Guangdong Provincial Key Lab of Green Chemical Product Technology, State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Aiting Zhang
- Guangdong Provincial Key Lab of Green Chemical Product Technology, State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Yuxia Pang
- Guangdong Provincial Key Lab of Green Chemical Product Technology, State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China.
| | - Dongjie Yang
- Guangdong Provincial Key Lab of Green Chemical Product Technology, State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Hongming Lou
- Guangdong Provincial Key Lab of Green Chemical Product Technology, State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China.
| | - Xueqing Qiu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
12
|
Li J, Jiang B, Chang X, Yu H, Han Y, Zhang F. Bi-terminal fusion of intrinsically-disordered mussel foot protein fragments boosts mechanical strength for protein fibers. Nat Commun 2023; 14:2127. [PMID: 37059716 PMCID: PMC10104820 DOI: 10.1038/s41467-023-37563-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 03/22/2023] [Indexed: 04/16/2023] Open
Abstract
Microbially-synthesized protein-based materials are attractive replacements for petroleum-derived synthetic polymers. However, the high molecular weight, high repetitiveness, and highly-biased amino acid composition of high-performance protein-based materials have restricted their production and widespread use. Here we present a general strategy for enhancing both strength and toughness of low-molecular-weight protein-based materials by fusing intrinsically-disordered mussel foot protein fragments to their termini, thereby promoting end-to-end protein-protein interactions. We demonstrate that fibers of a ~60 kDa bi-terminally fused amyloid-silk protein exhibit ultimate tensile strength up to 481 ± 31 MPa and toughness of 179 ± 39 MJ*m-3, while achieving a high titer of 8.0 ± 0.70 g/L by bioreactor production. We show that bi-terminal fusion of Mfp5 fragments significantly enhances the alignment of β-nanocrystals, and intermolecular interactions are promoted by cation-π and π-π interactions between terminal fragments. Our approach highlights the advantage of self-interacting intrinsically-disordered proteins in enhancing material mechanical properties and can be applied to a wide range of protein-based materials.
Collapse
Affiliation(s)
- Jingyao Li
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, One Brookings Drive, Saint Louis, MO, 63130, USA
| | - Bojing Jiang
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, One Brookings Drive, Saint Louis, MO, 63130, USA
| | - Xinyuan Chang
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, One Brookings Drive, Saint Louis, MO, 63130, USA
| | - Han Yu
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, One Brookings Drive, Saint Louis, MO, 63130, USA
| | - Yichao Han
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, One Brookings Drive, Saint Louis, MO, 63130, USA
| | - Fuzhong Zhang
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, One Brookings Drive, Saint Louis, MO, 63130, USA.
- Division of Biological & Biomedical Sciences, Washington University in St. Louis, One Brookings Drive, Saint Louis, MO, 63130, USA.
- Institute of Materials Science & Engineering, Washington University in St. Louis, One Brookings Drive, Saint Louis, MO, 63130, USA.
| |
Collapse
|
13
|
Hu L, Wu W, Gong L, Zhu H, Jiang L, Hu M, Lin D, Yang K. A Novel Aluminum-Based Metal-Organic Framework with Uniform Micropores for Trace BTEX Adsorption. Angew Chem Int Ed Engl 2023; 62:e202215296. [PMID: 36698285 DOI: 10.1002/anie.202215296] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/30/2022] [Accepted: 01/23/2023] [Indexed: 01/27/2023]
Abstract
Metal-organic frameworks (MOFs) are potential porous adsorbents for benzene, toluene, ethylbenzene and xylene (BTEX). A novel MOF, using low toxic aluminum (Al) as the metal, named as ZJU-620(Al), with uniform micropore size of 8.37±0.73 Å and specific surface area of 1347 m2 g-1 , was synthesized. It is constructed by one-dimensional rod-shaped AlO6 clusters, formate ligands and 4,4',4''-(2,4,6-trimethylbenzene-1,3,5-triyl) tribenzoic ligands. ZJU-620(Al) exhibits excellent chemical-thermal stability and adsorption for trace BTEX, e.g., benzene adsorption of 3.80 mmol g-1 at P/P0 =0.01 and 298 K, which is the largest one reported. Using Grand Canonical Monte Carlo simulations and Single-crystal X-ray diffraction analyses, it was observed that the excellent adsorption could be attributed to the high affinity of BTEX molecules in ZJU-620(Al) micropores because the kinetic diameters of BTEX are close up to the pore size of ZJU-620(Al).
Collapse
Affiliation(s)
- Laigang Hu
- Department of Environmental Science, Zhejiang University, 310058, Hangzhou, China
| | - Wenhao Wu
- Department of Environmental Science, Zhejiang University, 310058, Hangzhou, China
| | - Li Gong
- Department of Environmental Science, Zhejiang University, 310058, Hangzhou, China
| | - Hongxia Zhu
- Department of Environmental Science, Zhejiang University, 310058, Hangzhou, China
| | - Ling Jiang
- Department of Environmental Science, Zhejiang University, 310058, Hangzhou, China
| | - Min Hu
- Department of Environmental Science, Zhejiang University, 310058, Hangzhou, China
| | - Daohui Lin
- Department of Environmental Science, Zhejiang University, 310058, Hangzhou, China
| | - Kun Yang
- Department of Environmental Science, Zhejiang University, 310058, Hangzhou, China.,Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, 311200, Hangzhou, China
| |
Collapse
|
14
|
Kumar YB, Pandey A, Kumar N, Sastry GN. Binding propensity and selectivity of cationic, anionic, and neutral guests with model hydrophobic hosts: A first principles study. J Comput Chem 2023; 44:432-441. [PMID: 36583416 DOI: 10.1002/jcc.26977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/23/2022] [Accepted: 07/21/2022] [Indexed: 01/03/2023]
Abstract
Computations play a critical role in deciphering the nature of host-guest interactions both at qualitative and quantitative levels. Reliable quantum chemical computations were employed to assess the nature, binding strength, and selectivity of ionic, and neutral guests with benzenoid hosts. Optimized complex structures reveal that alkali and ammonium ions are found to be in the hydrophobic cavity, while halide ions are outside, while both complexes elicit substantial binding energy. The origin of the selectivity of host toward the guest has been traced to the interaction and deformation energies, and the nature of associated interactions is quantified using energy decomposition and the Quantum Theory of Atoms in Molecules analyses. While the larger hosts lead to loosely bound complexes, as assessed by the longer intermolecular distances, the binding strengths are proportional to the size of the host systems. The binding of cationic complexes is electrostatic or polarization driven while exchange term dominates the anionic complexes. In contrast, dispersion contribution is a key in neutral complexes and plays a pivotal role in stabilizing the polyatomic complexes.
Collapse
Affiliation(s)
- Yenamareddy Bhargav Kumar
- Advanced Computation and Data Sciences Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Anwesh Pandey
- Advanced Computation and Data Sciences Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India
| | - Nandan Kumar
- Advanced Computation and Data Sciences Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India
| | - G Narahari Sastry
- Advanced Computation and Data Sciences Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
15
|
Liu C, Liu C, Bai Y, Wang J, Tian W. Drug Self-Delivery Systems: Molecule Design, Construction Strategy, and Biological Application. Adv Healthc Mater 2022; 12:e2202769. [PMID: 36538727 DOI: 10.1002/adhm.202202769] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/29/2022] [Indexed: 02/01/2023]
Abstract
Drug self-delivery systems (DSDSs) offer new ways to create novel drug delivery systems (DDSs). In typical DSDSs, therapeutic reagents are not considered passive cargos but active delivery agents of actionable targets. As an advanced drug delivery strategy, DSDSs with positive cooperativity of both free drugs and nanocarriers exhibit the clear merits of unprecedented drug-loading capacity, minimized systemic toxicity, and flexible preparation of nanoscale deliverables for passive targeted therapy. This review highlights the recent advances and future trends in DSDSs on the basis of two differently constructed structures: covalent and noncovalent bond-based DSDSs. Specifically, various chemical and architectural designs, fabrication strategies, and responsive and functional features are comprehensively discussed for these two types of DSDSs. In addition, additional comments on the current development status of DSDSs and the potential applications of their molecular designs are presented in the corresponding discussion. Finally, the promising potential of DSDSs in biological applications is revealed and the relationship between preliminary molecular design of DSDSs and therapeutic effects of subsequent DSDSs biological applications is clarified.
Collapse
Affiliation(s)
- Chengfei Liu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Caiping Liu
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, China
| | - Yang Bai
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, China
| | - Jingxia Wang
- Shaanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Wei Tian
- Shaanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| |
Collapse
|
16
|
Zhu Y, Zhao M, Rebek J, Yu Y. Recent Advances in the Applications of Water-soluble Resorcinarene-based Deep Cavitands. ChemistryOpen 2022; 11:e202200026. [PMID: 35701378 PMCID: PMC9197774 DOI: 10.1002/open.202200026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/04/2022] [Indexed: 11/08/2022] Open
Abstract
We review here the use of container molecules known as cavitands for performing organic reactions in water. Central to these endeavors are binding forces found in water, and among the strongest of these is the hydrophobic effect. We describe how the hydrophobic effect can be used to drive organic molecule guests into the confined space of cavitand hosts. Other forces participating in guest binding include cation-π interactions, chalcogen bonding and even hydrogen bonding to water involved in the host structure. The reactions of guests take advantage of their contortions in the limited space of the cavitands which enhance macrocyclic and site-selective processes. The cavitands are applied to the removal of organic pollutants from water and to the separation of isomeric guests. Progress is described on maneuvering the containers from stoichiometric participation to roles as catalysts.
Collapse
Affiliation(s)
- Yu‐Jie Zhu
- Supramolecular Chemistry & Catalysis and Department of ChemistryCollege of ScienceShanghai UniversityShanghai200444China
| | - Ming‐Kai Zhao
- Supramolecular Chemistry & Catalysis and Department of ChemistryCollege of ScienceShanghai UniversityShanghai200444China
| | - Julius Rebek
- Supramolecular Chemistry & Catalysis and Department of ChemistryCollege of ScienceShanghai UniversityShanghai200444China
| | - Yang Yu
- Supramolecular Chemistry & Catalysis and Department of ChemistryCollege of ScienceShanghai UniversityShanghai200444China
| |
Collapse
|
17
|
Xue Z, Hu M, Miao X, Zang L, Guo J. Synthesis of a hydrophobic associating polymer and its application in plugging spacer fluid. RSC Adv 2022; 12:11402-11412. [PMID: 35425085 PMCID: PMC9006056 DOI: 10.1039/d2ra01477g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/01/2022] [Indexed: 12/03/2022] Open
Abstract
The high temperature of formation and multiple stages of leakage zone seriously affect the efficiency and safety of drilling and cementing operations. To improve leakage plugging quality before the cementing process, the hydrophobic associating polymer PHAAO was synthesized from acrylamide (AM), 2-acrylamide-2-methyl propane sulfonic acid (AMPS), and the long side-chain hydrophobic monomer octadecyl dimethyl allyl ammonium chloride (ODAAC) in this study. The structure and molecular weight of the polymer were characterized, and it was proved that the polymer has strong association properties and excellent heat resistance. Utilizing the bridge plugging principle, the polymer PHAAO was used with 36-mesh walnut shells and lignin fiber to form a compound plugging agent. This agent was added to spacer fluid to become a plugging spacer. API water loss tests and loading capacity tests under high temperatures show that the filter cake formed by the spacer fluid is dense. The sealing pressure of the spacer fluid on a 1 mm crack can reach 6.5 MPa at 160 °C, and it has good compatibility with cement slurry. A scanning electron microscopy (SEM) test was conducted to explore the membrane formation mechanism of the polymer. An ultra-low permeability membrane is formed on the surface of the filter cake from the spacer fluid due to the hydrophobic association and hydrogen bonding between the polymer and lignin fiber, thereby greatly reducing the loss of spacer fluid.
Collapse
Affiliation(s)
- Zhaofeng Xue
- School of Chemical Engineering and Technology, Tianjin University Tianjin 300350 China
- Institute of Shaoxing, Tianjin University Zhejiang 312300 China
| | - Miaomiao Hu
- School of Chemical Engineering and Technology, Tianjin University Tianjin 300350 China
- Institute of Shaoxing, Tianjin University Zhejiang 312300 China
| | - Xia Miao
- Sinopec Research Institute of Petroleum Engineering Beijing 102206 China
| | - Long Zang
- School of Chemical Engineering and Technology, Tianjin University Tianjin 300350 China
- Institute of Shaoxing, Tianjin University Zhejiang 312300 China
| | - Jintang Guo
- School of Chemical Engineering and Technology, Tianjin University Tianjin 300350 China
- Institute of Shaoxing, Tianjin University Zhejiang 312300 China
| |
Collapse
|
18
|
Kubik S. When Molecules Meet in Water-Recent Contributions of Supramolecular Chemistry to the Understanding of Molecular Recognition Processes in Water. ChemistryOpen 2022; 11:e202200028. [PMID: 35373466 PMCID: PMC8977507 DOI: 10.1002/open.202200028] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/17/2022] [Indexed: 12/19/2022] Open
Abstract
Molecular recognition processes in water differ from those in organic solvents in that they are mediated to a much greater extent by solvent effects. The hydrophobic effect, for example, causes molecules that only weakly interact in organic solvents to stay together in water. Such water-mediated interactions can be very efficient as demonstrated by many of the synthetic receptors discussed in this review, some of which have substrate affinities matching or even surpassing those of natural binders. However, in spite of considerable success in designing such receptors, not all factors determining their binding properties in water are fully understood. Existing concepts still provide plausible explanations why the reorganization of water molecules often causes receptor-substrate interactions in water to be strongly exothermic rather than entropically favored as predicted by the classical view of the hydrophobic effect.
Collapse
Affiliation(s)
- Stefan Kubik
- Technische Universität KaiserslauternFachbereich Chemie – Organische ChemieErwin-Schrödinger-Straße 5467663KaiserslauternGermany
| |
Collapse
|