1
|
Cué-Sampedro R, Sánchez-Fernández JA. Supramolecular systems and their connection with metal-organic structures. Front Chem 2024; 12:1468916. [PMID: 39564433 PMCID: PMC11573591 DOI: 10.3389/fchem.2024.1468916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/09/2024] [Indexed: 11/21/2024] Open
Abstract
Supramolecular structures with specific applications are a pillar in several areas of science. Thus, from a contemporary point of view, there are several reasons to embrace a systematic order of the supramolecular concept itself. First, the structuring of a supramolecular material seems safer now than it did decades ago. Second, the interactions of metal-organic frameworks (MOFs) and supramolecular chemistry and, conversely, supramolecularity to assemble MOFs and create efficient complex systems in multiple cutting-edge applications are an image to be safeguarded. Third, perhaps we should simply limit ourselves to considering how researchers in these fields have attempted to correlate the notion of supramolecular systems by linking self-assembly considerations. In any case, these topics present advantages to optimize innovative geometries that are useful to highlight significant practical applications. This review covers a general introduction to MOFs and supramolecularity, the key unit of the study presented here, followed by a survey of recent advances in confined space chemistry, the relationships of MOFs with supramolecular structures, and the synthesis electrochemistry of MOFs and switchable MOFs to obtain a greater understanding of structure-property relationships. To conclude, some future perspectives on this promising and plausible field of science will be mentioned.
Collapse
Affiliation(s)
- Rodrigo Cué-Sampedro
- School of Engineering and Sciences, Monterrey Institute of Technology, Monterrey, Nuevo León, Mexico
| | | |
Collapse
|
2
|
Tsunekawa E, Fujita M, Sawada T. A Discrete Four-Stranded β-Sheet through Catenation of M 2L 2 Metal-Peptide Rings. Angew Chem Int Ed Engl 2024:e202416442. [PMID: 39439286 DOI: 10.1002/anie.202416442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 10/25/2024]
Abstract
Methods for precisely constructing a β-sheet assembly with number-defined strands in solution remains quite limited due to its intense aggregation property. Here, we report the precise construction of a four-stranded anti-parallel β-sheet by utilizing a non-covalent approach. This was achieved by folding and assembly of Ag+ and a pentapeptide (1) with the Ala-D3pa-Gly-3pa-Val (3pa: β-(3-pyridyl)-alanine) sequence, which was designed to form an interlocking Ag2(1)2 ring through metal cross-linking of the side chains. NMR analyses and X-ray crystallographic studies characterized the structure of the discrete β-sheet assembly as well as the remarkable structural selectivity in terms of strands' number, orientation and the sheet type.
Collapse
Affiliation(s)
- Eisuke Tsunekawa
- Department of Applied Chemistry, School of Engineering, The University of Tokyo Mitsui Link Lab Kashiwanoha 1, FS CREATION, 6-6-2 Kashiwanoha, Kashiwa, Chiba, 277-0882, Japan
| | - Makoto Fujita
- Tokyo College, Institutes for Advanced Study, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
- Division of Advanced Molecular Science Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
- Department of Applied Chemistry, School of Engineering, The University of Tokyo Mitsui Link Lab Kashiwanoha 1, FS CREATION, 6-6-2 Kashiwanoha, Kashiwa, Chiba, 277-0882, Japan
| | - Tomohisa Sawada
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
- Present address: Laboratory for Chemistry and Life Science, Institute of Integrated Research, Institute of Science Tokyo, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8501, Japan
| |
Collapse
|
3
|
Hua PP, Bai JH, Feng HJ, Wang JW, Zhang LF, Jin GX. The Topological Transformation of 4 1 Knot to 4 12 Link through Supramolecular Fusion. J Am Chem Soc 2024; 146:26427-26434. [PMID: 39241233 DOI: 10.1021/jacs.4c09385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2024]
Abstract
Realizing topological transformation through supramolecular fusion is particularly challenging, as the self-assembly of disparate components often results in the orthogonal assembly of building blocks into distinct structures rather than the formation of a heteroleptic architecture. This study introduces a topological transformation, transitioning from a figure-eight knot (41 knot) to a Solomon link (412 link) through a supramolecular fusion process. By employing two structurally similar amino acid ligands (L1 and L3) of varying lengths as bridge ligands, we obtained figure-eight knot 1 and a molecular tweezer-like compound 3 when individually complexed with binuclear Cp*Rh acceptor B1. Our results revealed that subtle modifications to bridge ligands can lead to dramatic changes in their structures and recognition properties. Moreover, we successfully achieved the targeted formation of a heteroleptic Solomon link 4 by blending figure-eight knot 1 and compound 3 in a 1:1 ratio without the need for templates. This procedure effortlessly converted the 41 knot into a 412 link, thus marking a significant advancement in the topological transformation. This work not only marks the construction of the first heteroleptic Solomon link comprising two distinct metallamacrocycles but also demonstrates a process of supramolecular fusion-based topological transformation involving three distinct topological structures.
Collapse
Affiliation(s)
- Pan-Pan Hua
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of the Ministry of Education, School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030031, China
| | - Jun-Hua Bai
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of the Ministry of Education, School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030031, China
| | - Hui-Jun Feng
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of the Ministry of Education, School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030031, China
| | - Jun-Wen Wang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of the Ministry of Education, School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030031, China
| | - Li-Fang Zhang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of the Ministry of Education, School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030031, China
| | - Guo-Xin Jin
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200433, P. R. China
| |
Collapse
|
4
|
Huang YZ, Yang R, Zhang L, Chen ZN. Phosphorescent metallaknots of Au(I)-bis(acetylide) strands directed by Cu(I) π-coordination. Proc Natl Acad Sci U S A 2024; 121:e2403721121. [PMID: 39298486 PMCID: PMC11441568 DOI: 10.1073/pnas.2403721121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/25/2024] [Indexed: 09/21/2024] Open
Abstract
Knots containing metal atoms as part of their continuous strand backbone are termed as metallaknots. While several metallaknots have been synthesized through one-pot self-assembly, the designed synthesis of metallaknots by controlling the arrangement of entanglements and strands connectivity remains unexplored. Here, we report the synthesis of metallaknots composed with Au(I)-bis(acetylide) linkages and templated by Cu(I) ions. Varying the ratio of the building blocks results in the switchable formation of two trefoil knots with different stoichiometries and symmetries (C2 or D3) and an entangled metalla-complex. While the entangled complex formed serendipitously, the strand ends can be subsequently linked through coordinative closure to generate a 41 metallaknot in a highly designable fashion. The comparable structural characteristics of resulting metalla-complexes allow us to probe the correlations between their topologies and photophysical properties, showing the backbone rigidity of knots endows complexes with excellent phosphorescent properties. This strategy, in conjunction with the coordinative closure approach, provides a straightforward route for the formation of highly phosphorescent metallaknots that were previously challenging to access.
Collapse
Affiliation(s)
- Ya-Zi Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou350002, P. R. China
- Fujian College, University of Chinese Academy of Sciences, Beijing100039, P. R. China
| | - Raorao Yang
- Frontiers Science Center of Molecular Intelligent Synthesis, East China Normal University, Shanghai200062, P. R. China
| | - Liang Zhang
- Frontiers Science Center of Molecular Intelligent Synthesis, East China Normal University, Shanghai200062, P. R. China
| | - Zhong-Ning Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou350002, P. R. China
- Fujian College, University of Chinese Academy of Sciences, Beijing100039, P. R. China
| |
Collapse
|
5
|
Li M, Zhu H, Adorinni S, Xue W, Heard A, Garcia AM, Kralj S, Nitschke JR, Marchesan S. Metal Ions Trigger the Gelation of Cysteine-Containing Peptide-Appended Coordination Cages. Angew Chem Int Ed Engl 2024; 63:e202406909. [PMID: 38701043 DOI: 10.1002/anie.202406909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/03/2024] [Accepted: 05/03/2024] [Indexed: 05/05/2024]
Abstract
We report a series of coordination cages that incorporate peptide chains at their vertices, prepared through subcomponent self-assembly. Three distinct heterochiral tripeptide subcomponents were incorporated, each exhibiting an L-D-L stereoconfiguration. Through this approach, we prepared and characterized three tetrahedral metal-peptide cages that incorporate thiol and methylthio groups. The gelation of these cages was probed through the binding of additional metal ions, with the metal-peptide cages acting as junctions, owing to the presence of sulfur atoms on the peripheral peptides. Gels were obtained with cages bearing cysteine at the C-terminus. Our strategy for developing functional metal-coordinated supramolecular gels with a modular design may result in the development of materials useful for chemical separations or drug delivery.
Collapse
Affiliation(s)
- Meng Li
- Department of Environmental Science and Engineering, North China Electric Power University, 689 Huadian Road, Baoding, 071003, P. R. China
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
- Department of Chemical & Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| | - Huangtianzhi Zhu
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Simone Adorinni
- Department of Chemical & Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| | - Weichao Xue
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Andrew Heard
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Ana M Garcia
- Department of Chemical & Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| | - Slavko Kralj
- Materials Synthesis Department, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia
- Pharmaceutical Technology Department - Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Jonathan R Nitschke
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Silvia Marchesan
- Department of Chemical & Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
- INSTM, Unit of Trieste, 34127, Trieste, Italy
| |
Collapse
|
6
|
Zhong J, Sun Z, Zhang L, Whitehead GFS, Vitorica-Yrezabal IJ, Leigh DA. Folding a Molecular Strand into a Trefoil Knot of Single Handedness with Co(II)/Co(III) Chaperones. J Am Chem Soc 2024; 146:21762-21768. [PMID: 39060953 PMCID: PMC11311214 DOI: 10.1021/jacs.4c05953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/01/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
We report the synthesis of a right-handed (Δ-stereochemistry of strand crossings) trefoil knot from a single molecular strand containing three pyrazine-2,5-dicarboxamide units adjacent to point-chiral centers and six pyridine moieties. The oligomeric ligand strand folds into an overhand (open-trefoil) knot through the assistance of coordinatively dynamic Co(II) "chaperones" that drive the formation of a three-metal-ion circular helicate. The entangled structure is kinetically locked by oxidation to Co(III) and covalently captured by ring-closing olefin metathesis to generate a trefoil knot of single topological handedness. The stereochemistry of the strand crossings in the metal-coordinated overhand knot is governed by the stereochemistry of the point-chiral carbon centers in the ligand strand. The overhand and trefoil knots were characterized by NMR spectroscopy, mass spectrometry, and X-ray crystallography. Removal of the metal ions from the knot, followed by hydrogenation of the alkene, yielded the wholly organic trefoil knot. The metal-free knot and parent ligand were investigated by circular dichroism (CD) spectroscopy. The CD spectra indicate that the topological stereochemistry of the knot has a greater effect on the asymmetry of the chromophore environment than do the point-chiral centers of the strand.
Collapse
Affiliation(s)
- Jiankang Zhong
- Department
of Chemistry, University of Manchester, Manchester M13 9PL, U.K.
| | - Zhanhu Sun
- School
of Chemistry and Molecular Engineering, East China Normal University, 200062 Shanghai, China
| | - Liang Zhang
- School
of Chemistry and Molecular Engineering, East China Normal University, 200062 Shanghai, China
| | | | | | - David A. Leigh
- School
of Chemistry and Molecular Engineering, East China Normal University, 200062 Shanghai, China
- Department
of Chemistry, University of Manchester, Manchester M13 9PL, U.K.
| |
Collapse
|
7
|
Okabe K, Yamashina M, Tsurumaki E, Uekusa H, Toyota S. Solid-State Self-Assembly: Exclusive Formation and Dynamic Interconversion of Discrete Cyclic Assemblies Based on Molecular Tweezers. J Org Chem 2024; 89:9488-9495. [PMID: 38913719 PMCID: PMC11232003 DOI: 10.1021/acs.joc.4c00794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
In contrast to self-assembly in solution systems, the construction of well-defined assemblies in the solid state has long been identified as a challenging task. Herein, we report the formation of tweezers-shaped molecules into various assemblies through a solid-state self-assembly strategy. The relatively flexible molecular tweezers undergo exclusive and quantitative assembly into either cyclic hexamers or a porous network through classical recrystallization or the exposure of powders to solvent vapor, despite the fact that they form only dimers in solution. The cyclic hexamers have high thermal stability and exhibit moderate solid-state fluorescence. The formation of heterologous assemblies consisting of different tweezers allows for tuning these solid-state properties of the cyclic hexamer. Furthermore, (trimethylsilyl)ethynyl-substituted tweezers demonstrate solvent-vapor-induced dynamic interconversion between the cyclic hexamer and a pseudocyclic dimer in the solid state. This assembly behavior, which has been studied extensively in solution-based supramolecular chemistry, had not been accomplished in the solid state so far.
Collapse
Affiliation(s)
- Koki Okabe
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Masahiro Yamashina
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Eiji Tsurumaki
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Hidehiro Uekusa
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Shinji Toyota
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
| |
Collapse
|
8
|
Zhang HN, Huang X, Jin GX. Efficient and Selective Construction of 4 1 2 Metalla-links Using Weak C-H⋅⋅⋅Halogen Interactions. Angew Chem Int Ed Engl 2024; 63:e202405399. [PMID: 38570193 DOI: 10.1002/anie.202405399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/05/2024]
Abstract
Through a coordination-driven self-assembly method, four4 1 2 ${4_1^2 }$ metalla-links and one tetranuclear monocycle were constructed with high selectivity and yield by adjusting the substituent species of the building blocks, as evidenced using X-ray crystallographic analysis, electrospray ionization-time-of-flight/mass spectrometry (ESI-TOF/MS), elemental analysis and detailed solution-state nuclear magnetic resonance (NMR) spectroscopy. Based on X-ray crystallographic analysis and independent gradient model analysis, a significant factor leading to the formation of4 1 2 ${4_1^2 }$ metalla-links was the introduction of F, Cl, Br and I atoms, which generated additional weak C-H⋅⋅⋅X (X=F, Cl, Br and I) interactions. Furthermore, the dynamic conversion of4 1 2 ${4_1^2 }$ metalla-links to monocyclic rings in methanol solution was systematically investigated using quantitative 1H NMR techniques.
Collapse
Affiliation(s)
- Hai-Ning Zhang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, 2005 Songhu Rd, 200438, Shanghai, P. R. China
| | - Xi Huang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, 2005 Songhu Rd, 200438, Shanghai, P. R. China
| | - Guo-Xin Jin
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, 2005 Songhu Rd, 200438, Shanghai, P. R. China
| |
Collapse
|
9
|
Zhu H, Ronson TK, Wu K, Nitschke JR. Steric and Geometrical Frustration Generate Two Higher-Order Cu I12L 8 Assemblies from a Triaminotriptycene Subcomponent. J Am Chem Soc 2024; 146:2370-2378. [PMID: 38251968 PMCID: PMC10835662 DOI: 10.1021/jacs.3c09547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024]
Abstract
The use of copper(I) in metal-organic assemblies leads readily to the formation of simple grids and helicates, whereas higher-order structures require complex ligand designs. Here, we report the clean and selective syntheses of two complex and structurally distinct CuI12L8 frameworks, 1 and 2, which assemble from the same simple triaminotriptycene subcomponent and a formylpyridine around the CuI templates. Both represent new structure types. In T-symmetric 1, the copper(I) centers describe a pair of octahedra with a common center but whose vertices are offset from each other, whereas in D3-symmetric 2, the metal ions form a distorted hexagonal prism. The syntheses of these architectures illustrate how more intricate CuI-based complexes can be prepared via subcomponent self-assembly than has been possible to date through consideration of the interplay between the subcomponent geometry and solvent and electronic effects.
Collapse
Affiliation(s)
- Huangtianzhi Zhu
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Tanya K. Ronson
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Kai Wu
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Jonathan R. Nitschke
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| |
Collapse
|
10
|
Roy S, Chaturvedi A, Dey S, Puneeth Kumar DRGKR, Pahan S, Panda Mahapatra S, Mandal P, Gopi HN. Anion Tuned Structural Modulation and Nonlinear Optical Effects of Metal-Ion Directed 3 10 -Helix Networks. Chemistry 2023; 29:e202303135. [PMID: 37867145 DOI: 10.1002/chem.202303135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/13/2023] [Accepted: 10/19/2023] [Indexed: 10/24/2023]
Abstract
Metals play an important role in the structure and functions of various proteins. The combination of metal ions and peptides have been emerging as an attractive field to create advanced structures and biomaterials. Here, we are reporting the anion-influenced, silver ion coordinated diverse networks of designed short tripeptide 310 -helices with terminal pyridyl groups. The short peptides adopted classical right-handed, left-handed and 310 EL -helical conformations in the presence of different silver salts. The peptides have displayed conformational flexibility to accommodate different sizes and interactions of anions to yield a variety of metal-coordinated networks. The complexes of metal ions and peptides have shown different porous networks, right- and left-handed helical polymers, transformation of helix into superhelix and 2 : 2 metal-peptide macrocycles. Further, the metal-peptide crystals with inherent dipoles of helical peptides gave striking second harmonic generation response. The optical energy upconversion from NIR to red and green light is demonstrated. Overall, we have shown the utilization of short 310 -helices for the construction of diverse metal-coordinated helical networks and notable non-linear optical effects.
Collapse
Affiliation(s)
- Souvik Roy
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, 411008, Pune, India
| | - Aman Chaturvedi
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, 411008, Pune, India
| | - Sanjit Dey
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, 411008, Pune, India
| | - DRGKoppalu R Puneeth Kumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, 411008, Pune, India
| | - Saikat Pahan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, 411008, Pune, India
| | - Souvik Panda Mahapatra
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, 411008, Pune, India
| | - Pankaj Mandal
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, 411008, Pune, India
| | - Hosahudya N Gopi
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, 411008, Pune, India
| |
Collapse
|
11
|
Singh H, Khatoon N, Bhardwaj SK, Kampani P, Nayak TK, Haridas V. Bispidine as a Versatile Scaffold: From Topological Hosts to Transmembrane Transporters. Chembiochem 2023; 24:e202300502. [PMID: 37708237 DOI: 10.1002/cbic.202300502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/24/2023] [Accepted: 09/14/2023] [Indexed: 09/16/2023]
Abstract
The development of designer topological structures is a synthetically challenging endeavor. We present herein bispidine as a platform for the design of molecules with various topologies and functions. The bispidine-based acyclic molecule, which shows intriguing S-shape topology, is discussed. Single-crystal X-ray diffraction studies revealed that this molecule exists in the solid state as two conformational enantiomers. In addition, bispidine-based designer macrocycles were synthesized and investigated for ionophoric properties. Patch clamp experiments revealed that these macrocycles transport both anions and cations non-specifically with at least tenfold higher chloride conductance over the cations under the given experimental conditions. Ultramicroscopy and single-crystal X-ray crystallographic studies indicated that the self-assembling macrocycle forms a tubular assembly. Our design highlights the use of unconventional dihydrogen interactions in nanotube fabrication.
Collapse
Affiliation(s)
- Hanuman Singh
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Nadira Khatoon
- Kusuma School of Biological Science, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Surya Kant Bhardwaj
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Pradeepti Kampani
- Kusuma School of Biological Science, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Tapan K Nayak
- Kusuma School of Biological Science, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - V Haridas
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| |
Collapse
|
12
|
Kim J, Hong J, Park MJ, Lee HS. Tailoring Enantiomeric Chiral Channels in Metal-Peptide Networks: A Novel Foldamer-Based Approach for Host-Guest Interactions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2305753. [PMID: 37722669 DOI: 10.1002/adma.202305753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/13/2023] [Indexed: 09/20/2023]
Abstract
Designing chiral channels in organic frameworks presents an ongoing challenge due to the intricate control of size, shape, and functionality required. A novel approach is presented, which crafts enantiomeric chiral channels in metal-peptide networks (MPNs) by integrating short foldamer ligands with CuI clusters. The MPN structure serves as a 3D blueprint for host-guest chemistry, fostering modular substitution to refine chiral channel properties at the atomic scale. Incorporating hydrogen bond networks augments guest molecule interactions with the channel surface. This approach expedites enantiomer discrimination in racemic mixtures and incites adaptable guest molecules to take on specific axially chiral conformations. Distinct from traditional metal-organic frameworks (MOFs) and conventional reticular architectures, this foldamer-based methodology provides a predictable and customizable host-guest interaction system within a 3D topology. This innovation sets the stage for multifunctional materials that merge host-guest interaction systems with metal-complex properties, opening up potential applications in catalysis, sensing, and drug delivery.
Collapse
Affiliation(s)
- Jaewook Kim
- Department of Chemistry and Center for Multiscale Chiral Architectures (CMCA), KAIST, Daejeon, 34141, Republic of Korea
| | - Jungwoo Hong
- Department of Chemistry and Center for Multiscale Chiral Architectures (CMCA), KAIST, Daejeon, 34141, Republic of Korea
| | - Mi Jeong Park
- Department of Chemistry and Center for Multiscale Chiral Architectures (CMCA), KAIST, Daejeon, 34141, Republic of Korea
| | - Hee-Seung Lee
- Department of Chemistry and Center for Multiscale Chiral Architectures (CMCA), KAIST, Daejeon, 34141, Republic of Korea
| |
Collapse
|
13
|
Phukon U, Kedia M, Shankar B, Sathiyendiran M. Rhenium-Pyrazolyl-Based Figure-Eight- and Z-Shaped Metallocycles: Self-Assembly, Solid-State Structures, Dynamic Properties in Solution, and Competitive Ligand-Induced Supramolecular Transformations into Rhenium-Pyridyl/-Benzimidazolyl/-Phosphine-Based Metallocycles/Acyclic Complexes. ACS OMEGA 2023; 8:41773-41784. [PMID: 37969972 PMCID: PMC10633831 DOI: 10.1021/acsomega.3c06371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/23/2023] [Accepted: 10/10/2023] [Indexed: 11/17/2023]
Abstract
Rhenium(I)tricarbonyl core-based heteroleptic "figure-eight"- and Z-shaped metallocycles (1a-4a) of the general formula fac-[{(CO)3Re(μ-L)Re(CO)3}2(dppz)2] were self-assembled from Re2(CO)10, H2-L (H2-L = 5,8-dihydroxy-1,4-naphthaquinone (H2-dhnq) for 1a; 1,4-dihydroxy-9,10-anthraquinone (H2-dhaq) for 2a; 6,11-dihydroxy-5,12-naphthacenedione (H2-dhnd) for 3a; 2,2'-bisbenzimidazole (H2-bbim) for 4a), and bis(4-((pyrazolyl)methyl)phenylmethane) (dppz) via one-pot coordination-driven synthetic approach. The molecular structures of 1a and 4a were unambiguously confirmed by single-crystal X-ray diffraction (SC-XRD) methods. The metallocycles in the DMSO solution exist as an acyclic dinuclear-DMSO adduct of the general formula fac-[{(CO)3Re(μ-L)Re(CO)3}(DMSO)2] (1b, L = dhnq; 2b, L = dhaq; 3b, L = dhnd; 4b, L = bbim) and dppz, which are in dynamic equilibrium. The dynamic behavior of the rhenium-pyrazolyl bond in the solution state was effectively utilized to transform metallocycles 1a-4a into pyridyl/benzimidazolyl/phosphine donor-based heteroleptic metallocycles and acyclic dinuclear complexes (4-13). These include tetranuclear rectangles fac-[{(CO)3Re(μ-L)Re(CO)3}2(4,4'-bpy)2] (4 and 11, L = dhaq for 4 and bbim for 11), dinuclear metallocycles fac-[{(CO)3Re(μ-L)Re(CO)3}(dpbim)] (5-7 and 12; L = dhnq for 5, dhaq for 6, dhnd for 7, and bbim for 12), and dinuclear acyclic complexes fac-[{(CO)3Re(μ-L)Re(CO)3}(PTA)2] (8-10 and 13; L = dhnq for 8, dhaq for 9, dhnd for 10, and bbim for 13). These transformations were achieved through component-induced supramolecular reactions while treating with competitive ligands 4,4'-bipyridine (4,4'-bpy), bis(4-((1H-benzoimidazole-1-yl)methyl)phenyl)methane (dpbim), and 1,3,5-triaza-7-phosphaadamantane (PTA). The reaction mixture in the solution was analyzed using NMR and electrospray ionization mass spectrometry (ESI-MS) analysis. Additionally, crystal structures of 4, 6, and 13, which were obtained in the mixture of the solutions, were determined, providing unequivocal evidence for the occurrence of supramolecular transformation within the system. The results reveal that the size of the chelating ligand and the pyrazolyl donor angle of the ditopic ligand play crucial roles in determining the resulting solid-state metallacyclic architecture in these synthetic combinations. The dynamic behavior of the rhenium-pyrazolyl bond in the metallocycles can be utilized to transform into other metallocycles and acyclic complexes using suitable competing ligands via ligand-induced supramolecular transformations.
Collapse
Affiliation(s)
- Upasana Phukon
- School
of Chemistry, University of Hyderabad, Hyderabad 500 046, India
| | - Moon Kedia
- School
of Chemistry, University of Hyderabad, Hyderabad 500 046, India
| | - Bhaskaran Shankar
- Department
of Chemistry, Thiagarajar College of Engineering, Madurai 625 015, India
| | | |
Collapse
|
14
|
Do CD, Pál D, Belyaev A, Pupier M, Kiesilä A, Kalenius E, Galmés B, Frontera A, Poblador-Bahamonde A, Cougnon FBL. Sulfate-induced large amplitude conformational change in a Solomon link. Chem Commun (Camb) 2023; 59:13010-13013. [PMID: 37830390 DOI: 10.1039/d3cc04555b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
A doubly-interlocked [2]catenane - or Solomon link - undergoes a complex conformational change upon addition of sulfate in methanol. This transformation generates a single pocket where two SO42- anions bind through multiple hydrogen bonds and electrostatic interactions. Despite the close proximity of the two anions, binding is highly cooperative.
Collapse
Affiliation(s)
- Cuong Dat Do
- Department of Organic Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - Dávid Pál
- Department of Organic Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - Andrey Belyaev
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, P.O. Box 35, FI-40014 JYU, Finland.
| | - Marion Pupier
- Department of Organic Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - Anniina Kiesilä
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, P.O. Box 35, FI-40014 JYU, Finland.
| | - Elina Kalenius
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, P.O. Box 35, FI-40014 JYU, Finland.
| | - Bartomeu Galmés
- Department de Química, Universitat de les Illes Balears, Carretera de Valldemossa km 7.5, 07122 Palma de Mallorca, Baleares, Spain
| | - Antonio Frontera
- Department de Química, Universitat de les Illes Balears, Carretera de Valldemossa km 7.5, 07122 Palma de Mallorca, Baleares, Spain
| | - Amalia Poblador-Bahamonde
- Department of Organic Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - Fabien B L Cougnon
- Department of Organic Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, P.O. Box 35, FI-40014 JYU, Finland.
| |
Collapse
|
15
|
Zhang HN, Feng HJ, Lin YJ, Jin GX. Cation-Templated Assembly of 6 13 and 6 23 Metalla-Links. J Am Chem Soc 2023; 145:4746-4756. [PMID: 36716227 DOI: 10.1021/jacs.2c13416] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Facilitated by multiple stacking interactions between components, two kinds of metalla-links containing molecular Borromean rings (623 links) and head-to-tail cyclic [3]catenanes (613 links), as isomers, were constructed in high yield by introducing tri-μ-methoxyl-dinuclear complexes [(Cp*M)2(μ-OCH3)3][OTf] (M = RhIII or IrIII, Cp* = η5-pentamethylcyclopentadienyl, OTf = triflate) as unusual cationic guests during coordination-driven assembly. The topology of these intricate structures was controlled by strategically selecting two dipyridyl ligands that differ in their coordination orientations, as evidenced by X-ray crystallography and electrospray ionization-time-of-flight/mass spectrometry analysis. The behavior of the abovementioned metalla-links in solution was monitored and further studied by the detailed NMR techniques.
Collapse
Affiliation(s)
- Hai-Ning Zhang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
| | - Hui-Jun Feng
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
| | - Yue-Jian Lin
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
| | - Guo-Xin Jin
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|
16
|
Miyake R, Minagawa K, Sato Y. Effect of Functional Groups at N-Terminus on the Properties and Structures of Crystalline Nano-Cavities in Flexible Peptide Ni(II)-Macrocycles. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2023. [DOI: 10.1246/bcsj.20220318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Affiliation(s)
- Ryosuke Miyake
- Department of Chemistry and Biochemistry, Graduate School of Humanities and Sciences, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan
| | - Kao Minagawa
- Department of Chemistry and Biochemistry, Graduate School of Humanities and Sciences, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan
| | - Yui Sato
- Department of Chemistry and Biochemistry, Graduate School of Humanities and Sciences, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan
| |
Collapse
|
17
|
Jeong S, Lee K, Yoo SH, Lee HS, Kwon S. Crystalline Metal-Peptide Networks: Structures, Applications, and Future Outlook. Chembiochem 2023; 24:e202200448. [PMID: 36161687 DOI: 10.1002/cbic.202200448] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/23/2022] [Indexed: 01/20/2023]
Abstract
Metal-peptide networks (MPNs), which are assembled from short peptides and metal ions, are considered one of the most fascinating metal-organic coordinated architectures because of their unique and complicated structures. Although MPNs have considerable potential for development into versatile materials, they have not been developed for practical applications because of several underlying limitations, such as designability, stability, and modifiability. In this review, we summarise several important milestones in the development of crystalline MPNs and thoroughly analyse their structural features, such as peptide sequence designs, coordination geometries, cross-linking types, and network topologies. In addition, potential applications such as gas adsorption, guest encapsulation, and chiral recognition are introduced. We believe that this review is a useful survey that can provide insights into the development of new MPNs with more sophisticated structures and novel functions.
Collapse
Affiliation(s)
- Seoneun Jeong
- Center for Multiscale Chiral Architectures, Department of Chemistry, KAIST 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Kwonjung Lee
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Korea
| | - Sung Hyun Yoo
- Department of Chemistry, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Hee-Seung Lee
- Center for Multiscale Chiral Architectures, Department of Chemistry, KAIST 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Sunbum Kwon
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Korea
| |
Collapse
|
18
|
Li K, Zhang S, Hu Y, Kang S, Yu X, Wang H, Wang M, Li X. Shape-Dependent Complementary Ditopic Terpyridine Pair with Two Levels of Self-Recognition for Coordination-Driven Self-Assembly. Macromol Rapid Commun 2023; 44:e2200303. [PMID: 35666548 DOI: 10.1002/marc.202200303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/28/2022] [Indexed: 01/11/2023]
Abstract
Molecular recognition in biological systems plays a vital role in the precise construction of biomacromolecules and the corresponding biological activities. Such recognition mainly relies on the highly specific binding of complementary molecular pairs with complementary sizes, shapes, and intermolecular forces. It still remains challenging to develop artificial complementary motif pairs for coordination-driven self-assembly. Herein, a series of shape-dependent complementary motif pairs, based on ditopic 2,2':6',2″-terpyridine (TPY) backbone, are designed and synthesized. The fidelity degrees of self-assemblies from these motifs are carefully evaluated by multi-dimensional mass spectrometry, nuclear magnetic resonance spectroscopy, and molecular modeling. In addition, two levels of self-recognition in both homoleptic and heteroleptic assembly are discovered in the assembled system. Through finely tuning the shape and size of the ligands, a complementary pair is developed with error-free narcissistically self-sorting at two levels of self-recognition, and the intrinsic principle is carefully investigated.
Collapse
Affiliation(s)
- Kehuan Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China.,College of Chemistry and Environmental Engineering, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Shunran Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, Guangdong, 518060, China.,Guangdong Provincial Key Laboratory of Distributed Energy Systems, Dongguan University of Technology, Dongguan, Guangdong, 523808, China
| | - Yaqi Hu
- College of Chemistry and Environmental Engineering, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Shimin Kang
- Guangdong Provincial Key Laboratory of Distributed Energy Systems, Dongguan University of Technology, Dongguan, Guangdong, 523808, China
| | - Xiujun Yu
- College of Chemistry and Environmental Engineering, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Heng Wang
- College of Chemistry and Environmental Engineering, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Ming Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, Guangdong, 518060, China
| |
Collapse
|
19
|
Fang Q, Xu Y, Yan X, Jiang T, Jiang Y. Synthetic approaches to metal-coordination-directed macrocyclic complexes. Front Chem 2022; 10:1078432. [PMID: 36505734 PMCID: PMC9731519 DOI: 10.3389/fchem.2022.1078432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/15/2022] [Indexed: 11/25/2022] Open
Abstract
Metal-coordination-directed macrocyclic complexes, in which macrocyclic architectures are formed by metal-ligand coordination interactions, have emerged as attractive supramolecular scaffolds for the creation of materials for applications in biosensing and therapeutics. Despite recent progress, uncontrolled multicyclic cages and linear oligomers/polymers is the most likely outcome from metal-ligands assembly, representing a challenge to current synthetic methods. Herein we outlined the state-of-art synthetic approaches to the metal-coordination-directed macrocyclic complexes by using foldable ligands or through assembly of amphiphilic ligands. This mini-review offers a guideline for the efficient preparation of metal-coordination-directed macrocyclic complexes with predictable and controllable structures, which may find applications in many biology-related areas.
Collapse
Affiliation(s)
- Qingqing Fang
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, and iChEM, Xiamen University, Xiamen, China
| | - Yan Xu
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, and iChEM, Xiamen University, Xiamen, China,Songshan Academy, Zhengzhou University of Aeronautics, Zhengzhou, China
| | - Xiaosheng Yan
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, and iChEM, Xiamen University, Xiamen, China,School of Pharmaceutical Sciences, Xiamen University, Xiamen, China,*Correspondence: Xiaosheng Yan, ; Tao Jiang, ; Yunbao Jiang,
| | - Tao Jiang
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, and iChEM, Xiamen University, Xiamen, China,*Correspondence: Xiaosheng Yan, ; Tao Jiang, ; Yunbao Jiang,
| | - Yunbao Jiang
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, and iChEM, Xiamen University, Xiamen, China,*Correspondence: Xiaosheng Yan, ; Tao Jiang, ; Yunbao Jiang,
| |
Collapse
|
20
|
Ashbridge Z, Fielden SDP, Leigh DA, Pirvu L, Schaufelberger F, Zhang L. Knotting matters: orderly molecular entanglements. Chem Soc Rev 2022; 51:7779-7809. [PMID: 35979715 PMCID: PMC9486172 DOI: 10.1039/d2cs00323f] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Indexed: 11/29/2022]
Abstract
Entangling strands in a well-ordered manner can produce useful effects, from shoelaces and fishing nets to brown paper packages tied up with strings. At the nanoscale, non-crystalline polymer chains of sufficient length and flexibility randomly form tangled mixtures containing open knots of different sizes, shapes and complexity. However, discrete molecular knots of precise topology can also be obtained by controlling the number, sequence and stereochemistry of strand crossings: orderly molecular entanglements. During the last decade, substantial progress in the nascent field of molecular nanotopology has been made, with general synthetic strategies and new knotting motifs introduced, along with insights into the properties and functions of ordered tangle sequences. Conformational restrictions imparted by knotting can induce allostery, strong and selective anion binding, catalytic activity, lead to effective chiral expression across length scales, binding modes in conformations efficacious for drug delivery, and facilitate mechanical function at the molecular level. As complex molecular topologies become increasingly synthetically accessible they have the potential to play a significant role in molecular and materials design strategies. We highlight particular examples of molecular knots to illustrate why these are a few of our favourite things.
Collapse
Affiliation(s)
- Zoe Ashbridge
- Department of Chemistry, The University of Manchester, Manchester, UK
| | | | - David A Leigh
- Department of Chemistry, The University of Manchester, Manchester, UK
- School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai, China
| | - Lucian Pirvu
- Department of Chemistry, The University of Manchester, Manchester, UK
| | | | - Liang Zhang
- Department of Chemistry, The University of Manchester, Manchester, UK
- School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai, China
| |
Collapse
|
21
|
Ma L, Li Y, Li X, Zhang L, Sun L, Han Y. A Molecular “
A
‐Type” Tangled Metallocube. Angew Chem Int Ed Engl 2022; 61:e202208376. [DOI: 10.1002/anie.202208376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Li‐Li Ma
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 P. R. China
| | - Yang Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 P. R. China
| | - Xin Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 P. R. China
| | - Le Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 P. R. China
| | - Li‐Ying Sun
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 P. R. China
| | - Ying‐Feng Han
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 P. R. China
| |
Collapse
|
22
|
On the Classification of Polyhedral Links. Symmetry (Basel) 2022. [DOI: 10.3390/sym14081712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Knots and links are ubiquitous in chemical systems. Their structure can be responsible for a variety of physical and chemical properties, making them very important in materials development. In this article, we analyze the topological structures of interlocking molecules composed of metal-peptide rings using the concept of polyhedral links. To that end, we discuss the topological classification of alternating polyhedral links.
Collapse
|
23
|
Ma LL, Li Y, Li X, Zhang L, Sun LY, Han YF. A Molecular “A‐Type” Tangled Metallocube. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Li-Li Ma
- Northwest University College of Chemistry and Materials Science 1 Xuefu Ave., Guodu Education and Hi-Tech Industries Zone, Chang’an District 710127 CHINA
| | - Yang Li
- Northwest University College of Chemistry and Materials Science 1 Xuefu Ave., Guodu Education and Hi-Tech Industries Zone, Chang’an District 710127 CHINA
| | - Xin Li
- Northwest University College of Chemistry and Materials Science 1 Xuefu Ave., Guodu Education and Hi-Tech Industries Zone, Chang’an District 710127 CHINA
| | - Le Zhang
- Northwest University College of Chemistry and Materials Science 1 Xuefu Ave., Guodu Education and Hi-Tech Industries Zone, Chang’an District 710127 CHINA
| | - Li-Ying Sun
- Northwest University College of Chemistry and Materials Science 1 Xuefu Ave., Guodu Education and Hi-Tech Industries Zone, Chang’an District 710127 CHINA
| | - Ying-Feng Han
- Northwest University College of Chemistry and Materials Science 1 Xuefu Ave., Guodu Education and Hi-Tech Industries Zone, Chang’an District 710127 Xi'an CHINA
| |
Collapse
|
24
|
Miyake R. Cooperative systems constructed using crystalline metal complexes of short flexible peptides. J INCL PHENOM MACRO 2022. [DOI: 10.1007/s10847-022-01145-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Okamura TA, Tsubouchi K, Okada A, Onitsuka K. Polymerization of expanded l-amino acids containing terminal pyridyl groups by silver(I) ions in nonpolar solvent. Polym J 2022. [DOI: 10.1038/s41428-022-00645-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
26
|
Liu D, Lin YJ, Jin GX. Guest Encapsulation and Self-Assembly of a Box-like Metalla-Rectangle Featuring Cp*Rh Fragments. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
27
|
Au-Yeung HY, Deng Y. Distinctive features and challenges in catenane chemistry. Chem Sci 2022; 13:3315-3334. [PMID: 35432874 PMCID: PMC8943846 DOI: 10.1039/d1sc05391d] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/04/2022] [Indexed: 11/21/2022] Open
Abstract
From being an aesthetic molecular object to a building block for the construction of molecular machines, catenanes and related mechanically interlocked molecules (MIMs) continue to attract immense interest in many research areas. Catenane chemistry is closely tied to that of rotaxanes and knots, and involves concepts like mechanical bonds, chemical topology and co-conformation that are unique to these molecules. Yet, because of their different topological structures and mechanical bond properties, there are some fundamental differences between the chemistry of catenanes and that of rotaxanes and knots although the boundary is sometimes blurred. Clearly distinguishing these differences, in aspects of bonding, structure, synthesis and properties, between catenanes and other MIMs is therefore of fundamental importance to understand their chemistry and explore the new opportunities from mechanical bonds.
Collapse
Affiliation(s)
- Ho Yu Au-Yeung
- Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong P. R. China
- State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong P. R. China
| | - Yulin Deng
- Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong P. R. China
| |
Collapse
|
28
|
Liu D, Lu Y, Lin Y, Jin G. Rational Design and Integrative Assembly of Heteromeric Metalla[2]Catenanes Featuring Cp*Ir/Rh Fragments. Chemistry 2022; 28:e202104617. [DOI: 10.1002/chem.202104617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Indexed: 11/09/2022]
Affiliation(s)
- Dong Liu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials State Key Laboratory of Molecular Engineering of Polymer Department of Chemistry Fudan University Shanghai 200433 P.R. China
| | - Ye Lu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials State Key Laboratory of Molecular Engineering of Polymer Department of Chemistry Fudan University Shanghai 200433 P.R. China
| | - Yue‐Jian Lin
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials State Key Laboratory of Molecular Engineering of Polymer Department of Chemistry Fudan University Shanghai 200433 P.R. China
| | - Guo‐Xin Jin
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials State Key Laboratory of Molecular Engineering of Polymer Department of Chemistry Fudan University Shanghai 200433 P.R. China
| |
Collapse
|
29
|
Ashbridge Z, Kreidt E, Pirvu L, Schaufelberger F, Stenlid JH, Abild-Pedersen F, Leigh DA. Vernier template synthesis of molecular knots. Science 2022; 375:1035-1041. [PMID: 35239374 DOI: 10.1126/science.abm9247] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Molecular knots are often prepared using metal helicates to cross the strands. We found that coordinatively mismatching oligodentate ligands and metal ions provides a more effective way to synthesize larger knots using Vernier templating. Strands composed of different numbers of tridentate 2,6-pyridinedicarboxamide groups fold around nine-coordinate lanthanide (III) ions to generate strand-entangled complexes with the lowest common multiple of coordination sites for the ligand strands and metal ions. Ring-closing olefin metathesis then completes the knots. A 3:2 (ditopic strand:metal) Vernier assembly produces +31#+31 and -31#-31 granny knots. Vernier complexes of 3:4 (tetratopic strand:metal) stoichiometry selectively form a 378-atom-long trefoil-of-trefoils triskelion knot with 12 alternating strand crossings or, by using opposing stereochemistry at the terminus of the strand, an inverted-core triskelion knot with six alternating and six nonalternating strand crossings.
Collapse
Affiliation(s)
- Zoe Ashbridge
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Elisabeth Kreidt
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Lucian Pirvu
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | | | - Joakim Halldin Stenlid
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA.,SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Frank Abild-Pedersen
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - David A Leigh
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK.,School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| |
Collapse
|
30
|
Fmoc-protected amino acids as luminescent and circularly polarized luminescence materials based on charge transfer interaction. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.02.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
31
|
Duan H, Yin L, Chen T, Qi D, Zhang D. A “metal ions-induced poisoning behavior of biomolecules” inspired polymeric probe for Cu2+ selective detection on basis of coil to helix conformation transition. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
32
|
Zhao X, Wang H, Li B, Zhang W, Li X, Zhao W, Janiak C, Heard AW, Yang X, Wu B. A Hydrogen‐Bonded Ravel Assembled by Anion Coordination. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xiaotong Zhao
- College of Chemistry and Materials Science Northwest University Xi'an 710069 China
| | - Heng Wang
- College of Chemistry and Environmental Engineering Shenzhen University Shenzhen 518055 China
| | - Boyang Li
- College of Chemistry and Materials Science Northwest University Xi'an 710069 China
| | - Wenyao Zhang
- College of Chemistry and Materials Science Northwest University Xi'an 710069 China
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering Shenzhen University Shenzhen 518055 China
| | - Wei Zhao
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 102488 China
| | - Christoph Janiak
- Institut für Anorganische Chemie und Strukturchemie Heinrich-Heine-Universität Düsseldorf 40204 Düsseldorf Germany
| | - Andrew W. Heard
- Department of Chemistry University of Cambridge Cambridge UK
| | - Xiao‐Juan Yang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 102488 China
| | - Biao Wu
- College of Chemistry and Materials Science Northwest University Xi'an 710069 China
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 102488 China
| |
Collapse
|
33
|
Zhao X, Wang H, Li B, Zhang W, Li X, Zhao W, Janiak C, Heard AW, Yang XJ, Wu B. A Hydrogen-Bonded Ravel Assembled by Anion Coordination. Angew Chem Int Ed Engl 2021; 61:e202115042. [PMID: 34850515 DOI: 10.1002/anie.202115042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Indexed: 11/08/2022]
Abstract
Anion-coordination-driven assembly (ACDA) is showing increasing power in the construction of anionic supramolecular architectures. Herein, by expanding the anion centers from oxoanion (phosphate or sulfate) to organic tris-carboxylates, an Archimedean solid (truncated tetrahedron) and a highly entangled, double-walled tetrahedron featuring a ravel topology have been assembled with tris-bis(urea) ligands. The results demonstrate the promising ability of tris-carboxylates as new anion coordination centers in constructing novel topologies with increasing complexity and diversity compared to phosphate or sulfate ions on account of the modifiable size and easy functionalization character of these organic anions.
Collapse
Affiliation(s)
- Xiaotong Zhao
- College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, China
| | - Heng Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518055, China
| | - Boyang Li
- College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, China
| | - Wenyao Zhang
- College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, China
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518055, China
| | - Wei Zhao
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Christoph Janiak
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, 40204, Düsseldorf, Germany
| | - Andrew W Heard
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Xiao-Juan Yang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Biao Wu
- College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, China.,Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| |
Collapse
|