1
|
Čonková M, Markiewicz G, Majchrzycki Ł, Szmulewicz A, Stefankiewicz AR. Chiral versus Achiral Assemblies in Multi-Stimuli Responsive Supramolecular Polymerization of Tetra-Substituted Azobenzene Dye. SMALL METHODS 2024; 8:e2301681. [PMID: 38344884 DOI: 10.1002/smtd.202301681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/16/2024] [Indexed: 10/18/2024]
Abstract
Incorporating photoswitchable moieties into the molecular design of supramolecular architectures provides unique opportunities for controlling their morphology and functionality via optical stimuli. Harnessing geometrical and electrical changes in response to multiple external stimuli on the molecular level to modulate properties remains a fundamental challenge. Herein, the reversible formation of the aggregates of l-tyrosine E-azobenzene-tetracarboxamide (E-ABT) is shown to be finely controlled by light, solvent, or chemical additives. The resulting products differ not only in their overall morphology and supramolecular interactions, but also in their intrinsic chirality, that is, depending on the conditions applied, self-assembly yields chiral columns or π-stacked "achiral" oligomers. This report shows the potential of rational monomer design to achieve controlled self-assembly by stimuli of choice and paves the way toward the use of multi-responsive, sterically hindered azo-benzene aggregates in materials chemistry and nanotechnology.
Collapse
Affiliation(s)
- Miroslava Čonková
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, Poznań, 61-614, Poland
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, Poznań, 61-614, Poland
| | - Grzegorz Markiewicz
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, Poznań, 61-614, Poland
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, Poznań, 61-614, Poland
| | - Łukasz Majchrzycki
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, Poznań, 61-614, Poland
| | - Adrianna Szmulewicz
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, Poznań, 61-614, Poland
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, Poznań, 61-614, Poland
| | - Artur R Stefankiewicz
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, Poznań, 61-614, Poland
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, Poznań, 61-614, Poland
| |
Collapse
|
2
|
Kupferberg JE, Syrgiannis Z, Đorđević L, Bruckner EP, Jaynes TJ, Ha HH, Qi E, Wek KS, Dannenhoffer AJ, Sather NA, Fry HC, Palmer LC, Stupp SI. Biopolymer-supramolecular polymer hybrids for photocatalytic hydrogen production. SOFT MATTER 2024; 20:6275-6288. [PMID: 39072531 DOI: 10.1039/d4sm00373j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Solar generation of H2 is a promising strategy for dense energy storage. Supramolecular polymers composed of chromophore amphiphile monomers containing perylene monoimide (PMI) have been reported as crystalline light-harvesting assemblies for aqueous H2-evolving catalysts. Gelation of these supramolecular polymers with multivalent ions creates hydrogels with high diffusivity but insufficient mechanical stability and catalyst retention for reusability. We report here on using sodium alginate (SA) biopolymer to both induce supramolecular polymerization of PMI and co-immobilize them with catalysts in a robust hydrogel with high diffusivity that can also be 3D-printed. Faster mass transfer was achieved by controlling the material macrostructure by reducing gel diameter and microstructure by reducing biopolymer loading. Optimized gels produce H2 at rates rivaling solution-based PMI and generate H2 for up to 6 days. The PMI assemblies in the SA matrix create a percolation network capable of bulk-electron transfer under illumination. These PMI-SA materials were then 3D-printed on conductive substrates to create 3D hydrogel photoelectrodes with optimized porosity. The design of these versatile hybrid materials was bioinspired by the soft matter environment of natural photosynthetic systems and opens the opportunity to carry out light-to-fuel conversion within soft matter with arbitrary shapes and particular local environments.
Collapse
Affiliation(s)
- Jacob E Kupferberg
- Department of Materials Science and Engineering, 2220 Campus Drive, Evanston, IL 60208, USA.
| | - Zois Syrgiannis
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Luka Đorđević
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Eric P Bruckner
- Department of Materials Science and Engineering, 2220 Campus Drive, Evanston, IL 60208, USA.
| | - Tyler J Jaynes
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Hakim H Ha
- Department of Materials Science and Engineering, 2220 Campus Drive, Evanston, IL 60208, USA.
| | - Evan Qi
- Department of Materials Science and Engineering, 2220 Campus Drive, Evanston, IL 60208, USA.
| | - Kristen S Wek
- Department of Materials Science and Engineering, 2220 Campus Drive, Evanston, IL 60208, USA.
| | - Adam J Dannenhoffer
- Department of Materials Science and Engineering, 2220 Campus Drive, Evanston, IL 60208, USA.
| | - Nicholas A Sather
- Department of Materials Science and Engineering, 2220 Campus Drive, Evanston, IL 60208, USA.
| | - H Christopher Fry
- Center for Nanoscale Materials, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, IL 60439, USA
| | - Liam C Palmer
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
- Simpson Querrey Institute for BioNanotechnology, Chicago, Illinois 60611, USA
| | - Samuel I Stupp
- Department of Materials Science and Engineering, 2220 Campus Drive, Evanston, IL 60208, USA.
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
- Simpson Querrey Institute for BioNanotechnology, Chicago, Illinois 60611, USA
- Department of Medicine, Northwestern University, Chicago, Illinois 60611, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
3
|
López-Gandul L, Lavarda G, van den Bersselaar BWL, Vantomme G, Meijer EW, Sánchez L. Supramolecular polymerization and bulk properties relationship in ester-functionalized N-annulated perylenediimides. Chem Sci 2024:d4sc03797a. [PMID: 39144454 PMCID: PMC11318647 DOI: 10.1039/d4sc03797a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/01/2024] [Indexed: 08/16/2024] Open
Abstract
The synthesis of a series of N-annulated perylenediimides (NPDIs) 1-4 with an ester group and an alkyl spacer of different length in the peripheral chains was carried out, and the influence of the side chain architecture on the self-assembly, both in solution and in the solid state, was investigated. Solution studies evidenced that the carbonyl group plays a key role in the supramolecular organization of these derivatives, changing from an H-type isodesmic polymerization (4) to a J-type cooperative process as the spacer length decreases (1-3). On the other hand, bulk assays revealed an odd-even effect that correlates with the length of the alkyl spacer. Whereas the odd-spaced derivatives (2 and 4) organize in a disordered columnar hexagonal fashion, the even-spaced ones (1 and 3) show the formation of multiple crystalline (and liquid crystalline) structures. The results presented herein highlight the importance of side chain functionalization in the design of building blocks for in-solution and bulk purposes.
Collapse
Affiliation(s)
- Lucía López-Gandul
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid 28040 Madrid Spain
- Institute for Complex Molecular Systems, Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology 5600 MB Eindhoven The Netherlands
| | - Giulia Lavarda
- Institute for Complex Molecular Systems, Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology 5600 MB Eindhoven The Netherlands
| | - Bart W L van den Bersselaar
- Institute for Complex Molecular Systems, Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology 5600 MB Eindhoven The Netherlands
| | - Ghislaine Vantomme
- Institute for Complex Molecular Systems, Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology 5600 MB Eindhoven The Netherlands
| | - E W Meijer
- Institute for Complex Molecular Systems, Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology 5600 MB Eindhoven The Netherlands
| | - Luis Sánchez
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid 28040 Madrid Spain
| |
Collapse
|
4
|
Wang P, Yang F, Qu J, Cai Y, Yang X, Li CM, Hu J. Recent Advances and Challenges in Efficient Selective Photocatalytic CO 2 Methanation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400700. [PMID: 38488718 DOI: 10.1002/smll.202400700] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/04/2024] [Indexed: 08/09/2024]
Abstract
Solar-driven carbon dioxide (CO2) methanation holds significant research value in the context of carbon emission reduction and energy crisis. However, this eight-electron catalytic reaction presents substantial challenges in catalytic activity and selectivity. In this regard, researchers have conducted extensive exploration and achieved significant developments. This review provides an overview of the recent advances and challenges in efficient selective photocatalytic CO2 methanation. It begins by discussing the fundamental principles and challenges in detail, analyzing strategies for improving the efficiency of photocatalytic CO2 conversion to CH4 comprehensively. Subsequently, it outlines the recent applications and advanced characterization methods for photocatalytic CO2 methanation. Finally, this review highlights the prospects and opportunities in this area, aiming to inspire CO2 conversion into high-value CH4 and shed light on the research of catalytic mechanisms.
Collapse
Affiliation(s)
- Piyan Wang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Fengyi Yang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Jiafu Qu
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yahui Cai
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Xiaogang Yang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Chang Ming Li
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Jundie Hu
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| |
Collapse
|
5
|
Schwalb AJ, García F, Sánchez L. Electronically and geometrically complementary perylenediimides for kinetically controlled supramolecular copolymers. Chem Sci 2024; 15:8137-8144. [PMID: 38817561 PMCID: PMC11134332 DOI: 10.1039/d4sc01322k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/29/2024] [Indexed: 06/01/2024] Open
Abstract
The synthesis of 3,4,9,10-benzo[d,e]isoquinolino[1,8-g,h]quinoline-tetracarboxylic diimide (BQQDI) 1 endowed with peripheral trialkoxybenzamide fragments is reported and its self-assembling features investigated. The peripheral benzamide moieties generate metastable monomeric species that afford a kinetically controlled supramolecular polymerization. The electron-withdrawing character of 1 in comparison with previously reported PDIs 2, together with the similar geometry, makes this dye an optimal candidate to perform seeded supramolecular copolymerization yielding four different supramolecular block copolymers. Whilst heteropolymers poly-1-co-2a, poly-2a-co-1 and poly-1-co-2b present an H-type arrangement of the monomeric units, heteropolymer poly-2b-co-1, prepared by seeding the chiral, metastable monomers of 2b with achiral seeds of 1, produces chiral, J-type aggregates. Interestingly, the monosignated CD signal of pristine poly-2b changes to a bisignated CD signal most probably due to the formation of columnar domains around the seeds of 1 which implies the blocky nature of the supramolecular copolymers formed.
Collapse
Affiliation(s)
- Alfonso J Schwalb
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid 28040 Madrid Spain
| | - Fátima García
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid 28040 Madrid Spain
| | - Luis Sánchez
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid 28040 Madrid Spain
| |
Collapse
|
6
|
Cappelletti D, Barbieri M, Aliprandi A, Maggini M, Đorđević L. Self-assembled π-conjugated chromophores: preparation of one- and two-dimensional nanostructures and their use in photocatalysis. NANOSCALE 2024; 16:9153-9168. [PMID: 38639760 PMCID: PMC11097008 DOI: 10.1039/d4nr00383g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/03/2024] [Indexed: 04/20/2024]
Abstract
Photocatalytic systems have attracted research interest as a clean approach to generate energy from abundant sunlight. In this context, developing efficient and robust photocatalytic structures is crucial. Recently, self-assembled organic chromophores have entered the stage as alternatives to both molecular systems and (in)organic semiconductors. Nanostructures made of self-assembled π-conjugated dyes offer, on the one hand, molecular customizability to tune their optoelectronic properties and activities and on the other hand, provide benefits from heterogeneous catalysis that include ease of separation, recyclability and improved photophysical properties. In this contribution, we present recent achievements in constructing supramolecular photocatalytic systems made of chromophores for applications in water splitting, H2O2 evolution, CO2 reduction, or environmental remediation. We discuss strategies that can be used to prepare ordered photocatalytic systems with an emphasis on the effect of packing between the dyes and the resulting photocatalytic activity. We further showcase supramolecular strategies that allow interfacing the organic nanostructures with co-catalysts, molecules, polymers, and (in)organic materials. The principles discussed here are the foundation for the utilization of these self-assembled materials in photocatalysis.
Collapse
Affiliation(s)
- David Cappelletti
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy.
| | - Marianna Barbieri
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy.
| | - Alessandro Aliprandi
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy.
| | - Michele Maggini
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy.
| | - Luka Đorđević
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy.
| |
Collapse
|
7
|
Wang X, Liao H, Tan W, Song W, Li X, Ji J, Wei X, Wu C, Yin C, Tong Q, Peng B, Sun S, Wan H, Dong L. Surface Coordination Environment Engineering on Pt xCu 1-x Alloy Catalysts for the Efficient Photocatalytic Reduction of CO 2 to CH 4. ACS APPLIED MATERIALS & INTERFACES 2024; 16:22089-22101. [PMID: 38651674 DOI: 10.1021/acsami.4c03861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Alloy catalysts have been reported to be robust in catalyzing various heterogeneous reactions due to the synergistic effect between different metal atoms. In this work, aimed at understanding the effect of the coordination environment of surface atoms on the catalytic performance of alloy catalysts, a series of PtxCu1-x alloy model catalysts supported on anatase-phase TiO2 (PtxCu1-x/Ti, x = 0.4, 0.5, 0.6, 0.8) were developed and applied in the classic photocatalytic CO2 reduction reaction. According to the results of catalytic performance evaluation, it was found that the photocatalytic CO2 reduction activity on PtxCu1-x/Ti showed a volcanic change as a function of the Pt/Cu ratio, the highest CO2 conversion was achieved on Pt0.5Cu0.5/Ti, with CH4 as the main product. Further systematic characterizations and theoretical calculations revealed that the equimolar amounts of Pt and Cu in Pt0.5Cu0.5/Ti facilitated the generation of more Cu-Pt-paired sites (i.e., the higher coordination number of Pt-Cu), which would favor a bridge adsorption configuration of CO2 and facilitate the electron transfer, thus resulting in the highest photocatalytic CO2 reduction efficiency on Pt0.5Cu0.5/Ti. This work provided new insights into the design of excellent CO2 reduction photocatalysts with high CH4 selectivity from the perspective of surface coordination environment engineering on alloy catalysts.
Collapse
Affiliation(s)
- Xin Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Haohong Liao
- State Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China
| | - Wei Tan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Wang Song
- State Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China
| | - Xue Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Jiawei Ji
- State Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China
| | - Xiaoqian Wei
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Cong Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Chenxu Yin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Qing Tong
- Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Nanjing University, Nanjing 210023, PR China
| | - Bo Peng
- SINOPEC Research Institute of Petroleum Processing Co., Ltd., Beijing 100083, China
| | - Shangcong Sun
- SINOPEC Research Institute of Petroleum Processing Co., Ltd., Beijing 100083, China
| | - Haiqin Wan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Lin Dong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
- Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Nanjing University, Nanjing 210023, PR China
| |
Collapse
|
8
|
Zadehnazari A, Khosropour A, Altaf AA, Rosen AS, Abbaspourrad A. Tetrazine-Linked Covalent Organic Frameworks With Acid Sensing and Photocatalytic Activity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311042. [PMID: 38140890 DOI: 10.1002/adma.202311042] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/29/2023] [Indexed: 12/24/2023]
Abstract
The first synthesis and comprehensive characterization of two vinyl tetrazine-linked covalent organic frameworks (COF), TA-COF-1 and TA-COF-2, are reported. These materials exhibit high crystallinity and high specific surface areas of 1323 and 1114 m2 g-1. The COFs demonstrate favorable band positions and narrow band gaps suitable for light-driven applications. These advantages enable TA-COFs to act as reusable metal-free photocatalysts in the arylboronic acids oxidation and light-induced coupling of benzylamines. In addition, these TA-COFs show acid sensing capabilities, exhibiting visible and reversible color changes upon exposure to HCl solution, HCl vapor, and NH3 vapor. Further, the TA-COFs outperform a wide range of previously reported COF photocathodes. The tetrazine linker in the COF skeleton represents a significant advancement in the field of COF synthesis, enhancing the separation efficiency of charge carriers during the photoreaction and contributing to their photocathodic properties. TA-COFs can also degrade 5-nitro-1,2,4-triazol-3-one (NTO), an insensitive explosive present in industrial wastewater, in 20 min in a sunlight-driven photocatalytic process; thus, revealing dual functionality of the protonated TA-COFs as both photodegradation and Brønsted acid catalysts. This pioneering work opens new avenues for harnessing the potential of the tetrazine linker in COF-based materials, facilitating advances in catalysis, sensing, and other related fields.
Collapse
Affiliation(s)
- Amin Zadehnazari
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Stocking Hall, Ithaca, NY, 14853, USA
| | - Ahmadreza Khosropour
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Stocking Hall, Ithaca, NY, 14853, USA
| | - Ataf Ali Altaf
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Stocking Hall, Ithaca, NY, 14853, USA
| | - Andrew S Rosen
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA, 94720, USA
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Alireza Abbaspourrad
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Stocking Hall, Ithaca, NY, 14853, USA
| |
Collapse
|
9
|
Tang Q, Han Y, Chen L, Qi Q, Yu J, Yu SB, Yang B, Wang HY, Zhang J, Xie SH, Tian F, Xie Z, Jiang H, Ke Y, Yang G, Li ZT, Tian J. Bioinspired Self-Assembly of Metalloporphyrins and Polyelectrolytes into Hierarchical Supramolecular Nanostructures for Enhanced Photocatalytic H 2 Production in Water. Angew Chem Int Ed Engl 2024; 63:e202315599. [PMID: 38169100 DOI: 10.1002/anie.202315599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/18/2023] [Accepted: 01/02/2024] [Indexed: 01/05/2024]
Abstract
Polypeptides, as natural polyelectrolytes, are assembled into tailored proteins to integrate chromophores and catalytic sites for photosynthesis. Mimicking nature to create the water-soluble nanoassemblies from synthetic polyelectrolytes and photocatalytic molecular species for artificial photosynthesis is still rare. Here, we report the enhancement of the full-spectrum solar-light-driven H2 production within a supramolecular system built by the co-assembly of anionic metalloporphyrins with cationic polyelectrolytes in water. This supramolecular photocatalytic system achieves a H2 production rate of 793 and 685 μmol h-1 g-1 over 24 h with a combination of Mg or Zn porphyrin as photosensitizers and Cu porphyrin as a catalyst, which is more than 23 times higher than that of free molecular controls. With a photosensitizer to catalyst ratio of 10000 : 1, the highest H2 production rate of >51,700 μmol h-1 g-1 with a turnover number (TON) of >1,290 per molecular catalyst was achieved over 24 h irradiation. The hierarchical self-assembly not only enhances photostability through forming ordered stackings of the metalloporphyrins but also facilitates both energy and electron transfer from antenna molecules to catalysts, and therefore promotes the photocatalysis. This study provides structural and mechanistic insights into the self-assembly enhanced photostability and catalytic performance of supramolecular photocatalytic systems.
Collapse
Affiliation(s)
- Qingxuan Tang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China
- State Key Laboratory of Organometallic Chemistry, Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, P. R. China
| | - Yifei Han
- State Key Laboratory of Organometallic Chemistry, Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, P. R. China
| | - Lingxuan Chen
- State Key Laboratory of Organometallic Chemistry, Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, P. R. China
| | - Qiaoyan Qi
- State Key Laboratory of Organometallic Chemistry, Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, P. R. China
| | - Junlai Yu
- State Key Laboratory of Organometallic Chemistry, Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, P. R. China
| | - Shang-Bo Yu
- State Key Laboratory of Organometallic Chemistry, Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, P. R. China
| | - Bo Yang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China
| | - Hao-Yang Wang
- National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, P. R. China
| | - Jiangshan Zhang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Song-Hai Xie
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Feng Tian
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China
| | - Zhenhua Xie
- Spallation Neutron Source Science Center, China Spallation Neutron Source, Dongguan, Guangdong, 523803, P. R. China
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hanqiu Jiang
- Spallation Neutron Source Science Center, China Spallation Neutron Source, Dongguan, Guangdong, 523803, P. R. China
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yubin Ke
- Spallation Neutron Source Science Center, China Spallation Neutron Source, Dongguan, Guangdong, 523803, P. R. China
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Guanyu Yang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China
| | - Zhan-Ting Li
- State Key Laboratory of Organometallic Chemistry, Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, P. R. China
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Jia Tian
- State Key Laboratory of Organometallic Chemistry, Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, P. R. China
| |
Collapse
|
10
|
Lu KQ, Hao JG, Wei Y, Weng B, Ge S, Yang K, Lu S, Yang MQ, Liao Y. Photocatalytic Conversion of Diluted CO 2 into Tunable Syngas via Modulating Transition Metal Hydroxides. Inorg Chem 2024; 63:795-802. [PMID: 38109223 DOI: 10.1021/acs.inorgchem.3c03802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
The conversion of diluted CO2 into tunable syngas via photocatalysis is critical for implementing CO2 reduction practically, although the efficiency remains low. Herein, we report the use of graphene-modified transition metal hydroxides, namely, NiXCo1-X-GR, for the conversion of diluted CO2 into syngas with adjustable CO/H2 ratios, utilizing Ru dyes as photosensitizers. The Ni(OH)2-GR cocatalyst can generate 12526 μmol g-1 h-1 of CO and 844 μmol g-1 h-1 of H2, while the Co(OH)2-GR sample presents a generation rate of 2953 μmol g-1 h-1 for CO and 10027 μmol g-1 h-1 for H2. Notably, by simply altering the addition amounts of nickel and cobalt in the transition metal composite, the CO/H2 ratios in syngas can be easily regulated from 18:1 to 1:4. Experimental characterization of composites and DFT calculations suggest that the differing adsorption affinities of CO2 and H2O over Ni(OH)2-GR and Co(OH)2-GR play a significant role in determining the selectivity of CO and H2 products, ultimately affecting the CO/H2 ratios in syngas. Overall, these findings demonstrate the potential of graphene-modified transition metal hydroxides as efficient photocatalysts for CO2 reduction and syngas production.
Collapse
Affiliation(s)
- Kang-Qiang Lu
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, College of Materials, Metallurgical and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China
| | - Jin-Ge Hao
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, College of Materials, Metallurgical and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China
| | - Yu Wei
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, College of Materials, Metallurgical and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China
| | - Bo Weng
- cMACS, Department of Microbial and Molecular Systems, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Shiyi Ge
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, College of Materials, Metallurgical and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China
| | - Kai Yang
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, College of Materials, Metallurgical and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China
| | - Suwei Lu
- College of Environmental Science and Engineering, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350117, China
| | - Min-Quan Yang
- College of Environmental Science and Engineering, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350117, China
| | - Yuhe Liao
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, No. 2, Nengyuan, Road, Tianhe District, Guangzhou 510640, P. R. China
| |
Collapse
|
11
|
Abstract
As an active branch within the field of supramolecular polymers, chiral supramolecular polymers (SPs) are an excellent benchmark to generate helical structures that can clarify the origin of homochirality in Nature or help determine new exciting functionalities of organic materials. Herein, we highlight the most utilized strategies to build up chiral SPs by using chiral monomeric units or external stimuli. Selected examples of transfer of asymmetry, in which the point or axial chirality contained by the monomeric units is efficiently transferred to the supramolecular scaffold yielding enantioenriched helical structures, will be presented. The importance of the thermodynamics and kinetics associated with those processes is stressed, especially the influence that parameters such as the helix reversal and mismatch penalties exert on the achievement of amplification of asymmetry in co-assembled systems will also be considered. Remarkable examples of breaking symmetry, in which chiral supramolecular polymers can be attained from achiral self-assembling units by applying external stimuli like stirring, solvent or light, are highlighted. Finally, the specific and promising applications of chiral supramolecular polymers are presented with recent relevant examples.
Collapse
Affiliation(s)
- Fátima García
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040-Madrid, Spain.
| | - Rafael Gómez
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040-Madrid, Spain.
| | - Luis Sánchez
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040-Madrid, Spain.
| |
Collapse
|
12
|
Li J, Lao J, Zou H. Aza-dicyclopenta[ a, g]naphthalenes: controllable seesaw-like emissive behavior and narrowband AIEgens. Chem Sci 2023; 14:11203-11212. [PMID: 37860664 PMCID: PMC10583707 DOI: 10.1039/d3sc03921h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/25/2023] [Indexed: 10/21/2023] Open
Abstract
Molecular motions significantly influence the emissive behavior and properties of organic fluorescent molecules. However, achieving controllable emission remains a major challenge for fluorophores. In the case of aggregation-induced emission luminogens (AIEgens), the desired properties of aggregated emission and narrowband spectrum demand molecular motion patterns that inherently oppose each other. A nitrogen-containing dicyclopenta[a,g]naphthalene scaffold was discovered as a controllable luminogenic structure through a highly efficient one-step intermolecular cascade reaction. By carefully balancing molecular motions and introducing additional nitrogen atoms into the skeleton, pyrrole-conjugated dicyclopenta[a,g]naphthalenes with aggregation-caused quenching (ACQ) could be transformed into dual-state emission luminogens (DSEgens). This transformation was achieved by incorporating an additional weak H-bond "lock." Furthermore, the DSEgens could be converted into AIEgens with an exciting narrow full-width-at-half-maximum (FWHM, <50 nm) by methylation. This unprecedented discovery is attributed to the contribution of the weak H-bond "lock," which overcomes the limitations of broad band emission in AIEgens caused by restrictions of intramolecular motion. Specific organelle probes were developed by replacing the methyl group of the onium product with different positioning groups. This study emphasizes the delicate balance of molecular motions in controlling luminescence and demonstrates a successful approach to designing organic luminogens with controllable emission and narrowband AIEgens.
Collapse
Affiliation(s)
- Jinbiao Li
- College of Pharmaceutical Sciences, Zhejiang University Hangzhou 310058 P. R. China
| | - Jiaxin Lao
- College of Pharmaceutical Sciences, Zhejiang University Hangzhou 310058 P. R. China
| | - Hongbin Zou
- College of Pharmaceutical Sciences, Zhejiang University Hangzhou 310058 P. R. China
| |
Collapse
|
13
|
Janke S, Boldt S, Nakielski P, Villinger A, Ehlers P, Langer P. Synthesis and Properties of 5-Azaullazines. J Org Chem 2023. [PMID: 37486966 DOI: 10.1021/acs.joc.3c00386] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
5-Azaullazines, indolizino[6,5,4,3-ija][1,5]naphthyridines, and their benzo-fused analogues were prepared in three steps by combination of Pd catalyzed cross-coupling reactions with Brønsted acid mediated cycloisomerisations. The reaction tolerates various substitution patterns and functional groups and proceeds in high yields. Optical and electrochemical properties of selected products were studied experimentally and by DFT calculations.
Collapse
Affiliation(s)
- Sophie Janke
- Institute of Chemistry, University Rostock, Albert-Einstein-Str. 3a, 18059 Rostock, Germany
| | - Sebastian Boldt
- Institute of Chemistry, University Rostock, Albert-Einstein-Str. 3a, 18059 Rostock, Germany
| | - Pascal Nakielski
- Institute of Chemistry, University Rostock, Albert-Einstein-Str. 3a, 18059 Rostock, Germany
| | - Alexander Villinger
- Institute of Chemistry, University Rostock, Albert-Einstein-Str. 3a, 18059 Rostock, Germany
| | - Peter Ehlers
- Institute of Chemistry, University Rostock, Albert-Einstein-Str. 3a, 18059 Rostock, Germany
| | - Peter Langer
- Institute of Chemistry, University Rostock, Albert-Einstein-Str. 3a, 18059 Rostock, Germany
- Leibniz Institute of Catalysis (LIKAT) at the University Rostock, Albert-Einstein-Str. 29a, 18059 Rostock, Germany
| |
Collapse
|
14
|
Tang Z, Xu S, Yin N, Yang Y, Deng Q, Shen J, Zhang X, Wang T, He H, Lin X, Zhou Y, Zou Z. Reaction Site Designation by Intramolecular Electric Field in Tröger's-Base-Derived Conjugated Microporous Polymer for Near-Unity Selectivity of CO 2 Photoconversion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210693. [PMID: 36760097 DOI: 10.1002/adma.202210693] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/22/2023] [Indexed: 05/17/2023]
Abstract
To facilitate solar-driven overall CO2 and H2 O convsersion into fuels and O2 , a series of covalent microporous polymers derived from Tröger's base are synthesized featuring flexural backbone and unusual charge-transfer properties. The incorporation of rigid structural twist Tröger's base unit grants the polymers enhanced microporosity and CO2 adsorption/activation capacity. Density function theory calculations and photo-electrochemical analyses reveal that an electric dipole moment (from negative to positive) directed to the Tröger's base unit is formed across two obliquely opposed molecular fragments and induces an intramolecular electric field. The Tröger's base unit located at folding point becomes an electron trap to attract photogenerated electrons in the molecular network, which brings about suppression of carrier recombination and designates the reaction site in synergy with the conjugated network. In response to the discrepancy in reaction pathways across the reaction sites, the product allocation in the catalytic reaction is thereby regulated. Optimally, CMP-nTB achieves the highest photocatalytic CO production of 163.53 µmol g-1 h-1 with approximately unity selectivity, along with H2 O oxidation to O2 in the absence of any photosensitizer or co-catalyst. This work provides new insight for developing specialized artificial organic photocatalysts.
Collapse
Affiliation(s)
- Zheng Tang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Shengyu Xu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Nan Yin
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Yong Yang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Qinghua Deng
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Jinyou Shen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Xiaoyue Zhang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Tianyu Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Huichao He
- Institute of Environmental Energy Materials and Intelligent Devices, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, 401331, P. R. China
| | - Xiangyang Lin
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Yong Zhou
- Eco-Materials and Renewable Energy Research Center (ERERC), School of Physics, Nanjing University, Nanjing, 210093, P. R. China
- School of Chemical and Environmental Engnieering, Anhui Polytechnic University, Wuhu, 241002, P. R. China
| | - Zhigang Zou
- Eco-Materials and Renewable Energy Research Center (ERERC), School of Physics, Nanjing University, Nanjing, 210093, P. R. China
| |
Collapse
|
15
|
Khang TM, Nhien PQ, Cuc TTK, Weng CC, Wu CH, Wu JI, Hue BTB, Li YK, Lin HC. Dual and Sequential Locked/Unlocked Photochromic Effects on FRET Controlled Singlet Oxygen Processes by Contracted/Extended Forms of Diarylethene-Based [1]Rotaxane Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205597. [PMID: 36504441 DOI: 10.1002/smll.202205597] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Manipulations of singlet oxygen (1 O2 ) generations by the integration of both aggregation-induced emission luminogen (AIEgen) photosensitizer and photochromic moieties have diversified features in photodynamic therapy applications. Through Förster resonance energy transfer (FRET) pathway to induce red PL emissions (at 595 nm) for 1 O2 productions, [1]rotaxane containing photosensitive tetraphenylethylene (TPE) donor and photochromic diarylethene (DAE) acceptor is introduced to achieve dual and sequential locked/unlocked photoswitching effects by pH-controlled shuttling of its contracted/extended forms. Interestingly, the UV-enabled DAE ring closure speeds follow the reversed trend of DAE self-constraint degree as: contracted < extended < noninterlocked forms in [1]rotaxane analogues, thus FRET processes can be adjusted in contracted/extended forms of [1]rotaxane upon UV irradiations. Accordingly, the contracted form of [1]rotaxane is FRET-OFF locked and inert to UV exposure due to the larger bending conformation of DAE parallel (p-)conformer, compared with its extended and noninterlocked analogues possessing switchable FRET-OFF/ON behaviors activated by dual and sequential pH- and photoswitching. Owing to the advantages of 1 O2 productions tuned by multistimuli inputs (pH, UV, and blue light), an useful logic circuit for toxicity outputs of the surface modified [1]rotaxane nanoparticles (NPs) has been demonstrated to offer promising 1 O2 productions and managements based on mechanically interlocked molecules for future bioapplications.
Collapse
Affiliation(s)
- Trang Manh Khang
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Pham Quoc Nhien
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
- Department of Chemistry, College of Natural Sciences, Can Tho University, Can Tho City, 94000, Viet Nam
| | - Tu Thi Kim Cuc
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Chang-Ching Weng
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Chia-Hua Wu
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Judy I Wu
- Department of Chemistry, University of Houston, Houston, TX, 77204, USA
| | - Bui Thi Buu Hue
- Department of Chemistry, College of Natural Sciences, Can Tho University, Can Tho City, 94000, Viet Nam
| | - Yaw-Kuen Li
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Hong-Cheu Lin
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| |
Collapse
|
16
|
Lin M, Chen H, Zhang Z, Wang X. Engineering interface structures for heterojunction photocatalysts. Phys Chem Chem Phys 2023; 25:4388-4407. [PMID: 36723139 DOI: 10.1039/d2cp05281d] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Solar photocatalysis is the most ideal solution to global energy concerns and environmental deterioration nowadays. The heterojunction combination has become one of the most successful and effective strategies to design and manufacture composite photocatalysts. Heterojunction structures are widely documented to markedly improve the photocatalytic behavior of materials by enhancing the separation and transfer of photogenerated charges, widening the light absorption range, and broadening redox potentials, which are attributed to the presence of both build-in electric fields at the interface of two different materials and the complementarity between different electron structures. So far, a large number of heterojunction photocatalytic materials have been reported and applied for water splitting, reduction of carbon dioxide and nitrogen, environmental cleaning, etc. This review outlines the recent accomplishments in the design and modification of interface structures in heterojunction photocatalysts, aiming to provide some useful perspectives for future research in this field.
Collapse
Affiliation(s)
- Min Lin
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350106, P. R. China. .,Qingyuan Innovation Laboratory, Quanzhou, 362801, P. R. China
| | - Hui Chen
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350106, P. R. China. .,Qingyuan Innovation Laboratory, Quanzhou, 362801, P. R. China
| | - Zizhong Zhang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350106, P. R. China. .,Qingyuan Innovation Laboratory, Quanzhou, 362801, P. R. China
| | - Xuxu Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350106, P. R. China. .,Qingyuan Innovation Laboratory, Quanzhou, 362801, P. R. China
| |
Collapse
|
17
|
Zuo Q, Cui R, Wang L, Wang Y, Yu C, Wu L, Mai Y, Zhou Y. High-loading single cobalt atoms on ultrathin MOF nanosheets for efficient photocatalytic CO2 reduction. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1498-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
18
|
Hong YH, Lee YM, Nam W, Fukuzumi S. Reaction Intermediates in Artificial Photosynthesis with Molecular Catalysts. ACS Catal 2022. [DOI: 10.1021/acscatal.2c05033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Young Hyun Hong
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul03760, Korea
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul03760, Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul03760, Korea
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul03760, Korea
| |
Collapse
|
19
|
Su C, Chen Z, Feng Q, Wei F, Zhang M, Mo A, Huang HH, Hu H, Liu D. Highly Efficient Visible-Light-Driven CO 2-to-CO Conversion by Coordinatively Unsaturated Co-Salen Complexes in a Water-Containing System. Inorg Chem 2022; 61:19748-19755. [PMID: 36417273 DOI: 10.1021/acs.inorgchem.2c02515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The development of cost-effective catalysts for CO2 reduction is highly desired but remains a significant challenge. The unsaturated coordination metal center in a catalyst is favorable for the process of catalytic CO2 reduction. In this paper, two asymmetric salen ligands were used to synthesize two coordinatively unsaturated Co-salen complexes. The two Co-salen complexes exhibit an unsaturated coordination pattern and display high activity and CO selectivity for visible-light-driven CO2 reduction in a water-containing system. The photocatalytic performance of 2 is higher than that of 1 because the reduction potential of the catalytic CoII center and the energy barrier of the catalytic transition states of 2 are lower than those of 1, with turnover numbers (TONCO), turnover frequencies (TOF), and CO selectivity values of 8640, 0.24 s-1, and 97% for 2, respectively. The photocatalytic reduction of CO2 to CO for 2 is well supported by control experiments and density functional theory (DFT) calculations.
Collapse
Affiliation(s)
- Chao Su
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, No. 15 Yucai Road, Guilin 541004, China
| | - Zilu Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, No. 15 Yucai Road, Guilin 541004, China
| | - Qin Feng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, No. 15 Yucai Road, Guilin 541004, China
| | - Fangsha Wei
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, No. 15 Yucai Road, Guilin 541004, China
| | - Mingling Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, No. 15 Yucai Road, Guilin 541004, China
| | - Anna Mo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, No. 15 Yucai Road, Guilin 541004, China
| | - Hai-Hua Huang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, No. 15 Yucai Road, Guilin 541004, China
| | - Huancheng Hu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, No. 15 Yucai Road, Guilin 541004, China
| | - Dongcheng Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, No. 15 Yucai Road, Guilin 541004, China
| |
Collapse
|
20
|
López-Gandul L, Naranjo C, Sánchez C, Rodríguez R, Gómez R, Crassous J, Sánchez L. Stereomutation and chiroptical bias in the kinetically controlled supramolecular polymerization of cyano-luminogens. Chem Sci 2022; 13:11577-11584. [PMID: 36320383 PMCID: PMC9555562 DOI: 10.1039/d2sc03449b] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/06/2022] [Indexed: 10/13/2023] Open
Abstract
The synthesis of two pairs of enantiomeric cyano-luminogens 1 and 2, in which the central chromophore is a p-phenylene or a 2,5-dithienylbenzene moiety, respectively, is described and their supramolecular polymerization under kinetic and thermodynamic control investigated. Compounds 1 and 2 form supramolecular polymers by quadruple H-bonding arrays between the amide groups and the π-stacking of the central aromatic moieties. In addition, the peripheral benzamide units are able to form intramolecularly H-bonded pseudocycles that behave as metastable monomer M* thus affording kinetically and thermodynamically controlled aggregated species AggI and AggII. The chiroptical and emissive features of compounds 1 and 2 strongly depend on the aggregation state and the nature of the central aromatic unit. Compounds 1 exhibit a bisignated dichroic response of different intensity but with similar sign for both AggI1 and AggII1 species, which suggests the formation of helical aggregates. In fact, these helical supramolecular polymers can be visualized by AFM imaging. Furthermore, both AggI and AggII species formed by the self-assembly of compounds 1 show CPL (circularly polarized light) activity of opposite sign depending on the aggregation state. Thienyl-derivatives 2 display dissimilar chiroptical, morphological and emissive characteristics for the corresponding kinetically and thermodynamically controlled aggregated species AggI and AggII in comparison to those registered for compounds 1. Thus, a stereomutation phenomenon is observed in the AggI2 → AggII2 conversion. In addition, AggI2 is arranged into nanoparticles that evolve to helical aggregates to afford AggII2. The dissimilar chiroptical and morphological features of AggI2 and AggII2 are also appreciated in the emissive properties. Thus, whilst AggI2 experiences a clear AIE (aggregation induced emission) process and CPL activity, the thermodynamically controlled AggII2 undergoes an ACQ (aggregation caused quenching) process in which the CPL activity is cancelled.
Collapse
Affiliation(s)
- Lucía López-Gandul
- Departamento de Química Orgánica, Facultad; de Ciencias Químicas, Universidad Complutense de Madrid 28040 Madrid Spain
| | - Cristina Naranjo
- Departamento de Química Orgánica, Facultad; de Ciencias Químicas, Universidad Complutense de Madrid 28040 Madrid Spain
| | - Cecilia Sánchez
- Departamento de Química Orgánica, Facultad; de Ciencias Químicas, Universidad Complutense de Madrid 28040 Madrid Spain
| | - Rafael Rodríguez
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226 F-35000 Rennes France
| | - Rafael Gómez
- Departamento de Química Orgánica, Facultad; de Ciencias Químicas, Universidad Complutense de Madrid 28040 Madrid Spain
| | - Jeanne Crassous
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226 F-35000 Rennes France
| | - Luis Sánchez
- Departamento de Química Orgánica, Facultad; de Ciencias Químicas, Universidad Complutense de Madrid 28040 Madrid Spain
| |
Collapse
|
21
|
Photocatalytic CO2 Conversion Using Metal-Containing Coordination Polymers and Networks: Recent Developments in Material Design and Mechanistic Details. Polymers (Basel) 2022; 14:polym14142778. [PMID: 35890553 PMCID: PMC9318416 DOI: 10.3390/polym14142778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/24/2022] [Accepted: 07/04/2022] [Indexed: 02/04/2023] Open
Abstract
International guidelines have progressively addressed global warming which is caused by the greenhouse effect. The greenhouse effect originates from the atmosphere’s gases which trap sunlight which, as a consequence, causes an increase in global surface temperature. Carbon dioxide is one of these greenhouse gases and is mainly produced by anthropogenic emissions. The urgency of removing atmospheric carbon dioxide from the atmosphere to reduce the greenhouse effect has initiated the development of methods to covert carbon dioxide into valuable products. One approach that was developed is the photocatalytic transformation of CO2. Photocatalysis addresses environmental issues by transferring CO2 into value added chemicals by mimicking the natural photosynthesis process. During this process, the photocatalytic system is excited by light energy. CO2 is adsorbed at the catalytic metal centers where it is subsequently reduced. To overcome several obstacles for achieving an efficient photocatalytic reduction process, the use of metal-containing polymers as photocatalysts for carbon dioxide reduction is highlighted in this review. The attention of this manuscript is directed towards recent advances in material design and mechanistic details of the process using different polymeric materials and photocatalysts.
Collapse
|
22
|
Su L, Hendrikse SIS, Meijer EW. Supramolecular glycopolymers: How carbohydrates matter in structure, dynamics, and function. Curr Opin Chem Biol 2022; 69:102171. [PMID: 35749930 DOI: 10.1016/j.cbpa.2022.102171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/14/2022] [Accepted: 05/18/2022] [Indexed: 11/18/2022]
Abstract
Supramolecular glycopolymers exhibiting inherent dynamicity, tunability, and adaptivity allow us to arrive at a deeper understanding of multivalent carbohydrate-carbohydrate interactions and carbohydrate-protein interactions, both being essential to key biological events. The impacts of the carbohydrate segments in these supramolecular glycopolymers towards their structure, dynamics, and function as biomaterials are addressed in this minireview. Bottlenecks and challenges are discussed, and we speculate about possible future directions.
Collapse
Affiliation(s)
- Lu Su
- Institute for Complex Molecular Systems, Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, Eindhoven 5600 MB, the Netherlands; Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, Leiden 2333 CC, the Netherlands
| | - Simone I S Hendrikse
- Institute for Complex Molecular Systems, Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, Eindhoven 5600 MB, the Netherlands; Department of Chemical Engineering, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - E W Meijer
- Institute for Complex Molecular Systems, Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, Eindhoven 5600 MB, the Netherlands; School of Chemistry and UNSW RNA Institute, The University of New South Wales Sydney, NSW 2052, Australia.
| |
Collapse
|
23
|
Li QQ, Hamamoto Y, Tan CCH, Sato H, Ito S. 1,3-Dipolar cycloaddition of azomethine ylides and imidoyl halides for synthesis of π-extended imidazolium salts. Org Chem Front 2022. [DOI: 10.1039/d2qo00941b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new synthetic approach to π-extended imidazolium salts is developed based on 1,3-dipolar cycloaddition of polycyclic aromatic azomethine ylides with imidoyl chlorides in the presence of cesium fluoride as a key additive.
Collapse
Affiliation(s)
- Qiang-Qiang Li
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Yosuke Hamamoto
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Cheryl Cai Hui Tan
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Hiroyasu Sato
- Rigaku Corporation, 3-9-12 Matsubara-Cho, Akishima, Tokyo 196-8666, Japan
| | - Shingo Ito
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| |
Collapse
|