1
|
Beyer D, Blanco PM, Landsgesell J, Košovan P, Holm C. How To Correct Erroneous Symmetry-Breaking in Coarse-Grained Constant-pH Simulations. J Chem Theory Comput 2025. [PMID: 39876835 DOI: 10.1021/acs.jctc.4c01010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
The constant-pH Monte Carlo method is a popular algorithm to study acid-base equilibria in coarse-grained simulations of charge regulating soft matter systems including weak polyelectrolytes and proteins. However, the method suffers from systematic errors in simulations with explicit ions, which lead to a symmetry-breaking between chemically equivalent implementations of the acid-base equilibrium. Here, we show that this artifact of the algorithm can be corrected a-posteriori by simply shifting the pH-scale. We present two analytical methods as well as a numerical method using Widom insertion to obtain the correction. By numerically investigating various sample systems, we assess the range of validity of the analytical approaches and show that the Widom approach always leads to consistent results, even when the analytical approaches fail. Overall, we provide practical guidelines on how to use constant-pH simulations to avoid systematic errors, including cases where special care is required, such as polyampholytes and proteins.
Collapse
Affiliation(s)
- David Beyer
- Institute for Computational Physics, University of Stuttgart, Allmandring 3, Stuttgart 70569, Germany
| | - Pablo M Blanco
- Department of Physics, NTNU-Norwegian University of Science and Technology, Trondheim NO-7491, Norway
| | - Jonas Landsgesell
- Institute for Computational Physics, University of Stuttgart, Allmandring 3, Stuttgart 70569, Germany
| | - Peter Košovan
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, Prague 2 128 40, Czech Republic
| | - Christian Holm
- Institute for Computational Physics, University of Stuttgart, Allmandring 3, Stuttgart 70569, Germany
| |
Collapse
|
2
|
Notarmuzi D, Bianchi E. Liquid-liquid phase separation driven by charge heterogeneity. COMMUNICATIONS PHYSICS 2024; 7:412. [PMID: 39802629 PMCID: PMC11721519 DOI: 10.1038/s42005-024-01875-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/14/2024] [Indexed: 01/16/2025]
Abstract
Despite the intrinsic charge heterogeneity of proteins plays a crucial role in the liquid-liquid phase separation (LLPS) of a broad variety of protein systems, our understanding of the effects of their electrostatic anisotropy is still in its early stages. We approach this issue by means of a coarse-grained model based on a robust mean-field description that extends the DLVO theory to non-uniformly charged particles. We numerically investigate the effect of surface charge patchiness and net particle charge on varying these features independently and with the use of a few parameters only. The effect of charge anisotropy on the LLPS critical point is rationalized via a thermodynamic-independent parameter based on orientationally averaged pair properties, that estimates the particle connectivity and controls the propensity of the liquid phase to condensate. We show that, even though directional attraction alone is able to lower the particle bonding valence-thus shifting the critical point towards lower temperatures and densities-directional repulsion significantly and systematically diminishes the particle functionality, thus further reducing the critical parameters. This electrostatically-driven shift can be understood in terms of the additional morphological constraints introduced by the directional repulsion, that hinder the condensation of dense aggregates.
Collapse
Affiliation(s)
- Daniele Notarmuzi
- Institut für Theoretische Physik, TU Wien, Wiedner Hauptstraße 8-10, A-1040 Wien, Austria
| | - Emanuela Bianchi
- Institut für Theoretische Physik, TU Wien, Wiedner Hauptstraße 8-10, A-1040 Wien, Austria
- CNR-ISC, Uos Sapienza, Piazzale A. Moro 2, 00185 Roma, Italy
| |
Collapse
|
3
|
Le SP, Krishna J, Gupta P, Dutta R, Li S, Chen J, Thayumanavan S. Polymers for Disrupting Protein-Protein Interactions: Where Are We and Where Should We Be? Biomacromolecules 2024; 25:6229-6249. [PMID: 39254158 DOI: 10.1021/acs.biomac.4c00850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Protein-protein interactions (PPIs) are central to the cellular signaling and regulatory networks that underlie many physiological and pathophysiological processes. It is challenging to target PPIs using traditional small molecule or peptide-based approaches due to the frequent lack of well-defined binding pockets at the large and flat PPI interfaces. Synthetic polymers offer an opportunity to circumvent these challenges by providing unparalleled flexibility in tuning their physiochemical properties to achieve the desired binding properties. In this review, we summarize the current state of the field pertaining to polymer-protein interactions in solution, highlighting various polyelectrolyte systems, their tunable parameters, and their characterization. We provide an outlook on how these architectures can be improved by incorporating sequence control, foldability, and machine learning to mimic proteins at every structural level. Advances in these directions will enable the design of more specific protein-binding polymers and provide an effective strategy for targeting dynamic proteins, such as intrinsically disordered proteins.
Collapse
Affiliation(s)
- Stephanie P Le
- Department of Chemistry, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States
| | - Jithu Krishna
- Department of Chemistry, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States
| | - Prachi Gupta
- Department of Chemistry, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States
| | - Ranit Dutta
- Department of Chemistry, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States
| | - Shanlong Li
- Department of Chemistry, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States
| | - Jianhan Chen
- Department of Chemistry, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States
| | - S Thayumanavan
- Department of Chemistry, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States
- Department of Biomedical Engineering, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
4
|
Blanco PM, Košovan P. The explicit bonding reaction ensemble Monte Carlo method. J Chem Phys 2024; 161:094906. [PMID: 39225533 DOI: 10.1063/5.0226122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
We present the explicit bonding Reaction ensemble Monte Carlo (eb-RxMC) method, designed to sample reversible bonding reactions in macromolecular systems in thermodynamic equilibrium. Our eb-RxMC method is based on the reaction ensemble method; however, its implementation differs from the latter by the representation of the reaction. In the eb-RxMC implementation, we are adding or deleting bonds between existing particles, instead of inserting or deleting particles with different chemical identities. This new implementation makes the eb-RxMC method suitable for simulating the formation of reversible linkages between macromolecules, which would not be feasible with the original implementation. To enable coupling of our eb-RxMC algorithm with molecular dynamics algorithm for the sampling of the configuration space, we biased the sampling of reactions only within a certain inclusion radius. We validated our algorithm using a set of ideally behaving systems undergoing dimerization and polycondensation reactions, for which analytical results are available. For dimerization reactions with various equilibrium constants and initial compositions, the degree of conversion measured in our simulations perfectly matched the reference values given by the analytical equations. We also showed that this agreement is not affected by the arbitrary choice of the inclusion radius or the stiffness of the harmonic bond potential. Next, we showed that our simulations can correctly match the analytical results for the distribution of the degree of polymerization and end-to-end distance of ideal chains in polycondensation reactions. Altogether, we demonstrated that our eb-RxMC simulations correctly sample both reaction and configuration spaces of these reference systems, opening the door to future simulations of more complex interacting macromolecular systems.
Collapse
Affiliation(s)
- Pablo M Blanco
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 40 Prague 2, Czech Republic
- Department of Material Science and Physical Chemistry, Research Institute of Theoretical and Computational Chemistry (IQTCUB), University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
- Department of Physics, NTNU - Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Peter Košovan
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 40 Prague 2, Czech Republic
| |
Collapse
|
5
|
Pineda S, Staňo R, Murmiliuk A, Blanco PM, Montes P, Tošner Z, Groborz O, Pánek J, Hrubý M, Štěpánek M, Košovan P. Charge Regulation Triggers Condensation of Short Oligopeptides to Polyelectrolytes. JACS AU 2024; 4:1775-1785. [PMID: 38818083 PMCID: PMC11134362 DOI: 10.1021/jacsau.3c00668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/24/2024] [Accepted: 02/26/2024] [Indexed: 06/01/2024]
Abstract
Electrostatic interactions between charged macromolecules are ubiquitous in biological systems, and they are important also in materials design. Attraction between oppositely charged molecules is often interpreted as if the molecules had a fixed charge, which is not affected by their interaction. Less commonly, charge regulation is invoked to interpret such interactions, i.e., a change of the charge state in response to a change of the local environment. Although some theoretical and simulation studies suggest that charge regulation plays an important role in intermolecular interactions, experimental evidence supporting such a view is very scarce. In the current study, we used a model system, composed of a long polyanion interacting with cationic oligolysines, containing up to 8 lysine residues. We showed using both simulations and experiments that while these lysines are only weakly charged in the absence of the polyanion, they charge up and condense on the polycations if the pH is close to the pKa of the lysine side chains. We show that the lysines coexist in two distinct populations within the same solution: (1) practically nonionized and free in solution; (2) highly ionized and condensed on the polyanion. Using this model system, we demonstrate under what conditions charge regulation plays a significant role in the interactions of oppositely charged macromolecules and generalize our findings beyond the specific system used here.
Collapse
Affiliation(s)
- Sebastian
P. Pineda
- Department
of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, Prague 2 128 40, Czech Republic
| | - Roman Staňo
- Faculty
of Physics, University of Vienna, Boltzmanngasse 5, Vienna 1090, Austria
- Vienna
Doctoral School in Physics, University of
Vienna, Boltzmanngasse 5, Vienna 1090, Austria
| | - Anastasiia Murmiliuk
- Jülich
Centre for Neutron Science JCNS at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstraße 1, Garching 85748, Germany
| | - Pablo M. Blanco
- Department
of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, Prague 2 128 40, Czech Republic
- Department
of Material Science and Physical Chemistry, Research Institute of
Theoretical and Computational Chemistry (IQTCUB), University of Barcelona, C/Martí i Franquès 1, Barcelona 08028, Spain
- Department of Physics, NTNU - Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Patricia Montes
- Department
of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, Prague 2 128 40, Czech Republic
| | - Zdeněk Tošner
- Department
of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, Prague 2 128 40, Czech Republic
| | - Ondřej Groborz
- Institute
of Macromolecular Chemistry AS CR, Heyrovský square 2, 162 06 Prague 6, Czech Republic
| | - Jiří Pánek
- Institute
of Macromolecular Chemistry AS CR, Heyrovský square 2, 162 06 Prague 6, Czech Republic
| | - Martin Hrubý
- Institute
of Macromolecular Chemistry AS CR, Heyrovský square 2, 162 06 Prague 6, Czech Republic
| | - Miroslav Štěpánek
- Department
of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, Prague 2 128 40, Czech Republic
| | - Peter Košovan
- Department
of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, Prague 2 128 40, Czech Republic
| |
Collapse
|
6
|
Bakhshandeh A, Levin Y. On the Validity of Constant pH Simulations. J Chem Theory Comput 2024; 20:1889-1896. [PMID: 38359410 DOI: 10.1021/acs.jctc.3c01360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Constant pH (cpH) simulations are now a standard tool for investigating charge regulation in coarse-grained models of polyelectrolytes and colloidal systems. Originally developed for studying solutions with implicit ions, extending this method to systems with explicit ions or solvents presents several challenges. Ensuring proper charge neutrality within the simulation cell requires performing titration moves in sync with the insertion or deletion of ions, a crucial aspect often overlooked in the literature. Contrary to the prevailing views, cpH simulations are inherently grand-canonical, meaning that the controlled pH is that of the reservoir. The presence of the Donnan potential between the implicit reservoir and the simulation cell introduces significant differences between titration curves calculated for open and closed systems; the pH of an isolated (closed) system is different from the pH of the reservoir for the same protonation state of the polyelectrolyte. To underscore this point, in this paper, we will compare the titration curves calculated using the usual cpH algorithm with those from the exact canonical simulation algorithm. In the latter case, titration moves adhere to the correct detailed balance condition, and pH is calculated using the recently introduced surface Widom insertion algorithm. Our findings reveal a very significant difference between the titration isotherms obtained using the standard cpH algorithm and the canonical titration algorithm, emphasizing the importance of using the correct simulation approach when studying charge regulation of polyelectrolytes, proteins, and colloidal particles.
Collapse
Affiliation(s)
- Amin Bakhshandeh
- Instituto de Física, Universidade Federal do Rio Grande do Sul, Caixa P.O. Box 15051, 91501-970 Porto Alegre, Rio Grande do Sul, Brazil
| | - Yan Levin
- Instituto de Física, Universidade Federal do Rio Grande do Sul, Caixa P.O. Box 15051, 91501-970 Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
7
|
Akintola J, Abou Shaheen S, Wu Q, Schlenoff JB. Relative Strength of Polycation Adsorption on Oxide Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 38316024 DOI: 10.1021/acs.langmuir.3c03641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Polyelectrolyte adsorption onto surfaces is widely employed in water treatment and mining. However, little is known of the relative interaction strengths between surfaces and polymer. This fundamental property is assumed to be dominated by electrostatics, i.e., attractive interactions between opposite charges, which are set by the overall ionic strength ("salt concentration") of the solution, and charge densities of the surface and the polymer. A common, counterintuitive finding is a range of salt concentrations over which the amount of adsorbed polyelectrolyte increases as electrostatic interactions are tempered by the addition of salt. After an adsorption maximum, higher salt concentrations then produce the expected gradual desorption of polyelectrolyte. In this work, the salt response of the adsorption of the same narrow molecular weight distribution polycation, poly(N-methyl-4-vinylpyridinium), PM4VP, to a variety of surfaces was explored. Oxide powders for adsorption included Al2O3, SiO2, Fe2O3, Fe3O4, TiO2, ZnO, and CuO. Planar surfaces included silicon wafers, mica, calcium carbonate, and CaF2 single crystals. The PM4VP was radiolabeled with 14C so that sensitive, submonolayer amounts could be detected. The position of the peak maximum, or the lack of a peak, in response to added salt was used to rank the electrostatic component of the interaction. The importance of charge regulation, a shift in the surface pKa in response to solution species, was highlighted as a mechanism for adsorption on the "wrong" side of the isoelectric point and also as a factor contributing to the difficulty of reaching the totally desorbed state even at the highest salt concentrations.
Collapse
Affiliation(s)
- John Akintola
- Department of Chemistry and Biochemistry, The Florida State University, Tallahassee, Florida 32308-4390, United States
| | - Samir Abou Shaheen
- Department of Chemistry and Biochemistry, The Florida State University, Tallahassee, Florida 32308-4390, United States
| | - Qiang Wu
- Department of Industrial and Manufacturing Engineering, FAMU-FSU College of Engineering, Tallahassee, Florida 32310-6046, United States
| | - Joseph B Schlenoff
- Department of Chemistry and Biochemistry, The Florida State University, Tallahassee, Florida 32308-4390, United States
| |
Collapse
|
8
|
Gallegos A, Müller M, Wu J. Single-chain simulation of Ising density functional theory for weak polyelectrolytes. J Chem Phys 2023; 159:214902. [PMID: 38047517 DOI: 10.1063/5.0175561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/02/2023] [Indexed: 12/05/2023] Open
Abstract
Conventional theories of weak polyelectrolytes are either computationally prohibitive to account for the multidimensional inhomogeneity of polymer ionization in a liquid environment or oversimplistic in describing the coupling effects of ion-explicit electrostatic interactions and long-range intrachain correlations. To bridge this gap, we implement the Ising density functional theory (iDFT) for ionizable polymer systems using the single-chain-in-mean-field algorithm. The single-chain-in-iDFT (sc-iDFT) shows significant improvements over conventional mean-field methods in describing segment-level dissociation equilibrium, specific ion effects, and long-range intrachain correlations. With an explicit consideration of the fluctuations of polymer configurations and the position-dependent ionization of individual polymer segments, sc-iDFT provides a faithful description of the structure and thermodynamic properties of inhomogeneous weak polyelectrolyte systems across multiple length scales.
Collapse
Affiliation(s)
- Alejandro Gallegos
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, USA
| | - Marcus Müller
- Institut für Theoretische Physik, Georg-August-Universität, 37077 Göttingen, Germany
| | - Jianzhong Wu
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, USA
| |
Collapse
|
9
|
Abstract
We present a Monte Carlo approach for performing titration simulations in the canonical ensemble. The standard constant pH (cpH) simulation methods are intrinsically grand canonical, allowing us to study the protonation state of molecules only as a function of pH in the reservoir. Due to the Donnan potential between a system and an (implicit) reservoir of a semi-grand canonical simulation, the pH of the reservoir can be significantly different from that of an isolated system, for an identical protonation state. The new titration method avoids this difficulty by using the canonical reactive Monte Carlo algorithm to calculate the protonation state of macromolecules as a function of the total number of protons present inside the simulation cell. The pH of an equilibrated system is then calculated using a new surface insertion Widom algorithm, which bypasses the difficulties associated with the bulk Widom particle insertion for intermediate and high pH values. To properly treat the long range Coulomb force, we use the Ewald summation method, showing the importance of the Bethe potential for calculating the pH of canonical systems.
Collapse
Affiliation(s)
- Amin Bakhshandeh
- Instituto de Física, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, CEP 91501-970, Porto Alegre, RS, Brazil.
| | - Yan Levin
- Instituto de Física, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, CEP 91501-970, Porto Alegre, RS, Brazil.
| |
Collapse
|
10
|
Mehmood S, Haq F, Kiran M, Shaaban IA, Assiri MA, Haroon M, Yasin M, Farid A, Nawaz A, Akbar MM, El-Bahy ZM. Sustainable remediation of dye-contaminated wastewater using novel cross-linked Hex-CCP-co-PPT microspheres. CHEMOSPHERE 2023; 339:139637. [PMID: 37499806 DOI: 10.1016/j.chemosphere.2023.139637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/19/2023] [Accepted: 07/22/2023] [Indexed: 07/29/2023]
Abstract
The presence of dyes in contaminated water poses substantial dangers to the health of both humans and aquatic life. A process called precipitation polymerization was used to create unique cross-linked hexa-chlorocyclotriphosphazene-co-phenolphthalein (Hex-CCP-co-PPT) microspheres for the purpose of this research. Advanced methods such as X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and differential thermogravimetry (DTG) were used to characterise these microspheres. In a simulated solution, the performance of Hex-CCP-co-PPTs as a sorbent for removing MB dye was investigated, and the results showed an unprecedentedly high removal rate of 88.4% for MB. Temperature of 25 °C, a Hex-CCP-co-PPTs dose of 40 mg, an MB concentration of 20 ppm, an MB solution volume of 20 mL, a contact time of 40 min, and a pH of 9 were found to be the optimal experimental conditions. According to the results of the kinetic and adsorption analyses, the PSO and Langmuir adsorption models are the best ones to use. These models favour the chemi-sorption nature and mono-layered adsorption of MB in comparison to Hex-CCP-co-PPTs. Importantly, the thermodynamic analysis demonstrated that the process of removing MB by utilizing Hex-CCP-co-PPTs was endothermic and occurred spontaneously. These findings highlight the potential application of Hex-CCP-co-PPT microspheres in Algal Membrane Bioreactors (AMBRs) for the efficient and sustainable removal of dye from wastewater. This would contribute to the protection of ecosystems as well as the public's health.
Collapse
Affiliation(s)
- Sahid Mehmood
- Department of Chemistry, Hazara University, Mansehra, KPK, 21300, Pakistan
| | - Fazal Haq
- Institute of Chemical Sciences, Gomal University, D.I.Khan, 29050, Pakistan
| | - Mehwish Kiran
- Faculty of Agriculture, Gomal University, D.I.Khan, 29050, Pakistan
| | - Ibrahim A Shaaban
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Mohammed A Assiri
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Muhammad Haroon
- Department of Chemistry, University of Turbat, Balochistan, 92600, Pakistan
| | - Muhammad Yasin
- Gomal Center of Biochemistry and Biotechnology, Gomal University, D.I.Khan, 29050, Pakistan
| | - Arshad Farid
- Gomal Center of Biochemistry and Biotechnology, Gomal University, D.I.Khan, 29050, Pakistan.
| | - Alam Nawaz
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 712-749, Republic of Korea.
| | - Majid Majeed Akbar
- Institute of Chemical Engineering and Technology, University of the Punjab, Lahore, 54000, Pakistan
| | - Zeinhom M El-Bahy
- Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City, 11884, Cairo, Egypt.
| |
Collapse
|
11
|
Żeliszewska P, Wasilewska M, Szych J, Adamczyk Z. Mechanism of Anti-Salmonella Rabbit Immunoglobulin Adsorption on Polymer Particles. Biomolecules 2023; 13:1390. [PMID: 37759790 PMCID: PMC10526532 DOI: 10.3390/biom13091390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
The adsorption of anti-Salmonella rabbit immunoglobulin (IgaR) on negatively charged polymer particles leading to the formation of immunolatex was studied using various techniques comprising atomic force microscopy (AFM) and laser Doppler velocimetry (LDV). Initially, the basic physicochemical properties of IgaR molecules and the particles, inter alia their electrophoretic mobilities, the zeta potentials and hydrodynamic diameters, were determined under different ionic strengths and pHs. Applying AFM, single immunoglobulin molecules adsorbed on mica were also imaged, which allowed to determine their size. The adsorption of the IgaR molecules on the particles leading to changes in their electrophoretic mobility was monitored in situ using the LDV method. The obtained results were interpreted applying a general electrokinetic model which yielded quantitative information about the molecule coverage on the particles. The obtained immunolatex was thoroughly characterized with respect to its acid-base properties and its stability upon storage. Notably, the developed procedure demonstrated better efficiency compared to commercially applied methods, characterized by a higher immunoglobulin consumption.
Collapse
Affiliation(s)
- Paulina Żeliszewska
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Science, Niezapominajek 8, 30-239 Krakow, Poland;
| | - Monika Wasilewska
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Science, Niezapominajek 8, 30-239 Krakow, Poland;
| | - Jolanta Szych
- Biomex Co., Ltd., ul. Friedleina 4-6 lok. 117, 30-009 Krakow, Poland;
| | - Zbigniew Adamczyk
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Science, Niezapominajek 8, 30-239 Krakow, Poland;
| |
Collapse
|
12
|
Wypysek SK, Centeno SP, Gronemann T, Wöll D, Richtering W. Hollow, pH-Sensitive Microgels as Nanocontainers for the Encapsulation of Proteins. Macromol Biosci 2023; 23:e2200456. [PMID: 36605024 DOI: 10.1002/mabi.202200456] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/22/2022] [Indexed: 01/07/2023]
Abstract
Depending on their architectural and chemical design, microgels can selectively take up and release small molecules by changing the environmental properties, or capture and protect their cargo from the surrounding conditions. These outstanding properties make them promising candidates for use in biomedical applications as delivery or carrier systems. In this study, hollow anionic p(N-isopropylacrylamid-e-co-itaconic acid) microgels are synthesized and analyzed regarding their size, charge, and charge distribution. Furthermore, interactions between these microgels and the model protein cytochrome c are investigated as a function of pH. In this system, pH serves as a switch for the electrostatic interactions to alternate between no interaction, attraction, and repulsion. UV-vis spectroscopy is used to quantitatively study the encapsulation of cytochrome c and possible leakage. Additionally, fluorescence-lifetime images unravel the spatial distribution of the protein within the hollow microgels as a function of pH. These analyses show that cytochrome c mainly remains entrapped in the microgel, with pH controlling the localization of the protein - either in the microgel's cavity or in its network. This significantly differentiates these hollow microgels from microgels with similar chemical composition but without a solvent filled cavity.
Collapse
Affiliation(s)
- Sarah K Wypysek
- Institute of Physical Chemistry, RWTH Aachen University, 52056, Aachen, Germany
| | - Silvia P Centeno
- DWI Leibniz Institute for Interactive Materials, 52074, Aachen, Germany
| | - Till Gronemann
- Institute of Physical Chemistry, RWTH Aachen University, 52056, Aachen, Germany
| | - Dominik Wöll
- Institute of Physical Chemistry, RWTH Aachen University, 52056, Aachen, Germany
| | - Walter Richtering
- Institute of Physical Chemistry, RWTH Aachen University, 52056, Aachen, Germany
| |
Collapse
|
13
|
Walkowiak JJ, Nikam R, Ballauff M. Adsorption of Mono- and Divalent Ions onto Dendritic Polyglycerol Sulfate (dPGS) as Studied Using Isothermal Titration Calorimetry. Polymers (Basel) 2023; 15:2792. [PMID: 37447437 DOI: 10.3390/polym15132792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
The effective charge of highly charged polyelectrolytes is significantly lowered by a condensation of counterions. This effect is more pronounced for divalent ions. Here we present a study of the counterion condensation to dendritic polyglycerol sulfate (dPGS) that consists of a hydrophilic dendritic scaffold onto which sulfate groups are appended. The interactions between the dPGS and divalent ions (Mg2+ and Ca2+) were analyzed using isothermal titration calorimetry (ITC) and showed no ion specificity upon binding, but clear competition between the monovalent and divalent ions. Our findings, in line with the latest theoretical studies, demonstrate that a large fraction of the monovalent ions is sequentially replaced with the divalent ions.
Collapse
Affiliation(s)
- Jacek J Walkowiak
- DWI-Leibniz-Institute for Interactive Materials e.V, Forckenbeckstraße 50, 52074 Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Urmonderbaan 22, 6167 RD Geleen, The Netherlands
| | - Rohit Nikam
- Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Matthias Ballauff
- Institut für Chemie und Biochemie, Freie Universität Berlin, Taktstraße 3, 14195 Berlin, Germany
| |
Collapse
|
14
|
Blanco PM, Narambuena CF, Madurga S, Mas F, Garcés JL. Unusual Aspects of Charge Regulation in Flexible Weak Polyelectrolytes. Polymers (Basel) 2023; 15:2680. [PMID: 37376324 PMCID: PMC10302168 DOI: 10.3390/polym15122680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/07/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
This article reviews the state of the art of the studies on charge regulation (CR) effects in flexible weak polyelectrolytes (FWPE). The characteristic of FWPE is the strong coupling of ionization and conformational degrees of freedom. After introducing the necessary fundamental concepts, some unconventional aspects of the the physical chemistry of FWPE are discussed. These aspects are: (i) the extension of statistical mechanics techniques to include ionization equilibria and, in particular, the use of the recently proposed Site Binding-Rotational Isomeric State (SBRIS) model, which allows the calculation of ionization and conformational properties on the same foot; (ii) the recent progresses in the inclusion of proton equilibria in computer simulations; (iii) the possibility of mechanically induced CR in the stretching of FWPE; (iv) the non-trivial adsorption of FWPE on ionized surfaces with the same charge sign as the PE (the so-called "wrong side" of the isoelectric point); (v) the influence of macromolecular crowding on CR.
Collapse
Affiliation(s)
- Pablo M. Blanco
- Physical Chemistry Unit, Materials Science and Physical Chemistry Department & Research Institute of Theoretical and Computational Chemistry (IQTCUB), Barcelona University (UB), 08028 Barcelona, Catalonia, Spain;
| | - Claudio F. Narambuena
- Grupo de Bionanotecnologia y Sistemas Complejos, Infap-CONICET & Facultad Regional San Rafael, Universidad Tecnológica Nacional, San Rafael 5600, Argentina;
| | - Sergio Madurga
- Physical Chemistry Unit, Materials Science and Physical Chemistry Department & Research Institute of Theoretical and Computational Chemistry (IQTCUB), Barcelona University (UB), 08028 Barcelona, Catalonia, Spain;
| | - Francesc Mas
- Physical Chemistry Unit, Materials Science and Physical Chemistry Department & Research Institute of Theoretical and Computational Chemistry (IQTCUB), Barcelona University (UB), 08028 Barcelona, Catalonia, Spain;
| | - Josep L. Garcés
- Chemistry Department, Technical School of Agricultural Engineering & AGROTECNIO, Lleida University (UdL), 25003 Lleida, Catalonia, Spain;
| |
Collapse
|
15
|
Özdabak Sert A, Bittrich E, Uhlmann P, Kok FN, Kılıç A. Monitoring Cell Adhesion on Polycaprolactone-Chitosan Films with Varying Blend Ratios by Quartz Crystal Microbalance with Dissipation. ACS OMEGA 2023; 8:17017-17027. [PMID: 37214735 PMCID: PMC10193393 DOI: 10.1021/acsomega.3c01055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A detailed understanding of the cell adhesion on polymeric surfaces is required to improve the performance of biomaterials. Quartz crystal microbalance with dissipation (QCM-D) as a surface-sensitive technique has the advantage of label-free and real-time monitoring of the cell-polymer interface, providing distinct signal patterns for cell-polymer interactions. In this study, QCM-D was used to monitor human fetal osteoblastic (hFOB) cell adhesion onto polycaprolactone (PCL) and chitosan (CH) homopolymer films as well as their blend films (75:25 and 25:75). Complementary cell culture assays were performed to verify the findings of QCM-D. The thin polymer films were successfully prepared by spin-coating, and relevant properties, i.e., surface morphology, ζ-potential, wettability, film swelling, and fibrinogen adsorption, were characterized. The adsorbed amount of fibrinogen decreased with an increasing percentage of chitosan in the films, which predominantly showed an inverse correlation with surface hydrophilicity. Similarly, the initial cell sedimentation after 1 h resulted in lesser cell deposition as the chitosan ratio increased in the film. Furthermore, the QCM-D signal patterns, which were measured on the homopolymer and blend films during the first 18 h of cell adhesion, also showed an influence of the different interfacial properties. Cells fully spread on pure PCL films and had elongated morphologies as monitored by fluorescence microscopy and scanning electron microscopy (SEM). Corresponding QCM-D signals showed the highest frequency drop and the highest dissipation. Blend films supported cell adhesion but with lower dissipation values than for the PCL film. This could be the result of a higher rigidity of the cell-blend interface because the cells do not pass to the next stages of spreading after secretion of their extracellular matrix (ECM) proteins. Variations in the QCM-D data, which were obtained at the blend films, could be attributed to differences in the morphology of the films. Pure chitosan films showed limited cell adhesion accompanied by low frequency drop and low dissipation.
Collapse
Affiliation(s)
- Ayşe
Buse Özdabak Sert
- Department
of Molecular Biology and Genetics, Istanbul
Technical University, 34469 Istanbul, Turkey
| | - Eva Bittrich
- Leibniz-Institut
für Polymerforschung Dresden e.V., 01069 Dresden, Germany
| | - Petra Uhlmann
- Leibniz-Institut
für Polymerforschung Dresden e.V., 01069 Dresden, Germany
| | - Fatma Nese Kok
- Department
of Molecular Biology and Genetics, Istanbul
Technical University, 34469 Istanbul, Turkey
| | - Abdulhalim Kılıç
- Department
of Molecular Biology and Genetics, Istanbul
Technical University, 34469 Istanbul, Turkey
| |
Collapse
|
16
|
Kalipillai P, Raghuram E, Mani E. Effect of substrate charge density on the adsorption of intrinsically disordered protein amyloid β40: a molecular dynamics study. SOFT MATTER 2023; 19:1642-1652. [PMID: 36756755 DOI: 10.1039/d2sm01581a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The inhibitory effect of negatively charged gold nanoparticles (AuNPs) on amyloidogenic protein fibrillation has been established from experiments and computer simulations. Here, we investigate the effect of the charge density (σ) of gold (Au) surfaces on the adsorption of the intrinsically disordered amyloid β40 (Aβ40) monomer using molecular dynamics (MD) simulations. On the basis of the binding free energy, some key residues (ARG5, LYS16, LYS28, LEU17-ALA21, ILE31-VAL38) were found to be responsible for preventing the β-sheet formation, which is known to be a precursor for fibrillation. Until a critical charge density (σc) of -0.167 e nm-2, the key residues remained adsorbed on the Au slab. A saturation in the number of condensed counterions (Na+) on Aβ40 was also observed at σc. Beyond σc, the condensation of Na+ occurs only on the Au slab, leading to competition between positively charged key residues and condensed ions. This competition was found to be responsible for the lack of adsorption of the key residues, leading to β-sheet formation for σ > -0.167 e nm-2. This study suggests that if the key residues are not adsorbed, then β-sheet formation is observed, which can then lead to the development of proto-fibrils and subsequently fibrillation. Therefore the surface should have an optimal charge density to be an effective inhibitor of fibrillation.
Collapse
Affiliation(s)
- Pandurangan Kalipillai
- Polymer Engineering and Colloid Science Lab, Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai, 600036, India.
- School of Chemical Engineering, Vellore Institute of Technology, Vellore, 632014, India
| | - E Raghuram
- Polymer Engineering and Colloid Science Lab, Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai, 600036, India.
| | - Ethayaraja Mani
- Polymer Engineering and Colloid Science Lab, Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai, 600036, India.
| |
Collapse
|
17
|
Structural and Physicochemical Characterization of Extracted Proteins Fractions from Chickpea ( Cicer arietinum L.) as a Potential Food Ingredient to Replace Ovalbumin in Foams and Emulsions. Polymers (Basel) 2022; 15:polym15010110. [PMID: 36616460 PMCID: PMC9824673 DOI: 10.3390/polym15010110] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/01/2022] [Accepted: 12/19/2022] [Indexed: 12/29/2022] Open
Abstract
Chickpeas are the third most abundant legume crop worldwide, having a high protein content (14.9-24.6%) with interesting technological properties, thus representing a sustainable alternative to animal proteins. In this study, the surface and structural properties of total (TE) and sequential (ALB, GLO, and GLU) protein fractions isolated from defatted chickpea flour were evaluated and compared with an animal protein, ovalbumin (OVO). Differences in their physicochemical properties were evidenced when comparing TE with ALB, GLO, and GLU fractions. In addition, using a simple and low-cost extraction method it was obtained a high protein yield (82 ± 4%) with a significant content of essential and hydrophobic amino acids. Chickpea proteins presented improved interfacial and surface behavior compared to OVO, where GLO showed the most significant effects, correlated with its secondary structure and associated with its flexibility and higher surface hydrophobicity. Therefore, chickpea proteins have improved surface properties compared to OVO, evidencing their potential use as foam and/or emulsion stabilizers in food formulations for the replacement of animal proteins.
Collapse
|
18
|
Rheology and Gelation of Hyaluronic Acid/Chitosan Coacervates. Biomolecules 2022; 12:biom12121817. [PMID: 36551245 PMCID: PMC9775361 DOI: 10.3390/biom12121817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Hyaluronic acid (HA) and chitosan (CHI) are biopolyelectrolytes which are interesting for both the medical and polymer physics communities due to their biocompatibility and semi-flexibility, respectively. In this work, we demonstrate by rheology experiments that the linear viscoelasticity of HA/CHI coacervates depends strongly on the molecular weight of the polymers. Moduli for coacervates were found significantly higher than those of individual HA and CHI physical gels. A remarkable 1.5-fold increase in moduli was noted when catechol-conjugated HA and CHI were used instead. This was attributed to the conversion of coacervates to chemical gels by oxidation of 3,4-dihydroxyphenylalanine (DOPA) groups in HA and CHI to di-DOPA crosslinks. These rheological results put HA/CHI coacervates in the category of strong candidates as injectable tissue scaffolds or medical adhesives.
Collapse
|
19
|
Torres PB, Blanco PM, Garcés JL, Narambuena CF. The electrostatic potential inside and around α-lactalbumin: Fluctuations and mean-field models. J Chem Phys 2022; 157:205101. [DOI: 10.1063/5.0122275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The electrostatic potential (EP) generated by the protein α-lactoalbumin in the presence of added salt is computed as a thermal average at a given point in space. With this aim, constant pH Monte Carlo (MC) simulations are performed within the primitive model, namely, the solvent is treated as a continuum dielectric. The study of the thermal and spatial fluctuations of the EP reveals that they are remarkably high inside the protein. The calculations indicate that fluctuations inside the protein are mainly due to the asymmetric distribution of the charge groups, while the charge fluctuations of the titratable groups play a minor role. The computed EP matches very well with the one obtained from the Poisson equation for the average charge density in spherical symmetry. The Tanford–Kirkwood multipole expansion reproduces the simulated angular-averaged potential rather accurately. Surprisingly, two of the simplest mean-field models, the linear Poisson–Boltzmann (PB) equation and Donnan potential, provide good estimations of the average EP in the effective protein surface (surface EP). The linear PB equation predicts a linear relationship between charge and surface EP, which is numerically reproduced only if the small ions within the protein are taken into account. On the other hand, the partition coefficients of the small ions inside and outside the protein predicted by Donnan theory reproduce reasonably well the simulation results.
Collapse
Affiliation(s)
- Paola B. Torres
- Grupo Bionanotecnología y Sistemas Complejos. (UTN-CONICET), Facultad Regional San Rafael, Universidad Tecnológica Nacional, Av. General Urquiza 314 C.P, M5600 San Rafael, Mendoza, Argentina
| | - Pablo M. Blanco
- Materials Science and Physical Chemistry Department and Research Institute of Theoretical and Computational Chemistry (IQTCUB), University of Barcelona, 08028 Barcelona, Spain
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 00 Prague 2, Czech Republic
| | - Josep L. Garcés
- Department of Chemistry, University of Lleida, Av. Alcalde Rovira Roure 191, E-25198 Lleida, Catalonia, Spain
| | - Claudio F. Narambuena
- Grupo Bionanotecnología y Sistemas Complejos. (UTN-CONICET), Facultad Regional San Rafael, Universidad Tecnológica Nacional, Av. General Urquiza 314 C.P, M5600 San Rafael, Mendoza, Argentina
| |
Collapse
|
20
|
Bakhshandeh A, Frydel D, Levin Y. Theory of Charge Regulation of Colloidal Particles in Electrolyte Solutions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:13963-13971. [PMID: 36318200 DOI: 10.1021/acs.langmuir.2c02313] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
We present a theory that enables us to (i) calculate the effective surface charge of colloidal particles and (ii) efficiently obtain titration curves for different salt concentrations. The theory accounts for the shift of pH of solution due to the presence of 1:1 electrolyte. It also accounts self-consistently for the electrostatic potential produced by the deprotonated surface groups. To examine the accuracy of the theory, we have performed extensive reactive Monte Carlo simulations, which show excellent agreement between theory and simulations without any adjustable parameters.
Collapse
Affiliation(s)
- Amin Bakhshandeh
- Instituto de Física, Universidade Federal do Rio Grande do Sul, 91501-970, Porto Alegre, RSBrazil
| | - Derek Frydel
- Department of Chemistry, Universidad Técnica Federico Santa María, Campus San Joaquin, 7820275, Santiago, Chile
| | - Yan Levin
- Instituto de Física, Universidade Federal do Rio Grande do Sul, 91501-970, Porto Alegre, RSBrazil
| |
Collapse
|
21
|
Simončič M, Hritz J, Lukšič M. Biomolecular Complexation on the "Wrong Side": A Case Study of the Influence of Salts and Sugars on the Interactions between Bovine Serum Albumin and Sodium Polystyrene Sulfonate. Biomacromolecules 2022; 23:4412-4426. [PMID: 36134887 PMCID: PMC9554918 DOI: 10.1021/acs.biomac.2c00933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/12/2022] [Indexed: 11/28/2022]
Abstract
In the protein purification, drug delivery, food industry, and biotechnological applications involving protein-polyelectrolyte complexation, proper selection of co-solutes and solution conditions plays a crucial role. The onset of (bio)macromolecular complexation occurs even on the so-called "wrong side" of the protein isoionic point where both the protein and the polyelectrolyte are net like-charged. To gain mechanistic insights into the modulatory role of salts (NaCl, NaBr, and NaI) and sugars (sucrose and sucralose) in protein-polyelectrolyte complexation under such conditions, interaction between bovine serum albumin (BSA) and sodium polystyrene sulfonate (NaPSS) at pH = 8.0 was studied by a combination of isothermal titration calorimetry, fluorescence spectroscopy, circular dichroism, and thermodynamic modeling. The BSA-NaPSS complexation proceeds by two binding processes (first, formation of intrapolymer complexes and then formation of interpolymer complexes), both driven by favorable electrostatic interactions between the negatively charged sulfonic groups (-SO3-) of NaPSS and positively charged patches on the BSA surface. Two such positive patches were identified, each responsible for one of the two binding processes. The presence of salts screened both short-range attractive and long-range repulsive electrostatic interactions between both macromolecules, resulting in a nonmonotonic dependence of the binding affinity on the total ionic strength for both binding processes. In addition, distinct anion-specific effects were observed (NaCl < NaBr < NaI). The effect of sugars was less pronounced: sucrose had no effect on the complexation, but its chlorinated analogue, sucralose, promoted it slightly due to the screening of long-range repulsive electrostatic interactions between BSA and NaPSS. Although short-range non-electrostatic interactions are frequently mentioned in the literature in relation to BSA or NaPSS, we found that the main driving force of complexation on the "wrong side" are electrostatic interactions.
Collapse
Affiliation(s)
- Matjaž Simončič
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, Večna Pot 113, SI-1000 Ljubljana, Slovenia
| | - Jozef Hritz
- Central
European Institute of Technology, Masaryk
University, Kamenice
5, CZ-62500 Brno, Czechia
- Department
of Chemistry, Faculty of Science, Masaryk
University, Kamenice
5, CZ-62500 Brno, Czechia
| | - Miha Lukšič
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, Večna Pot 113, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
22
|
Barroso da Silva FL, Giron CC, Laaksonen A. Electrostatic Features for the Receptor Binding Domain of SARS-COV-2 Wildtype and Its Variants. Compass to the Severity of the Future Variants with the Charge-Rule. J Phys Chem B 2022; 126:6835-6852. [PMID: 36066414 DOI: 10.1021/acs.jpcb.2c04225] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Electrostatic intermolecular interactions are important in many aspects of biology. We have studied the main electrostatic features involved in the interaction of the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein with the human receptor Angiotensin-converting enzyme 2 (ACE2). As the principal computational tool, we have used the FORTE approach, capable to model proton fluctuations and computing free energies for a very large number of protein-protein systems under different physical-chemical conditions, here focusing on the RBD-ACE2 interactions. Both the wild-type and all critical variants are included in this study. From our large ensemble of extensive simulations, we obtain, as a function of pH, the binding affinities, charges of the proteins, their charge regulation capacities, and their dipole moments. In addition, we have calculated the pKas for all ionizable residues and mapped the electrostatic coupling between them. We are able to present a simple predictor for the RBD-ACE2 binding based on the data obtained for Alpha, Beta, Gamma, Delta, and Omicron variants, as a linear correlation between the total charge of the RBD and the corresponding binding affinity. This "RBD charge rule" should work as a quick test of the degree of severity of the coming SARS-CoV-2 variants in the future.
Collapse
Affiliation(s)
- Fernando L Barroso da Silva
- Departamento de Ciências Biomoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. café, s/no-campus da USP, BR-14040-903 Ribeirão Preto, SP, Brazil.,Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Carolina Corrêa Giron
- Departamento de Ciências Biomoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. café, s/no-campus da USP, BR-14040-903 Ribeirão Preto, SP, Brazil.,Hospital de Clínicas, Universidade Federal do Triângulo Mineiro, Av. Getúlio Guaritá, 38025-440 Uberaba, MG, Brazil
| | - Aatto Laaksonen
- Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden.,State Key Laboratory of Materials-Oriented and Chemical Engineering, Nanjing Tech University, Nanjing, 210009, P. R. China.,Centre of Advanced Research in Bionanoconjugates and Biopolymers, Petru Poni Institute of Macromolecular Chemistry, Aleea Grigore Ghica-Voda, 41A, 700487 Iasi, Romania.,Department of Engineering Sciences and Mathematics, Division of Energy Science, Luleå University of Technology, SE-97187 Luleå, Sweden.,Department of Chemical and Geological Sciences, Campus Monserrato, University of Cagliari, SS 554 bivio per Sestu, 09042 Monserrato, Italy
| |
Collapse
|
23
|
Lunkad R, Biehl P, Murmiliuk A, Blanco PM, Mons P, Štěpánek M, Schacher FH, Košovan P. Simulations and Potentiometric Titrations Enable Reliable Determination of Effective p Ka Values of Various Polyzwitterions. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Raju Lunkad
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 40 Prague 2, Czech Republic
| | - Philip Biehl
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller-University Jena, Lessingstraße 8, D-07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Philosophenweg 7, D-07743 Jena, Germany
- Center for Energy and Environmental Chemistry (CEEC), Friedrich-Schiller-University Jena, Philosophenweg 7, D-07743 Jena, Germany
| | - Anastasiia Murmiliuk
- Jülich Centre for Neutron Science JCNS at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstraße 1, 85748 Garching, Germany
| | - Pablo M. Blanco
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 40 Prague 2, Czech Republic
- Department of Material Science and Physical Chemistry, Research Institute of Theoretical and Computational Chemistry (IQTCUB), University of Barcelona, C/Martí i Franquès 1, 08028 Barcelona, Spain
| | - Peter Mons
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller-University Jena, Lessingstraße 8, D-07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Philosophenweg 7, D-07743 Jena, Germany
- Center for Energy and Environmental Chemistry (CEEC), Friedrich-Schiller-University Jena, Philosophenweg 7, D-07743 Jena, Germany
| | - Miroslav Štěpánek
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 40 Prague 2, Czech Republic
| | - Felix H. Schacher
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller-University Jena, Lessingstraße 8, D-07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Philosophenweg 7, D-07743 Jena, Germany
- Center for Energy and Environmental Chemistry (CEEC), Friedrich-Schiller-University Jena, Philosophenweg 7, D-07743 Jena, Germany
| | - Peter Košovan
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 40 Prague 2, Czech Republic
| |
Collapse
|
24
|
Poveda-Cuevas SA, Etchebest C, da Silva FLB. Self-association features of NS1 proteins from different flaviviruses. Virus Res 2022; 318:198838. [PMID: 35662566 DOI: 10.1016/j.virusres.2022.198838] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 12/22/2022]
Abstract
Flaviviruses comprise a large group of arboviral species that are distributed in several countries of the tropics, neotropics, and some temperate zones. Since they can produce neurological pathologies or vascular damage, there has been intense research seeking better diagnosis and treatments for their infections in the last decades. The flavivirus NS1 protein is a relevant clinical target because it is involved in viral replication, immune evasion, and virulence. Being a key factor in endothelial and tissue-specific modulation, NS1 has been largely studied to understand the molecular mechanisms exploited by the virus to reprogram host cells. A central part of the viral maturation processes is the NS1 oligomerization because many stages rely on these protein-protein assemblies. In the present study, the self-associations of NS1 proteins from Zika, Dengue, and West Nile viruses are examined through constant-pH coarse-grained biophysical simulations. Free energies of interactions were estimated for different oligomeric states and pH conditions. Our results show that these proteins can form both dimers and tetramers under conditions near physiological pH even without the presence of lipids. Moreover, pH plays an important role mainly controlling the regimes where van der Waals interactions govern their association. Finally, despite the similarity at the sequence level, we found that each flavivirus has a well-characteristic protein-protein interaction profile. These specific features can provide new hints for the development of binders both for better diagnostic tools and the formulation of new therapeutic drugs.
Collapse
Affiliation(s)
- Sergio A Poveda-Cuevas
- Universidade de São Paulo, Programa Interunidades em Bioinformática, Rua do Matão, 1010, BR-05508-090 São Paulo, São Paulo, Brazil; Universidade de São Paulo, Departamento de Ciências Biomoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Av. do Café, s/no-Campus da USP, BR-14040-903 Ribeirão Preto, São Paulo, Brazil; University of São Paulo and Université de Paris International Laboratory in Structural Bioinformatics, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Av. do Café, s/no-Campus da USP, Bloco B, BR-14040-903 Ribeirão Preto, São Paulo, Brazil.; Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States
| | - Catherine Etchebest
- Université Paris Cité, Biologie Intégrée du Globule Rouge, Equipe 2, INSERM, F-75015 Paris, France; University of São Paulo and Université de Paris International Laboratory in Structural Bioinformatics, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Av. do Café, s/no-Campus da USP, Bloco B, BR-14040-903 Ribeirão Preto, São Paulo, Brazil
| | - Fernando L Barroso da Silva
- Universidade de São Paulo, Programa Interunidades em Bioinformática, Rua do Matão, 1010, BR-05508-090 São Paulo, São Paulo, Brazil; Universidade de São Paulo, Departamento de Ciências Biomoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Av. do Café, s/no-Campus da USP, BR-14040-903 Ribeirão Preto, São Paulo, Brazil; University of São Paulo and Université de Paris International Laboratory in Structural Bioinformatics, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Av. do Café, s/no-Campus da USP, Bloco B, BR-14040-903 Ribeirão Preto, São Paulo, Brazil..
| |
Collapse
|