1
|
Liu JC, Li T, Yu H, Huang JY, Li PX, Ruan ZY, Liao PY, Ou C, Feng Y, Tong ML. Integrating Molecular Motions in Ternary Cocrystals for NIR-II Photothermal Conversion. Angew Chem Int Ed Engl 2025; 64:e202413805. [PMID: 39140900 DOI: 10.1002/anie.202413805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 08/15/2024]
Abstract
Organic photothermal conversion materials hold immense promise for various applications owing to their structural flexibility. Recent research has focused on enhancing near-infrared (NIR) absorption and mitigating radiative transition processes. In this study, we have developed a viable approach to the design of photothermal conversion materials through the construction of ternary organic cocrystals, by introducing a third component as a molecular blocker and motion unit into a binary donor-acceptor system. Superstructural and photophysical properties of the ternary cocrystals were characterized using various spectroscopic techniques. The role of the molecular blocker in radical stabilization and photothermal conversion was demonstrated. Intriguingly, the motions of the entire pyrene molecules in the cocrystal have been observed by the results of variable temperature single-crystal X-ray diffraction. The excellent performance of the ternary cocrystal as a photothermal material was validated through efficient NIR-II photothermal and solar-driven water evaporation experiments. The efficiency of water evaporation reached 88.7 %, with a corresponding evaporation rate of 1.29 kg m-2 h-1, representing excellent performance among pure organic small molecular photothermal conversion materials. Our research underscores the introduction of molecular blockers and motion units to stabilize radicals and produce outstanding photothermal conversion materials, offering new pathways for developing efficient and stable photothermal conversion materials.
Collapse
Affiliation(s)
- Jia-Chuan Liu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Tao Li
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
- Department of Chemistry and Biochemistry, The University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma, 73019, United States
| | - Huiru Yu
- Department of Chemistry and Biochemistry, The University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma, 73019, United States
| | - Jim Y Huang
- Department of Chemistry and Biochemistry, The University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma, 73019, United States
| | - Pei-Xian Li
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Ze-Yu Ruan
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Pei-Yu Liao
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Chenxin Ou
- Department of Chemistry and Biochemistry, The University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma, 73019, United States
| | - Yuanning Feng
- Department of Chemistry and Biochemistry, The University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma, 73019, United States
| | - Ming-Liang Tong
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| |
Collapse
|
2
|
Wang Z, Liu Y, Quan X, Zhang W, Tan R, Gu H, Sheng C, Duan C, Xing P, Wan JH. Planar Chiral Charge-Transfer Cyclophanes: Convenient Synthesis, Circularly Polarized Light-Responsive Photothermal Conversion and Supramolecular Chiral Assembly. Angew Chem Int Ed Engl 2025; 64:e202413295. [PMID: 39374321 DOI: 10.1002/anie.202413295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/22/2024] [Accepted: 10/07/2024] [Indexed: 10/09/2024]
Abstract
We report herein a series of macrocycles in which the densely π-stacked charge-transfer (CT) donor/acceptor with naphthalenediimides (NDIs) or perylene diimide (PDI) as acceptor moiety pairing various donor moieties are locked by covalent bond. The X-ray crystallography of C8BDT-NDI reveals a short intramolecular π-stacking distance around 3.4 Å and the existence of intermolecular donor/acceptor π-stacking (3.7 Å). The intramolecular CT is highly dependent on the electron-donating ability of donor moiety and replacing carbazole (C8KZ) with benzo[1,2-b:4,5-b']dithiophene (C8BDT) or dihydroindolo[3,2-b]indole (C8DN) redshift CT absorption into NIR region. Notably, both C8BDT-NDI and C8DN-NDI demonstrate excellent photothermal performance, which is a result of the active non-radiative pathways. Interestingly, the different molecular symmetry between donor and acceptor moiety in cyclophanes endow C8BDT-NDI and C8DN-NDI with intrinsic planar chirality. The enantiomeric C8BDT-NDI shows chiral selectivity for incident light, i.e., when irradiated by left-circularly polarized light, (R)-C8BDT-NDI is more sensitive and a higher maximum stable temperature is achieved. While, enantiomeric C8DN-NDI pack with different orientations forming M- and P-handedness helix, respectively, demonstrating molecular planar chirality being transferred and amplified through molecular assembly. These results provide insight into the intramolecular charge transfer in enforced D/A π-stacks in which CT interactions and planar chirality would be engineered through structural control.
Collapse
Affiliation(s)
- Zhengyan Wang
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 310012, P. R. China
| | - Yiping Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, People's Republic of China
| | - Xiuni Quan
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 310012, P. R. China
| | - Wenxuan Zhang
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 310012, P. R. China
| | - Renjun Tan
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 310012, P. R. China
| | - Hao Gu
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 310012, P. R. China
| | - Chunqi Sheng
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 310012, P. R. China
| | - Chunbo Duan
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, China
| | - Pengyao Xing
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, People's Republic of China
| | - Jun-Hua Wan
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 310012, P. R. China
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| |
Collapse
|
3
|
Wang X, Wang Z, Wang X, Kang F, Gu Q, Zhang Q. Recent Advances of Organic Cocrystals in Emerging Cutting-Edge Properties and Applications. Angew Chem Int Ed Engl 2024; 63:e202416181. [PMID: 39305144 DOI: 10.1002/anie.202416181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Indexed: 11/01/2024]
Abstract
Organic cocrystals, representing one type of new functional materials, have gathered significant interest in various engineering areas. Owing to their diverse stacking modes, rich intermolecular interactions and abundant functional components, the physicochemical properties of organic cocrystals can be tailored to meet different requirements and exhibit novel characteristics. The past few years have witnessed the rapid development of organic cocrystals in both fundamental characteristics and various applications. Beyond the typical properties like ambipolarity, emission tuning ability, ferroelectricity, etc. that are previously well demonstrated, many novel, impressive and cutting-edge properties and applications of cocrystals are also emerged and advanced recently. Especially during the nearest five years, photothermal conversion, room-temperature phosphorescence, thermally activated delay fluorescence, circularly polarized luminescence, organic solid-state lasers, near-infrared sensing, photocatalysis, batteries, and stimuli responses have been reported. In this review, these new properties are carefully summarized. Besides, some neoteric architecture and methodologies, such as host-guest structures and machine learning-based screening, are introduced. Finally, the potential future developments and expectations for organic cocrystals are discussed for further investigations on multiple functions and applications.
Collapse
Affiliation(s)
- Xin Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Zongrui Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiang Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Fangyuan Kang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Qianfeng Gu
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Qichun Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, P. R. China
- Department of Chemistry, Center of Super-Diamond and Advanced Films (COSDAF) & Hong Kong Institute of Clean Energy (HKICE), City University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| |
Collapse
|
4
|
Cruz-Cabeza AJ, Spackman PR, Hall AV. The interplay between hydrogen bonds and stacking/T-type interactions in molecular cocrystals. Commun Chem 2024; 7:284. [PMID: 39623048 PMCID: PMC11612442 DOI: 10.1038/s42004-024-01380-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/26/2024] [Indexed: 12/06/2024] Open
Abstract
Supramolecular synthon and hydrogen bond pairing approaches have influenced the understanding of cocrystal formation for decades, but are hydrogen bonds really the dominant interaction in cocrystals? To investigate this, an extensive analysis of 1:1 two-component cocrystals in the Cambridge Structural Database was undertaken, revealing that stacking and T-type interactions are just as, if not more important than hydrogen bonds in molecular cocrystals. A total of 84% of the most common coformers in the dataset are aromatic. When analysing cocrystal dimers, only 20% consist of solely strong hydrogen bonds, with over 50% of contacts involving stacking and T-type interactions. Combining interaction strength and frequency, both hydrogen bond and stacking/T-type interactions contribute equally to the stabilisation of cocrystal lattices. Therefore, we state that crystal engineering and cocrystal design concepts of the future should not solely revolve around supramolecular synthon pairing via hydrogen bonds, but instead consider optimising both hydrogen bonding and stacking/T-type interactions.
Collapse
Affiliation(s)
| | - Peter R Spackman
- School of Molecular and Life Sciences, Curtin University, Perth, WA, 6845, Australia
| | - Amy V Hall
- Department of Chemistry, Durham University, Durham, DH1 3LE, UK.
| |
Collapse
|
5
|
Lang L, Bowling NP, Bosch E. Formation of Planar π-Conjugated Sheets in Cocrystals of Bis(iodoethynyl)pyridines and Bipyrimidylalkynes: Cooperative C-H···N Hydrogen Bonds and sp-C-I···N Halogen Bonds. CRYSTAL GROWTH & DESIGN 2024; 24:9727-9734. [PMID: 39583626 PMCID: PMC11583210 DOI: 10.1021/acs.cgd.4c01264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/26/2024]
Abstract
The cocrystallization of the ditopic halogen bond donors 2,5-, 2,6-, 3,5-bis(iodoethynyl)pyridines with the dipyrimidyls 1,2-bis(5-pyrimidyl)ethyne and 1,4-bis(5-pyrimidyl)butadiyne is explored. The cocrystal components have complementary shapes and functional groups so that the noncovalent C-I···N halogen bonding and C-H···N hydrogen bonding interactions are complementary resulting in 1:1 cocrystals with the ditopic halogen bond accepting bipyrimidyls. The cocrystals feature π-stacked planar sheets of alternating bis(iodoalkynes) and bipyrimidyls held together in one direction by I···N halogen bonds and in the roughly orthogonal direction by pyridine-pyridine and pyrimidine-pyrimidine C-H···N hydrogen bonds.
Collapse
Affiliation(s)
- Lydia
B. Lang
- Department
of Chemistry and Biochemistry, Missouri
State University, 901 South National Avenue, Springfield, Missouri 65897, United States
| | - Nathan P. Bowling
- Department
of Chemistry, University of Wisconsin-Stevens
Point, 2101 Fourth Avenue, Stevens Point, Wisconsin 54481, United States
| | - Eric Bosch
- Department
of Chemistry and Biochemistry, Missouri
State University, 901 South National Avenue, Springfield, Missouri 65897, United States
| |
Collapse
|
6
|
Yin Z, Xie Z, Zhang X, Xue Y, Zhang D, Liu B. Cocrystallization-Induced Red Ultralong Organic Phosphorescence. Angew Chem Int Ed Engl 2024:e202417868. [PMID: 39444192 DOI: 10.1002/anie.202417868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/23/2024] [Accepted: 10/23/2024] [Indexed: 10/25/2024]
Abstract
Organic cocrystals formed through multicomponent self-assembly have attracted significant interest owing to their clear structure and tunable optical properties. However, most cocrystal systems suffer from inefficient long-wavelength emission and low phosphorescence efficiency due to strong non-radiative processes governed by the energy gap law. Herein, an efficient long-lived red afterglow is achieved using a pyrene (Py) cocrystal system incorporating a second component (NPYC4) with thermally activated delayed fluorescence (TADF) and ultralong organic phosphorescence (UOP) properties. The cocrystal (NPYC4-Py) not only inherits the excellent luminescence of its monomeric counterparts, but also exhibits unique dual-mode characteristics, including persistent TADF and UOP emission with a high quantum yield of 58 % and a lifetime of 362 ms. The precise cocrystal stacking distinctly reveals that intermolecular interactions lock the cocrystal formation and weaken the intermolecular π-π interactions between NPYC4 and Py, thereby stabilizing the excited triplet excitons. Furthermore, the favorable energy level of NPYC4 acts as a bridge, reducing the energy gap between the S1 and T1 states for Py, therefore activating its red phosphorescence from Py. This research provides direct insights into achieving efficient red UOP through co-crystallization.
Collapse
Affiliation(s)
- Zheng Yin
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zongliang Xie
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Xianhe Zhang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Yufeng Xue
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Deqing Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| |
Collapse
|
7
|
Ren S, Qiao GY, Wu JR. Supramolecular-macrocycle-based functional organic cocrystals. Chem Soc Rev 2024; 53:10312-10334. [PMID: 39240538 DOI: 10.1039/d4cs00654b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Supramolecular macrocycles, renowned for their remarkable capabilities in molecular recognition and complexation, have emerged as pivotal elements driving advancements across various innovative research fields. Cocrystal materials, an important branch within the realm of crystalline organic materials, have garnered considerable attention owing to their simple preparation methods and diverse potential applications, particularly in optics, electronics, chemical sensing and photothermal conversion. In recent years, macrocyclic entitles have been successfully brought into this field, providing an essential and complementary channel to create novel functional materials, especially those with multiple functionalities and smart stimuli-responsiveness. In this Review, we present an overview of the research efforts on functional cocrystals constructed with macrocycles, covering their design principles, preparation strategies, assembly modes, and diverse functions and applications. Finally, the remaining challenges and perspectives are outlined. We anticipate that this review will serve as a valuable and timely reference for researchers interested in supramolecular crystalline materials and beyond, catalyzing the emergence of more original and innovative studies in related fields.
Collapse
Affiliation(s)
- Susu Ren
- Department of Materials Science, School of Materials Science and Engineering, Jilin University, Changchun 130012, P. R. China.
| | - Guan-Yu Qiao
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Changchun 130041, P. R. China
| | - Jia-Rui Wu
- Department of Materials Science, School of Materials Science and Engineering, Jilin University, Changchun 130012, P. R. China.
| |
Collapse
|
8
|
Jiang JH, Zhao S, Zhang JX, Lv ZJ, Song J, Sun Y, Liao LS, Wang XD. Scalable Synthesis of Organic Core/Shell Architectures toward Dual-Wavelength Optical Waveguides. NANO LETTERS 2024. [PMID: 39373283 DOI: 10.1021/acs.nanolett.4c03330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Organic core/shell heterostructures have undergone rapid progress in materials chemistry owing to the integration of a wide array of unique properties. Nonetheless, the intricate challenge of regulating homogeneous nucleation and phase separation processes in excessively analogous cocrystal structures presents a formidable barrier to expanding the synthesis strategy for organic core/shell heterostructures. Herein, we successfully achieved a phase separation growth process facilitated by the organic alloy interface layer through a dynamic visualization to capture the intricate morphological evolution. By finely regulating the nucleation process, homogeneous self-assembly induced by high chemical and structural compatibility is circumvented, enabling the formation of organic core/shell heterostructures. Notably, this core/shell architecture boasts dual-wavelength emission at 496 and 696 nm, accompanied by an optical loss coefficient of 0.092 dB per micrometer. This methodology shows potential for extending to the scalable design of other conformational cocrystal heterostructure systems, thereby offering valuable insights into the realm of organic photonics.
Collapse
Affiliation(s)
- Jia-Hao Jiang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, PR China
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, PR China
| | - Shuai Zhao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Jia-Xuan Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Zhao-Ji Lv
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Jian Song
- School of Microelectronics, Shanghai University, Shanghai, 201800, PR China
| | - Yanqiu Sun
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, PR China
| | - Liang-Sheng Liao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, PR China
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa 999078, Macau, SAR, PR China
| | - Xue-Dong Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, PR China
| |
Collapse
|
9
|
Sundareswaran T, Jagan R, Karthikeyan N, Boaz BM. Rational analysis of hydrogen bonding interaction in phenazine, 2-hydroxynaphthalene (1:1) cocrystal: from molecular modeling to photophysical properties. J Mol Model 2024; 30:351. [PMID: 39331244 DOI: 10.1007/s00894-024-06128-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 08/29/2024] [Indexed: 09/28/2024]
Abstract
CONTEXT Organic cocrystals have a wide range of applications in the field of optics due to their photo responsive property. We present here a newly synthesized phenazine 2-hydroxynaphthalene (1:1) cocrystal, its structural and theoretical calculations which tend to the nonlinear optical property. In the crystal structure of the title cocrystal, the phenazine and 2-hydroxynaphthalene molecules from one- and two-dimensional supramolecular frameworks via O‒H…N hydrogen bonds and C‒H…N, C‒H…π interaction, respectively. The phenazine molecules from an infinite off-set stacking through π…π interaction in the three-dimensional molecular packing of the title cocrystal. The contribution of intermolecular interaction in the three-dimensional molecular packing and the interaction energy calculation is studied by the Hirshfeld surface analysis. The molecular geometry retrieved from the experimental X-ray diffraction analysis is in good agreement with the theoretically calculated parameters. Further, the molecular electrostatic potential (MEP) and frontier molecular orbital (FMO) analysis have been carried out to study the charge distribution and molecular reactive mechanism. Third-order nonlinear optical property of the cocrystals has been analyzed by Z-scan measurements. The determined nonlinear optical absorption coefficient value 6.442 × 10-05 (m/W) and the nonlinear refractive index value - 5.535 × 10-2 (m/W) suggest that the crystalline solid can be a good choice of potential nonlinear optical material. METHOD The crystal structures of phenazine 2-hydroxynaphthalene cocrystal was solved by direct methods procedure using SHELXS program and refined by full-matrix least square procedure on F2 using SHELXL-2018 program on Olex2 software. The computational calculation has been carried out using DFT/B3LYP quantum chemical function with triple zeta 6-311 + + basis set in the ground state molecular stability using Gaussian 09W program suite. The Hirshfeld surface analysis mapping, associated 2D fingerprint plot, and intermolecular molecular interaction energy calculations were carried out using CrystalExplorer (version 21.5) software.
Collapse
Affiliation(s)
- T Sundareswaran
- Department of Science and Humanities, R.M.K. College of Engineering and Technology, Puduvoyal, Tamil Nadu, 601206, India.
- Department of Physics, Presidency College, Chennai, Tamil Nadu, 600005, India.
| | - R Jagan
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, Saint Louis, MO, 63121, USA
| | - N Karthikeyan
- Department of Physics, Anna University, Chennai, Tamil Nadu, 600025, India
| | - B Milton Boaz
- Department of Physics, Presidency College, Chennai, Tamil Nadu, 600005, India.
| |
Collapse
|
10
|
Xiao Y, Wu C, Liu Y, Zhou L, Wu S, Yin Q. Biocompatible Nano-Cocrystal Engineering for Targeted Herbicide Delivery: Enhancing Efficacy through Stimuli-Responsive Release and Reduced Environmental Losses. ACS APPLIED MATERIALS & INTERFACES 2024; 16:51283-51300. [PMID: 39255044 DOI: 10.1021/acsami.4c08206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
In addressing the critical challenges posed by the misuse and inefficiency of traditional pesticides, we introduce a Nano-Cocrystal material composed of the herbicide clopyralid and coformer phenazine. Developed through synergistic supramolecular self-assembly and mechanochemical nanotechnology, this Nano-Cocrystal significantly enhances pesticide performance. It exhibits a marked improvement in stability, with reductions in hygroscopicity and volatility by approximately 38%. Moreover, it intelligently modulates release according to environmental factors, such as temperature, pH, and soil inorganic salts, demonstrating decreased solubility by up to four times and improved wettability and adhesion on leaf surfaces. Importantly, the herbicidal activity surpasses that of pure clopyralid, increasing suppression rates of Medicago sativa L. and Oxalis corniculata L. by up to 27% at the highest dosage. This Nano-Cocrystal also shows enhanced crop safety and reduced genotoxicity compared to conventional formulations. Offering a blend of simplicity, cost-effectiveness, and robust stability, our findings contribute a sustainable solution to agricultural practices, favoring the safety of nontarget organisms.
Collapse
Affiliation(s)
- Yuntian Xiao
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| | - Chuanhua Wu
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| | - Yongkang Liu
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| | - Ling Zhou
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Songgu Wu
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Qiuxiang Yin
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
11
|
Yang YZ, Rong Y, Li YY, Ma M, Chen D, Lu H, Wu C, Shen B, Guan JP, Zhuo MP. Rationally Integrating Charge-Transfer Cocrystal and Ni(II) Organometallics for Visualized Photo/Thermochromic Sensors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:42726-42735. [PMID: 39094052 DOI: 10.1021/acsami.4c09071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Smart materials demonstrate fascinating responses to environmental physical/chemical stimuli, including thermal, photonic, electronic, humidity, or magnetic stimuli, which have attracted intensive interest in material chemistry. However, their limited/harsh stimuli-responsive behavior or sophisticated postprocessing leads to enormous challenges for practical applications. Herein, we rationally designed and synthesized thermochromic Ni(II) organometallic [(C2H5)2NH2]2NiCl4-xBrx via a facile mechanochemical strategy, which demonstrated a reversible switch from yellow to blue color with a tunable phase-transition temperature from 75.6 to 61.7 °C. The simple electrospinning technology was applied to fabricate thermochromic Ni(II) organometallic-based nanofiber membranes for temperature monitoring. Furthermore, the organic charge-transfer cocrystal with a wide spectral absorption of 300-1950 nm and a high-efficiency photothermal conversion was combined with thermochromic Ni(II) organometallics for the desired dual-stimuli photo/thermochromism. This work supplies a new strategy for realizing multiple stimuli-responsive applications, such as thermal/light sensor displays and information storage.
Collapse
Affiliation(s)
- You-Zhou Yang
- Key Laboratory of Flame Retardancy Finishing of Textile Materials (CNTAC), National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Yun Rong
- Key Laboratory of Flame Retardancy Finishing of Textile Materials (CNTAC), National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Yuan-Yuan Li
- Key Laboratory of Flame Retardancy Finishing of Textile Materials (CNTAC), National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Mengmeng Ma
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Dan Chen
- Key Laboratory of Flame Retardancy Finishing of Textile Materials (CNTAC), National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Hang Lu
- Key Laboratory of Flame Retardancy Finishing of Textile Materials (CNTAC), National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Chang Wu
- Key Laboratory of Flame Retardancy Finishing of Textile Materials (CNTAC), National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Boyuan Shen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Jin-Ping Guan
- Key Laboratory of Flame Retardancy Finishing of Textile Materials (CNTAC), National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Ming-Peng Zhuo
- Key Laboratory of Flame Retardancy Finishing of Textile Materials (CNTAC), National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| |
Collapse
|
12
|
Zhang JX, Zhao S, Jiang JH, Lv ZJ, Luo J, Shi Y, Lu Z, Wang XD. Organic Cocrystal Alloys: From Three Primary Colors to Continuously Tunable Emission and Applications on Optical Waveguides and Displays. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400313. [PMID: 38552249 DOI: 10.1002/smll.202400313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/07/2024] [Indexed: 08/17/2024]
Abstract
Multicolor luminescence of organic fluorescent materials is an essential part of lighting and optical communication. However, the conventional construction of a multicolor luminescence system based on integrating multiple organic fluorescent materials of a single emission band remains complicated and to be improved. Herein, organic alloys (OAs) capable of full-color emission are synthesized based on charge transfer (CT) cocrystals. By adjusting the molar ratio of electron donors, the emission color of the OAs can be conveniently and continuously regulated in a wide visible range from blue (CIE: 0.187, 0.277), to green (CIE: 0.301, 0.550), and to red (CIE: 0.561, 0.435). The OAs show analogous 1D morphology with smooth surface, allowing for full-color waveguides with low optical-loss coefficient. Impressively, full-color optical displays are easily achieved through the OAs system with continuous emission, which shows promising applications in the field of optical display and promotes the development of organic photonics.
Collapse
Affiliation(s)
- Jia-Xuan Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, P. R. China
| | - Shuai Zhao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Jia-Hao Jiang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Zhao-Ji Lv
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Jiahua Luo
- Department of Electrical and Electronics Engineering, School of Advanced Technology at Xi'an Jiaotong-Liverpool University (XJTLU), 111 Ren'ai Rd, Suzhou, Jiangsu, 215123, P. R. China
| | - Yingli Shi
- Department of Electrical and Electronics Engineering, School of Advanced Technology at Xi'an Jiaotong-Liverpool University (XJTLU), 111 Ren'ai Rd, Suzhou, Jiangsu, 215123, P. R. China
| | - Zhenhuan Lu
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, P. R. China
| | - Xue-Dong Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| |
Collapse
|
13
|
Li Y, Ok KM. Crystal clear: unveiling giant birefringence in organic-inorganic cocrystals. Chem Sci 2024; 15:10193-10199. [PMID: 38966371 PMCID: PMC11220600 DOI: 10.1039/d4sc02569e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 05/25/2024] [Indexed: 07/06/2024] Open
Abstract
Coplanar groups with large anisotropic polarizability are suitable as birefringence-active groups for investigating compounds with significant birefringence. In this study, the organic coplanar raw reagent, o-C5H5NO (4HP), was selected as an individual complement. Utilizing the cocrystal engineering strategy, we successfully designed two cocrystals: [LiNO3·H2O·4HP]·4HP (Li-4HP2) and [Mg(NO3)2·6H2O]·(4HP)2 (Mg-4HP), and one by-product: LiNO3·H2O·4HP (Li-4HP), which were grown using a mild aqua-solution method. The synergy of the coplanar groups of NO3 - and 4HP in the structures resulted in unexpectedly large birefringence values of 0.376-0.522@546 nm. Furthermore, the compounds exhibit large bandgaps (4.08-4.51 eV), short UV cutoff edges (275-278 nm), and favorable growth habits, suggesting their potential as short-wave UV birefringent materials.
Collapse
Affiliation(s)
- Yang Li
- Department of Chemistry, Sogang University Seoul 04107 Republic of Korea
| | - Kang Min Ok
- Department of Chemistry, Sogang University Seoul 04107 Republic of Korea
| |
Collapse
|
14
|
Cai YJ, Luo QX, Jiang QQ, Liu X, Chen XJ, Liu JL, Mao XL, Qi JX, Liang RP, Qiu JD. Hydrogen-Bonded Cocrystals Encapsulating CsPbBr3 Perovskite Nanocrystals with Enhancement of Charge Transport for Photocatalytic Reduction of Uranium. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310672. [PMID: 38229539 DOI: 10.1002/smll.202310672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/04/2024] [Indexed: 01/18/2024]
Abstract
At present, poor stability and carrier transfer efficiency are the main problems that limit the development of perovskite-based photoelectric technologies. In this work, hydrogen-bonded cocrystal-coated perovskite composite (PeNCs@NHS-M) is easily obtained by inducing rapid crystallization of melamine (M) and N-hydroxysuccinimide (NHS) with PeNCs as the nuclei. The outer NHS-M cocrystal passivates the undercoordinated lead atoms by forming covalent bonds, thereby greatly reducing the trap density while maintaining good structure stability for perovskite nanocrystals. Moreover, benefiting from the interfacial covalent band linkage and long-range ordered structures of cocrystals, the charge transfer efficiency is effectively enhanced and PeNCs@NHS-M displays superior photoelectric performance. Based on the excellent photoelectric performance and abundant active sites of PeNCs@NHS-M, photocatalytic reduction of uranium is realized. PeNCs@NHS-M exhibits U(VI) reduction removal capability of up to 810.1 mg g-1 in the presence of light. The strategy of cocrystals trapping perovskite nanocrystals provides a simple synthesis method for composites and opens up a new idea for simultaneously improving the stability and photovoltaic performance of perovskite.
Collapse
Affiliation(s)
- Yuan-Jun Cai
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Qiu-Xia Luo
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Qiao-Qiao Jiang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Xin Liu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Xiao-Juan Chen
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Jin-Lan Liu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Xiang-Lan Mao
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Jia-Xin Qi
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Ru-Ping Liang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Jian-Ding Qiu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, 330013, China
| |
Collapse
|
15
|
Liu Y, Zhang R, Zou N, Li H, Hu X, Fan W, Cheng Y, Zheng LY, Cao QE. A luminescent organic cocrystal for detecting 2,4-dinitroaniline. Talanta 2024; 273:125919. [PMID: 38513470 DOI: 10.1016/j.talanta.2024.125919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 03/23/2024]
Abstract
2,4-dinitroaniline (2,4DNBA), a significant hazardous chemical, is extensively used in industry and agriculture. The chemical accumulates in the environment for a long time, causing irreversible damage to the ecosystem. Currently, it is quite challenging to identify it by common analysis and detection techniques. Herein, a luminescent organic cocrystal (TCNB-8HQ) was prepared using 1,2,4,5-tetracyanobenzene (TCNB) as the electron acceptor and 8-hydroxyquinoline (8HQ) as the electron donor. The prepared TCNB-8HQ was used as a fluorescent probe with a fast and specific response to 2,4DNBA. This detection method possessed a linear range of 0.5-200 μmol/L with a detection limit as low as 0.085 μmol/L to detect 2,4DNBA in real samples with satisfactory spiking recovery. As revealed by fluorescence spectrum and UV-vis absorption spectrum, the detection mechanism involved competitive absorption between cocrystal material and 2,4DNBA. Moreover, the feasibility of the system was explored by preparing portable indicator strips for 2,4DNBA from organic cocrystal (TCNB-8HQ). This study not only provided an environmentally friendly gram-level preparation strategy to synthesize the fluorescent material but also investigated their application in chemical detection.
Collapse
Affiliation(s)
- Yanxiong Liu
- School of Chemical Science and Technology, Yunnan University, 2 Cuihu North Road, Kunming, Yunnan, 650091, China
| | - Ruiying Zhang
- School of Chemical Science and Technology, Yunnan University, 2 Cuihu North Road, Kunming, Yunnan, 650091, China
| | - Na Zou
- School of Chemical Science and Technology, Yunnan University, 2 Cuihu North Road, Kunming, Yunnan, 650091, China
| | - Hao Li
- School of Chemical Science and Technology, Yunnan University, 2 Cuihu North Road, Kunming, Yunnan, 650091, China
| | - Xin Hu
- School of Chemical Science and Technology, Yunnan University, 2 Cuihu North Road, Kunming, Yunnan, 650091, China
| | - Wenwen Fan
- School of Chemical Science and Technology, Yunnan University, 2 Cuihu North Road, Kunming, Yunnan, 650091, China
| | - Yi Cheng
- School of Chemical Science and Technology, Yunnan University, 2 Cuihu North Road, Kunming, Yunnan, 650091, China
| | - Li-Yan Zheng
- School of Chemical Science and Technology, Yunnan University, 2 Cuihu North Road, Kunming, Yunnan, 650091, China.
| | - Qiu-E Cao
- School of Chemical Science and Technology, Yunnan University, 2 Cuihu North Road, Kunming, Yunnan, 650091, China.
| |
Collapse
|
16
|
Abe A, Goushi K, Mamada M, Adachi C. Organic Binary and Ternary Cocrystal Engineering Based on Halogen Bonding Aimed at Room-Temperature Phosphorescence. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2211160. [PMID: 36920271 DOI: 10.1002/adma.202211160] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Recently, there has been intense interest in pure organic room-temperature phosphorescence (ORTP) from cocrystals composed of 1,4-diiodotetrafluorobenzene (DITFB) and a variety of polycyclic aromatic hydrocarbons (PAHs) or their derivatives. To expand the possibility of halogen bonding-based cocrystals, the relationship between the crystal packing motifs and ORTP characteristics in binary cocrystals composed of DITFB and PAHs of phenanthrene (Phen), chrysene (Chry), and pyrene (Pyr), respectively, is investigated. The σ-hole···π and π-hole···π interactions determine not only the crystal packing motifs but also photoluminescence quantum yields (PLQYs). The Phen-DITFB and Chry-DITFB binary cocrystals with σ-hole···π interactions show higher PLQY compared with the Pyr-DITFB binary cocrystal with π-hole···π interaction. Further, to clarify the effect of crystal structures on PLQY, ternary cocrystals are prepared by partially doping Pyr into Phen-DITFB. The crystal packing motif of the ternary cocrystal originates from a Phen-DITFB cocrystal with σ-hole···π interaction, and some of the Phen sites are randomly replaced with Pyr molecules. The ORTP emission is derived from Pyr. The maximum PLQY is >20% due to suppressing nonradiative decay by changing the crystal packing motif.
Collapse
Affiliation(s)
- Ayano Abe
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan
| | - Kenichi Goushi
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan
- International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan
| | - Masashi Mamada
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan
| | - Chihaya Adachi
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan
- International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan
| |
Collapse
|
17
|
Terlecki M, Kornowicz A, Sacharczuk K, Justyniak I, Lewiński J. Synthesis, polymorphism, and shape complementarity-induced co-crystallization of hexanuclear Co(II) clusters capped by a flexible heteroligand shell. Dalton Trans 2024; 53:7012-7022. [PMID: 38563241 DOI: 10.1039/d4dt00261j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Polymorphism and co-crystallization have gradually gained attention as new tools in the development of modern crystalline functional materials. However, the study on the selective self-assembly of metal clusters into multicomponent crystals is still in its infancy. Herein, we present the synthesis and characterization of two new heteroleptic hydroxido-acetato and acetato Co(II) clusters [Co6(OH)2(OAc)4(pyret)6] (1) and [Co6(OAc)6(pyret)6] (2) incorporating auxiliary 2-pyrrolidinoethoxylate (pyret) ligands. On this occasion, we revealed that the commonly used thermal procedure for dehydration of cobalt(II) acetate leads to a reagent comprising substantial contamination by cobalt hydroxido moieties. Comprehensive structural analysis of new compounds demonstrated intriguing crystal structure diversity of hydroxido-acetato cluster 1, which represents a rare example of both conformational and packing polymorphism in one compound, originating from the flexibility of organic O,N-ligands in the secondary coordination sphere. Furthermore, both clusters exhibit an interesting propensity for the selective formation of co-crystals 1·2 driven mainly by van der Waals forces and specific shape complementarity between co-formers.
Collapse
Affiliation(s)
- Michał Terlecki
- Faculty of Chemistry, Warsaw University of Technology, Noakowsiego 3, 00-664 Warsaw, Poland.
| | - Arkadiusz Kornowicz
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Kornel Sacharczuk
- Faculty of Chemistry, Warsaw University of Technology, Noakowsiego 3, 00-664 Warsaw, Poland.
| | - Iwona Justyniak
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Janusz Lewiński
- Faculty of Chemistry, Warsaw University of Technology, Noakowsiego 3, 00-664 Warsaw, Poland.
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
18
|
Liao Q, Li A, Huang A, Wang J, Chang K, Li H, Yao P, Zhong C, Xie P, Wang J, Li Z, Li Q. Controllable π-π coupling of intramolecular dimer models in aggregated states. Chem Sci 2024; 15:4364-4373. [PMID: 38516094 PMCID: PMC10952094 DOI: 10.1039/d3sc05533g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/17/2024] [Indexed: 03/23/2024] Open
Abstract
π-π coupling as a common interaction plays a key role in emissions, transport and mechanical properties of organic materials. However, the precise control of π-π coupling is still challenging owing to the possible interference from other intermolecular interactions in the aggregated state, usually resulting in uncontrollable emission properties. Herein, with the rational construction of intramolecular dimer models and crystal engineering, π-π coupling can be subtly modulated by conformation variation with balanced π-π and π-solvent interactions and visualized by green-to-blue emission switching. Moreover, it can rapidly respond to temperature, pressure and mechanical force, affording a facile way to modulate π-π coupling in situ. This work contributes to a deeper understanding of the internal mechanism of molecular motions in aggregated states.
Collapse
Affiliation(s)
- Qiuyan Liao
- Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, Department of Chemistry, TaiKang Center for Life and Medical Sciences, Wuhan University Wuhan 430072 China
| | - Aisen Li
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Fuzhou 350207 China
| | - Arui Huang
- Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, Department of Chemistry, TaiKang Center for Life and Medical Sciences, Wuhan University Wuhan 430072 China
| | - Jiaqiang Wang
- Institute of Molecular Aggregation Science, Tianjin University Tianjin 300072 China
| | - Kai Chang
- Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, Department of Chemistry, TaiKang Center for Life and Medical Sciences, Wuhan University Wuhan 430072 China
| | - Hehua Li
- Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, Department of Chemistry, TaiKang Center for Life and Medical Sciences, Wuhan University Wuhan 430072 China
| | - Pengfei Yao
- Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, Department of Chemistry, TaiKang Center for Life and Medical Sciences, Wuhan University Wuhan 430072 China
| | - Cheng Zhong
- Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, Department of Chemistry, TaiKang Center for Life and Medical Sciences, Wuhan University Wuhan 430072 China
| | - Peidong Xie
- Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, Department of Chemistry, TaiKang Center for Life and Medical Sciences, Wuhan University Wuhan 430072 China
| | - Jinfeng Wang
- Institute of Molecular Aggregation Science, Tianjin University Tianjin 300072 China
| | - Zhen Li
- Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, Department of Chemistry, TaiKang Center for Life and Medical Sciences, Wuhan University Wuhan 430072 China
- Institute of Molecular Aggregation Science, Tianjin University Tianjin 300072 China
| | - Qianqian Li
- Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, Department of Chemistry, TaiKang Center for Life and Medical Sciences, Wuhan University Wuhan 430072 China
| |
Collapse
|
19
|
Zhang MM, Chen SL, Bao AR, Chen Y, Liang H, Ji S, Chen J, Ye B, Yang Q, Liu Y, Li J, Chen W, Huang X, Ni S, Dang L, Li MD. Anion-Counterion Strategy toward Organic Cocrystal Engineering for Near-Infrared Photothermal Conversion and Solar-Driven Water Evaporation. Angew Chem Int Ed Engl 2024; 63:e202318628. [PMID: 38225206 DOI: 10.1002/anie.202318628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/29/2023] [Accepted: 01/15/2024] [Indexed: 01/17/2024]
Abstract
An anion-counterion strategy is proposed to construct organic mono-radical charge-transfer cocrystals for near-infrared photothermal conversion and solar-driven water evaporation. Ionic compounds with halogen anions as the counterions serve as electron donors, providing the necessary electrons for efficient charge transfer with unchanged skeleton atoms and structures as well as the broad red-shifted absorption (200-2000 nm) and unprecedented photothermal conversion efficiency (~90.5 %@808 nm) for the cocrystals. Based on these cocrystals, an excellent solar-driven interfacial water evaporation rate up to 6.1±1.1 kg ⋅ m-2 ⋅ h-1 under 1 sun is recorded due to the comprehensive evaporation effect from the cocrystal loading in polyurethane foams and chimney addition, such performance is superior to the reported results on charge-transfer cocrystals or other materials for solar-driven interfacial evaporation. This prototype exhibits the great potential of cocrystals prepared by the one-step mechanochemistry method in practical large-scale seawater desalination applications.
Collapse
Affiliation(s)
- Meng-Meng Zhang
- College of Chemistry and Chemical Engineering, and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, 515063, China
| | - Shun-Li Chen
- College of Chemistry and Chemical Engineering, and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, 515063, China
| | - An-Ran Bao
- College of Chemistry and Chemical Engineering, and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, 515063, China
| | - Yanqi Chen
- College of Chemistry and Chemical Engineering, and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, 515063, China
| | - Hui Liang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Shaomin Ji
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jiecheng Chen
- College of Chemistry and Chemical Engineering, and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, 515063, China
| | - Bowei Ye
- College of Chemistry and Chemical Engineering, and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, 515063, China
| | - Qingwei Yang
- College of Chemistry and Chemical Engineering, and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, 515063, China
| | - Yuli Liu
- College of Chemistry and Chemical Engineering, and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, 515063, China
| | - Jiayu Li
- College of Chemistry and Chemical Engineering, and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, 515063, China
| | - Wenbin Chen
- College of Chemistry and Chemical Engineering, and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, 515063, China
| | - Xinda Huang
- College of Chemistry and Chemical Engineering, and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, 515063, China
| | - Shaofei Ni
- College of Chemistry and Chemical Engineering, and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, 515063, China
| | - Li Dang
- College of Chemistry and Chemical Engineering, and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, 515063, China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, China
| | - Ming-De Li
- College of Chemistry and Chemical Engineering, and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, 515063, China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, China
| |
Collapse
|
20
|
Cai YJ, Luo QX, Qi JX, Chen XJ, Liu JL, Zhang L, Liang RP, Qiu JD. Hydrogen-Bonded Organic Cocrystal-Encapsulated Perovskite Nanocrystals as Coreactant-Free Electrochemiluminescent Luminophore for the Detection of Uranium. Anal Chem 2024; 96:3553-3560. [PMID: 38362858 DOI: 10.1021/acs.analchem.3c05494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Lead halide perovskite nanocrystals with excellent photophysical properties are promising electrochemiluminescence (ECL) candidates, but their poor stability greatly restricts ECL applications. Herein, hydrogen-bonded cocrystal-encapsulated CsPbBr3 perovskite nanocrystals (PeNCs@NHS-M) were synthesized by using PeNCs as nuclei for inducing the crystallization of melamine (M) and N-hydroxysuccinimide (NHS). The as-synthesized composite exhibits multiplicative ECL efficiencies (up to 24-fold that of PeNCs) without exogenous coreactants and with excellent stability in the aqueous phase. The enhanced stability can be attributed to the well-designed heterostructure of the PeNCs@NHS-M composite, which benefits from both moiety passivation and protection of the peripheral cocrystal matrix. Moreover, the heterostructure with covalent linkage facilitates charge transfer between PeNCs and NHS-M cocrystals, realizing effective ECL emission. Meanwhile, the NHS and M components act as coreactants for PeNCs, shortening the electron-transport distance and resulting in a significant increase in the ECL signal. Furthermore, by taking advantage of the specific binding effect between NHS-M and uranyl (UO22+), an ECL system with both a low detection limit (1 nM) and high selectivity for monitoring UO22+ in mining wastewater is established. The presence of UO22+ disrupted the charge-transfer effect within PeNCs@NHS-M, weakening the ECL signals. This work provides an efficient design strategy for obtaining stable and efficient ECLs from perovskite nanocrystals, offering a new perspective for the discovery and application of perovskite-based ECL systems.
Collapse
Affiliation(s)
- Yuan-Jun Cai
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Qiu-Xia Luo
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Jia-Xin Qi
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Xiao-Juan Chen
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Jin-Lan Liu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Li Zhang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Ru-Ping Liang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Jian-Ding Qiu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, China
| |
Collapse
|
21
|
Wen X, Shao Y, Chen YT, He J, Chen SL, Dang L, Li MD. Dual-rotor strategy for organic cocrystals with enhanced near-infrared photothermal conversion. RSC Adv 2024; 14:4503-4508. [PMID: 38312733 PMCID: PMC10835570 DOI: 10.1039/d4ra00002a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 01/28/2024] [Indexed: 02/06/2024] Open
Abstract
Organic cocrystal engineering provides a promising route to promote the near-infrared (NIR) light harvesting and photothermal conversion (PTC) abilities of small organic molecules through the rich noncovalent bond interactions of D/A units. Besides, the single-bond rotatable groups known as "rotors" are considered to be conducive to the nonradiative transitions of the excited states of organic molecules. Herein, we propose a single-/double-bond dual-rotor strategy to construct D-A cocrystals for NIR PTC application. The results reveal that the cocrystal exhibits an ultra-broadband absorption from 300 nm to 2000 nm profiting from the strong π-π stacking and charge transfer interactions, and the weakened p-π interaction. More importantly, the PTC efficiency of cocrystals at 1064 nm in the NIR-II region can be largely enhanced by modulating the number of rotor groups and the F-substituents of D/A units. As is revealed by fs-TA spectroscopy, the superior NIR PTC performance can be attributed to the nonradiative decays of excited states induced by the free rotation of the single-bond rotor (-CH3) from the donors and the inactive double-bond rotor ([double bond, length as m-dash]C(C[triple bond, length as m-dash]N)2) being in the active form of [-C(C[triple bond, length as m-dash]N)2] in the excited states from the acceptors. This prototype displays a promising route to extend the functionalization of small organic molecules based on organic cocrystal engineering.
Collapse
Affiliation(s)
- Xinyi Wen
- College of Chemistry and Chemical Engineering, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University Shantou 515063 China
| | - Yixin Shao
- College of Chemistry and Chemical Engineering, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University Shantou 515063 China
| | - Ye-Tao Chen
- College of Chemistry and Chemical Engineering, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University Shantou 515063 China
| | - Jiaxing He
- College of Chemistry and Chemical Engineering, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University Shantou 515063 China
| | - Shun-Li Chen
- College of Chemistry and Chemical Engineering, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University Shantou 515063 China
| | - Li Dang
- College of Chemistry and Chemical Engineering, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University Shantou 515063 China
- Chemistry and Chemical Engineering Guangdong Laboratory Shantou 515031 China
| | - Ming-De Li
- College of Chemistry and Chemical Engineering, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University Shantou 515063 China
- Chemistry and Chemical Engineering Guangdong Laboratory Shantou 515031 China
| |
Collapse
|
22
|
Li T, Liu JC, Liu EP, Liu BT, Wang JY, Liao PY, Jia JH, Feng Y, Tong ML. NIR-II photothermal conversion and imaging based on a cocrystal containing twisted components. Chem Sci 2024; 15:1692-1699. [PMID: 38303953 PMCID: PMC10829014 DOI: 10.1039/d3sc03532h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/24/2023] [Indexed: 02/03/2024] Open
Abstract
On account of the scarcity of molecules with a satisfactory second near-infrared (NIR-II) response, the design of high-performance organic NIR photothermal materials has been limited. Herein, we investigate a cocrystal incorporating tetrathiafulvalene (TTF) and tetrachloroperylene dianhydride (TCPDA) components. A stable radical was generated through charge transfer from TTF to TCPDA, which exhibits strong and wide-ranging NIR-II absorption. The metal-free TTF-TCPDA cocrystal in this research shows high photothermal conversion capability under 1064 nm laser irradiation and clear photothermal imaging. The remarkable conversion ability-which is a result of twisted components in the cocrystal-has been demonstrated by analyses of single crystal X-ray diffraction, photoluminescence and femtosecond transient absorption spectroscopy as well as theoretical calculations. We have discovered that space charge separation and the ordered lattice in the TTF-TCPDA cocrystal suppress the radiative decay, while simultaneously strong intermolecular charge transfer enhances the non-radiative decay. The twisted TCPDA component induces rapid charge recombination, while the distorted configuration in TTF-TCPDA favors an internal non-radiative pathway. This research has provided a comprehensive understanding of the photothermal conversion mechanism and opened a new way for the design of advanced organic NIR-II photothermal materials.
Collapse
Affiliation(s)
- Tao Li
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Institute of Green Chemistry and Molecular Engineering, Sun Yat-Sen University Guangzhou Guangdong 510006 China
- Department of Chemistry and Biochemistry, The University of Oklahoma 101 Stephenson Parkway Norman Oklahoma 73019 USA
| | - Jia-Chuan Liu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Institute of Green Chemistry and Molecular Engineering, Sun Yat-Sen University Guangzhou Guangdong 510006 China
| | - En-Ping Liu
- School of Materials Science and Engineering, Tianjin University Tianjin 300072 China
| | - Bai-Tong Liu
- Department of Chemistry, Northwestern University 2145 Sheridan Road Evanston Illinois 60208 USA
| | - Jing-Yu Wang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Institute of Green Chemistry and Molecular Engineering, Sun Yat-Sen University Guangzhou Guangdong 510006 China
| | - Pei-Yu Liao
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Institute of Green Chemistry and Molecular Engineering, Sun Yat-Sen University Guangzhou Guangdong 510006 China
| | - Jian-Hua Jia
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Institute of Green Chemistry and Molecular Engineering, Sun Yat-Sen University Guangzhou Guangdong 510006 China
| | - Yuanning Feng
- Department of Chemistry and Biochemistry, The University of Oklahoma 101 Stephenson Parkway Norman Oklahoma 73019 USA
| | - Ming-Liang Tong
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Institute of Green Chemistry and Molecular Engineering, Sun Yat-Sen University Guangzhou Guangdong 510006 China
| |
Collapse
|
23
|
Feng W, Chen D, Zhao Y, Mu B, Yan H, Barboiu M. Modulation of Deep-Red to Near-Infrared Room-Temperature Charge-Transfer Phosphorescence of Crystalline "Pyrene Box" Cages by Coupled Ion/Guest Structural Self-Assembly. J Am Chem Soc 2024; 146:2484-2493. [PMID: 38229260 DOI: 10.1021/jacs.3c10206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Organic cocrystals obtained from multicomponent self-assembly have garnered considerable attention due to their distinct phosphorescence properties and broad applications. Yet, there have been limited reports on cocrystal systems that showcase efficient deep-red to near-infrared (NIR) charge-transfer (CT) phosphorescence. Furthermore, effective strategies to modulate the emission pathways of both fluorescence and phosphorescence remain underexplored. In this work, we dedicated our work to four distinct self-assembled cocrystals called "pyrene box" cages using 1,3,6,8-pyrenetetrasulfonate anions (PTS4-), 4-iodoaniline (1), guanidinium (G+), diaminoguanidinium (A2G+), and hydrated K+ countercations. The binding of such cations to PTS4- platforms adaptively modulates their supramolecular stacking self-assembly with guest molecules 1, allowing to steer the fluorescence and phosphorescence pathways. Notably, the confinement of guest molecule 1 within "pyrene box" PTSK{1} and PTSG{1} cages leads to an efficient deep-red to NIR CT phosphorescence emission. The addition of fuming gases like triethylamine and HCl allows reversible pH modulations of guest binding, which in turn induce a reversible transition of the "pyrene box" cage between fluorescence and phosphorescence states. This capability was further illustrated through a proof-of-concept demonstration in shrimp freshness detection. Our findings not only lay a foundation for future supramolecular designs leveraging weak intermolecular host-guest interactions to engineer excited states in interacting chromophores but also broaden the prospective applications of room-temperature phosphorescence materials in food safety detection.
Collapse
Affiliation(s)
- Weixu Feng
- Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical engineering, Northwestern Polytechnical University, Xi'an 710129, Shaanxi,China
| | - Dong Chen
- Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical engineering, Northwestern Polytechnical University, Xi'an 710129, Shaanxi,China
| | - Yan Zhao
- Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical engineering, Northwestern Polytechnical University, Xi'an 710129, Shaanxi,China
| | - Bin Mu
- Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical engineering, Northwestern Polytechnical University, Xi'an 710129, Shaanxi,China
| | - Hongxia Yan
- Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical engineering, Northwestern Polytechnical University, Xi'an 710129, Shaanxi,China
| | - Mihail Barboiu
- Institut Europeen des Membranes, Adaptive Supramolecular Nano-systems Group, University of Montpellier, ENSCM-CNRS, Place E. Bataillon CC047, Montpellier F-34095, France
| |
Collapse
|
24
|
Zhang MM, Chen SL, Huang S, Zheng D, Liang H, Ye B, Chen J, Song X, Liu L, Li J, Chen W, Ji S, Dang L, Li MD. Primary Structural Units "D +A -" Ion Pairs Dominating Near-Infrared Photothermal Conversion of Organic Ionic Cocrystals. J Phys Chem Lett 2024; 15:68-75. [PMID: 38131660 DOI: 10.1021/acs.jpclett.3c03366] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
The specific stacking mode of D/A blocks is often considered to largely determine the physicochemical properties of cocrystals. However, this rule may fail when encountering a large degree of (integer or near-integer) charge transfer situations. Herein, we explore the extensive correlations between the possible smallest structural units, stacking modes, and near-infrared photothermal conversion (NIR-PTC) properties of F4TCNQ-based cocrystals with typical features of integer-charge-transfer. Surprisingly, these cocrystals with distinct stacking modes display analogous D-A interactions, broad red-shift absorption, ultrafast (1-3 ps) relaxation dynamics of excited states, and excellent NIR-PTC properties. This supports that the resulting "D+A-" ion pairs from integer-charge-transfer may serve as the primary structural units beneath the secondary stacking modes to dominate the property of cocrystals. The stacking modes play an important but only secondary role. This work provides new insights into the structure-dynamics-property correlations and modular design of organic cocrystals for PTC and other applications.
Collapse
Affiliation(s)
- Meng-Meng Zhang
- College of Chemistry and Chemical Engineering, and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - Shun-Li Chen
- College of Chemistry and Chemical Engineering, and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - Siya Huang
- College of Chemistry and Chemical Engineering, and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - Dexin Zheng
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710019, China
| | - Hui Liang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Bowei Ye
- College of Chemistry and Chemical Engineering, and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - Jiecheng Chen
- College of Chemistry and Chemical Engineering, and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - Xinluo Song
- College of Chemistry and Chemical Engineering, and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - Lishan Liu
- College of Chemistry and Chemical Engineering, and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - Jiayu Li
- College of Chemistry and Chemical Engineering, and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - Wenbin Chen
- College of Chemistry and Chemical Engineering, and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - Shaomin Ji
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Li Dang
- College of Chemistry and Chemical Engineering, and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515031, China
| | - Ming-De Li
- College of Chemistry and Chemical Engineering, and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515031, China
| |
Collapse
|
25
|
Hao L, Liu F, Wang X, Kang L, Wang Y, Wang L, Lin Z, Zhu W. Crystallography, Charge Transfer, and Two-Photon Absorption Relations in Molecular Cocrystals for Two-Photon Excited Fluorescence Imaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2308470. [PMID: 38105598 DOI: 10.1002/smll.202308470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/25/2023] [Indexed: 12/19/2023]
Abstract
Two-photon excited fluorescence imaging requires high-performance two-photon absorption (TPA) active materials, which are commonly intramolecular charge transfer systems prepared by traditional chemical synthesis. However, this typically needs harsh conditions and new methods are becoming crucial. In this work, based on a collaborative intermolecular charge transfer (inter-CT) strategy, three centimeter-sized organic TPA cocrystals are successfully obtained. All three cocrystals exhibit a mixed stacking arrangement, which can effectively generate inter-CT between the donor and acceptor. The ground and excited state characterizations compare their inter-CT ability: 1,2-BTC > 2D-BTC > 1D-BTC. Transient absorption spectroscopy detects TCNB•- , indicating that the TPA mechanism arises from molecular polarization caused by inter-CT. Meanwhile, 1,2-BTC exhibits the highest excited-state absorption and the longest excited-state lifetime, suggesting a stronger TPA response. First-principles calculations also confirm the presence of inter-CT interactions, and the significant parameter Δµ which can assess the TPA capability indicates that inter-CT enhances the TPA response. Besides, cocrystals also demonstrate excellent water solubility and two-photon excited fluorescence imaging capabilities. This research not only provides an effective method for synthesizing TPA crystal materials and elucidates the connection between inter-CT ability and TPA property but also successfully applies them in the fields of multi-photon fluorescence bioimaging.
Collapse
Affiliation(s)
- Liangmeng Hao
- Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Fan Liu
- Functional Crystal Lab, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xu Wang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, Jinan, 250014, China
| | - Lei Kang
- Functional Crystal Lab, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yucheng Wang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, Jinan, 250014, China
| | - Lingsong Wang
- Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Zheshuai Lin
- Functional Crystal Lab, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Weigang Zhu
- Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
26
|
Zhao YD, Jiang W, Zhuo S, Wu B, Luo P, Chen W, Zheng M, Hu J, Zhang KQ, Wang ZS, Liao LS, Zhuo MP. Stretchable photothermal membrane of NIR-II charge-transfer cocrystal for wearable solar thermoelectric power generation. SCIENCE ADVANCES 2023; 9:eadh8917. [PMID: 38091388 PMCID: PMC10848765 DOI: 10.1126/sciadv.adh8917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/24/2023] [Indexed: 02/12/2024]
Abstract
Harvesting sunlight into cost-effective electricity presents an enticing prospect for self-powered wearable applications. The photothermal materials with an extensive absorption are fundamental to achieve optical and thermal concentration of the sunlight for efficiency output electricity of wearable solar thermoelectric generators (STEGs). Here, we synthesize an organic charge-transfer (CT) cocrystal with a flat absorption from ultraviolet to second near-infrared region (200 to 1950 nanometers) and a high photothermal conversion efficiency (PCE) of 80.5%, which is introduced into polyurethane toward large-area nanofiber membrane by electrospinning technology. These corresponding membranes demonstrate a high PCE of 73.7% under the strain more than 80%. Sandwiched with carbon nanotube-based thermoelectric fibers, the membranes as stretchable solar absorbers of STEGs could supply a notably increase temperature gradient, processing a maximum output voltage density of 23.4 volts per square meter at 1:00 p.m. under sunlight. This strategy presents an important insight in heat management for wearable STEGs with a desired electricity output.
Collapse
Affiliation(s)
- Yu Dong Zhao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Wangkai Jiang
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Sheng Zhuo
- School of Physics and Materials Science, Nanchang University, Nanchang 330031, China
| | - Bin Wu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Peng Luo
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Weifan Chen
- School of Physics and Materials Science, Nanchang University, Nanchang 330031, China
| | - Min Zheng
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Jianchen Hu
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Ke-Qin Zhang
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Zuo-Shan Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Liang-Sheng Liao
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Ming-Peng Zhuo
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| |
Collapse
|
27
|
Guo H, Liu S, Sun CC. Modulating Pharmaceutical Properties of Berberine Chloride through Cocrystallization with Benzendiol Isomers. Pharm Res 2023; 40:2791-2800. [PMID: 37226026 DOI: 10.1007/s11095-023-03533-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/10/2023] [Indexed: 05/26/2023]
Abstract
PURPOSE To synthesize and characterize new cocrystals of berberine chloride (BCl) for potential pharmaceutical tablet formulation. METHODS Solutions of BCl with each of three selected cocrystal formers, catechol (CAT), resorcinol (RES), and hydroquinone (HYQ) were slowly evaporated at room temperature to obtain crystals. Crystal structures were solved using single crystal X-ray diffraction. Bulk powders were characterized by powder X-ray diffraction, thermogravimetric-differential scanning calorimetry, FTIR, dynamic moisture sorption, and dissolution (both intrinsic and powder). RESULTS Single crystal structures confirmed the formation of cocrystals with all three coformers, which revealed various intermolecular interactions that stabilized crystal lattices, including O-H···Cl- hydrogen bonds. All three cocrystals exhibited better stability against high humidity (up to 95% relative humidity) at 25 ℃ and higher intrinsic and powder dissolution rates than BCl. CONCLUSION The enhanced pharmaceutical properties of all three cocrystals, as compared to BCl, further contribute to the existing evidence that confirms the beneficial role of cocrystallization in facilitating drug development. These new cocrystals expand the structure landscape of BCl solid forms, which is important for future analysis to establish a reliable relationship between crystal structure and pharmaceutical properties.
Collapse
Affiliation(s)
- Hongjie Guo
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Shuyu Liu
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China.
| | - Changquan Calvin Sun
- Pharmaceutical Materials Science and Engineering Laboratory, Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
28
|
Vainauskas J, Borchers TH, Arhangelskis M, McCormick McPherson LJ, Spilfogel TS, Hamzehpoor E, Topić F, Coles SJ, Perepichka DF, Barrett CJ, Friščić T. Halogen bonding with carbon: directional assembly of non-derivatised aromatic carbon systems into robust supramolecular ladder architectures. Chem Sci 2023; 14:13031-13041. [PMID: 38023516 PMCID: PMC10664517 DOI: 10.1039/d3sc04191c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
Carbon, although the central element in organic chemistry, has been traditionally neglected as a target for directional supramolecular interactions. The design of supramolecular structures involving carbon-rich molecules, such as arene hydrocarbons, has been limited almost exclusively to non-directional π-stacking, or derivatisation with heteroatoms to introduce molecular assembly recognition sites. As a result, the predictable assembly of non-derivatised, carbon-only π-systems using directional non-covalent interactions remains an unsolved fundamental challenge of solid-state supramolecular chemistry. Here, we propose and validate a different paradigm for the reliable assembly of carbon-only aromatic systems into predictable supramolecular architectures: not through non-directional π-stacking, but via specific and directional halogen bonding. We present a systematic experimental, theoretical and database study of halogen bonds to carbon-only π-systems (C-I⋯πC bonds), focusing on the synthesis and structural analysis of cocrystals with diversely-sized and -shaped non-derivatised arenes, from one-ring (benzene) to 15-ring (dicoronylene) polycyclic atomatic hydrocarbons (PAHs), and fullerene C60, along with theoretical calculations and a systematic analysis of the Cambridge Structural Database. This study establishes C-I⋯πC bonds as directional interactions to arrange planar and curved carbon-only aromatic systems into predictable supramolecular motifs. In >90% of herein presented structures, the C-I⋯πC bonds to PAHs lead to a general ladder motif, in which the arenes act as the rungs and halogen bond donors as the rails, establishing a unique example of a supramolecular synthon based on carbon-only molecules. Besides fundamental importance in the solid-state and supramolecular chemistry of arenes, this synthon enables access to materials with exciting properties based on simple, non-derivatised aromatic systems, as seen from large red and blue shifts in solid-state luminescence and room-temperature phosphorescence upon cocrystallisation.
Collapse
Affiliation(s)
- Jogirdas Vainauskas
- School of Chemistry, University of Birmingham Edgbaston Birmingham B15 2TT UK
- Department of Chemistry, McGill University 801 Sherbrooke St. W. H3A 0B8 Montreal Canada
| | - Tristan H Borchers
- School of Chemistry, University of Birmingham Edgbaston Birmingham B15 2TT UK
- Department of Chemistry, McGill University 801 Sherbrooke St. W. H3A 0B8 Montreal Canada
| | - Mihails Arhangelskis
- Faculty of Chemistry, University of Warsaw 1 Pasteura Street Warsaw 02-093 Poland
| | - Laura J McCormick McPherson
- EPSRC National Crystallography Service, School of Chemistry, University of Southampton, Highfield Southampton UK
| | - Toni S Spilfogel
- Department of Chemistry, McGill University 801 Sherbrooke St. W. H3A 0B8 Montreal Canada
| | - Ehsan Hamzehpoor
- Department of Chemistry, McGill University 801 Sherbrooke St. W. H3A 0B8 Montreal Canada
| | - Filip Topić
- Department of Chemistry, McGill University 801 Sherbrooke St. W. H3A 0B8 Montreal Canada
| | - Simon J Coles
- EPSRC National Crystallography Service, School of Chemistry, University of Southampton, Highfield Southampton UK
| | - Dmytro F Perepichka
- Department of Chemistry, McGill University 801 Sherbrooke St. W. H3A 0B8 Montreal Canada
| | - Christopher J Barrett
- Department of Chemistry, McGill University 801 Sherbrooke St. W. H3A 0B8 Montreal Canada
| | - Tomislav Friščić
- School of Chemistry, University of Birmingham Edgbaston Birmingham B15 2TT UK
- Department of Chemistry, McGill University 801 Sherbrooke St. W. H3A 0B8 Montreal Canada
| |
Collapse
|
29
|
Lai W, Bu Y, Xiao W, Liu H, Guo J, Zhao L, Yang K, Xie S, Zeng Z. Magnetic Bistability in an Organic Radical-Based Charge Transfer Cocrystal. J Am Chem Soc 2023; 145:24328-24337. [PMID: 37878504 DOI: 10.1021/jacs.3c09226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
We report herein an organic charge transfer cocrystal complex, consisting of a stable radical TPVr and an electron acceptor TCNQF4, as a rare sort of all-organic-based magnetic bistable materials with a thermally activated magnetic hysteresis loop over the temperature range from 170 to 260 K. Detailed X-ray crystallographic studies and theoretical calculations revealed that while a π-associated radical anion dimer was formed upon an integer charge transfer process from TPVr to the TCNQF4 molecules within the cocrystal lattice, the resulting TCNQF4·- π-dimers were found to exhibit varied intradimer π-stacking distances and singly occupied molecular orbital overlaps at different temperatures, thus yielding two different singlet states with distinct singlet-triplet gaps above and below the loop, which eventually contributed to the thermally excited molecular magnetic bistability.
Collapse
Affiliation(s)
- Weiming Lai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
- Shenzhen Research Institute of Hunan University, Nanshan District, Shenzhen 518000, China
| | - Yanru Bu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
- Shenzhen Research Institute of Hunan University, Nanshan District, Shenzhen 518000, China
| | - Wang Xiao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
- Shenzhen Research Institute of Hunan University, Nanshan District, Shenzhen 518000, China
| | - Haohao Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
- Shenzhen Research Institute of Hunan University, Nanshan District, Shenzhen 518000, China
| | - Jing Guo
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
- Shenzhen Research Institute of Hunan University, Nanshan District, Shenzhen 518000, China
| | - Longfeng Zhao
- School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Kun Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
- Shenzhen Research Institute of Hunan University, Nanshan District, Shenzhen 518000, China
| | - Sheng Xie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
- Shenzhen Research Institute of Hunan University, Nanshan District, Shenzhen 518000, China
| | - Zebing Zeng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
- Shenzhen Research Institute of Hunan University, Nanshan District, Shenzhen 518000, China
| |
Collapse
|
30
|
Barman D, Annadhasan M, Bidkar AP, Rajamalli P, Barman D, Ghosh SS, Chandrasekar R, Iyer PK. Highly efficient color-tunable organic co-crystals unveiling polymorphism, isomerism, delayed fluorescence for optical waveguides and cell-imaging. Nat Commun 2023; 14:6648. [PMID: 37863932 PMCID: PMC10589249 DOI: 10.1038/s41467-023-42017-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 09/27/2023] [Indexed: 10/22/2023] Open
Abstract
Photofunctional co-crystal engineering strategies based on donor-acceptor π-conjugated system facilitates expedient molecular packing, consistent morphology, and switchable optical properties, conferring synergic 'structure-property relationship' for optoelectronic and biological functions. In this work, a series of organic co-crystals were formulated using a twisted aromatic hydrocarbon (TAH) donor and three diverse planar acceptors, resulting in color-tunable solid and aggregated state emission via variable packing and through-space charge-transfer interactions. While, adjusting the strength of acceptors, a structural transformation into hybrid stacking modes ultimately results in color-specific polymorphs, a configurational cis-isomer with very high photoluminescence quantum yield. The cis-isomeric co-crystal exhibits triplet-harvesting thermally activated delayed fluorescence (TADF) characteristics, presenting a key discovery in hydrocarbon-based multicomponent systems. Further, 1D-microrod-shaped co-crystal acts as an efficient photon-transducing optical waveguides, and their excellent dispersibility in water endows efficient cellular internalization with bright cell imaging performances. These salient approaches may open more avenues for the design and applications of TAH based co-crystals.
Collapse
Affiliation(s)
- Debasish Barman
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Mari Annadhasan
- School of Chemistry, and Centre for Nanotechnology University of Hyderabad, Gachibowli, Prof. C. R. Rao Road, Hyderabad, 500046, India
| | - Anil Parsram Bidkar
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, 94143, USA
| | | | - Debika Barman
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Siddhartha Sankar Ghosh
- Department of Biosciences and Bioengineering IIT Guwahati, Guwahati, Assam, India.
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, 781039, India.
| | - Rajadurai Chandrasekar
- School of Chemistry, and Centre for Nanotechnology University of Hyderabad, Gachibowli, Prof. C. R. Rao Road, Hyderabad, 500046, India.
| | - Parameswar Krishnan Iyer
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, India.
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, 781039, India.
| |
Collapse
|
31
|
Duan Y, Chen M, Hayashi H, Yamada H, Liu X, Zhang L. Buckybowl and its chiral hybrids featuring eight-membered rings and helicene units. Chem Sci 2023; 14:10420-10428. [PMID: 37800001 PMCID: PMC10548505 DOI: 10.1039/d3sc00658a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/07/2023] [Indexed: 10/07/2023] Open
Abstract
Here we report the synthesis of a novel buckybowl (7) with a high bowl-to-bowl inversion barrier (ΔG‡ = 38 kcal mol-1), which renders the rate of inversion slow enough at room temperature to establish two chiral polycyclic aromatic hydrocarbons (PAHs). By strategic fusion of eight-membered rings to the rim of 7, the chiral hybrids 8 and 9 are synthesized and display helicity and positive and negative curvature, allowing the enantiomers to be configurationally stable and their chiroptical properties are thoroughly examined. Computational and experimental studies reveal the enantiomerization mechanisms for the chiral hybrids and demonstrate that the eight-membered ring strongly affects the conformational stability. Because of its static and doubly curved conformation, 9 shows a high binding affinity towards C60. The OFET performance of 7-9 could be tuned and the hybrids show ambipolar characteristics. Notably, the 9·C60 cocrystal exhibits well-balanced ambipolar performance with electron and hole mobilities of up to 0.19 and 0.11 cm2 V-1 s-1, respectively. This is the first demonstration of a chiral curved PAH and its complex with C60 for organic devices. Our work presents new insight into buckybowl-based design of PAHs with configurational stability and intriguing optoelectronic properties.
Collapse
Affiliation(s)
- Yuxiao Duan
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Meng Chen
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Hironobu Hayashi
- Division of Materials Science Nara Institute of Science and Technology (NAIST) 8916-5 Takayama-cho Ikoma Nara 630-0192 Japan
| | - Hiroko Yamada
- Division of Materials Science Nara Institute of Science and Technology (NAIST) 8916-5 Takayama-cho Ikoma Nara 630-0192 Japan
| | - Xinyue Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Lei Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology Beijing 100029 P. R. China
| |
Collapse
|
32
|
Tang J, Shao L, Liu J, Zheng Q, Song X, Yi L, Wang M. Hydrogen-bonded organic framework-stabilized charge transfer cocrystals for NIR-II photothermal cancer therapy. J Mater Chem B 2023; 11:8649-8656. [PMID: 37623744 DOI: 10.1039/d3tb01475d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Charge-transfer (CT) cocrystals consisting of an electron donor and acceptor have gained attention for designing photothermal (PT) conversion materials with potential for biomedical and therapeutic use. However, the applicability of CT cocrystals is limited by their low stability and aqueous dispersity in biological settings. In this study, we present the self-assembly of CT cocrystals within hydrogen-bonded organic frameworks (HOFs), which not only allows for the dispersion and stabilization of cocrystals in aqueous solution but also promotes the CT interaction within the confined space of HOFs for photothermal conversion. We demonstrate that the CT interaction-driven self-assembly of tetrathiafulvalene (TTF) and tetracyanoquinodimethane (TCNQ) with PFC-1 HOFs results in the formation of cocrystal-encapsulated TQC@PFC-1 while retaining the crystalline structure of the cocrystal and PFC-1. TQC@PFC-1, in particular, exhibits significant absorption in the second near-infrared region (NIR-II) and excellent photothermal conversion efficiency, as high as 32%. Cellular delivery studies show that TQC@PFC-1 can be internalized in different types of cancer cells, leading to an effective NIR-II photothermal therapy effect both in cultured cells and in vivo. We anticipate that the strategy of self-assembly and stabilization of CT cocrystals in nanoscale HOFs opens the path for tuning their photophysical properties and interfacing cocrystals with biological settings for photothermal therapeutic applications.
Collapse
Affiliation(s)
- Jiakang Tang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Leihou Shao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ji Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qizhen Zheng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyi Song
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, School of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China.
| | - Lanhua Yi
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, School of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China.
| | - Ming Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
33
|
Mahdaoui D, Hirata C, Nagaoka K, Miyazawa K, Fujii K, Ando T, Abderrabba M, Ito O, Yagyu S, Liu Y, Nakajima Y, Tsukagoshi K, Wakahara T. Ambipolar to Unipolar Conversion in C 70/Ferrocene Nanosheet Field-Effect Transistors. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2469. [PMID: 37686977 PMCID: PMC10490395 DOI: 10.3390/nano13172469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023]
Abstract
Organic cocrystals, which are assembled by noncovalent intermolecular interactions, have garnered intense interest due to their remarkable chemicophysical properties and practical applications. One notable feature, namely, the charge transfer (CT) interactions within the cocrystals, not only facilitates the formation of an ordered supramolecular network but also endows them with desirable semiconductor characteristics. Here, we present the intriguing ambipolar CT properties exhibited by nanosheets composed of single cocrystals of C70/ferrocene (C70/Fc). When heated to 150 °C, the initially ambipolar monoclinic C70/Fc nanosheet-based field-effect transistors (FETs) were transformed into n-type face-centered cubic (fcc) C70 nanosheet-based FETs owing to the elimination of Fc. This thermally induced alteration in the crystal structure was accompanied by an irreversible switching of the semiconducting behavior of the device; thus, the device transitions from ambipolar to unipolar. Importantly, the C70/Fc nanosheet-based FETs were also found to be much more thermally stable than the previously reported C60/Fc nanosheet-based FETs. Furthermore, we conducted visible/near-infrared diffuse reflectance and photoemission yield spectroscopies to investigate the crucial role played by Fc in modulating the CT characteristics. This study provides valuable insights into the overall functionality of these nanosheet structures.
Collapse
Affiliation(s)
- Dorra Mahdaoui
- Electronic Functional Macromolecules Group, Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan; (C.H.); (K.N.); (K.F.); (T.A.); (O.I.)
- Laboratory of Materials, Molecules and Applications, Preparatory Institute for Scientific and Technical Studies, University of Carthage, B.P. 51, La Marsa 2075, Tunisia;
| | - Chika Hirata
- Electronic Functional Macromolecules Group, Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan; (C.H.); (K.N.); (K.F.); (T.A.); (O.I.)
| | - Kahori Nagaoka
- Electronic Functional Macromolecules Group, Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan; (C.H.); (K.N.); (K.F.); (T.A.); (O.I.)
| | - Kun’ichi Miyazawa
- Department of Industrial Chemistry, Faculty of Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan;
| | - Kazuko Fujii
- Electronic Functional Macromolecules Group, Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan; (C.H.); (K.N.); (K.F.); (T.A.); (O.I.)
| | - Toshihiro Ando
- Electronic Functional Macromolecules Group, Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan; (C.H.); (K.N.); (K.F.); (T.A.); (O.I.)
| | - Manef Abderrabba
- Laboratory of Materials, Molecules and Applications, Preparatory Institute for Scientific and Technical Studies, University of Carthage, B.P. 51, La Marsa 2075, Tunisia;
| | - Osamu Ito
- Electronic Functional Macromolecules Group, Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan; (C.H.); (K.N.); (K.F.); (T.A.); (O.I.)
| | - Shinjiro Yagyu
- Nano Electronics Device Materials Group, Research Center for Electronic and Optical Materials, 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan;
| | - Yubin Liu
- RIKEN KEIKI Co., Ltd., 2-7-6, Azusawa, Itabashi-ku, Tokyo 174-8744, Japan; (Y.L.); (Y.N.)
| | - Yoshiyuki Nakajima
- RIKEN KEIKI Co., Ltd., 2-7-6, Azusawa, Itabashi-ku, Tokyo 174-8744, Japan; (Y.L.); (Y.N.)
| | - Kazuhito Tsukagoshi
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan;
| | - Takatsugu Wakahara
- Electronic Functional Macromolecules Group, Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan; (C.H.); (K.N.); (K.F.); (T.A.); (O.I.)
| |
Collapse
|
34
|
Easmin S, Pedireddi VR. Supramolecular assemblies in the molecular complexes of 4-cyanophenylboronic acid with different N-donor ligands. RSC Adv 2023; 13:23267-23284. [PMID: 37538513 PMCID: PMC10394587 DOI: 10.1039/d3ra03936f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/17/2023] [Indexed: 08/05/2023] Open
Abstract
Molecular complexes of 4-cyanophenylboronic acid (CB) with various N-donor compounds having different conformational features, for example, rigid (1,10-phenanthroline (110phen), 4,7-phenanthroline (47phen), 1,7-phenanthroline (17phen) and acridine (acr)) and linear (1,2-bis(4-pyridyl)ethane (bpyea), 1,2-bis(4-pyridyl)ethene (bpyee) and 4,4'-azopyridine (azopy)), have been reported. In all complexes, the -B(OH)2 moiety is found to be in a syn-anti confirmation, with the exception of structures containing 110phen, bpyee, and azopy, wherein, syn-syn conformation is observed. Further, CB molecules remain intact in all structures except in the complexes with some linear N-donor ligands, wherein -B(OH)2 transforms to monoester (-B(OH)(OCH3)) prior to the formation of corresponding molecular complexes. In such boronic monoester complexes, the conformation of -B(OH)(OCH3) is syn-anti with respect to the -OH and -OCH3 groups. Also, complexes mediated by azopy and bpyee exist in both hydrated and anhydrous forms. In these anhydrous structures, the recognition pattern is through homomeric (juxtaposed -CN and -B(OH)2) as well as heteromeric (between hetero N-atom and -B(OH)2) O-H⋯N hydrogen bonds, while only heteromeric O-H⋯N hydrogen bonds hold co-formers in all other structures. Depending upon the conformational features of both co-formers, molecules are packed in crystal lattices in the form of stacked layers, helical chains, and crossed ribbons. All structures are fully characterized by single-crystal X-ray diffraction and phase purity is established by powder X-ray diffraction. Additionally, correlation among structures is explained by calculating a similarity index and performing a Hirshfeld surface analysis to quantify the strength and effectiveness of different types of intermolecular bonds that stabilize these structures along with the presentation of energy frameworks, representing the strength of the interactions in the form gradient cylinders. Also, the morphology of each complex was computed by BFDH methodology to correlate with the actual crystal morphology and packing arrangement.
Collapse
Affiliation(s)
- Samina Easmin
- Solid State and Supramolecular Chemistry Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar Argul Bhubaneswar 752 050 India
| | - Venkateswara Rao Pedireddi
- Solid State and Supramolecular Chemistry Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar Argul Bhubaneswar 752 050 India
| |
Collapse
|
35
|
Chen SL, Zhang MM, Chen J, Wen X, Chen W, Li J, Chen YT, Xiao Y, Liu H, Tan Q, Zhu T, Ye B, Yan J, Huang Y, Li J, Ni S, Dang L, Li MD. Mechanochemistry toward Organic "Salt" via Integer-Charge-Transfer Cocrystal Strategy for Rapid, Efficient, and Scalable Near-Infrared Photothermal Conversion. CHEMSUSCHEM 2023; 16:e202300644. [PMID: 37277977 DOI: 10.1002/cssc.202300644] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/26/2023] [Accepted: 06/05/2023] [Indexed: 06/07/2023]
Abstract
Inspired by the concept of ionic charge-transfer complexes for the Mott insulator, integer-charge-transfer (integer-CT) cocrystals are designed for NIR photo-thermal conversion (PTC). With amino-styryl-pyridinium dyes and F4TCNQ (7,7',8,8'-Tetracyano-2,3,5,6-tetrafluoroquinodimethane) serving as donor/acceptor (D/A) units, integer-CT cocrystals, including amorphous stacking "salt" and segregated stacking "ionic crystal", are synthesized by mechanochemistry and solution method, respectively. Surprisingly, the integer-CT cocrystals are self-assembled only through multiple D-A hydrogen bonds (C-H⋅⋅⋅X (X=N, F)). Strong charge-transfer interactions in cocrystals contribute to the strong light-harvesting ability at 200-1500 nm. Under 808 nm laser illumination, both the "salt" and "ionic crystal" display excellent PTC efficiency beneficial from ultrafast (∼2 ps) nonradiative decay of excited states. Thus integer-CT cocrystals are potential candidates for rapid, efficient, and scalable PTC platforms. Especially amorphous "salt" with good photo/thermal stability is highly desirable in practical large-scale solar-harvesting/conversion applications in water environment. This work verifies the validity of the integer-CT cocrystal strategy, and charts a promising path to synthesize amorphous PTC materials by mechanochemical method in one-step.
Collapse
Affiliation(s)
- Shun-Li Chen
- College of Chemistry and Chemical Engineering, and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, 515063, P. R. China
| | - Meng-Meng Zhang
- College of Chemistry and Chemical Engineering, and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, 515063, P. R. China
| | - Jiecheng Chen
- College of Chemistry and Chemical Engineering, and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, 515063, P. R. China
| | - Xinyi Wen
- College of Chemistry and Chemical Engineering, and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, 515063, P. R. China
| | - Wenbin Chen
- College of Chemistry and Chemical Engineering, and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, 515063, P. R. China
| | - Jiayu Li
- College of Chemistry and Chemical Engineering, and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, 515063, P. R. China
| | - Ye-Tao Chen
- College of Chemistry and Chemical Engineering, and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, 515063, P. R. China
| | - Yonghong Xiao
- College of Chemistry and Chemical Engineering, and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, 515063, P. R. China
| | - Huifen Liu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Qianqian Tan
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Tangjun Zhu
- College of Chemistry and Chemical Engineering, and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, 515063, P. R. China
| | - Bowei Ye
- College of Chemistry and Chemical Engineering, and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, 515063, P. R. China
| | - Jiajun Yan
- College of Chemistry and Chemical Engineering, and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, 515063, P. R. China
| | - Yihang Huang
- College of Chemistry and Chemical Engineering, and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, 515063, P. R. China
| | - Jie Li
- College of Chemistry and Chemical Engineering, and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, 515063, P. R. China
| | - Shaofei Ni
- College of Chemistry and Chemical Engineering, and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, 515063, P. R. China
| | - Li Dang
- College of Chemistry and Chemical Engineering, and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, 515063, P. R. China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, P. R. China
| | - Ming-De Li
- College of Chemistry and Chemical Engineering, and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, 515063, P. R. China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, P. R. China
| |
Collapse
|
36
|
Sun D, Wu Y, Han X, Liu S. The host-guest inclusion driven by host-stabilized charge transfer for construction of sequentially red-shifted mechanochromic system. Nat Commun 2023; 14:4190. [PMID: 37443180 DOI: 10.1038/s41467-023-39956-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023] Open
Abstract
Developing more extensive methods to understand the underlying structure-property relationship of mechanochromic luminescent molecules is demanding but remains challenging. Herein, the effect of host-guest interaction on the mechanochromic properties of organic molecules is illustrated. A series of pyridinium-functionalized triphenylamine derivatives show bathochromic-shifted emission upon mechanical stimulation. These derivatives bind to cucurbit[8]uril to form homoternary host-guest inclusion complexes through host-stabilized intermolecular charge transfer interactions. Remarkably, the homoternary complexes exhibit longer emission than that of free guests in the solid state (even longer than ground guests), and a further bathochromic-shifted emission is observed upon grinding. Additionally, a heteroternary complex constructed through the encapsulation of pyrene (donor) and pyridinium (acceptor) guest pair in cucurbit[8]uril also displays the mechanochromic luminescent property. This work not only discloses the effect of host-guest inclusion on the mechanochromic property of organic molecules, but also provides a principle and a facile way to design the sequentially red-shifted mechanochromic materials.
Collapse
Affiliation(s)
- Dongdong Sun
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, PR China
| | - Yong Wu
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, PR China
| | - Xie Han
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, PR China
- The State Key Laboratory of Refractories and Metallurgy, Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan, 430081, PR China
| | - Simin Liu
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, PR China.
- The State Key Laboratory of Refractories and Metallurgy, Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan, 430081, PR China.
| |
Collapse
|
37
|
Jia Q, Yan X, Wang B, Li J, Xu W, Shen Z, Bo C, Li Y, Chen L. Construction of room temperature phosphorescent materials with ultralong lifetime by in-situ derivation strategy. Nat Commun 2023; 14:4164. [PMID: 37443149 DOI: 10.1038/s41467-023-39795-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Although room temperature phosphorescence (RTP) materials have been widely investigated, it is still a great challenge to improve the performance of RTP materials by promoting triplet exciton generation and stabilization. In this study, an in-situ derivation strategy was proposed to construct efficient RTP materials by in-situ deriving guest molecules and forming a rigid matrix during co-pyrolysis of guest molecules and urea. Characterizations and theoretical calculations revealed that the generated derivatives were beneficial for promoting intersystem crossing (ISC) to produce more triplet excitons, while rigid matrix could effectively suppress the non-radiative transition of triplet excitons. Thus, the in-situ derivation strategy was concluded to simultaneously promote the generation and stabilization of triplet excitons. With this method, the ultralong lifetime of RTP materials could reach up to 5.33 s and polychromatic RTP materials were easily achieved. Moreover, the potential applications of the RTP materials in reprocessing or editable anti-counterfeiting were successfully demonstrated.
Collapse
Affiliation(s)
- Qinglong Jia
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
| | - Xilong Yan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
- Zhejiang Institute of Tianjin University, Shaoxing, 312300, P. R. China
- Tianjin Engineering Research Center of Functional Fine Chemicals, Tianjin, 300350, P. R. China
- Guangdong Laboratory of Chemistry and Fine Chemical Industry Jieyang Center, Guangdong Province, 522000, P. R. China
| | - Bowei Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China.
- Zhejiang Institute of Tianjin University, Shaoxing, 312300, P. R. China.
- Tianjin Engineering Research Center of Functional Fine Chemicals, Tianjin, 300350, P. R. China.
- Guangdong Laboratory of Chemistry and Fine Chemical Industry Jieyang Center, Guangdong Province, 522000, P. R. China.
| | - Jiayi Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
| | - Wensheng Xu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
| | - Zhuoyao Shen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
| | - Changchang Bo
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
| | - Yang Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
- Tianjin Engineering Research Center of Functional Fine Chemicals, Tianjin, 300350, P. R. China
- Guangdong Laboratory of Chemistry and Fine Chemical Industry Jieyang Center, Guangdong Province, 522000, P. R. China
| | - Ligong Chen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China.
- Zhejiang Institute of Tianjin University, Shaoxing, 312300, P. R. China.
- Tianjin Engineering Research Center of Functional Fine Chemicals, Tianjin, 300350, P. R. China.
- Guangdong Laboratory of Chemistry and Fine Chemical Industry Jieyang Center, Guangdong Province, 522000, P. R. China.
| |
Collapse
|
38
|
Liu M, Han X, Chen H, Peng Q, Huang H. A molecular descriptor of intramolecular noncovalent interaction for regulating optoelectronic properties of organic semiconductors. Nat Commun 2023; 14:2500. [PMID: 37127693 PMCID: PMC10151346 DOI: 10.1038/s41467-023-38078-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 04/11/2023] [Indexed: 05/03/2023] Open
Abstract
In recent years, intramolecular noncovalent interaction has become an important means to modulate the optoelectronic performances of organic/polymeric semiconductors. However, it lacks a deep understanding and a direct quantitative relationship among the molecular geometric structure, strength of noncovalent interaction, and optoelectronic properties in organic/polymeric semiconductors. Herein, upon systematical theoretical calculations on 56 molecules with and without noncovalent interactions (X···Y, X = O, S, Se, Te; Y = C, F, O, S, Cl), we reveal the essence of the interactions and the dependence of its strength on the molecular geometry. Importantly, a descriptor S is established as a function of several basic geometric parameters to well characterize the noncovalent interaction energy, which exhibits a good inverse correlation with the reorganization energies of the photo-excited states or electron-pumped charged states in organic/polymeric semiconductors. In particular, the experimental 1H, 77Se, and 125Te NMR, the optical absorption and emission spectra, and single crystal structures of eight compounds fully confirm the theoretical predictions. This work provides a simple descriptor to characterize the strength of noncovalent intramolecular interactions, which is significant for molecular design and property prediction.
Collapse
Affiliation(s)
- Meihui Liu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiao Han
- College of Materials Science and Opto-Electronic Technology & CAS Center for Excellence in Topological Quantum Computation & Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hao Chen
- College of Materials Science and Opto-Electronic Technology & CAS Center for Excellence in Topological Quantum Computation & Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qian Peng
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.
| | - Hui Huang
- College of Materials Science and Opto-Electronic Technology & CAS Center for Excellence in Topological Quantum Computation & Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.
| |
Collapse
|
39
|
Chen Y, Zhuo M, Wen X, Chen W, Zhang K, Li M. Organic Photothermal Cocrystals: Rational Design, Controlled Synthesis, and Advanced Application. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206830. [PMID: 36707495 PMCID: PMC10104673 DOI: 10.1002/advs.202206830] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/22/2022] [Indexed: 05/22/2023]
Abstract
Organic photothermal cocrystals, integrating the advantages of intrinsic organic cocrystals and the fascinating photothermal conversion ability, hold attracted considerable interest in both basic science and practical applications, involving photoacoustic imaging, seawater desalination, and photothermal therapy, and so on. However, these organic photothermal cocrystals currently suffer individual cases discovered step by step, as well as the deep and systemic investigation in the corresponding photothermal conversion mechanisms is rarely carried out, suggesting a huge challenge for their further developments. Therefore, it is urgently necessary to investigate and explore the rational design and synthesis of high-performance organic photothermal cocrystals for future applications. This review first and systematically summarizes the organic photothermal cocrystal in terms of molecular classification, the photothermal conversion mechanism, and their corresponding applications. The timely interpretation of the cocrystal photothermal effect will provide broad prospects for the purposeful fabrication of excellent organic photothermal cocrystals toward great efficiency, low cost, and multifunctionality.
Collapse
Affiliation(s)
- Ye‐Tao Chen
- College of Chemistry and Chemical Engineering and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong ProvinceShantou University515063ShantouChina
| | - Ming‐Peng Zhuo
- National Engineering Laboratory for Modern SilkCollege of Textile and Clothing EngineeringSoochow UniversitySuzhou215123China
| | - Xinyi Wen
- College of Chemistry and Chemical Engineering and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong ProvinceShantou University515063ShantouChina
| | - Wenbin Chen
- College of Chemistry and Chemical Engineering and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong ProvinceShantou University515063ShantouChina
| | - Ke‐Qin Zhang
- National Engineering Laboratory for Modern SilkCollege of Textile and Clothing EngineeringSoochow UniversitySuzhou215123China
| | - Ming‐De Li
- College of Chemistry and Chemical Engineering and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong ProvinceShantou University515063ShantouChina
- Chemistry and Chemical Engineering Guangdong LaboratoryShantou UniversityShantou515031China
| |
Collapse
|
40
|
Surov AO, Ramazanova AG, Voronin AP, Drozd KV, Churakov AV, Perlovich GL. Virtual Screening, Structural Analysis, and Formation Thermodynamics of Carbamazepine Cocrystals. Pharmaceutics 2023; 15:pharmaceutics15030836. [PMID: 36986697 PMCID: PMC10052035 DOI: 10.3390/pharmaceutics15030836] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
In this study, the existing set of carbamazepine (CBZ) cocrystals was extended through the successful combination of the drug with the positional isomers of acetamidobenzoic acid. The structural and energetic features of the CBZ cocrystals with 3- and 4-acetamidobenzoic acids were elucidated via single-crystal X-ray diffraction followed by QTAIMC analysis. The ability of three fundamentally different virtual screening methods to predict the correct cocrystallization outcome for CBZ was assessed based on the new experimental results obtained in this study and data available in the literature. It was found that the hydrogen bond propensity model performed the worst in distinguishing positive and negative results of CBZ cocrystallization experiments with 87 coformers, attaining an accuracy value lower than random guessing. The method that utilizes molecular electrostatic potential maps and the machine learning approach named CCGNet exhibited comparable results in terms of prediction metrics, albeit the latter resulted in superior specificity and overall accuracy while requiring no time-consuming DFT computations. In addition, formation thermodynamic parameters for the newly obtained CBZ cocrystals with 3- and 4-acetamidobenzoic acids were evaluated using temperature dependences of the cocrystallization Gibbs energy. The cocrystallization reactions between CBZ and the selected coformers were found to be enthalpy-driven, with entropy terms being statistically different from zero. The observed difference in dissolution behavior of the cocrystals in aqueous media was thought to be caused by variations in their thermodynamic stability.
Collapse
Affiliation(s)
- Artem O Surov
- G.A. Krestov Institute of Solution Chemistry RAS, 153045 Ivanovo, Russia
| | - Anna G Ramazanova
- G.A. Krestov Institute of Solution Chemistry RAS, 153045 Ivanovo, Russia
| | | | - Ksenia V Drozd
- G.A. Krestov Institute of Solution Chemistry RAS, 153045 Ivanovo, Russia
| | - Andrei V Churakov
- Institute of General and Inorganic Chemistry RAS, Leninsky Prosp. 31, 119991 Moscow, Russia
| | - German L Perlovich
- G.A. Krestov Institute of Solution Chemistry RAS, 153045 Ivanovo, Russia
| |
Collapse
|
41
|
Ramesh K, Saravanabhavan M, Muhammad S, Edison D, Ho MS, Sekar M, Al-Sehemi AG. Synthesis, physico-chemical characterization and quantum chemical studies of 2, 3-dimethyl quinoxalinium-5-sulphosalicylate crystal. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
42
|
Chen J, Yang C, Ma S, Liu Z, Xiang W, Zhang J. Polarization-induced nanohelixes of organic cocrystals from asymmetric components with dopant-induced chirality inversion. Chem Sci 2023; 14:2091-2096. [PMID: 36845927 PMCID: PMC9945330 DOI: 10.1039/d2sc05942h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/09/2023] [Indexed: 01/18/2023] Open
Abstract
Supramolecular chirality is essential for the development of functional materials. In this study, we report the synthesis of twisted nanobelts based on charge-transfer (CT) complexes using self-assembly cocrystallization starting from asymmetric components. An asymmetric donor, DBCz, and a typical acceptor, tetracyanoquinodimethane, were used to construct a chiral crystal architecture. An asymmetric alignment of the donor molecules induced polar ±(102) facets that, accompanied with free-standing growth, resulted in a twisting along the b-axis due to the electrostatic repulsive interactions. Meanwhile, the alternately oriented ±(001) side-facets were responsible for the propensity of the helixes to be right-handed. Addition of a dopant significantly enhanced the twisting probability by reducing the surface tension and adhesion influence, even switching the chirality preference of the helixes. In addition, we could further extend the synthetic route to other CT systems for formation of other chiral micro/nanostructures. Our study offers a novel design approach for chiral organic micro/nanostructures for applications in optically active systems, micro/nano-mechanical systems and biosensing.
Collapse
Affiliation(s)
- Jinqiu Chen
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications 9 Wenyuan Road Nanjing 210023 China
| | - Canglei Yang
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications 9 Wenyuan Road Nanjing 210023 China
| | - Shuang Ma
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications 9 Wenyuan Road Nanjing 210023 China
| | - Zhiqi Liu
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications 9 Wenyuan Road Nanjing 210023 China
| | - Wenxin Xiang
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications 9 Wenyuan Road Nanjing 210023 China
| | - Jing Zhang
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications 9 Wenyuan Road Nanjing 210023 China
| |
Collapse
|
43
|
Li M, Liu Y, Shao L, Hua B, Wang M, Liang H, Khashab NM, Sessler JL, Huang F. Pillararene-Based Variable Stoichiometry Co-Crystallization: A Versatile Approach to Diversified Solid-State Superstructures. J Am Chem Soc 2023; 145:667-675. [PMID: 36574672 DOI: 10.1021/jacs.2c11618] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Variable stoichiometry co-crystals are important in solid-state supramolecular chemistry as they allow studies of structure-property relationships while permitting the synthesis of new scaffolds using identical synthons. In this work, we extend the concept of variable stoichiometry co-crystals into the realm of pillararene chemistry and show that this permits the rational construction of a diverse set of supramolecular structures in the solid state. Specifically, we report a series of variable stoichiometry co-crystals based on pillar[n]arenes and tetracyanobenzene (TCNB) and show that the combination of in-cavity complexation by pillar[n]arenes (n = 5,6) and outside binding with TCNB allows several types of co-crystals with different self-assembled superstructures to be isolated. The variable stoichiometry co-crystals of this study display different solid-state physicochemical properties, including colors and luminescence features. Among these pillar[n]arene-based co-crystals, we discovered unique crystallographic architectures wherein two sets of individual host-guest complexes co-exist in the solid state. These mixed co-crystal systems allow for vapochromic-based detection of n-bromoalkanes. This work highlights a new strategy for the construction of self-assembled superstructures in the solid state and for tuning their intrinsic characteristics, including their luminescent and substrate-responsive features.
Collapse
Affiliation(s)
- Ming Li
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yang Liu
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| | - Li Shao
- Department of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Bin Hua
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China.,Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, P. R. China
| | - Mengbin Wang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| | - Haozhong Liang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| | - Niveen M Khashab
- Smart Hybrid Materials Laboratory (SHMs), Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Feihe Huang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China.,Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, P. R. China.,Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
44
|
Lin HT, Ma YX, Chen S, Wang XD. Hierarchical Integration of Organic Core/Shell Microwires for Advanced Photonics. Angew Chem Int Ed Engl 2023; 62:e202214214. [PMID: 36351872 DOI: 10.1002/anie.202214214] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Indexed: 11/11/2022]
Abstract
The combination of multiple components or structures into integrated micro/nanostructures for practical application has been pursued for many years. Herein, a series of hierarchical organic microwires with branch, core/shell (C/S), and branch C/S structures are successfully constructed based on organic charge transfer (CT) cocrystals with structural similarity and physicochemical tunability. By regulating the intermolecular CT interaction, single microwires and branch microstructures can be integrated into the C/S and branch C/S structures, respectively. Significantly, the integrated branch C/S microwires, with multicolor waveguide behavior and branch structure multichannel waveguide output characteristics, can function as an optical logic gate with multiple encoding features. This work provides useful insights for creating completely new types of organic microstructures for integrated optoelectronics.
Collapse
Affiliation(s)
- Hong-Tao Lin
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255000, P. R. China
| | - Ying-Xin Ma
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255000, P. R. China
| | - Song Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xue-Dong Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
45
|
Sun MJ, Anhalt O, Sárosi MB, Stolte M, Würthner F. Activating Organic Phosphorescence via Heavy Metal-π Interaction Induced Intersystem Crossing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2207331. [PMID: 36210750 DOI: 10.1002/adma.202207331] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Heavy-atom-containing clusters, nanocrystals, and other semiconductors can sensitize the triplet states of their surface-bonded chromophores, but the energy loss, such as nonradiative deactivation, often prevents the synergistic light emission in their solid-state coassemblies. Cocrystallization allows new combinations of molecules with complementary properties for achieving functionalities not available in single components. Here, the cocrystal formation that employs platinum(II) acetylacetonate (Pt(acac)2 ) as a triplet sensitizer and electron-deficient 1,4,5,8-naphthalene diimides (NDIs) as organic phosphors is reported. The hybrid cocrystals exhibit room-temperature phosphorescence confined in the low-lying, long-lived triplet state of NDIs with photoluminescence (PL) quantum yield (ΦPL ) exceeding 25% and a phosphorescence lifetime (τPh ) of 156 µs. This remarkable PL property benefits from the noncovalent electronic and spin-orbital coupling between the constituents.
Collapse
Affiliation(s)
- Meng-Jia Sun
- Center for Nanosystems Chemistry (CNC), Universität Würzburg, Theodor-Boveri-Weg, 97074, Würzburg, Germany
| | - Olga Anhalt
- Center for Nanosystems Chemistry (CNC), Universität Würzburg, Theodor-Boveri-Weg, 97074, Würzburg, Germany
| | - Menyhárt B Sárosi
- Center for Nanosystems Chemistry (CNC), Universität Würzburg, Theodor-Boveri-Weg, 97074, Würzburg, Germany
| | - Matthias Stolte
- Center for Nanosystems Chemistry (CNC), Universität Würzburg, Theodor-Boveri-Weg, 97074, Würzburg, Germany
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Frank Würthner
- Center for Nanosystems Chemistry (CNC), Universität Würzburg, Theodor-Boveri-Weg, 97074, Würzburg, Germany
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| |
Collapse
|
46
|
Cocrystal engineering: towards high-performance near-infrared organic phototransistors based on donor-acceptor charge transfer cocrystals. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1450-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
47
|
Coordination Chemistry of Polynitriles, Part XI. Influence of 4,4′-Bipyridine and Solvent on the Crystal and Molecular Structures of Alkaline Earth Pentacyanocyclopentadienides. CHEMISTRY 2022. [DOI: 10.3390/chemistry4040101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The reaction of alkaline earth pentacyanocyclopentadienides with 4,4′-bipyridine in MeOH yielded undefined products of composition [M(PCC)2(Bipy)x(MeOH)y(H2O)z] (PCC = [C5(CN)5]−). Recrystallization from MeOH, EtOH, or n-BuOH gave crystals of [Mg(H2O)4(4,4′-bipy)2](PCC)2∙2BuOH (1), [Ca(H2O)4(4,4′-bipy)2](PCC)2∙(4,4′-bipy) (2), [Sr(MeOH)8](PCC)2∙3(4,4′-bipy) (3), [Sr2(H2O)4(BuOH)4(PCC)2(µ-PCC)2 (µ-4,4′-bipy)]∙4 (4,4′-bipy)∙0.29 (BuOH) (4), [Ba3(H2O)4(EtOH)10 (PCC)2(µ-PCC)2 (µ-4,4′-bipy)2(4,4′-bipy)](PCC)2 ∙3(4,4′-bipy)∙2EtOH∙H2O (5) and [Ba4(H2O)8(BuOH)6 (PCC)2(µ-PCC)6 (4,4′-bipy)6]∙3(4,4′-bipy) (6). 4,4′-Bipyridine functions either as monodentate or bidentate ligand and is present in all cases except for 2 as lattice guest. While in compounds 1 and 2 only water is present as O-donor, the alcohol coordinates in the other compounds either exclusively (3) or together with water (4–6). The pentacyanocyclopentadienide does not coordinate in 1–3, but is present as mono-, bi-, or tridentate ligand in 4–6. In all compounds, a more or less complicated interplay of hydrogen bridges and π–π stacking is observed.
Collapse
|
48
|
Christabel M, Zhou R, Yan T, Zhang H, Ding L, Wang R. Crystal structure of the cocrystal 2,4,6-triamino-1,3,5-triazine – 1 H-isoindole-1,3(2 H)-dione – methanol (1/1/1), C 12H 15N 7O 3. Z KRIST-NEW CRYST ST 2022. [DOI: 10.1515/ncrs-2022-0261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
C12H15N7O3, P21/c (no. 14), a = 7.1782(3) Å, b = 16.6800(6) Å, c = 12.1070(5) Å, β = 92.030(2)°, V = 1448.69(10) Å3, Z = 4, Rgt
(F) = 0.0449, wRref
(F
2) = 0.1220, T = 296(2) K.
Collapse
Affiliation(s)
- Madeline Christabel
- Department of Chemistry , Xi’an Jiaotong-Liverpool University , 111 Ren’ai Road , Suzhou , Jiangsu 215123 , P.R. China
| | - Ruixue Zhou
- Wisdom Lake Academy of Pharmacy, Xi’an Jiaotong-Liverpool University , 111 Ren’ai Road , Suzhou , Jiangsu 215123 , P.R. China
| | - Tianhao Yan
- Department of Chemistry , Xi’an Jiaotong-Liverpool University , 111 Ren’ai Road , Suzhou , Jiangsu 215123 , P.R. China
| | - Haifei Zhang
- Department of Chemistry , University of Liverpool , Crown Street , Liverpool , L69 7ZD , UK
| | - Lifeng Ding
- Department of Chemistry , Xi’an Jiaotong-Liverpool University , 111 Ren’ai Road , Suzhou , Jiangsu 215123 , P.R. China
| | - Ruiyao Wang
- Wisdom Lake Academy of Pharmacy, Xi’an Jiaotong-Liverpool University , 111 Ren’ai Road , Suzhou , Jiangsu 215123 , P.R. China
| |
Collapse
|
49
|
Zhou R, Yan T, Wang H, Zhang H, Ding L, Wang R. Crystal structure of N-(( Z)-amino((( E)-amino(phenylamino)methylene) amino)methylene)benzenaminium chloride – benzo[ f]isoquinolino[3,4- b][1,8]naphthyridine – tetrahydrofurane (1/2/2), C 60H 54ClN 11O 2. Z KRIST-NEW CRYST ST 2022. [DOI: 10.1515/ncrs-2022-0259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
C60H54ClN11O2, P
1
‾
$\overline{1}$
(no. 2), a = 9.6795(10) Å, b = 14.8391(12) Å, c = 18.0298(14) Å, α = 90.710(3)°, β = 92.506(3)°, γ = 96.274(3)°, V = 2571.4(4) Å3, Z = 2, R
gt(F) = 0.0856, wR
ref(F
2) = 0.2386, T = 296(2) K.
Collapse
Affiliation(s)
- Ruixue Zhou
- Wisdom Lake Academy of Pharmacy, Xi’an Jiaotong–Liverpool University , 111 Ren’ai Road , Suzhou , Jiangsu 215123 , P. R. China
| | - Tianhao Yan
- Department of Chemistry , Xi’an Jiaotong–Liverpool University , 111 Ren’ai Road , Suzhou , Jiangsu 215123 , P. R. China
| | - Hongbo Wang
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, School of Chemical and Environmental Engineering, Jianghan University , Wuhan , Hubei 430056 , P. R. China
| | - Haifei Zhang
- Department of Chemistry , University of Liverpool , Crown Street , Liverpool , L69 7ZD , UK
| | - Lifeng Ding
- Department of Chemistry , Xi’an Jiaotong–Liverpool University , 111 Ren’ai Road , Suzhou , Jiangsu 215123 , P. R. China
| | - Ruiyao Wang
- Wisdom Lake Academy of Pharmacy, Xi’an Jiaotong–Liverpool University , 111 Ren’ai Road , Suzhou , Jiangsu 215123 , P. R. China
| |
Collapse
|
50
|
Ji W, Xue B, Yin Y, Guerin S, Wang Y, Zhang L, Cheng Y, Shimon LJW, Chen Y, Thompson D, Yang R, Cao Y, Wang W, Cai K, Gazit E. Modulating the Electromechanical Response of Bio-Inspired Amino Acid-Based Architectures through Supramolecular Co-Assembly. J Am Chem Soc 2022; 144:18375-18386. [PMID: 36164777 PMCID: PMC9720716 DOI: 10.1021/jacs.2c06321] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Indexed: 11/29/2022]
Abstract
Supramolecular packing dictates the physical properties of bio-inspired molecular assemblies in the solid state. Yet, modulating the stacking modes of bio-inspired supramolecular assemblies remains a challenge and the structure-property relationship is still not fully understood, which hampers the rational design of molecular structures to fabricate materials with desired properties. Herein, we present a co-assembly strategy to modulate the supramolecular packing of N-terminally capped alanine-based assemblies (Ac-Ala) by changing the amino acid chirality and mixing with a nonchiral bipyridine derivative (BPA). The co-assembly induced distinct solid-state stacking modes determined by X-ray crystallography, resulting in significantly enhanced electromechanical properties of the assembly architectures. The highest rigidity was observed after the co-assembly of racemic Ac-Ala with a bipyridine coformer (BPA/Ac-DL-Ala), which exhibited a measured Young's modulus of 38.8 GPa. Notably, BPA crystallizes in a centrosymmetric space group, a condition that is broken when co-crystallized with Ac-L-Ala and Ac-D-Ala to induce a piezoelectric response. Enantiopure co-assemblies of BPA/Ac-D-Ala and BPA/Ac-L-Ala showed density functional theory-predicted piezoelectric responses that are remarkably higher than the other assemblies due to the increased polarization of their supramolecular packing. This is the first report of a centrosymmetric-crystallizing coformer which increases the single-crystal piezoelectric response of an electrically active bio-inspired molecular assembly. The design rules that emerge from this investigation of chemically complex co-assemblies can facilitate the molecular design of high-performance functional materials comprised of bio-inspired building blocks.
Collapse
Affiliation(s)
- Wei Ji
- Key
Laboratory of Biorheological Science and Technology, Ministry of Education,
College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China
| | - Bin Xue
- National
Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Yuanyuan Yin
- Chongqing
Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing
Municipal Key Laboratory of Oral Biomedical Engineering of Higher
Education, Stomatological Hospital of Chongqing
Medical University, Chongqing 401147, China
| | - Sarah Guerin
- Department
of Physics, Bernal Institute, University
of Limerick, Limerick V94 T9PX, Ireland
| | - Yuehui Wang
- Key
Laboratory of Biorheological Science and Technology, Ministry of Education,
College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China
| | - Lei Zhang
- CAEP Software
Center for High Performance Numerical Simulation, Beijing 100088, China
| | - Yuanqi Cheng
- National
Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Linda J. W. Shimon
- Department
of Chemical Research Support, Weizmann Institute
of Science, Rehovot 76100, Israel
| | - Yu Chen
- The
Shmunis School of Biomedicine and Cancer Research, George S. Wise
Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Damien Thompson
- Department
of Physics, Bernal Institute, University
of Limerick, Limerick V94 T9PX, Ireland
| | - Rusen Yang
- School
of Advanced Materials and Nanotechnology, Xidian University, Xi’an 710126, China
| | - Yi Cao
- National
Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Wei Wang
- National
Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Kaiyong Cai
- Key
Laboratory of Biorheological Science and Technology, Ministry of Education,
College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China
| | - Ehud Gazit
- The
Shmunis School of Biomedicine and Cancer Research, George S. Wise
Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|