1
|
He L, He J, Chen EX, Lin Q. Boosting photothermal conversion through array aggregation of metalloporphyrins in bismuth-based coordination frameworks. Chem Sci 2024:d4sc04063e. [PMID: 39371461 PMCID: PMC11450798 DOI: 10.1039/d4sc04063e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/25/2024] [Indexed: 10/08/2024] Open
Abstract
Materials capable of efficiently converting near-infrared (NIR) light into heat are highly sought after in biotechnology. In this study, two new three-dimensional (3D) porphyrin-based metal-organic frameworks (MOFs) with a sra-net, viz. CoTCPP-Bi/NiTCPP-Bi, were successfully synthesized. These MOFs feature bismuth carboxylate nodes interconnected by metalloporphyrinic spacers, forming one-dimensional (1D) arrays of closely spaced metalloporphyrins. Notably, the CoTCPP-Bi exhibits an approximate Co⋯C distance of 3 Å, leading to enhanced absorption of NIR light up to 1400 nm due to the presence of strong interlayer van der Waals forces. Furthermore, the spatial arrangement of the metalloporphyrins prevents axial coordination at the centers of porphyrin rings and stabilizes a CoII-based metalloradical. These characteristics promote NIR light absorption and non-radiative decay, thereby improving photothermal conversion efficiency. Consequently, CoTCPP-Bi can rapidly elevate the temperature from room temperature to 190 °C within 30 seconds under 0.7 W cm-2 energy power from 808 nm laser irradiation. Moreover, it enables solar-driven water evaporation with an efficiency of 98.5% and a rate of 1.43 kg m-2 h-1 under 1 sun irradiation. This research provides valuable insights into the strategic design of efficient photothermal materials for effective NIR light absorption, leveraging the principles of aggregation effect and metalloradical chemistry.
Collapse
Affiliation(s)
- Liang He
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 China
| | - Jing He
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 China
| | - Er-Xia Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou Fujian 350108 China
| | - Qipu Lin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 China
- University of Chinese Academy of Sciences Beijing 100049 China
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University Fuzhou Fujian 350116 China
| |
Collapse
|
2
|
Meng YR, Xu MJ, Li SF, Li BC, Zhang G, Su J. Enhancing Two-Photon Excited Fluorescence of Metal-Organic Framework Single Crystals through Modulation of Inorganic Nodes. Inorg Chem 2024. [PMID: 39250883 DOI: 10.1021/acs.inorgchem.4c02941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Regulation of the two-photon excited fluorescence (TPEF) emission intensity and wavelength of metal-organic framework (MOF) crystals with similar constitutions presents a significant challenge. In this study, two MOFs, Zn-BTPPA and Cd3-BTPPA, were constructed using tetrakis(1,1'-biphenyl-4-carboxylic acid)-1,4-benzenediamine (H4BTPPA) as the organic ligand and mononuclear Zn and trinuclear Cd3 inorganic nodes, respectively. The incorporation of H4BTPPA within the MOF structures enables effective TPEF emission in both Zn-BTPPA and Cd3-BTPPA. The TPEF results show that Zn-BTPPA and Cd3-BTPPA exhibited strong emissions at 523 and 463 nm, respectively, when excited with a 780 nm laser. Moreover, Zn-BTPPA and Cd3-BTPPA exhibited much higher two-photon absorption cross sections, approximately 4.9 and 5.2 times higher than that of the reported dinuclear MOF, Cd2-BTPPA, with a similar composition, respectively. With different inorganic nodes, the stacking of chromophores, π···π interactions, and ligand geometry were found to correlate with the enhanced TPEF in Cd3-BTPPA and the blue-shifted TPEF in Zn-BTPPA. This work serves as an inspiration for designing efficient TPEF MOF materials based on the structure-property relationship.
Collapse
Affiliation(s)
- Ya-Ru Meng
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Min-Jie Xu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Shu-Fan Li
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Bo-Cong Li
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Gen Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Jian Su
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
3
|
Zhou A, Sun Z, Sun L. Stable organic radical qubits and their applications in quantum information science. Innovation (N Y) 2024; 5:100662. [PMID: 39091459 PMCID: PMC11292369 DOI: 10.1016/j.xinn.2024.100662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/20/2024] [Indexed: 08/04/2024] Open
Abstract
The past century has witnessed the flourishing of organic radical chemistry. Stable organic radicals are highly valuable for quantum technologies thanks to their inherent room temperature quantum coherence, atomic-level designability, and fine tunability. In this comprehensive review, we highlight the potential of stable organic radicals as high-temperature qubits and explore their applications in quantum information science, which remain largely underexplored. Firstly, we summarize known spin dynamic properties of stable organic radicals and examine factors that influence their electron spin relaxation and decoherence times. This examination reveals their design principles and optimal operating conditions. We further discuss their integration in solid-state materials and surface structures, and present their state-of-the-art applications in quantum computing, quantum memory, and quantum sensing. Finally, we analyze the primary challenges associated with stable organic radical qubits and provide tentative insights to future research directions.
Collapse
Affiliation(s)
- Aimei Zhou
- Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou 310030, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Zhecheng Sun
- Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou 310030, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Lei Sun
- Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou 310030, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
- Key Laboratory for Quantum Materials of Zhejiang Province, Department of Physics, School of Science, Westlake University, Hangzhou 310030, China
| |
Collapse
|
4
|
Shu Y, Luo Y, Wei H, Peng L, Liang J, Zhai B, Ding L, Fang Y. Fabrication of Large-Area Multi-Stimulus Responsive Thin Films via Interfacially Confined Irreversible Katritzky Reaction. Angew Chem Int Ed Engl 2024; 63:e202402453. [PMID: 38622832 DOI: 10.1002/anie.202402453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/06/2024] [Accepted: 04/15/2024] [Indexed: 04/17/2024]
Abstract
Fabrication of large-area thin films through irreversible reactions remains a formidable task. This study reports a breakthrough strategy for in situ synthesis of large-area, free-standing, robust and multi-stimulus responsive thin films through a catalyst-free and irreversible Katritzky reaction at a liquid-liquid interface. The as resulted films are featured with adjustable thickness of 1-3 μm and an area up to 50 cm2. The thin films exhibit fast photo-mechanical motions (a response time of ca 0.1 s), vapor-mechanical motions, as well as photo-chromic and solvato-chromic behaviors. It was revealed that the reason behind the observable motions is proton transfer from the imine groups to the carbonyl structures within the film induced by photo- and/or dimethyl sulfoxide-stimulus. In addition, the films can harvest anionic radicals and the radicals as captured can be efficiently degraded under UV light illumination. This study provides a new strategy for fabricating smart thin films via interfacially confined irreversible Katritzky reaction.
Collapse
Affiliation(s)
- Yuanhong Shu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Yan Luo
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Hexi Wei
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Lingya Peng
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Jingjing Liang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Binbin Zhai
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Liping Ding
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| |
Collapse
|
5
|
Su J, Han X, Ke SW, Zhou XC, Yuan S, Ding M, Zuo JL. Construction of a stable radical hydrogen-bonded metal-organic framework with functionalized tetrathiafulvalene linkers. Chem Commun (Camb) 2024; 60:5812-5815. [PMID: 38747473 DOI: 10.1039/d4cc01152j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
A stable two-dimensional radical hydrogen-bonded metal-organic framework, constructed using a modified tetrathiafulvalene-tetrabenzoate ((2-Me)-H4TTFTB) linker and Cd2+ ions, exhibits a high electrical conductivity of 4.1 × 10-4 S m-1 and excellent photothermal conversion with a temperature increase of 137 °C in 15 s under the irradiation of a 0.7 W cm-2 808 nm laser.
Collapse
Affiliation(s)
- Jian Su
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China.
| | - Xiao Han
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Si-Wen Ke
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Xiao-Cheng Zhou
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Shuai Yuan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Mengning Ding
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Jing-Lin Zuo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
6
|
Zhang W, Zou S, Zhou Y, Ji Z, Li H, Zhen G, Chen C, Song D, Wu M. Flexible Microporous Framework for One-Step Acquisition of Ethylene from Ternary C 2 Hydrocarbons. Inorg Chem 2024; 63:3145-3151. [PMID: 38277266 DOI: 10.1021/acs.inorgchem.3c04267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
One-step purification of ethylene (C2H4) from ternary C2 hydrocarbon mixtures is a crucial task and an enduring challenge because of their similar molecular size and physical properties. Owing to their intriguing structural dynamics, flexible MOFs have attracted more attention for gas adsorption and separation. Herein, we report a flexible MOF FJI-W-66 that exhibits rarely seen "breathing" behaviors for C2 hydrocarbons. Upon activation, the channels of guest-free FJI-W-66a significantly contract to a nearly closed-pore state. FJI-W-66a shows the stepwise adsorption isotherms for C2 hydrocarbons, which suggests the occurrence of structural transformation between less open and more open phases. Breakthrough experiments provide evidence that FJI-W-66a can selectively separate C2H4 from C2H2/C2H4/C2H6 mixtures with different ratios under ambient conditions, realizing the one-step acquisition of C2H4 from ternary C2 hydrocarbons.
Collapse
Affiliation(s)
- Wenjing Zhang
- College of Chemistry, Fuzhou University, Fuzhou 350108, Fujian, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
| | - Shuixiang Zou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
| | - Yunzhe Zhou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
| | - Zhenyu Ji
- College of Chemistry, Fuzhou University, Fuzhou 350108, Fujian, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
| | - Hengbo Li
- College of Chemistry, Fuzhou University, Fuzhou 350108, Fujian, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
| | - Guoli Zhen
- College of Chemistry, Fuzhou University, Fuzhou 350108, Fujian, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
| | - Cheng Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
| | - Danhua Song
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
| | - Mingyan Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
| |
Collapse
|
7
|
Yang Y, Fernández-Seriñán P, Imaz I, Gándara F, Handke M, Ortín-Rubio B, Juanhuix J, Maspoch D. Isoreticular Contraction of Metal-Organic Frameworks Induced by Cleavage of Covalent Bonds. J Am Chem Soc 2023; 145:17398-17405. [PMID: 37494639 PMCID: PMC10416301 DOI: 10.1021/jacs.3c05469] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Indexed: 07/28/2023]
Abstract
Isoreticular chemistry, in which the organic or inorganic moieties of reticular materials can be replaced without destroying their underlying nets, is a key concept for synthesizing new porous molecular materials and for tuning or functionalization of their pores. Here, we report that the rational cleavage of covalent bonds in a metal-organic framework (MOF) can trigger their isoreticular contraction, without the need for any additional organic linkers. We began by synthesizing two novel MOFs based on the MIL-142 family, (In)BCN-20B and (Sc)BCN-20C, which include cleavable as well as noncleavable organic linkers. Next, we selectively and quantitatively broke their cleavable linkers, demonstrating that various dynamic chemical and structural processes occur within these structures to drive the formation of isoreticular contracted MOFs. Thus, the contraction involves breaking of a covalent bond, subsequent breaking of a coordination bond, and finally, formation of a new coordination bond supported by structural behavior. Remarkably, given that the single-crystal character of the parent MOF is retained throughout the entire transformation, we were able to monitor the contraction by single-crystal X-ray diffraction.
Collapse
Affiliation(s)
- Yunhui Yang
- CSIC,
and Barcelona Institute of Science and Technology, Catalan Institute of Nanoscience and Nanotechnology (ICN2), Campus UAB, Bellaterra, Barcelona 08193, Spain
- Departament
de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Pilar Fernández-Seriñán
- CSIC,
and Barcelona Institute of Science and Technology, Catalan Institute of Nanoscience and Nanotechnology (ICN2), Campus UAB, Bellaterra, Barcelona 08193, Spain
- Departament
de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Inhar Imaz
- CSIC,
and Barcelona Institute of Science and Technology, Catalan Institute of Nanoscience and Nanotechnology (ICN2), Campus UAB, Bellaterra, Barcelona 08193, Spain
- Departament
de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Felipe Gándara
- Consejo
Superior de Investigaciones Científicas (CSIC), Materials Science Institute of Madrid (ICMM), Calle Sor Juana Inés de la
Cruz, 3, Madrid 28049, Spain
| | - Marcel Handke
- CSIC,
and Barcelona Institute of Science and Technology, Catalan Institute of Nanoscience and Nanotechnology (ICN2), Campus UAB, Bellaterra, Barcelona 08193, Spain
- Departament
de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Borja Ortín-Rubio
- CSIC,
and Barcelona Institute of Science and Technology, Catalan Institute of Nanoscience and Nanotechnology (ICN2), Campus UAB, Bellaterra, Barcelona 08193, Spain
- Departament
de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Judith Juanhuix
- ALBA
Synchrotron, Carrer de
la Llum, 2, 26, Cerdanyola del Vallès, Barcelona 08290, Spain
| | - Daniel Maspoch
- CSIC,
and Barcelona Institute of Science and Technology, Catalan Institute of Nanoscience and Nanotechnology (ICN2), Campus UAB, Bellaterra, Barcelona 08193, Spain
- Departament
de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
- ICREA, Pg. Lluís Companys 23, Barcelona 08010, Spain
| |
Collapse
|
8
|
Che G, Yang W, Wang C, Li M, Li X, Fu Y, Pan Q. Light-driven uranyl-organic frameworks used as signal-enhanced photoelectrochemical sensors for monitoring anthrax. Anal Chim Acta 2023; 1265:341327. [PMID: 37230572 DOI: 10.1016/j.aca.2023.341327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/27/2023]
Abstract
The semiconductor-like characteristics and light absorption ability of metal-organic frameworks (MOFs) make it have the potential for photoelectrochemical sensing. Compared with composite and modified materials, the specific recognition of harmful substances directly using MOFs with suitable structures can undoubtedly simplify the fabrication of sensors. Herein, two photosensitive uranyl-organic frameworks (UOFs) named HNU-70 and HNU-71 were synthesized and explored as the novel "turn-on" photoelectrochemical sensors, which can be directly applied to monitor the biomarker of anthrax (dipicolinic acid). Both sensors have good selectivity and stability towards dipicolinic acid with the low detection limits of 1.062 and 1.035 nM, respectively, which are far lower than the human infection concentration. Moreover, they exhibit good applicability in the real physiological environment of human serum, demonstrating a good application prospect. Spectroscopic and electrochemical studies show that the mechanism of photocurrent enhancement results from the interaction between dipicolinic acid and UOFs, which facilitates the photogenerated electron transport.
Collapse
Affiliation(s)
- Guang Che
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, China
| | - Weiting Yang
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, China.
| | - Cong Wang
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, China
| | - Meiling Li
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, China
| | - Xinyi Li
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, China
| | - Yamin Fu
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, China
| | - Qinhe Pan
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, China; NHC Key Laboratory of Tropical Disease Control, Hainan Medical University, Haikou, 571199, China.
| |
Collapse
|
9
|
Yang H, Xie Y, Zhong X, Li L. Fluorescence Properties of Stable Porous Zr(IV)-Metal-Organic Framework based on Fluorescent Imidazolate-Ligand. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
10
|
Peters S, Varathan E, Pillai RS. Investigation of Guest-Induced Flexibility in Pyrazine Derivative of ALFFIVE MOF via Molecular Simulation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:1373-1385. [PMID: 36652696 DOI: 10.1021/acs.langmuir.2c02027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
One of the important understandings of porous solids like metal-organic frameworks (MOFs) is their flexibility. Therefore, there are certain computational studies on flexible MOFs in the literature, primarily concentrating on MIL-53, UiO-66, and DUT-49. Here, investigation of another class of MOF, that is, [Ni(1,4-pyrazine)2(AlF5)]n, was shown to have guest-induced flexible characteristics; nevertheless, the mechanism for the emergence of flexibility is uncertain. We simulated the structural flexibility of [Ni(1,4-pyrazine)2(AlF5)]n, named ALFFIVE-Ni-pyr-TBP, upon adsorption of a guest molecule based on force fields using the molecular dynamics (MD) method and Monte Carlo (MC) simulations. As the first step towards understanding guest-induced flexibility, the MC simulations were performed by relaxing the framework and then further comparing it with the rigid framework. Subsequently, MD simulations were executed on the ALFFIVE-Ni-pyr-TBP framework with and without the guest molecules. In the case of moisture adsorption, the MOF system was identified to undergo a geometric transformation from trigonal bipyramidal to square bipyramidal geometry due to the strong interaction of oxygen of the water with the metal aluminum. However, some tilting in the pyrazine ligand was observed in the presence of all the guest molecules. Therefore, the detailed guest-induced flexibility described in this work could support the ALFFIVE series to be explored for future adsorption applications.
Collapse
Affiliation(s)
- Silda Peters
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - E Varathan
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Renjith S Pillai
- Analytical and Spectroscopy Division, ASCG/PCM, Vikram Sarabhai Space Centre, Indian Space Research Organization, Thiruvananthapuram 695 022, Kerala, India
| |
Collapse
|
11
|
Thaggard GC, Leith GA, Sosnin D, Martin CR, Park KC, McBride MK, Lim J, Yarbrough BJ, Maldeni Kankanamalage BKP, Wilson GR, Hill AR, Smith MD, Garashchuk S, Greytak AB, Aprahamian I, Shustova NB. Confinement-Driven Photophysics in Hydrazone-Based Hierarchical Materials. Angew Chem Int Ed Engl 2023; 62:e202211776. [PMID: 36346406 DOI: 10.1002/anie.202211776] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Indexed: 11/09/2022]
Abstract
Confinement-imposed photophysics was probed for novel stimuli-responsive hydrazone-based compounds demonstrating a conceptual difference in their behavior within 2D versus 3D porous matrices for the first time. The challenges associated with photoswitch isomerization arising from host interactions with photochromic compounds in 2D scaffolds could be overcome in 3D materials. Solution-like photoisomerization rate constants were realized for sterically demanding hydrazone derivatives in the solid state through their coordinative immobilization in 3D scaffolds. According to steady-state and time-resolved photophysical measurements and theoretical modeling, this approach provides access to hydrazone-based materials with fast photoisomerization kinetics in the solid state. Fast isomerization of integrated hydrazone derivatives allows for probing and tailoring resonance energy transfer (ET) processes as a function of excitation wavelength, providing a novel pathway for ET modulation.
Collapse
Affiliation(s)
- Grace C Thaggard
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Gabrielle A Leith
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Daniil Sosnin
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, USA
| | - Corey R Martin
- Savannah River National Laboratory, Aiken, SC 29808, USA
| | - Kyoung Chul Park
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Margaret K McBride
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Jaewoong Lim
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Brandon J Yarbrough
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | | | - Gina R Wilson
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Austin R Hill
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Mark D Smith
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Sophya Garashchuk
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Andrew B Greytak
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Ivan Aprahamian
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, USA
| | - Natalia B Shustova
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
12
|
Kim B, Lee J, Chen YP, Wu XQ, Kang J, Jeong H, Bae SE, Li JR, Sung J, Park J. π-Stacks of radical-anionic naphthalenediimides in a metal-organic framework. SCIENCE ADVANCES 2022; 8:eade1383. [PMID: 36563156 PMCID: PMC9788762 DOI: 10.1126/sciadv.ade1383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Radical-ionic metal-organic frameworks (MOFs) have unique optical, magnetic, and electronic properties. These radical ions, forcibly formed by external stimulus-induced redox processes, are structurally unstable and have short radical lifetimes. Here, we report two naphthalenediimide-based (NDI-based) Ca-MOFs: DGIST-6 and DGIST-7. Neutral DGIST-6, which is generated first during solvothermal synthesis, decomposes and is converted into radical-anionic DGIST-7. Cofacial (NDI)2•- and (NDI)22- dimers are effectively stabilized in DGIST-7 by electron delocalization and spin-pairing as well as dimethylammonium counter cations in their pores. Single-crystal x-ray diffractometry was used to visualize redox-associated structural transformations, such as changes in centroid-to-centroid distance. Moreover, the unusual rapid reduction of oxidized DGIST-7 into the radical anion upon infrared irradiation results in effective and reproducible photothermal conversion. This study successfully illustrated the strategic use of in situ prepared cofacial ligand dimers in MOFs that facilitate the stabilization of radical ions.
Collapse
Affiliation(s)
- Bongkyeom Kim
- Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungang-daero, Dalseong-gun, Daegu 42988, Republic of Korea
| | - Juhyung Lee
- Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungang-daero, Dalseong-gun, Daegu 42988, Republic of Korea
| | - Ying-Pin Chen
- NSF’s ChemMatCARs, The University of Chicago Argonne, Chicago, IL 60439, USA
| | - Xue-Qian Wu
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, P.R. China
| | - Joongoo Kang
- Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungang-daero, Dalseong-gun, Daegu 42988, Republic of Korea
| | - Hwakyeung Jeong
- Nuclear Chemistry Research Team, Korea Atomic Energy Research Institute, Daejeon 34057, Republic of Korea
| | - Sang-Eun Bae
- Nuclear Chemistry Research Team, Korea Atomic Energy Research Institute, Daejeon 34057, Republic of Korea
| | - Jian-Rong Li
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, P.R. China
| | - Jooyoung Sung
- Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungang-daero, Dalseong-gun, Daegu 42988, Republic of Korea
| | - Jinhee Park
- Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungang-daero, Dalseong-gun, Daegu 42988, Republic of Korea
| |
Collapse
|
13
|
Li HZ, Li QH, Yao M, Han YP, Otake KI, Kitagawa S, Wang F, Zhang J. Metal-Organic Framework with Structural Flexibility Responding Specifically to Acetylene and Its Adsorption Behavior. ACS APPLIED MATERIALS & INTERFACES 2022; 14:45451-45457. [PMID: 36170593 DOI: 10.1021/acsami.2c13599] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Flexible metal-organic frameworks (MOFs) are one kind of stimuli-responsive materials that exhibit reversible structural transformations in response to external stimuli. Exploring and understanding the stimuli response behavior of flexible MOFs is challenging, as it involves weak host-guest interaction. We report here the unique flexibility of MOF Zn(int)(Ad) (TIF-A1, Hint = isonicotinic acid, Had = adenine) induced by acetylene adsorption. TIF-A1 is rigid toward most gas molecules, while only C2H2 can induce the flexibility of TIF-A1. C2H2-loaded TIF-A1 is characterized by single-crystal X-ray diffraction and molecular modeling. It is revealed that the flexibility of TIF-A1 originates from the strong interaction between acetylene and the framework, which pushes the rotation of the int ligand and the expansion of the framework simultaneously. This work is helpful in deeply understanding the flexibility of MOFs and guides exploring new flexible MOFs in the future.
Collapse
Affiliation(s)
- Hui-Zi Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Qiao-Hong Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian P. R. China
| | - Mingshui Yao
- Institute for Integrated Cell-Material Sciences, Kyoto University, Institute for Advanced Study, Kyoto University, Yoshida, Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yu-Peng Han
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Ken-Ichi Otake
- Institute for Integrated Cell-Material Sciences, Kyoto University, Institute for Advanced Study, Kyoto University, Yoshida, Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Susumu Kitagawa
- Institute for Integrated Cell-Material Sciences, Kyoto University, Institute for Advanced Study, Kyoto University, Yoshida, Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Fei Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian P. R. China
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian P. R. China
| |
Collapse
|
14
|
Chen Y, Liu AG, Liu PD, Zhang ZY, Yu F, Qi W, Li B. Application of Copper(II)-Organic Frameworks Bearing Dilophine Derivatives in Photocatalysis and Guest Separation. Inorg Chem 2022; 61:16009-16019. [PMID: 36153966 DOI: 10.1021/acs.inorgchem.2c02386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The functionalized design of metal-organic frameworks (MOFs) has been rapidly developed in the last 20 years, and its broad applicability has been demonstrated in many fields. MOFs with desired functions can be assembled using predesigned organic linkers with specific metal nodes, which possess the ordered functional sites and open structures. Although a large number of carboxylic acid junctions have been used to construct MOFs, it is still a great challenge to realize their multifunctionality. In particular, there is a relative lack of research on MOFs as direct photocatalysts, which require not only abundant active sites and open structures but also adsorption groups and effective electron-hole separation performance. To this end, MOFs constructed from the carboxylic acid ligands derived from lophine-based derivatives and copper ions were deliberately used as a photocatalyst, and then, their application in dye degradation and aromatic alcohol conversion was investigated. In addition, in combination with the abundant Lewis sites of copper ions and imidazole sites, the material shows not only the adsorption and separation of C2 series and dyes but also the application of dye degradation and conversion of aromatic alcohols under illumination conditions. The corresponding results fully illustrate that the MOF constructed by using lophine derivatives can be an effective way to prepare photocatalysts. The subsequent research ideas will focus on designing a series of MOFs constructed with multilinked moieties of lophine groups and exploring their application strategies in the field of photocatalysis.
Collapse
Affiliation(s)
- Yuan Chen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Ao-Gang Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Peng-da Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Zhen-Yi Zhang
- Bruker Company, 9F, Building NO. 1, Lane 2570, Hechuan Rd, Minhang District, Shanghai 200233, China
| | - Fan Yu
- State Key Laboratory of Precision Blasting, Hubei Key Laboratory of Blasting Engineering, Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, School of Chemical and Environmental Engineering, Jianghan University, Wuhan, Hubei 430056, People's Republic of China
| | - Wei Qi
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Bao Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| |
Collapse
|
15
|
Ren W, Li B, Li S, Li Y, Gao Z, Chen X, Zang H. Synthesis and Proton Conductivity of Two Molybdate Polymers Based on [Mo
8
O
26
]
4−
Anions. ChemistrySelect 2022. [DOI: 10.1002/slct.202201337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Wei‐Bo Ren
- Northeast Normal University Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education at Universities of Jilin Province Faculty of Chemistry Changchun Jilin 130024 China
| | - Bo Li
- Northeast Normal University Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education at Universities of Jilin Province Faculty of Chemistry Changchun Jilin 130024 China
| | - Siqi Li
- Northeast Normal University Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education at Universities of Jilin Province Faculty of Chemistry Changchun Jilin 130024 China
| | - Ying Li
- Northeast Normal University Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education at Universities of Jilin Province Faculty of Chemistry Changchun Jilin 130024 China
| | - Zhixin Gao
- Northeast Normal University Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education at Universities of Jilin Province Faculty of Chemistry Changchun Jilin 130024 China
| | - Xinyu Chen
- Northeast Normal University Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education at Universities of Jilin Province Faculty of Chemistry Changchun Jilin 130024 China
| | - Hong‐Ying Zang
- Northeast Normal University Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education at Universities of Jilin Province Faculty of Chemistry Changchun Jilin 130024 China
| |
Collapse
|
16
|
Wang P, Xue Z, Ken-Ichi O, Kitagawa S. Nitroxyl radical-containing flexible porous coordination polymer for controllable size-aelective aerobic oxidation of alcohols. Chem Commun (Camb) 2022; 58:9026-9029. [PMID: 35875985 DOI: 10.1039/d2cc02772k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ability of flexible porous coordination polymers (PCPs) to change their structure in response to various stimuli has not been exploited in the design of tunable-selectivity catalysts. Herein, we make use of this ability and prepare nitroxyl radical-containing flexible PCP that can reversibly switch between large- and contracted-pore configurations in response to solvent change and thus promote the controllable size-selective aerobic oxidation of alcohols.
Collapse
Affiliation(s)
- Ping Wang
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University Institute for Advanced Study (KUIAS), Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan.
| | - Ziqian Xue
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University Institute for Advanced Study (KUIAS), Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan.
| | - Otake Ken-Ichi
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University Institute for Advanced Study (KUIAS), Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan.
| | - Susumu Kitagawa
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University Institute for Advanced Study (KUIAS), Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan.
| |
Collapse
|