1
|
Li X, Hu H, Wang H, Liu J, Jiang W, Zhou F, Zhang J. DNA nanotechnology-based strategies for minimising hybridisation-dependent off-target effects in oligonucleotide therapies. MATERIALS HORIZONS 2024. [PMID: 39692461 DOI: 10.1039/d4mh01158a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Targeted therapy has emerged as a transformative breakthrough in modern medicine. Oligonucleotide drugs, such as antisense oligonucleotides (ASOs) and small interfering RNAs (siRNAs), have made significant advancements in targeted therapy. Other oligonucleotide-based therapeutics like clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein (Cas) systems are also leading a revolution in targeted gene therapy. However, hybridisation-dependent off-target effects, arising from imperfect base pairing, remain a significant and growing concern for the clinical translation of oligonucleotide-based therapeutics. These mismatches in base pairing can lead to unintended steric blocking or cleavage events in non-pathological genes, affecting the efficacy and safety of the oligonucleotide drugs. In this review, we examine recent developments in oligonucleotide-based targeted therapeutics, explore the factors influencing sequence-dependent targeting specificity, and discuss the current approaches employed to reduce the off-target side effects. The existing strategies, such as chemical modifications and oligonucleotide length optimisation, often require a trade-off between specificity and binding affinity. To further address the challenge of hybridisation-dependent off-target effects, we discuss DNA nanotechnology-based strategies that leverage the collaborative effects of nucleic acid assembly in the design of oligonucleotide-based therapies. In DNA nanotechnology, collaborative effects refer to the cooperative interactions between individual strands or nanostructures, where multiple bindings result in more stable and specific hybridisation behaviour. By requiring multiple complementary interactions to occur simultaneously, the likelihood of unintended partially complementary binding events in nucleic acid hybridisation should be reduced. And thus, with the aid of collaborative effects, DNA nanotechnology has great promise in achieving both high binding affinity and high specificity to minimise the hybridisation-dependent off-target effects of oligonucleotide-based therapeutics.
Collapse
Affiliation(s)
- Xiaoyu Li
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China.
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, China
| | - Huanhuan Hu
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China.
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, China
| | - Hailong Wang
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China.
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, China
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, China
| | - Jia Liu
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China.
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, China
| | - Wenting Jiang
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China.
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China
| | - Feng Zhou
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China.
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, China
| | - Jiantao Zhang
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China.
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, China
| |
Collapse
|
2
|
Zhang K, Duan J, Li C, Song C, Chen Z. How Do DNA Molecular Springs Modulate Protein-Protein Interactions: Experimental and Theoretical Results. Biochemistry 2024; 63:3369-3380. [PMID: 39626116 DOI: 10.1021/acs.biochem.4c00280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Deoxyribonucleic acid (DNA) nanomachines have been widely exploited in enzyme activity regulation, protein crystallization, protein assembly, and control of the protein-protein interaction (PPI). Yet, the fundamental biophysical framework of DNA nanomachines in the case of regulating protein-protein interactions remains elusive. Here, we established a DNA nanospring-mCherry model with mCherry homodimers of different Kd. Using size exclusion chromatography and fluorescence polarization, we profiled the DNA nanospring-mediated manipulation of PPI as an entropy-reducing process. The energy transfer efficiency was a function of the length of the complementary sequence and the geometry of the DNA nanospring construction. With basic force analysis and physical chemistry calculation, we proposed a unified model of the correlation between the dissociation constant, local concentration, construction of DNA nanospring, and kinetics of protein dimerization. Overall, we demonstrated that the DNA nanospring-mCherry conjugate was a simple and practical model to analyze DNA-controlled protein-protein interaction.
Collapse
Affiliation(s)
- Kecheng Zhang
- College of Future Technology, Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Science, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Jingze Duan
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Cong Li
- College of Future Technology, Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China
| | - Chen Song
- Peking-Tsinghua Center for Life Science, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Zhixing Chen
- College of Future Technology, Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Science, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- National Biomedical Imaging Center, Peking University, Beijing 100871, China
| |
Collapse
|
3
|
He H, Wu Y, Chen M, Qi L, He X, Wang K. Acidic Extracellular pH-Activated Allosteric DNA Nanodevice for Fluorescence Imaging of APE1 Activity in Tumor Cells. Anal Chem 2024; 96:18079-18085. [PMID: 39474796 DOI: 10.1021/acs.analchem.4c03934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2024]
Abstract
Allostery is a phenomenon where the binding of a ligand at one allosteric site influences the affinity for another ligand at an active site. Different from orthosteric regulation, it allows for more precise control of biomolecular activity and enhances the stability of the molecules. Inspired by allosteric regulation of natural molecules, we present a Y-shaped allosteric DNA nanodevice, termed YssAP, that was pH-responsive and functionalized with the AS1411 aptamer for accurate fluorescence imaging of human apurinic/apyrimidinic endonuclease (APE1) activity in tumor cells. With rational design, YssAP could not be cut by APE1, and Cy5 was in the proximity of BHQ2, leading to suppressed signal emission. In contrast, since acidic pH acted as an allosteric effector, YssAP underwent a conformational change into an activated DNA probe (YdsAP) at acidic extracellular pH. After entering the tumor cell via the specific recognition of AS1411 aptamer, the overexpressed APE1 in the tumor cell cut the AP site on YdsAP. Cy5 moved far away from BHQ2, resulting in a strong signal output. Compared with the direct construction of the APE1 substrate, allosteric DNA nanodevices have more accurate imaging effects, which can be precisely adjusted by changing the switching state. We anticipate that this strategy will be applied in the screening of APE1 inhibitors and precise tumor diagnosis.
Collapse
Affiliation(s)
- Hui He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Yuchen Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Mingjian Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Lanlin Qi
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Xiaoxiao He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Hunan University, Changsha 410082, China
| |
Collapse
|
4
|
Ma X, Zhang Y, Zhu L, Wu Y, Li J, Huang K, Xu W. Aptamer and Thiol Co-Regulated Color-Shifting Fluorophores via Dynamic Through-Bond/Space Conjugation for Constructing Ratiometric RNA Sensor. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401437. [PMID: 38932671 DOI: 10.1002/smll.202401437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/05/2024] [Indexed: 06/28/2024]
Abstract
Fluorophores with color-shifting characteristics have attracted enormous research interest in the quantitative application of RNA sensors. It reports here a simple synthesis, luminescent properties, and co-transcription ability of de-conjugated triphenylmethane leucomalachite green (LMG). This novel clusteroluminescence fluorophore is rapidly synthesized from malachite green (MG) in reductive transcription system containing dithiothreitol, emitting fluorescence in the UV region through space conjugation. The co-transcribed MG RNA aptamer (MGA) bound to the ligand, resulting in red fluorescence from the through-bond conjugation. Given the equilibrated color-shifting fluorophores, they are rationally employed in a 3WJ-based rolling circle transcription switch, with the target-aptamer acting as an activator to achieve steric allosterism. This one-pot system allows the target to compete continuously for allosteric sites, and the activated transcription switches continue to amplify MGA forward, achieving accurate Aflatoxin 1 quantification at the picomolar level in 1 h. Due to the programmability of this RNA sensor, the design method of target-competitive aptamers is standardized, making it universally applicable.
Collapse
Affiliation(s)
- Xuan Ma
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China
| | - Yangzi Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China
| | - Longjiao Zhu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China
| | - Yifan Wu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China
| | - Jun Li
- College of Food Science, Hebei Normal University of Science and Technology, Hebei, 066004, China
| | - Kunlun Huang
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Wentao Xu
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China
| |
Collapse
|
5
|
Feng X, Bi X, Feng J, Hu S, Wang Y, Zhao S, Zhang L. Proximity-Induced Bipedal DNA Walker for Accurately Visualizing microRNA in Living Cancer Cell. Anal Chem 2024; 96:10669-10676. [PMID: 38913536 DOI: 10.1021/acs.analchem.4c01483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
DNA walker, a type of dynamic DNA device that is capable of moving progressively along prescribed walking tracks, has emerged as an ideal and powerful tool for biosensing and bioimaging. However, most of the reported three-dimensional (3D) DNA walker were merely designed for the detection of a single target, and they were not capable of achieving universal applicability. Herein, we reported for the first time the development of a proximity-induced 3D bipedal DNA walker for imaging of low abundance biomolecules. As a proof of concept, miRNA-34a, a biomarker of breast cancer, is chosen as the model system to demonstrate this approach. In our design, the 3D bipedal DNA walker can be generated only by the specific recognition of two proximity probes for miRNA-34a. Meanwhile, it stochastically and autonomously traveled on 3D tracks (gold nanoparticles) via catalytic hairpin assembly (CHA), resulting in the amplified fluorescence signal. In comparison with some conventional DNA walkers that were utilized for living cell imaging, the 3D DNA walkers induced by proximity ligation assay can greatly improve and ensure the high selectivity of bioanalysis. By taking advantage of these unique features, the proximity-induced 3D bipedal DNA walker successfully realizes accurate and effective monitoring of target miRNA-34a expression levels in living cells, affording a universal, valuable, and promising platform for low-abundance cancer biomarker detection and accurate identification of cancer.
Collapse
Affiliation(s)
- Xiyuan Feng
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Xiaofeng Bi
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Jinyue Feng
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Shengqiang Hu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Yumin Wang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Shulin Zhao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Liangliang Zhang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| |
Collapse
|
6
|
Lei Y, Li C, Ji X, Sun H, Liu X, Mao Z, Chen W, Qing Z, Liu J. Lowering Entropic Barriers in Triplex DNA Switches Facilitating Biomedical Applications at Physiological pH. Angew Chem Int Ed Engl 2024; 63:e202402123. [PMID: 38453654 DOI: 10.1002/anie.202402123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/29/2024] [Accepted: 03/07/2024] [Indexed: 03/09/2024]
Abstract
Triplex DNA switches are attractive allosteric tools for engineering smart nanodevices, but their poor triplex-forming capacity at physiological conditions limited the practical applications. To address this challenge, we proposed a low-entropy barrier design to facilitate triplex formation by introducing a hairpin duplex linker into the triplex motif, and the resulting triplex switch was termed as CTNSds. Compared to the conventional clamp-like triplex switch, CTNSds increased the triplex-forming ratio from 30 % to 91 % at pH 7.4 and stabilized the triple-helix structure in FBS and cell lysate. CTNSds was also less sensitive to free-energy disturbances, such as lengthening linkers or mismatches in the triple-helix stem. The CTNSds design was utilized to reversibly isolate CTCs from whole blood, achieving high capture efficiencies (>86 %) at pH 7.4 and release efficiencies (>80 %) at pH 8.0. Our approach broadens the potential applications of DNA switches-based switchable nanodevices, showing great promise in biosensing and biomedicine.
Collapse
Affiliation(s)
- Yanli Lei
- Hunan Provincial Key Laboratory of Cytochemistry, School of Food and Bioengineering, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha, 410114, China
| | - Chuangchuang Li
- Hunan Provincial Key Laboratory of Cytochemistry, School of Food and Bioengineering, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha, 410114, China
| | - Xinyue Ji
- Hunan Provincial Key Laboratory of Cytochemistry, School of Food and Bioengineering, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha, 410114, China
| | - Haiyan Sun
- Hunan Provincial Key Laboratory of Cytochemistry, School of Food and Bioengineering, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha, 410114, China
| | - Xiaowen Liu
- Changsha Hospital for Maternal and Child Health Care Affiliated to Hunan Normal University, Changsha, 410083, China
| | - Zenghui Mao
- Changsha Hospital for Maternal and Child Health Care Affiliated to Hunan Normal University, Changsha, 410083, China
| | - Weiju Chen
- Hunan Provincial Key Laboratory of Cytochemistry, School of Food and Bioengineering, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha, 410114, China
| | - Zhihe Qing
- Hunan Provincial Key Laboratory of Cytochemistry, School of Food and Bioengineering, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha, 410114, China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2 L 3G1, Canada
| |
Collapse
|
7
|
Youssef S, Tsang E, Samanta A, Kumar V, Gothelf KV. Reversible Protection and Targeted Delivery of DNA Origami with a Disulfide-Containing Cationic Polymer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2301058. [PMID: 37916910 DOI: 10.1002/smll.202301058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 10/08/2023] [Indexed: 11/03/2023]
Abstract
DNA nanostructures have considerable biomedical potential as intracellular delivery vehicles as they are highly homogeneous and can be functionalized with high spatial resolution. However, challenges like instability under physiological conditions, limited cellular uptake, and lysosomal degradation limit their use. This paper presents a bio-reducible, cationic polymer poly(cystaminebisacrylamide-1,6-diaminohexane) (PCD) as a reversible DNA origami protector. PCD displays a stronger DNA affinity than other cationic polymers. DNA nanostructures with PCD protection are shielded from low salt conditions and DNase I degradation and show a 40-fold increase in cell-association when linked to targeting antibodies. Confocal microscopy reveals a potential secondary cell uptake mechanism, directly delivering the nanostructures to the cytoplasm. Additionally, PCD can be removed by cleaving its backbone disulfides using the intracellular reductant, glutathione. Finally, the application of these constructs is demonstrated for targeted delivery of a cytotoxic agent to cancer cells, which efficiently decreases their viability. The PCD protective agent that is reported here is a simple and efficient method for the stabilization of DNA origami structures. With the ability to deprotect the DNA nanostructures upon entry of the intracellular space, the possibility for the use of DNA origami in pharmaceutical applications is enhanced.
Collapse
Affiliation(s)
- Sarah Youssef
- Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, 8000, Denmark
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Emily Tsang
- Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, 8000, Denmark
| | - Anirban Samanta
- Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, 8000, Denmark
| | - Vipin Kumar
- Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, 8000, Denmark
| | - Kurt V Gothelf
- Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, 8000, Denmark
| |
Collapse
|
8
|
Yang Q, Chang X, Lee JY, Saji M, Zhang F. DNA T-shaped crossover tiles for 2D tessellation and nanoring reconfiguration. Nat Commun 2023; 14:7675. [PMID: 37996416 PMCID: PMC10667507 DOI: 10.1038/s41467-023-43558-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023] Open
Abstract
DNA tiles serve as the fundamental building blocks for DNA self-assembled nanostructures such as DNA arrays, origami, and designer crystals. Introducing additional binding arms to DNA crossover tiles holds the promise of unlocking diverse nano-assemblies and potential applications. Here, we present one-, two-, and three-layer T-shaped crossover tiles, by integrating T junction with antiparallel crossover tiles. These tiles carry over the orthogonal binding directions from T junction and retain the rigidity from antiparallel crossover tiles, enabling the assembly of various 2D tessellations. To demonstrate the versatility of the design rules, we create 2-state reconfigurable nanorings from both single-stranded tiles and single-unit assemblies. Moreover, four sets of 4-state reconfiguration systems are constructed, showing effective transformations between ladders and/or rings with pore sizes spanning ~20 nm to ~168 nm. These DNA tiles enrich the design tools in nucleic acid nanotechnology, offering exciting opportunities for the creation of artificial dynamic DNA nanopores.
Collapse
Affiliation(s)
- Qi Yang
- Department of Chemistry, Rutgers University, Newark, NJ, 07102, USA
| | - Xu Chang
- Department of Chemistry, Rutgers University, Newark, NJ, 07102, USA
| | - Jung Yeon Lee
- Department of Chemistry, Rutgers University, Newark, NJ, 07102, USA
| | - Minu Saji
- Department of Chemistry, Rutgers University, Newark, NJ, 07102, USA
| | - Fei Zhang
- Department of Chemistry, Rutgers University, Newark, NJ, 07102, USA.
| |
Collapse
|
9
|
Zhang X, Liu Y, Wang B, Zhou S, Shi P, Cao B, Zheng Y, Zhang Q, Kirilov Kasabov N. Biomolecule-Driven Two-Factor Authentication Strategy for Access Control of Molecular Devices. ACS NANO 2023; 17:18178-18189. [PMID: 37703447 DOI: 10.1021/acsnano.3c05070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
The rise of DNA nanotechnology is promoting the development of molecular security devices and marking an essential change in information security technology, to one that can resist the threats resulting from the increase in computing power, brute force attempts, and quantum computing. However, developing a secure and reliable access control strategy to guarantee the confidentiality of molecular security devices is still a challenge. Here, a biomolecule-driven two-factor authentication strategy for access control of molecular devices is developed. Importantly, the two-factor is realized by applying the specificity and nicking properties of the nicking enzyme and the programmable design of the DNA sequence, endowing it with the characteristic of a one-time password. To demonstrate the feasibility of this strategy, an access control module is designed and integrated to further construct a role-based molecular access control device. By constructing a command library composed of three commands (Ca, Cb, Ca and Cb), the authorized access of three roles in the molecular device is realized, in which the command Ca corresponds to the authorization of role A, Cb corresponds to the authorization of role B, and Ca and Cb corresponds to the authorization of role C. In this way, when users access the device, they not only need the correct factor but also need to apply for role authorization in advance to obtain secret information. This strategy provides a highly robust method for the research on access control of molecular devices and lays the foundation for research on the next generation of information security.
Collapse
Affiliation(s)
- Xiaokang Zhang
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yuan Liu
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Bin Wang
- Key Laboratory of Advanced Design and Intelligent Computing, Ministry of Education, School of Software Engineering, Dalian University, Dalian 116622, China
| | - Shihua Zhou
- Key Laboratory of Advanced Design and Intelligent Computing, Ministry of Education, School of Software Engineering, Dalian University, Dalian 116622, China
| | - Peijun Shi
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Ben Cao
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yanfen Zheng
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Qiang Zhang
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Nikola Kirilov Kasabov
- Knowledge Engineering and Discovery Research Institute, Auckland University of Technology, Auckland 1010, New Zealand
- Intelligent Systems Research Center, Ulster University, Londonderry BT48, United Kingdom
- IICT, Bulgarian Academy of Sciences, Sofia 1040, Bulgaria
| |
Collapse
|
10
|
Liu X, Zhang X, Yao Y, Shi P, Zeng C, Zhang Q. Construction of DNA-based molecular circuits using normally open and normally closed switches driven by lambda exonuclease. NANOSCALE 2023; 15:7755-7764. [PMID: 37051702 DOI: 10.1039/d3nr00427a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Building synthetic molecular circuits is an important way to realize ion detection, information processing, and molecular computing. However, it is still challenging to implement the NOT logic controlled by a single molecule input in synthetic molecular circuits wherein the presence or absence of the molecule represents the ON or OFF state of the input. Here, based on lambda exonuclease (λ exo), for the first time, we propose the normally open (NO) and normally closed (NC) switching strategy with a unified signal transmission mechanism to build molecular circuits. Specifically, the opposite logic can be output with or without a single signal, and the state of the switch can be adjusted by the addition order and time interval of the upstream signal and switch signal, which endows the switch with time-responsive characteristics. In addition, a time-delay relay with the function of delayed disconnection is developed to realize quantitative control of outputs, which has the potential to meet the automation control need of the system. Finally, digital square and square root circuits are constructed by cascading the NO and NC switches, which demonstrates the versatility of switches. Our design can be extended to time logic and complex digital computing circuits for use in information processing and nanomachines.
Collapse
Affiliation(s)
- Xin Liu
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, P. R. China.
| | - Xun Zhang
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, P. R. China.
| | - Yao Yao
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, P. R. China.
| | - Peijun Shi
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, P. R. China.
| | - Chenyi Zeng
- Key Laboratory of Advanced Design and Intelligent Computing, Dalian University, Dalian 116622, China
| | - Qiang Zhang
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, P. R. China.
| |
Collapse
|
11
|
Zhao L, Li C, Kang X, Li Y. A visual detection strategy for SARS-CoV-2 based on dual targets-triggering DNA walker. SENSORS AND ACTUATORS. B, CHEMICAL 2023; 379:133252. [PMID: 36590306 PMCID: PMC9792190 DOI: 10.1016/j.snb.2022.133252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/19/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
SARS-CoV-2, a highly transmissible and mutagenic virus, made huge threats to global public health. The detection strategies, which are free from testing site requirements, and the reagents and instruments are portable, are vital for early screening and play a significant role in curbing the spread. This work proposed a silver-coated glass slide (SCGS)/DNA walker based on a dual targets-triggering mechanism, enzyme-catalyzed amplification, and smartphone data analysis, which build a portable visual detection strategy for the SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) gene. By this method, the detection was reflected by the ultraviolet absorbance changes and visible color changes to the naked eye which was analyzed by Red-Green-Blue (RGB) data analysis via smartphone within 30 min, simplifying the detection process and shortening the detection time. Meanwhile, the dual targets-triggering mechanism and dual signal amplification strategy ensured detection specificity and sensitivity. Further, the practicability was verified by the detection of the real sample which provided this method an application potential in SARS-CoV-2 rapid detection.
Collapse
Affiliation(s)
- Liting Zhao
- Faculty of Chemistry & Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China
| | - Ciling Li
- Faculty of Chemistry & Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xinhuang Kang
- Faculty of Chemistry & Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yubin Li
- Faculty of Chemistry & Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China
- Research Center for Coastal Environmental Protection and Ecological Resilience, Guangdong Ocean University, Zhanjiang 524088, China
- Laboratory of Climate, Resources and Environment in Continental Shelf Sea and Deep Sea of Department of Education of Guangdong Province, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| |
Collapse
|
12
|
Mariottini D, Idili A, Ercolani G, Ricci F. Thermo-Programmed Synthetic DNA-Based Receptors. ACS NANO 2023; 17:1998-2006. [PMID: 36689298 PMCID: PMC9933611 DOI: 10.1021/acsnano.2c07039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/18/2023] [Indexed: 06/17/2023]
Abstract
Herein, we present a generalizable and versatile strategy to engineer synthetic DNA ligand-binding devices that can be programmed to load and release a specific ligand at a defined temperature. We do so by re-engineering two model DNA-based receptors: a triplex-forming bivalent DNA-based receptor that recognizes a specific DNA sequence and an ATP-binding aptamer. The temperature at which these receptors load/release their ligands can be finely modulated by controlling the entropy associated with the linker connecting the two ligand-binding domains. The availability of a set of receptors with tunable and reversible temperature dependence allows achieving complex load/release behavior such as sustained ligand release over a wide temperature range. Similar programmable thermo-responsive synthetic ligand-binding devices can be of utility in applications such as drug delivery and production of smart materials.
Collapse
Affiliation(s)
- Davide Mariottini
- Chemistry
Department, University of Rome, Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Andrea Idili
- Chemistry
Department, University of Rome, Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Gianfranco Ercolani
- Chemistry
Department, University of Rome, Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Francesco Ricci
- Chemistry
Department, University of Rome, Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| |
Collapse
|
13
|
Liu Y, Wang J, Sun L, Wang B, Zhang Q, Zhang X, Cao B. Active Self-Assembly of Ladder-Shaped DNA Carrier for Drug Delivery. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020797. [PMID: 36677855 PMCID: PMC9862081 DOI: 10.3390/molecules28020797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
With the advent of nanotechnology, DNA molecules have been transformed from solely genetic information carriers to multifunctional materials, showing a tremendous potential for drug delivery and disease diagnosis. In drug delivery systems, DNA is used as a building material to construct drug carriers through a variety of DNA self-assembly methods, which can integrate multiple functions to complete in vivo and in situ tasks. In this study, ladder-shaped drug carriers are developed for drug delivery on the basis of a DNA nanoladder. We first demonstrate the overall structure of the nanoladder, in which a nick is added into each rung of the nanoladder to endow the nanoladder with the ability to incorporate a drug loading site. The structure is designed to counteract the decrement of stability caused by the nick and investigated in different conditions to gain insight into the properties of the nicked DNA nanoladders. As a proof of concept, we fix the biotin in every other nick as a loading site and assemble the protein (streptavidin) on the loading site to demonstrate the feasibility of the drug-carrying function. The protein can be fixed stably and can be extended to different biological and chemical drugs by altering the drug loading site. We believe this design approach will be a novel addition to the toolbox of DNA nanotechnology, and it will be useful for versatile applications such as in bioimaging, biosensing, and targeted therapy.
Collapse
Affiliation(s)
- Yuan Liu
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jiaxin Wang
- Key Laboratory of Advanced Design and Intelligent Computing, Dalian University, Ministry of Education, Dalian 116622, China
| | - Lijun Sun
- Key Laboratory of Advanced Design and Intelligent Computing, Dalian University, Ministry of Education, Dalian 116622, China
| | - Bin Wang
- Key Laboratory of Advanced Design and Intelligent Computing, Dalian University, Ministry of Education, Dalian 116622, China
| | - Qiang Zhang
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
- Correspondence:
| | - Xiaokang Zhang
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Ben Cao
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
14
|
Kong L, Han Z, Zhao M, Zhang X, Zhuo Y, Chai Y, Li Z, Yuan R. Versatile Electrochemical Biosensor Based on the Target-Controlled Capture and Release of DNA Nanotubes for the Ultrasensitive Detection of Multiplexed Biomarkers. Anal Chem 2022; 94:11416-11424. [PMID: 35930307 DOI: 10.1021/acs.analchem.2c02541] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein, an ultrasensitive and versatile electrochemical biosensor was developed through the target-controlled capture and release of signal probe-loaded DNA nanotube for the ultrasensitive detection of two different types of cancer-related biomarkers, microRNA-21 (miRNA-21) and glutathione (GSH). In this system, target 1 (miRNA-21) first triggered duplex-specific nuclease (DSN)-assisted recycle amplification to generate numerous disulfide-linked DNA strands (DL), which could effectively capture DNA nanotube to immobilize methylene blue (MB) to produce remarkable electrochemical signals and achieve the ultrasensitive detection of miRNA-21 with a detection limit down to 32.6 aM. Furthermore, in the presence of target 2 (GSH), the electrochemical signal was significantly reduced by a thiol-disulfide bond exchange reaction on DL to release MB-immobilized DNA nanotubes away from the sensing interface, which enabled the sensitive analysis of GSH with a detection limit of 0.379 nM. Impressively, this strategy could achieve ultrasensitive detection of different types of biomarkers to prominently lessen false-positive responses from the current sensing methods toward a single biomarker or the same type of biomarker and remarkably heighten the accuracy and precision of early cancer diagnosis. Meanwhile, the proposed electrochemical biosensor made it possible to realize the regenerative analysis of targets over four times without extra fuel, which could conspicuously improve the analytical efficiency compared with that of traditional biosensing assays. As a result, this study might open up novel insights to design a versatile and multifunctional sensing platform and encourage deeper exploration for detecting different types of biomarkers in the fields of early disease diagnosis and biochemical research.
Collapse
Affiliation(s)
- Lingqi Kong
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Zeshuai Han
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Mingzhou Zhao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Xiaolong Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ying Zhuo
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Yaqin Chai
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Zhaohui Li
- Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
15
|
Cui H, Zhang T, Kong Y, Xing H, Wei B. Controllable assembly of synthetic constructs with programmable ternary DNA interaction. Nucleic Acids Res 2022; 50:7188-7196. [PMID: 35713533 PMCID: PMC9262601 DOI: 10.1093/nar/gkac478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/28/2022] [Accepted: 06/15/2022] [Indexed: 12/24/2022] Open
Abstract
Compared with the dual binding components in a binary interaction, the third component of a ternary interaction often serves as modulator or regulator in biochemical processes. Here, we presented a programmable ternary interaction strategy based on the natural DNA triplex structure. With the DNA triplex-based ternary interaction, we have successfully demonstrated controllable hierarchical assemblies from nanometer scale synthetic DNA nanostructure units to micrometer scale live bacteria. A selective signaling system responsive to orthogonal nucleic acid signals via ternary interaction was also demonstrated. This assembly method could further enrich the diversified design schemes of DNA nanotechnology.
Collapse
Affiliation(s)
- Huangchen Cui
- School of Life Sciences, Tsinghua University-Peking University Center for Life Sciences, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| | - Tianqing Zhang
- School of Life Sciences, Tsinghua University-Peking University Center for Life Sciences, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| | - Yuhan Kong
- Institute of Chemical Biology and Nanomedicine; State Key Laboratory of Chemo/Biosensing and Chemometrics; Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology; College of Chemistry and Chemical Engineering; Hunan University, Changsha 410082, China
| | - Hang Xing
- Institute of Chemical Biology and Nanomedicine; State Key Laboratory of Chemo/Biosensing and Chemometrics; Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology; College of Chemistry and Chemical Engineering; Hunan University, Changsha 410082, China
| | - Bryan Wei
- School of Life Sciences, Tsinghua University-Peking University Center for Life Sciences, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|