1
|
Chen D, Hudson RJ, Tang C, Sun Q, Harmer JR, Liu M, Ghasemi M, Wen X, Liu Z, Peng W, Yan X, Cowie B, Gao Y, Raston CL, Du A, Smith TA, Li Q. Colloidal Synthesis of Carbon Dot-ZnSe Nanoplatelet Van der Waals Heterostructures for Boosting Photocatalytic Generation of Methanol-Storable Hydrogen. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402613. [PMID: 38850186 DOI: 10.1002/smll.202402613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/28/2024] [Indexed: 06/10/2024]
Abstract
Methanol is not only a promising liquid hydrogen carrier but also an important feedstock chemical for chemical synthesis. Catalyst design is vital for enabling the reactions to occur under ambient conditions. This study reports a new class of van der Waals heterojunction photocatalyst, which is synthesized by hot-injection method, whereby carbon dots (CDs) are grown in situ on ZnSe nanoplatelets (NPLs), i.e., metal chalcogenide quantum wells. The resultant organic-inorganic hybrid nanoparticles, CD-NPLs, are able to perform methanol dehydrogenation through CH splitting. The heterostructure has enabled light-induced charge transfer from the CDs into the NPLs occurring on a sub-nanosecond timescale, with charges remaining separated across the CD-NPLs heterostructure for longer than 500 ns. This resulted in significantly heightened H2 production rate of 107 µmole·g-1·h-1 and enhanced photocurrent density up to 34 µA cm-2 at 1 V bias potential. EPR and NMR analyses confirmed the occurrence of α-CH splitting and CC coupling. The novel CD-based organic-inorganic semiconductor heterojunction is poised to enable the discovery of a host of new nano-hybrid photocatalysts with full tunability in the band structure, charge transfer, and divergent surface chemistry for guiding photoredox pathways and accelerating reaction rates.
Collapse
Affiliation(s)
- Dechao Chen
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD, 4111, Australia
| | - Rohan J Hudson
- ARC Centre of Excellence in Exciton Science & School of Chemistry, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Cheng Tang
- School of Chemistry and Physics and Centre for Materials Science, Queensland University of Technology, Gardens Point Campus, Brisbane, 4001, Australia
| | - Qiang Sun
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Jeffery R Harmer
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Miaomiao Liu
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, 4111, Australia
| | - Mehri Ghasemi
- School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| | - Xiaomin Wen
- School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| | - Zixuan Liu
- School of Chemistry and Physics and Centre for Materials Science, Queensland University of Technology, Gardens Point Campus, Brisbane, 4001, Australia
| | - Wei Peng
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD, 4111, Australia
| | - Xuecheng Yan
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD, 4111, Australia
| | - Bruce Cowie
- The Australian Synchrotron, Clayton, VIC, 3168, Australia
| | - Yongsheng Gao
- Institute for Integrated and Intelligent Systems, Griffith University, Nathan, QLD, 4111, Australia
- School of Engineering and Built Environment, Griffith University, Nathan, QLD, 4111, Australia
| | - Colin L Raston
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Adelaide, SA, 5001, Australia
| | - Aijun Du
- School of Chemistry and Physics and Centre for Materials Science, Queensland University of Technology, Gardens Point Campus, Brisbane, 4001, Australia
| | - Trevor A Smith
- ARC Centre of Excellence in Exciton Science & School of Chemistry, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Qin Li
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD, 4111, Australia
- School of Engineering and Built Environment, Griffith University, Nathan, QLD, 4111, Australia
| |
Collapse
|
2
|
Teng J, Li W, Wei Z, Hao D, Jing L, Liu Y, Dai H, Zhu Y, Ma T, Deng J. Coupling Photocatalytic Hydrogen Production with Key Oxidation Reactions. Angew Chem Int Ed Engl 2024:e202416039. [PMID: 39301679 DOI: 10.1002/anie.202416039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 09/22/2024]
Abstract
Hydrogen represents a clean and sustainable energy source with wide applications in fuel cells and hydrogen energy storage systems. Photocatalytic strategies emerge as a green and promising solution for hydrogen production, which still reveals several critical challenges in enhancing the efficiency and stability and improving the whole value. This review systematically elaborates on various coupling approaches for photocatalytic hydrogen production, aiming to improve both efficiency and value through different oxidation half-reactions. Firstly, the fundamental mechanism is discussed for photocatalytic hydrogen production. Then, the advances, challenges, and opportunities are expanded for the coupling of photocatalytic hydrogen production, which focuses on the integration of value-added reactions including O2 production, H2O2 production, biomass conversion, alcohol oxidation, and pollutants treatment. Finally, the challenges and outlook of photocatalytic H2 production technology are analyzed from the aspects of coupling hydrogen production value, photocatalyst design and reaction system construction. This work presents a holistic view of the field, emphasizing the synergistic benefits of coupled reactions and their practical application potential, rather than focusing on catalysts or single reaction systems. This review provides valuable references for the development and application of photocatalytic hydrogen production in energy conversion and environmental conservation through sustainable, eco-friendly and economic pathways.
Collapse
Affiliation(s)
- Jiayan Teng
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Beijing University of Technology, Beijing, 100124, China
| | - Wenlu Li
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
- School of Food and Health, Beijing Technology and Business University, Beijing, 100048, China
| | - Zhen Wei
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Beijing University of Technology, Beijing, 100124, China
| | - Derek Hao
- Centre for Atomaterials and Nanomanufacturing (CAN), School of Science, RMIT University, Melbourne, 3000, Australia
- ARC Industrial Transformation Research Hub for Intelligent Energy Efficiency in Future Protected Cropping (E2Crop), Melbourne, 3000, Australia
| | - Lin Jing
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Beijing University of Technology, Beijing, 100124, China
| | - Yuxi Liu
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Beijing University of Technology, Beijing, 100124, China
| | - Hongxing Dai
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Beijing University of Technology, Beijing, 100124, China
| | - Yongfa Zhu
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Tianyi Ma
- Centre for Atomaterials and Nanomanufacturing (CAN), School of Science, RMIT University, Melbourne, 3000, Australia
- ARC Industrial Transformation Research Hub for Intelligent Energy Efficiency in Future Protected Cropping (E2Crop), Melbourne, 3000, Australia
| | - Jiguang Deng
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Beijing University of Technology, Beijing, 100124, China
| |
Collapse
|
3
|
Kasprzyk W, Romańczyk PP, Kurek SS, Świergosz T. A switchable green emitting dye and its phenomenal properties: implications for the photoluminescence features of carbon dots. NANOSCALE 2024; 16:17079-17089. [PMID: 39189364 DOI: 10.1039/d4nr02517b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
New molecular fluorophores are constantly being discovered in post-synthetic mixtures of carbon dots (CDs), prompting researchers to elucidate their role in the optical properties of these nanomaterials. It has been reported that the green-emitting fluorophore that forms during the synthesis of popular citric acid/urea CDs is HPPT (4-hydroxy-1H-pyrrolo[3,4-c]pyridine-1,3,6(2H,5H)-trione). However, due to the low concentration of HPPT-like molecules within the structure of CDs, their actual binding and contribution to the optical properties of CDs has not so far been convincingly confirmed. In this joint experimental and quantum chemical study, we show that HPPT is a strong acid and only its anionic form, HPPT-, present in solutions of pH 0-10, is emissive. Next, its fluorescence can be switched off rapidly in strongly alkaline environments as a result of HPPT- hydrolysis, leading to the opening of its pyrrole ring and formation of CDPC (3-carbamoyl-2,6-dihydroxypyridine-4-carboxylic acid), existing as the CDPC2- dianion under these conditions. Eventually, we found that the ring opening hydrolysis is reversible and the green emission may be restored in acidic environments. The kinetics and mechanism of this hydrolysis were also revealed. The optical features of citric acid (CA)-urea CDs under various conditions were compared with a simpler CD system prepared by treating the CDs obtained from CA solely with HPPT- (HPPT@CDs). Our results indicate the feasibility of the post-synthetic modification of HPPT- present in the structures of CA-urea CDs and HPPT@CDs. Without HPPT- they emit blue fluorescence only. Thus, this makes the nanosystem switch the PL emission colour reversibly from green to blue owing to the opening and closing of the pyrrole ring in HPPT-like molecules. More importantly, the latter process may be considered a first step toward genuine fine tuning of the PL emission colour from CDs. These findings are of general importance to the further development of citric acid-based CDs with tailored properties.
Collapse
Affiliation(s)
- Wiktor Kasprzyk
- Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, ul. Warszawska 24, 31-155 Kraków, Poland.
| | - Piotr P Romańczyk
- Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, ul. Warszawska 24, 31-155 Kraków, Poland.
| | - Stefan S Kurek
- Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, ul. Warszawska 24, 31-155 Kraków, Poland.
| | - Tomasz Świergosz
- Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, ul. Warszawska 24, 31-155 Kraków, Poland.
| |
Collapse
|
4
|
Zhao X, Reva Y, Jana B, Langford D, Kinzelmann M, Zhang Z, Liu Q, Drewello T, Guldi DM, Chen X. Tartaric acid-derived chiral carbon nanodots for catalytic enantioselective ring-opening reactions of styrene oxide. Chem Commun (Camb) 2024; 60:10382-10385. [PMID: 39222045 DOI: 10.1039/d4cc04119d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Chiral carbon nanodots (CNDs) were fabricated through the hydrothermal processing of sulfanilic acid and chiral tartaric acid, exhibiting outstanding catalytic performance for the chiral catalysis of the ring-opening reaction. Furthermore, the catalytic mechanism was proposed to understand the link between the chiral structure and the performance of the catalyst.
Collapse
Affiliation(s)
- Xinyi Zhao
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China.
| | - Yana Reva
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Physical Chemistry I, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91058, Germany.
| | - Bikash Jana
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Physical Chemistry I, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91058, Germany.
- Schulich Faculty of Chemistry, Israel Institute of Technology, Technion, 3200008, Israel
| | - Daniel Langford
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Physical Chemistry I, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91058, Germany.
| | - Marina Kinzelmann
- Department of Chemistry and Pharmacy, Physical Chemistry I, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91058, Germany
| | - Zhipeng Zhang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China.
| | - Qi Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China.
| | - Thomas Drewello
- Department of Chemistry and Pharmacy, Physical Chemistry I, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91058, Germany
| | - Dirk M Guldi
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Physical Chemistry I, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91058, Germany.
| | - Xiaoqing Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China.
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha 410083, China
| |
Collapse
|
5
|
Chen Q, Mao B, Liu Y, Zhou Y, Huang H, Wang S, Li L, Yan WC, Shi W, Kang Z. Designing 2D carbon dot nanoreactors for alcohol oxidation coupled with hydrogen evolution. Nat Commun 2024; 15:8052. [PMID: 39277627 PMCID: PMC11401949 DOI: 10.1038/s41467-024-52406-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 09/05/2024] [Indexed: 09/17/2024] Open
Abstract
The coupled green energy and chemical production by photocatalysis represents a promising sustainable pathway, which poses great challenges for the multifunction integration of catalytic systems. Here we show a promising green photocatalyst design using Cu-ZnIn2S4 nanosheets and carbon dots as building units, which enables the integration of reaction, mass transfer, and separation functions in the nano-space, mimicking a nanoreactor. This function integration results in great activity promotion for benzyl alcohol oxidation coupled H2 production, with H2/benzaldehyde production rates of 45.95/46.47 mmol g-1 h-1, 36.87 and 36.73 times to pure ZnIn2S4, respectively, owning to the enhanced charge accumulation and mass transfer according to in-situ spectroscopies and computational simulations of the built-in electrical field. Near-unity selectivity of benzaldehyde is achieved via the effective separation enabled by the Cu(II)-mediated conformation flipping of the intermediates and subsequent π-π conjugation. This work demonstrates an inspiring proof-of-concept nanoreactor design of photocatalysts for coupled sustainable systems.
Collapse
Affiliation(s)
- Qitao Chen
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Baodong Mao
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China.
| | - Yanhong Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China.
| | - Yunjie Zhou
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, China
| | - Hui Huang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, China
| | - Song Wang
- Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Hubei University of Arts and Science, Xiangyang, 441053, China
| | - Longhua Li
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China.
| | - Wei-Cheng Yan
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China.
| | - Weidong Shi
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China.
| | - Zhenhui Kang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, China.
- Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Taipa, 999078, Macao, China.
| |
Collapse
|
6
|
Sayyad US, Bhatt H, Ghosh HN, Mondal S. Delineating the core and surface state heterogeneity of carbon dots during electron transfer. NANOSCALE 2024; 16:8143-8150. [PMID: 38572546 DOI: 10.1039/d4nr00271g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Exploring the heterogeneity of carbon dots (C-Dots) is challenging because of the existence of complex structural diversity, and it is a demanding task for the development and designing of efficient C-Dots for various applications. Herein, we studied the role of the core state and surface state of C-Dots in heterogeneity via the successful investigation of the electron transfer (ET) process between different (blue, green, and red) emitting C-Dots and an electron acceptor methyl viologen (MV2+) using steady-state and time-resolved fluorescence and ultrafast transient absorption (TA) spectroscopic techniques. Selective excitation in the steady-state and time-resolved mode shows that the ET ability of the core state is higher than that of the surface state. Moreover, the kinetics of MV+˙ generation was probed using TA spectroscopy after the excitation of the core and surface state, where we observed that the surface state becomes less efficient due to the presence of an oxygen-containing functional group in the surface state, which acts as an electron scavenger. Moreover, the heterogeneity of the core and surface state was explored through the detection of the MV+˙ generation yield after the irradiation of UV and visible light (exciting the core and surface state). The result indicates that the graphitic nitrogen content in the core state and the oxygen-containing functional group in the surface state play an important role in the heterogeneity in the structure and the ET process. Our findings on the fundamental understanding of the heterogeneity of different emissive C-Dots will provide a new way of designing and developing a metal-free light-harvesting system.
Collapse
Affiliation(s)
- Umarfaruk S Sayyad
- Institute of Chemical Technology, Mumbai, Marathwada Campus, Jalna, Maharashtra 431203, India.
| | - Himanshu Bhatt
- Institute of Nano science and Technology, Mohali, Punjab 140306, India
| | - Hirendra N Ghosh
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, Odisha 752050, India
| | - Somen Mondal
- Institute of Chemical Technology, Mumbai, Marathwada Campus, Jalna, Maharashtra 431203, India.
| |
Collapse
|
7
|
Ge M, Yin H, Tian W, Zhang H, Li S, Wang S, Chen Z. Electrostatically induced Furfural-Derived carbon Dots-CdS hybrid for solar Light-Driven hydrogen production. J Colloid Interface Sci 2024; 660:147-156. [PMID: 38241863 DOI: 10.1016/j.jcis.2024.01.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/31/2023] [Accepted: 01/04/2024] [Indexed: 01/21/2024]
Abstract
Carbon dots (CDs) exhibit distinctive optical, electronic, and physicochemical properties, rendering them effective cocatalysts to enhance the photocatalytic performance of light-absorbing materials. The interplay between CDs and substrates is pivotal in manipulating photogenerated charge separation, transfer, and redistribution, significantly influencing overall photocatalytic efficiency. This study introduces a novel electrostatic interaction strategy to interface positively charged CdS nanorods (CdS NRs) with negatively charged furfural-derived CDs. The resulting optimized composite (25-CDs@CdS NRs), showcases photocatalytic hydrogen production at a rate of 1076 μmol g-1h-1. Experimental analyses and theoretical simulations offer insights into the structure-activity relationship, underscoring the crucial role of enhanced electrostatic interaction between CDs and CdS NRs in facilitating efficient charge transfer, activating reaction sites, and improving reaction kinetics. This research establishes an adaptable strategy for integrating CDs with metal-based semiconductors, opening new avenues for developing photocatalytic hybrid assemblies.
Collapse
Affiliation(s)
- Min Ge
- Key Laboratory of Bio-based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin 150040, China
| | - Hanqing Yin
- School of Chemistry and Physics and QUT, Centre for Materials Science, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Wenjie Tian
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Huayang Zhang
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Australia, 5005, Australia.
| | - Shujun Li
- Key Laboratory of Bio-based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin 150040, China.
| | - Shaobin Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Zhijun Chen
- Key Laboratory of Bio-based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin 150040, China.
| |
Collapse
|
8
|
Wang C, Sung K, Zhu JZJ, Qu S, Bao J, Chang X, Katsuyama Y, Yang Z, Zhang C, Huang A, Kroes BC, El-Kady MF, Kaner RB. A simple route to functionalized porous carbon foams from carbon nanodots for metal-free pseudocapacitors. MATERIALS HORIZONS 2024; 11:688-699. [PMID: 37990914 DOI: 10.1039/d3mh01032e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
The development of potent pseudocapacitive charge storage materials has emerged as an effective solution for closing the gap between high-energy density batteries and high-power density and long-lasting electrical double-layer capacitors. Sulfonyl compounds are ideal candidates owing to their rapid and reversible redox reactions. However, structural instability and low electrical conductivity hinder their practical application as electrode materials. This work addresses these challenges using a fast and clean laser process to interconnect sulfonated carbon nanodots into functionalized porous carbon frameworks. In this bottom-up approach, the resulting laser-converted three-dimensional (3D) turbostratic carbon foams serve as high-surface-area, conductive scaffolds for redox-active sulfonyl groups. This design enables efficient faradaic processes using pendant sulfonyl groups, leading to a high specific capacitance of 157.6 F g-1 due to the fast reversible redox reactions of sulfonyl moieties. Even at 20 A g-1, the capacitance remained at 78.4% due to the uniform distribution of redox-active sites on the graphitic domains. Additionally, the 3D-tsSC300 electrode showed remarkable cycling stability of >15 000 cycles. The dominant capacitive processes and kinetics were analysed using extensive electrochemical characterizations. Furthermore, we successfully used 3D-tsSC300 in flexible solid-state supercapacitors, achieving a high specific capacitance of up to 17.4 mF cm-2 and retaining 91.6% of the initial capacitance after 20 000 cycles of charge and discharge coupled with 90° bending tests. Additionally, an as-assembled flexible all-solid-state symmetric supercapacitor exhibits a high energy density of 12.6 mW h cm-3 at a high power density of 766.2 W cm-3, both normalized by the volumes of the full device, which is comparable or better than state-of-the-art commercial pseudocapacitors and hybrid capacitors. The integrated supercapacitor provides a wide potential window of 2.0 V using a serial circuit, showing great promise for metal-free energy storage devices.
Collapse
Affiliation(s)
- Chenxiang Wang
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, California 90095, USA.
| | - Kimberly Sung
- Department of Materials Science and Engineering and California NanoSystems Institute, University of California, Los Angeles, California 90095, USA
| | - Jason Zi Jie Zhu
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, California 90095, USA.
| | - Sheng Qu
- Chemistry Department, University of Chicago, Illinois, 60637, USA
| | - Jiawei Bao
- School of Vehicle and Mobility, Tsinghua University, Beijing, 100084, China
| | - Xueying Chang
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, California 90095, USA.
| | - Yuto Katsuyama
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, California 90095, USA.
| | - Zhiyin Yang
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, California 90095, USA.
| | - Chonghao Zhang
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| | - Ailun Huang
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, California 90095, USA.
| | - Bradley C Kroes
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, California 90095, USA.
| | - Maher F El-Kady
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, California 90095, USA.
| | - Richard B Kaner
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, California 90095, USA.
- Department of Materials Science and Engineering and California NanoSystems Institute, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
9
|
Zhang J, Yuan C, Dou H, Zhu R, Li L, Weng TC. Unveiling Carrier Relaxation Mechanism in Protonated/Deprotonated Carbon Dots and Their Solvent Effects via Ultrafast Spectroscopy. Chem Asian J 2023:e202301082. [PMID: 38155528 DOI: 10.1002/asia.202301082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/28/2023] [Accepted: 12/28/2023] [Indexed: 12/30/2023]
Abstract
The intricate nature of the surface structure of carbon dots (CDs) hinders a comprehensive understanding of their emission behavior. In this study, we employ two types of CDs created through acid-alkali treatments, one with surface protonation and the other with surface deprotonation, with the objective of investigating the impact of these surface modifications on carrier behavior using ultrafast spectroscopy techniques. TEM, XRD, FTIR and Raman spectra demonstrate the CDs' structure, featuring graphitic core and abundant surface functional groups. XPS confirms the successful surface modifications of CDs via protonation and deprotonation. Ultrafast transient absorption (TA) spectroscopy reveals that deprotonation modification may decelerate the relaxation process, thereby increasing the visible PL quantum yields (PLQY). Conversely, protonation may accelerate the relaxation process due to the induced low-energy absorption band, resulting in self-absorption and reduced PLQY. Furthermore, TA analysis of CDs in mixed solvents with different proportions of ethanol shows the beneficial effect of ethanol in decelerating the relaxation process, leading to an increased PLQY of 33.7 % for deprotonated CDs and 22.1 % for protonated CDs. This study illuminates the intricate relationship between surface deprotonation/protonation modifications and carrier behavior in CDs, offering a potential avenue for the design of high-brightness CDs for diverse applications.
Collapse
Affiliation(s)
- Jihao Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Center for Transformative Science, ShanghaiTech University, Shanghai, 201210, China
| | - Chunze Yuan
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Center for Transformative Science, ShanghaiTech University, Shanghai, 201210, China
| | - Hongbin Dou
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Center for Transformative Science, ShanghaiTech University, Shanghai, 201210, China
| | - Ruixue Zhu
- Center for Transformative Science, ShanghaiTech University, Shanghai, 201210, China
| | - Lin Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Center for Transformative Science, ShanghaiTech University, Shanghai, 201210, China
| | - Tsu-Chien Weng
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Center for Transformative Science, ShanghaiTech University, Shanghai, 201210, China
| |
Collapse
|
10
|
Chu C, Yao D, Chen Z, Liu X, Huang Q, Li Q, Mao S. Cyano-Regulated Organic Polymers for Highly Efficient Photocatalytic H 2 O 2 Production in Various Actual Water Bodies. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303796. [PMID: 37442785 DOI: 10.1002/smll.202303796] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/27/2023] [Indexed: 07/15/2023]
Abstract
Photocatalytic production of H2 O2 has drawn significant attention in recent years, but the yield rate of current photocatalytic systems is still unsatisfactory. Moreover, the presence of various components in actual water bodies will consume the photogenerated charges and deactivate the catalyst, severely limiting the real applications of photocatalytic H2 O2 production. Herein, a cyano-modified polymer photocatalyst is synthesized by Knoevenagel condensation with subsequent thermal polymerization. The introduction of cyano group and sulfer (S), oxygen (O) elements modulates the microstructure and energy band of the polymer catalyst, and the cyano group sites can effectively adsorb and activate O2 , realizing the generation of H2 O2 in the two-step single-electron oxygen reduction process. The reported system achieves high H2 O2 generation rate up to 1119.2 µmol g-1 h-1 in various water bodies including tap water, river water, seawater, and secondary effluent. This simple and readily available catalyst demonstrates good anti-interference performance and pH adaptability in photocatalytic H2 O2 production in actual water bodies, and its photodegradation and sterilization applications are also demonstrated. This study offers new insights in developing polymer catalysts for efficient photocatalytic production of H2 O2 in various water bodies for practical application.
Collapse
Affiliation(s)
- Chengcheng Chu
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Ducheng Yao
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Zhong Chen
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Xinru Liu
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Qisu Huang
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Qiuju Li
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Shun Mao
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| |
Collapse
|
11
|
Schneider H, Strauss V, Vogl S, Antonietti M, Filonenko S. Eutectic Media Open a Synthetic Route to Oligocitrazinic Acid Fluorophores of Purple Hue. Chemphyschem 2023; 24:e202300180. [PMID: 37358187 DOI: 10.1002/cphc.202300180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 06/27/2023]
Abstract
Under isochoric and solvent-free conditions, the reaction between ammonium formate and citric acid results in a deeply purple reaction product with fluorescent properties. This brings this reaction in the realm of bio-based fluorophores and bottom-up carbon nanodots from citric acid. The reaction conditions are optimized in terms of UV-vis spectroscopic properties and, subsequently, the main reaction product is separated. While the structural analysis does not give any indication for carbon nanodots in a general sense, it points towards the formation of molecular fluorophores that consist of oligomerized citrazinic acid derivatives. Furthermore, EPR spectroscopy reveals the presence of stable free radicals in the product. We hypothesize that such open-shell structures may play a general role in molecular fluorophores from citric acid and are not yet sufficiently explored. Therefore, we believe that analysis of these newly discovered fluorophores may contribute to a better understanding of the properties of fluorophores and CND from citric acid in general.
Collapse
Affiliation(s)
- Helen Schneider
- Max Planck Institut für Kolloid- und Grenzflächenforschung, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Volker Strauss
- Max Planck Institut für Kolloid- und Grenzflächenforschung, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Sarah Vogl
- Department of Chemistry/Functional Materials, Technische Universität Berlin, Hardenbergstraße 40, 10623, Berlin, Germany
| | - Markus Antonietti
- Max Planck Institut für Kolloid- und Grenzflächenforschung, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Svitlana Filonenko
- Max Planck Institut für Kolloid- und Grenzflächenforschung, Am Mühlenberg 1, 14476, Potsdam, Germany
| |
Collapse
|
12
|
Qiang R, Huang H, Chen J, Shi X, Fan Z, Xu G, Qiu H. Carbon Quantum Dots Derived from Herbal Medicine as Therapeutic Nanoagents for Rheumatoid Arthritis with Ultrahigh Lubrication and Anti-inflammation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:38653-38664. [PMID: 37535012 DOI: 10.1021/acsami.3c06188] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
As a typical chronic inflammatory joint disease with swelling and pain syndromes, rheumatoid arthritis (RA) is closely related to articular lubrication deficiency and excessive proinflammatory cytokines in its progression and pathogenesis. Herein, inspired by the dual effects of joint lubrication improvement and anti-inflammation to treat RA, two novel potential therapeutic nanoagents have been developed rationally by employing herbal medicine-derived carbon quantum dots (CQDs), i.e., safflower (Carthamus tinctorius L.) CQDs and Angelica sinensis CQDs, yielding ultrahigh lubrication and anti-inflammation bioefficacy. In vitro experimental results show that the two nanoagents display excellent friction reduction due to their good water solubility and spherical structure. Using RA rat models, it is indicated that the nanoagents significantly relieved swelling symptoms and inhibited the expression of related inflammatory cytokines, including IL-1, IL-6, and TNF-α, indicating their extraordinary anti-inflammation bioefficacy. Thus, combining the lubricating and anti-inflammation bioefficacy of CQDs derived from herbal medicine is an attractive strategy to develop new nanoagents for RA treatment.
Collapse
Affiliation(s)
- Ruibin Qiang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Haofei Huang
- School of the Stomatology, Lanzhou University, Lanzhou 730000, China
| | - Jia Chen
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Xianzhe Shi
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zengjie Fan
- School of the Stomatology, Lanzhou University, Lanzhou 730000, China
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Hongdeng Qiu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
13
|
Zdražil L, Baďura Z, Langer M, Kalytchuk S, Panáček D, Scheibe M, Kment Š, Kmentová H, Thottappali MA, Mohammadi E, Medveď M, Bakandritsos A, Zoppellaro G, Zbořil R, Otyepka M. Magnetic Polaron States in Photoluminescent Carbon Dots Enable Hydrogen Peroxide Photoproduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206587. [PMID: 37038085 DOI: 10.1002/smll.202206587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 03/17/2023] [Indexed: 05/06/2023]
Abstract
Photoactivation of aspartic acid-based carbon dots (Asp-CDs) induces the generation of spin-separated species, including electron/hole (e- /h+ ) polarons and spin-coupled triplet states, as uniquely confirmed by the light-induced electron paramagnetic resonance spectroscopy. The relative population of the e- /h+ pairs and triplet species depends on the solvent polarity, featuring a substantial stabilization of the triplet state in a non-polar environment (benzene). The electronic properties of the photoexcited Asp-CDs emerge from their spatial organization being interpreted as multi-layer assemblies containing a hydrophobic carbonaceous core and a hydrophilic oxygen and nitrogen functionalized surface. The system properties are dissected theoretically by density functional theory in combination with molecular dynamics simulations on quasi-spherical assemblies of size-variant flakelike model systems, revealing the importance of size dependence and interlayer effects. The formation of the spin-separated states in Asp-CDs enables the photoproduction of hydrogen peroxide (H2 O2 ) from water and water/2-propanol mixture via a water oxidation reaction.
Collapse
Affiliation(s)
- Lukáš Zdražil
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University Olomouc, Křížkovského 511/8, 779 00, Olomouc, Czech Republic
| | - Zdeněk Baďura
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University Olomouc, Křížkovského 511/8, 779 00, Olomouc, Czech Republic
| | - Michal Langer
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University Olomouc, Křížkovského 511/8, 779 00, Olomouc, Czech Republic
| | - Sergii Kalytchuk
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University Olomouc, Křížkovského 511/8, 779 00, Olomouc, Czech Republic
| | - David Panáček
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University Olomouc, Křížkovského 511/8, 779 00, Olomouc, Czech Republic
| | - Magdalena Scheibe
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University Olomouc, Křížkovského 511/8, 779 00, Olomouc, Czech Republic
| | - Štěpán Kment
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University Olomouc, Křížkovského 511/8, 779 00, Olomouc, Czech Republic
- Nanotechnology Centre, VŠB - Technical University of Ostrava, 17. listopadu 2172/15, 708 00, Ostrava-Poruba, Czech Republic
| | - Hana Kmentová
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University Olomouc, Křížkovského 511/8, 779 00, Olomouc, Czech Republic
| | | | - Elmira Mohammadi
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University Olomouc, Křížkovského 511/8, 779 00, Olomouc, Czech Republic
| | - Miroslav Medveď
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University Olomouc, Křížkovského 511/8, 779 00, Olomouc, Czech Republic
- Department of Chemistry, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, 974 01, Banská Bystrica, Slovakia
| | - Aristides Bakandritsos
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University Olomouc, Křížkovského 511/8, 779 00, Olomouc, Czech Republic
- Nanotechnology Centre, VŠB - Technical University of Ostrava, 17. listopadu 2172/15, 708 00, Ostrava-Poruba, Czech Republic
| | - Giorgio Zoppellaro
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University Olomouc, Křížkovského 511/8, 779 00, Olomouc, Czech Republic
| | - Radek Zbořil
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University Olomouc, Křížkovského 511/8, 779 00, Olomouc, Czech Republic
- Nanotechnology Centre, VŠB - Technical University of Ostrava, 17. listopadu 2172/15, 708 00, Ostrava-Poruba, Czech Republic
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University Olomouc, Křížkovského 511/8, 779 00, Olomouc, Czech Republic
- IT4Innovations, VŠB - Technical University of Ostrava, 17. listopadu 2172/15, 708 00, Ostrava-Poruba, Czech Republic
| |
Collapse
|
14
|
Yu Y, Zeng Q, Tao S, Xia C, Liu C, Liu P, Yang B. Carbon Dots Based Photoinduced Reactions: Advances and Perspective. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207621. [PMID: 36737845 PMCID: PMC10131860 DOI: 10.1002/advs.202207621] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Seeking clean energy as an alternative to traditional fossil fuels is the inevitable choice to realize the sustainable development of the society. Photocatalytic technique is considered a promising energy conversion approach to store the abundant solar energy into other wieldy energy carriers like chemical energy. Carbon dots, as a class of fascinating carbon nanomaterials, have already become the hotspots in numerous photoelectric researching fields and particularly drawn keen interests as metal-free photocatalysts owing to strong UV-vis optical absorption, tunable energy-level configuration, superior charge transfer ability, excellent physicochemical stability, facile fabrication, low toxicity, and high solubility. In this review, the classification, microstructures, general synthetic methods, optical and photoelectrical properties of carbon dots are systematically summarized. In addition, recent advances of carbon dots based photoinduced reactions including photodegradation, photocatalytic hydrogen generation, CO2 conversion, N2 fixation, and photochemical synthesis are highlighted in detail, deep insights into the roles of carbon dots in various systems combining with the photocatalytic mechanisms are provided. Finally, several critical issues remaining in photocatalysis field are also proposed.
Collapse
Affiliation(s)
- Yue Yu
- State Key Laboratory of Supramolecular Structure and MaterialsCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Qingsen Zeng
- State Key Laboratory of Supramolecular Structure and MaterialsCollege of ChemistryJilin UniversityChangchun130012P. R. China
- Department of Materials Science and EngineeringSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
| | - Songyuan Tao
- State Key Laboratory of Supramolecular Structure and MaterialsCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Chunlei Xia
- State Key Laboratory of Supramolecular Structure and MaterialsCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Chongming Liu
- State Key Laboratory of Supramolecular Structure and MaterialsCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Pengyuan Liu
- State Key Laboratory of Supramolecular Structure and MaterialsCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and MaterialsCollege of ChemistryJilin UniversityChangchun130012P. R. China
| |
Collapse
|
15
|
Liu J, Zhan Y, Qiu B, Lin Z, Guo L. Portable Smartphone Platform Based on Aggregation-Induced Enhanced Emission Carbon Dots for Ratiometric Quantitative Sensing of Fluoride Ions. ACS Sens 2023; 8:884-892. [PMID: 36657970 DOI: 10.1021/acssensors.2c02589] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The development of an instrument-free, on-site, real-time, sensitive, and visualized fluoride-ion (F-) content rapid detection strategy is crucial to ensuring the health of the population. Smart microdevices that are portable, directly read, and easy to operate have recently attracted much attention. Herein, a ratiometric fluorescent probe (AA-CDs@[Ru(bpy)3]2+)-based smartphone sensing platform was developed for the detection of F-. The red fluorescent ruthenium bipyridine [Ru(bpy)3]2+ molecule was chosen as the reference signal, and the carbon dots (AA-CDs) with Al3+ aggregation-induced enhanced emission (AIE) were designed as the response signal. The ratiometric probe fluorescence changed continuously from red to cyan in response to different concentrations of F-, and the red-green-blue (RGB) channel values of the fluorescence image were extracted through the smartphone color recognition application (APP). There was a linear relationship between the blue-red (B/R) ratio and the F- concentration, with a limit of detection (LOD) of 1.53 μM, far below the allowable content of F- in drinking water prescribed by the World Health Organization. The F- content was rapidly detected on-site with satisfactory repeatability and relative standard deviation using several water and toothpaste samples as the real sample. The platform features low cost, portability, easy operation, and good stability, selectivity, and repeatability, which provides a powerful tool for the visual quantitative detection of smartphone-based microsensing platforms possibly in the fields of environmental protection, diagnosis, and food safety assessment.
Collapse
Affiliation(s)
- Jingjing Liu
- Fujian Universities and Colleges Engineering Research Center of Soft Plastic Packaging Technology for Food, Fujian Polytechnic Normal University, Fuqing, Fujian Province 350300, P. R. China
| | - Yuanjin Zhan
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and Chem, Fudan University, Shanghai 200433, P. R. China
| | - Bin Qiu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350116, PR China
| | - Zhenyu Lin
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350116, PR China
| | - Longhua Guo
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350116, PR China.,Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, PR China
| |
Collapse
|
16
|
Reva Y, Jana B, Langford D, Kinzelmann M, Bo Y, Schol PR, Scharl T, Zhao X, Crisp RW, Drewello T, Clark T, Cadranel A, Guldi DM. Understanding the Visible Absorption of Electron Accepting and Donating CNDs. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2207238. [PMID: 36748284 DOI: 10.1002/smll.202207238] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/23/2022] [Indexed: 06/18/2023]
Abstract
Carbon nanodots (CNDs) synthesized from citric acid and formyl derivatives, that is, formamide, urea, or N-methylformamide, stand out through their broad-range visible-light absorbance and extraordinary photostability. Despite their potential, their use has thus far been limited to imaging research. This work has now investigated the link between CNDs' photochemical properties and their chemical structure. Electron-rich, yellow carbon nanodots (yCNDs) are obtained with in situ addition of NaOH during the synthesis, whereas otherwise electron-poor, red carbon nanodots (rCNDs) are obtained. These properties originate from the reduced and oxidized dimer of citrazinic acid within the matrix of yCNDs and rCNDs, respectively. Remarkably, yCNDs deposited on TiO2 give a 30% higher photocurrent density of 0.7 mA cm-2 at +0.3 V versus Ag/AgCl under Xe-lamp irradiation (450 nm long-pass filter, 100 mW cm-2 ) than rCNDs. The difference in overall photoelectric performance is due to fundamentally different charge-transfer mechanisms. These depend on either the electron-accepting or the electron-donating nature of the CNDs, as is evident from photoelectrochemical tests with TiO2 and NiO and time-resolved spectroscopic measurements.
Collapse
Affiliation(s)
- Yana Reva
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Physical Chemistry I, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058, Erlangen, Germany
| | - Bikash Jana
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Physical Chemistry I, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058, Erlangen, Germany
- Technion - Israel Institute of Technology, Schulich Faculty of Chemistry, Technion, Haifa, 3200008, Israel
| | - Daniel Langford
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Physical Chemistry I, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058, Erlangen, Germany
| | - Marina Kinzelmann
- Department of Chemistry and Pharmacy, Physical Chemistry I, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058, Erlangen, Germany
| | - Yifan Bo
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Physical Chemistry I, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058, Erlangen, Germany
- Department of Chemistry and Pharmacy, Computer-Chemistry Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nägelsbachstrasse 25, 91052, Erlangen, Germany
| | - Peter R Schol
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Physical Chemistry I, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058, Erlangen, Germany
| | - Tobias Scharl
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Physical Chemistry I, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058, Erlangen, Germany
| | - Xinyi Zhao
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Physical Chemistry I, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058, Erlangen, Germany
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Ryan W Crisp
- Department of Chemistry and Pharmacy, Chair of Chemistry of Thin Film Materials, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 3, 91058, Erlangen, Germany
| | - Thomas Drewello
- Department of Chemistry and Pharmacy, Physical Chemistry I, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058, Erlangen, Germany
| | - Timothy Clark
- Department of Chemistry and Pharmacy, Computer-Chemistry Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nägelsbachstrasse 25, 91052, Erlangen, Germany
| | - Alejandro Cadranel
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Physical Chemistry I, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058, Erlangen, Germany
| | - Dirk M Guldi
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Physical Chemistry I, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058, Erlangen, Germany
| |
Collapse
|
17
|
Hebbar A, Selvaraj R, Vinayagam R, Varadavenkatesan T, Kumar PS, Duc PA, Rangasamy G. A critical review on the environmental applications of carbon dots. CHEMOSPHERE 2023; 313:137308. [PMID: 36410502 DOI: 10.1016/j.chemosphere.2022.137308] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/28/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
The discovery of zero-dimensional carbonaceous nanostructures called carbon dots (CDs) and their unique properties associated with fluorescence, quantum confinement and size effects have intrigued researchers. There has been a substantial increase in the amount of research conducted on the lines of synthesis, characterization, modification, and enhancement of properties by doping or design of composite materials, and a diversification of their applications in sensing, catalysis, optoelectronics, photovoltaics, and imaging, among many others. CDs fulfill the need for inexpensive, simple, and continuous environmental monitoring, detection, and remediation of various contaminants such as metals, dyes, pesticides, antibiotics, and other chemicals. The principles of green chemistry have also prompted researchers to rethink novel modes of nanoparticle synthesis by incorporating naturally available carbon precursors or developing micro reactor-based techniques. Photocatalysis using CDs has introduced the possibility of utilizing light to accelerate redox chemical transformations. This comprehensive review aims to provide the reader with a broader perspective of carbon dots by encapsulating the concepts of synthesis, characterization, applications in contaminant detection and photocatalysis, demerits and research gaps, and potential areas of improvement.
Collapse
Affiliation(s)
- Akshatha Hebbar
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Raja Selvaraj
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Ramesh Vinayagam
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Thivaharan Varadavenkatesan
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Ponnusamy Senthil Kumar
- Green Technology and Sustainable Development in Construction Research Group, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Vietnam.
| | - Pham Anh Duc
- Faculty of Safety Engineering, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Vietnam
| | - Gayathri Rangasamy
- University Centre for Research and Development & Department of Civil Engineering, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| |
Collapse
|
18
|
Applications of Fluorescent Carbon Dots as Photocatalysts: A Review. Catalysts 2023. [DOI: 10.3390/catal13010179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Carbon dots (CDs) have attracted considerable interest from the scientific community due to their exceptional properties, such as high photoluminescence, broadband absorption, low toxicity, water solubility and (photo)chemical stability. As a result, they have been applied in several fields, such as sensing, bioimaging, artificial lighting and catalysis. In particular, CDs may act as sole photocatalysts or as part of photocatalytic nanocomposites. This study aims to provide a comprehensive review on the use of CDs as sole photocatalysts in the areas of hydrogen production via water splitting, photodegradation of organic pollutants and photoreduction and metal removal from wastewaters. Furthermore, key limitations preventing a wider use of CDs as photocatalysts are pointed out. It is our hope that this review will serve as a basis on which researchers may find useful information to develop sustainable methodologies for the synthesis and use of photocatalytic CDs.
Collapse
|
19
|
Kasprzyk W, Świergosz T, Romańczyk PP, Feldmann J, Stolarczyk JK. The role of molecular fluorophores in the photoluminescence of carbon dots derived from citric acid: current state-of-the-art and future perspectives. NANOSCALE 2022; 14:14368-14384. [PMID: 36156633 DOI: 10.1039/d2nr03176k] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Carbon dots (CDs), an emerging class of nanomaterials, have attracted considerable attention due to their intriguing photophysical properties. Despite their indisputable potential of utilization in many fascinating areas of research and life, some fundamental aspects concerning their structure and the origin of their photoluminescence (PL) properties still await clarification. The mechanism of PL emission of CDs is associated with their structure, which is dependent on the carbonization process. At the initial stages of CD synthesis via a bottom-up approach, molecular fluorophores are considered to dominate the optical characteristics of the resulting nanomaterials. In this review, the recent progress in the use of molecular state theory for explanation of the structure-property relationship in CDs is summarized. This review focuses exclusively on the molecular fluorophores existing in nanomaterials prepared from citric acid (CA) as one of the most frequent carbon sources reported for the bottom-up synthesis of CDs. Consequently, the most relevant transformations of CA and the history of molecular fluorophores derived from it are described, followed by an in-depth discussion on their relevance in understanding the specific photophysical properties of blue-, green-, and red-emitting CDs. Finally, the challenging issues and future perspectives of molecular state PL mechanism exploration in CDs are highlighted.
Collapse
Affiliation(s)
- Wiktor Kasprzyk
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland.
| | - Tomasz Świergosz
- Department of Chemical Technology and Environmental Analysis, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland
| | - Piotr P Romańczyk
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland.
| | - Jochen Feldmann
- Chair for Photonics and Optoelectronics, Nano-Institute Munich, Department of Physics, Ludwig-Maximilians-Universität München, Königinstrasse 10, Munich, 80539, Germany
| | - Jacek K Stolarczyk
- Chair for Photonics and Optoelectronics, Nano-Institute Munich, Department of Physics, Ludwig-Maximilians-Universität München, Königinstrasse 10, Munich, 80539, Germany
- Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348 Krakow, Poland
| |
Collapse
|
20
|
Ke Y, Zhang J, Liu L, Li X, Liang Q, Li Z. Self-Assembled Zeolitic Imidazolate Framework/CdS Hollow Microspheres with Efficient Charge Separation for Enhanced Photocatalytic Hydrogen Evolution. Inorg Chem 2022; 61:10598-10608. [PMID: 35763666 DOI: 10.1021/acs.inorgchem.2c01697] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Enhanced interfacial charge separation is of great importance to high-efficiency photocatalytic hydrogen production. Herein, we successfully fabricated novel ZIF-67/CdS hollow sphere (HS) and ZIF-8/CdS HS heterostructures through an in situ self-assembly process, in which ZIF-67 and ZIF-8 are closely coated on CdS HSs to form "double-shell"-like structures. This hierarchical heterostructure with porous outer layers on the surface of CdS HSs can expose accessible active sites and possess close contact. Upon visible-light illumination, the optimal proportion of ZIF-67/CdS HS displays a hydrogen generation rate of 1721 μmol g-1 h-1, which is 11.9 and 3.1 times higher than that of a pure CdS HS (145 μmol g-1 h-1) and ZIF-8/CdS HS (555 μmol g-1 h-1), respectively. The proposed photocatalytic mechanism is explored: ZIF-8/CdS HS follows the type-II mechanism, and ZIF-67/CdS HS follows the Z-scheme mechanism. The reason for the higher photocatalytic activity of ZIF-67/CdS HS is that ZIF-67 not merely with a porous structure facilitates the diffusion of H2 gas, but with a well-matched band structure promotes charge transfer and separation.
Collapse
Affiliation(s)
- Yi Ke
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, P. R. China
| | - Jian Zhang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, P. R. China
| | - Lijuan Liu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, P. R. China
| | - Xiazhang Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, P. R. China
| | - Qian Liang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, P. R. China
| | - Zhongyu Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, P. R. China.,School of Environmental & Safety Engineering, Changzhou University, Changzhou 213164, P. R. China
| |
Collapse
|
21
|
Lv S, Liu D, Sun Y, Li M, Zhou Y, Song C, Wang D. Graphene oxide coupled high-index facets CdZnS with rich sulfur vacancies for synergistic boosting visible-light-catalytic hydrogen evolution in natural seawater: Experimental and DFT study. J Colloid Interface Sci 2022; 623:34-43. [PMID: 35561574 DOI: 10.1016/j.jcis.2022.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/13/2022] [Accepted: 05/02/2022] [Indexed: 12/26/2022]
Abstract
Constructing photocatalysts with high activity and anti-photocorrosion is a key to harvesting hydrogen energy from seawater efficiently. Herein, graphene oxide closely coupled high-index facets CdZnS with rich sulfur vacancies (Vs-CZS@GO) has been successfully synthesized via one-pot sulfidation accompanied pyrolysis. DFT calculation confirmed the delicate surface/interface/defect engineering endowed high-index facets Vs-CZS@GO with a lower ΔGH* value and significant charge transfer behavior for efficient H2-generation. The synergistic effect of sulfur vacancy, high-index facets, and tightly coupling interface not only enhanced intrinsic active sites and carrier separation efficiencies, but also greatly promoted H2 evolution rate and stability. Consequently, Vs-CZS@GO displayed a significantly high H2-generation rate of 23.2 mmol∙g-1∙h-1 in natural seawater under visible-light irradiation, which is up to 82% of that in pure water. This work provides deeply insight into the synergistic regulation of electronic structure for exposed high-index facets photocatalysts via defect engineering and interface engineering for synergistic boosting visible-light-to-H2 evolution.
Collapse
Affiliation(s)
- Shuhua Lv
- College of Materials Science and Engineering, Qingdao University of Science & Technology, Qingdao 266042, Shandong, PR China
| | - Dongzheng Liu
- Key Lab of Inorganic Synthesis and Applied Chemistry, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Yuanyuan Sun
- College of Materials Science and Engineering, Qingdao University of Science & Technology, Qingdao 266042, Shandong, PR China
| | - Mingxuan Li
- Key Lab of Inorganic Synthesis and Applied Chemistry, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Yanhong Zhou
- Key Lab of Inorganic Synthesis and Applied Chemistry, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Caixia Song
- College of Materials Science and Engineering, Qingdao University of Science & Technology, Qingdao 266042, Shandong, PR China.
| | - Debao Wang
- Key Lab of Inorganic Synthesis and Applied Chemistry, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| |
Collapse
|