1
|
Kwon TW, Wu G, Lei SN, Stoddart JF. Molecular Compasses for Modulating Electronic Communication in Pillar[5]quinone. J Am Chem Soc 2025; 147:12425-12437. [PMID: 40186618 DOI: 10.1021/jacs.4c12280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2025]
Abstract
Just as a pointer, which moves freely and points to the magnetic North in a compass, affords us with a device for tracking direction on a global scale, a dipole moment in a molecule is capable of aligning itself in a compass-like manner in response to an electric field at the molecular level. Here, we demonstrate that dipole moment pointers, based on amide and ester groups in the dumbbell components of [2]rotaxanes, are susceptible to changes in pole-dipole and dipole-dipole interactions within a redox-active pillar[5]quinone ring component when subjected to redox control. Distinct from free pillar[5]quinone, these molecular compasses exhibit a 1-1-1-1-1 electron-uptake pattern during the first-electron transfers. Density functional theory (DFT) calculations reveal that, upon the reduction of quinoid units in the amide-based molecular compass, the positive end of the dipole moment pointer in the dumbbell component becomes oriented toward the reduced anionic quinone in the ring component, courtesy of hydrogen bonding. The negative end of the dipole moment pointer in the dumbbell component lowers the reduction potentials of the other four quinoid units as a result of electrostatic repulsions, which explain its 1-1-1-1-1 electron-uptake pattern. Our findings highlight how electronic communication between the dipole moment pointers and the quinoid units in the ring component enables the [2]rotaxane to act as a molecular compass, precisely reorienting its dipole moments in response to redox changes.
Collapse
Affiliation(s)
- Tae-Woo Kwon
- Department of Chemistry, The University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
| | - Guangcheng Wu
- Department of Chemistry, The University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
| | - Sheng-Nan Lei
- Department of Chemistry, The University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
| | - J Fraser Stoddart
- Department of Chemistry, The University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Center for Regenerative Nanomedicine, Northwestern University, Chicago, Illinois 60611, United States
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
2
|
Naranjo A, Jiménez DM, Rivas-Caramés M, Villalva J, Luisa Ruiz-González M, Pedersen H, López-Moreno A, Pérez EM. Multigram Scale Synthesis of Mechanically-Interlocked Derivatives of SWNT using Mechanochemical Methods. Chemistry 2025; 31:e202404762. [PMID: 39992164 DOI: 10.1002/chem.202404762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/21/2025] [Accepted: 02/24/2025] [Indexed: 02/25/2025]
Abstract
The grinding of chemical reagents enables mixing, promotes molecular collisions, and provides the thermal energy required for chemical reactions, while reducing the need for solvent (often to none) and significantly speeding up reactions. This has made mechanochemistry a powerful alternative to traditional solution chemistry. Here, we show that mechanically interlocked derivatives of single-walled carbon nanotubes (MINTs) can be made via mechanochemistry in a multigram scale. Compared to the previously reported method in suspension, mechanochemistry allows us to reduce the amount of solvent by two orders of magnitude and the reaction time from 72 h to 5 min. The mechanochemical synthesis of MINTs is proven to work both with purified (6,5)-SWNTs and affordable TuballTM SWNTs, enabling the cheap, fast, and environmentally friendly multigram scale synthesis of MINTs. With this new synthetic methodology, we open the door to the real-world applications of MINTs in fields such as polymer composites.
Collapse
Affiliation(s)
- Alicia Naranjo
- IMDEA Nanociencia, C/Faraday 9 Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain
| | - David M Jiménez
- IMDEA Nanociencia, C/Faraday 9 Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain
| | - Marisol Rivas-Caramés
- IMDEA Nanociencia, C/Faraday 9 Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain
| | - Julia Villalva
- IMDEA Nanociencia, C/Faraday 9 Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain
| | | | | | - Alejandro López-Moreno
- IMDEA Nanociencia, C/Faraday 9 Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain
| | - Emilio M Pérez
- IMDEA Nanociencia, C/Faraday 9 Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain
| |
Collapse
|
3
|
Chakraborty UK, Yang M, Baral S, Liu C, Chen A, Chen P. Biphasic mechanochemistry of single-chain polymerization. Proc Natl Acad Sci U S A 2025; 122:e2418844122. [PMID: 40163735 PMCID: PMC12002241 DOI: 10.1073/pnas.2418844122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 02/13/2025] [Indexed: 04/02/2025] Open
Abstract
Mechanical forces can induce chemical reactions, produce chemical signals, and alter reaction kinetics. Here, using magnetic tweezers-based single-molecule force spectroscopy, we study the force effects on the ring-opening metathesis polymerization (ROMP) of single-polymer chains, during which nonequilibrium conformational entanglements can form and unravel stochastically. We find a surprising, biphasic force dependence of polymerization kinetics: The single-chain polymerization rate initially slows down with increasing stretching forces, reaching a minimum, and then accelerates at higher forces. Analysis of real-time single-chain growth trajectories allows for dissecting the polymerization process into two distinct regimes, one with and the other without entanglement formation, unveiling the biphasic force dependence in both regimes. Two different mechanisms likely operate for the biphasic dependence: a force-induced entanglement tightening and then splitting and a force-induced catalyst structural distortion that switches the reaction pathway between reactant states of different stability and reactivity. These findings and insights point to opportunities of using force to manipulate polymerization reactions and tune the physiochemical properties of synthetic polymers.
Collapse
Affiliation(s)
| | - Muwen Yang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY14853
| | - Susil Baral
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY14853
| | - Chunming Liu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY14853
| | - AnQi Chen
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY14853
| | - Peng Chen
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY14853
| |
Collapse
|
4
|
Yasuzawa K, Wada K, Fa S, Nagata Y, Kato K, Ohtani S, Mizuno M, Ogoshi T. Diastereoselective Polypseudorotaxane Formation with Planar Chiral Pillar[5]arenes via Co-crystallization Processes. Angew Chem Int Ed Engl 2025; 64:e202420115. [PMID: 39653659 DOI: 10.1002/anie.202420115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Indexed: 01/03/2025]
Abstract
As the number of chiral ring molecules in chiral polyrotaxane increases, the number of possible stereoisomers exponentially increases. Consequently, the selective synthesis of a specific stereoisomer becomes much more challenging. To address this problem, we co-crystallized poly(ethylene glycol) and a diastereomeric ring molecule, pillar[5]arene, in the solid state. The co-crystallization formed polypseudorotaxanes with a high diastereomeric excess (ca. 88 % de), meaning that polypseudorotaxanes containing (S, pS) stereoisomer pillar[5]arene rings were synthesized selectively. By contrast, in solution and evaporation systems, the selectivity remained low (ca. 10 % de). The results suggested that the packing effect by the co-crystallization contributed to the denser assembly of ring molecules on the polymeric chain, resulting in the diastereoselective formation. High diastereoselectivity was also observed even in higher-molecular-weight poly(ethylene glycol)s. These selectivities arose from the cooperative effects of the ring molecules on the polymeric chain, which were supported by calculating the stabilization energy.
Collapse
Affiliation(s)
- Kiichi Yasuzawa
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Keisuke Wada
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Shixin Fa
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P.R. China
| | - Yuuya Nagata
- WPI Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo 060-0810, Japan
| | - Kenichi Kato
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Shunsuke Ohtani
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Motohiro Mizuno
- NanoMaterials Research Institute (NanoMaRi), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Tomoki Ogoshi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
5
|
Deng J, Lu H, Ye H, Hai Y, Liu Z, You L. Precise assembly/disassembly of homo-type and hetero-type macrocycles with photoresponsive and non-photoresponsive dynamic covalent bonds. Org Biomol Chem 2025; 23:2498-2509. [PMID: 39917954 DOI: 10.1039/d5ob00094g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Dynamic covalent macrocycles offer the advantage of tunable ring-opening/ring-closure and structural transformation, but their control with precision remains a daunting task due to the labile nature of reversible bonds. Herein we demonstrate the precise formation/scission of covalent macrocycles with varied sizes by contrasting the reactivity, stability, and degradability of light-active and light-inactive dynamic covalent bonds. The incorporation of photoswitchable and non-photoresponsive aldehyde sites into one single dialdehyde component afforded the creation of [1 + 1] type macrocycles with primary diamines of suitable lengths. The manipulation of light and acid/base stimuli allowed on-demand breaking/remaking of macrocycles, achieving the interconversion between macrocyclic and linear skeletons. Moreover, a combination of the dialdehyde, primary diamines, and secondary diamines enabled the construction of hetero-type [2 + 1 + 1'] macrocycles via enhanced discrimination and hierarchical assembly. Light-induced kinetic locking/unlocking of dynamic bonds further afforded macrocycle-to-macrocycle conversion when needed. Through leveraging controllable covalent connection/disconnection, switchable formation/disintegration of mechanically interlocked catenanes was further accomplished. The results described showcase the potential of photoinduced dynamic covalent chemistry for preparing complex architectures and should set the stage for molecular recognition, dynamic assemblies, synthetic motors, and responsive materials.
Collapse
Affiliation(s)
- Junmiao Deng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
- College of Chemistry and Material Science, Fujian Normal University, Fuzhou 350007, China
| | - Hanwei Lu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
| | - Hebo Ye
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
| | - Yu Hai
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
| | - Zimu Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
- College of Chemistry and Material Science, Fujian Normal University, Fuzhou 350007, China
| | - Lei You
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Suut-Tuule E, Schults E, Jarg T, Adamson J, Kananovich D, Aav R. Scalable Mechanochemical Synthesis of Biotin[6]uril. CHEMSUSCHEM 2025:e202402354. [PMID: 39745771 DOI: 10.1002/cssc.202402354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/13/2024] [Indexed: 01/18/2025]
Abstract
Biotin[6]uril, a chiral, water-soluble and anion binding macrocycle, is formed via dynamic covalent chemistry. In this study, we present a scalable and high-yielding synthesis of biotin[6]uril via a mechanochemical solid-state approach. The optimized protocol involves mechanical grinding of solid d-biotin with paraformaldehyde in the presence of 0.3 equivalents of 48 % aqueous HBr, which functions as a catalyst, template, and liquid grinding additive. This mechanochemical process is carried out in a shaker or planetary mill, followed by aging at an elevated temperature to produce biotin[6]uril with an HPLC yield of up to 96 %. The condensation and macrocyclization reaction was successfully scaled up 82-fold, producing nearly 20 g of biotin[6]uril with a high 92 % isolated yield and 91 % purity. Compared to conventional solution-based method, this mechanochemical approach offers several advantages, including significantly higher yields, shorter reaction times, enhanced scalability, simpler operational requirements, and substantially lower process mass intensity.
Collapse
Affiliation(s)
- Elina Suut-Tuule
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, Tallinn, 12618, Estonia
| | - Eve Schults
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, Tallinn, 12618, Estonia
| | - Tatsiana Jarg
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, Tallinn, 12618, Estonia
| | - Jasper Adamson
- National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, Tallinn, 12618, Estonia
- Virumaa College School of Engineering, Tallinn University of Technology, Järveküla 75, Kohtla-Järve, 30322, Estonia
| | - Dzmitry Kananovich
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, Tallinn, 12618, Estonia
| | - Riina Aav
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, Tallinn, 12618, Estonia
| |
Collapse
|
7
|
Zhang S, Zhang L, Chen A, An Y, Chen XM, Yang H, Li Q. Cucurbit[8]uril-Mediated Supramolecular Heterodimerisation and Photoinduced [2+2] Heterocycloaddition to Generate Unexpected [2]Rotaxanes. Angew Chem Int Ed Engl 2024; 63:e202410130. [PMID: 38932636 DOI: 10.1002/anie.202410130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 06/28/2024]
Abstract
In contrast to the self-assembly of homosupramolecules, the self-assembly of heterosupramolecules is more challenging and significant in various fields. Herein, we design and investigate a cucurbit[8]uril-mediated heterodimerisation based on an arene-fluoroarene strategy. Furthermore, the heteroternary complex is found to be able to undergo a photoinduced [2+2] heterocycloaddition, resulting in the formation of an unexpected [2]rotaxane. This work demonstrates a novel supramolecular heterodimerisation system that not only contributes to the development of photoisomerisation systems, but also enriches synthetic methods for mechanically interlocked molecules.
Collapse
Affiliation(s)
- Shu Zhang
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Liyan Zhang
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Aocheng Chen
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Yi An
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Xu-Man Chen
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Hong Yang
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Quan Li
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
- Materials Science Graduate Program, Kent State University, Kent, OH-44242, USA
| |
Collapse
|
8
|
He C, Chen Y, Hao Z, Wang L, Wang M, Cui X. Mechanocatalytic Synthesis of Ammonia by Titanium Dioxide with Bridge-Oxygen Vacancies: Investigating Mechanism from the Experimental and First-Principle Approach. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309500. [PMID: 38368265 DOI: 10.1002/smll.202309500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/10/2023] [Indexed: 02/19/2024]
Abstract
Mechanochemical ammonia (NH3) synthesis is an emerging mild approach derived from nitrogen (N2) gas and hydrogen (H) source. The gas-liquid phase mechanochemical process utilizes water (H2O), rather than conventional hydrogen (H2) gas, as H sources, thus avoiding carbon dioxide (CO2) emission during H2 production. However, ammonia yield is relatively low to meet practical demand due to huge energy barriers of N2 activation and H2O dissociation. Here, six transition metal oxides (TMO) such as titanium dioxide (TiO2), iron(III) oxide (Fe2O3), copper(II) oxide (CuO), niobium(V) oxide(Nb2O5), zinc oxide (ZnO), and copper(I) oxide (Cu2O) are investigated as catalysts in mechanochemical N2 fixation. Among them, TiO2 shows the best mechanocatalytic effect and the optimum reaction rate constant is 3.6-fold higher than the TMO-free process. The theoretical calculations show that N2 molecules prefer to side-on chemisorb on the mechano-induced bridge-oxygen vacancies in the (101) crystal plane of TiO2 catalyst, while H2O molecules can dissociate on the same sites more easily to provide free H atoms, enabling an alternative-way hydrogeneration process of activated N2 molecules to release NH3 eventually. This work highlights the cost-effective TiO2 mechanocatalyst for ammonia synthesis under mild conditions and proposes a defect-engineering-induced mechanocatalytic mechanism to promote N2 activation and H2O dissociation.
Collapse
Affiliation(s)
- Chengli He
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Yang Chen
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, P. R. China
| | - Zixiang Hao
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Linrui Wang
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Mingyan Wang
- School of Environment and Chemical Engineering, Jiangsu Ocean University, Lianyungang, 222005, P. R. China
| | - Xiaoli Cui
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
9
|
Shan T, Chen L, Xiao D, Xiao X, Wang J, Chen X, Guo QH, Li G, Stoddart JF, Huang F. Adaptisorption of Nonporous Polymer Crystals. Angew Chem Int Ed Engl 2024; 63:e202317947. [PMID: 38298087 DOI: 10.1002/anie.202317947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/13/2024] [Accepted: 01/31/2024] [Indexed: 02/02/2024]
Abstract
Although our knowledge and understanding of adsorptions in natural and artificial systems has increased dramatically during the past century, adsorption associated with nonporous polymers remains something of a mystery, hampering applications. Here we demonstrate a model system for adaptisorption of nonporous polymers, wherein dative B-N bonds and host-guest binding units act as the kinetic and thermodynamic components, respectively. The coupling of these two components enables nonporous polymer crystals to adsorb molecules from solution and undergo recrystallization as thermodynamically favored crystals. Adaptisorption of nonporous polymer crystals not only extends the types of adsorption in which the sorbate molecules are integrated in a precise and orderly manner in the sorbent systems, but also provides a facile and accurate approach to the construction of polymeric materials with precise architectures and integrated functions.
Collapse
Affiliation(s)
- Tianyu Shan
- Department of Chemistry, Stoddart Institute of Molecular Science, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| | - Liya Chen
- Department of Chemistry, Stoddart Institute of Molecular Science, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| | - Ding Xiao
- Department of Chemistry, Stoddart Institute of Molecular Science, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| | - Xuedong Xiao
- Department of Chemistry, Stoddart Institute of Molecular Science, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| | - Jiao Wang
- Department of Chemistry, Stoddart Institute of Molecular Science, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| | - Xuan Chen
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| | - Qing-Hui Guo
- Department of Chemistry, Stoddart Institute of Molecular Science, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| | - Guangfeng Li
- Department of Chemistry, Stoddart Institute of Molecular Science, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| | - J Fraser Stoddart
- Department of Chemistry, Stoddart Institute of Molecular Science, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
- Chong Yuet Ming Chemistry Building, The University of Hong Kong, Hong Kong SAR, P. R. China
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, 303 East superior Street, Chicago, IL 60208, USA
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Feihe Huang
- Department of Chemistry, Stoddart Institute of Molecular Science, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| |
Collapse
|
10
|
Becharguia N, Nierengarten I, Strub JM, Cianférani S, Rémy M, Wasielewski E, Abidi R, Nierengarten JF. Solution and Solvent-Free Stopper Exchange Reactions for the Preparation of Pillar[5]arene-containing [2] and [3]Rotaxanes. Chemistry 2024; 30:e202304131. [PMID: 38165139 DOI: 10.1002/chem.202304131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/30/2023] [Accepted: 01/02/2024] [Indexed: 01/03/2024]
Abstract
Diamine reagents have been used to functionalize a [2]rotaxane building block bearing an activated pentafluorophenyl ester stopper. Upon a first acylation, an intermediate host-guest complex with a terminal amine function is obtained. Dissociation of the intermediate occurs in solution and acylation of the released axle generates a [2]rotaxane with an elongated axle subunit. In contrast, the corresponding [3]rotaxane can be obtained if the reaction conditions are appropriate to stabilize the inclusion complex of the mono-amine intermediate and the pillar[5]arene. This is the case when the stopper exchange is performed under mechanochemical solvent-free conditions. Alternatively, if the newly introduced terminal amide group is large enough to prevent the dissociation, the second acylation provides exclusively a [3]rotaxane. On the other hand, detailed conformational analysis has been also carried out by variable temperature NMR investigations. A complete understanding of the shuttling motions of the pillar[5]arene subunit along the axles of the rotaxanes reported therein has been achieved with the help of density functional theory calculations.
Collapse
Affiliation(s)
- Nihed Becharguia
- Laboratoire de Chimie des Matériaux Moléculaires, Université de Strasbourg et CNRS (UMR 7042, LIMA), Ecole Européenne de Chimie, Polymères et Matériaux, 25 rue Becquerel, 67087, Strasbourg Cedex 2, France
- Laboratoire d'Applications de la Chimie aux Ressources et Substances Naturelles et l'Environnement, Faculté des Sciences de Bizerte, Université de Carthage, 7021, Zarzouna Bizerte, Tunisia
| | - Iwona Nierengarten
- Laboratoire de Chimie des Matériaux Moléculaires, Université de Strasbourg et CNRS (UMR 7042, LIMA), Ecole Européenne de Chimie, Polymères et Matériaux, 25 rue Becquerel, 67087, Strasbourg Cedex 2, France
| | - Jean-Marc Strub
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg et CNRS (UMR 7178, IPHC), Ecole Européenne de Chimie, Polymères et Matériaux, 25 rue Becquerel, 67087, Strasbourg Cedex 2, France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg et CNRS (UMR 7178, IPHC), Ecole Européenne de Chimie, Polymères et Matériaux, 25 rue Becquerel, 67087, Strasbourg Cedex 2, France
| | - Marine Rémy
- Laboratoire de Chimie des Matériaux Moléculaires, Université de Strasbourg et CNRS (UMR 7042, LIMA), Ecole Européenne de Chimie, Polymères et Matériaux, 25 rue Becquerel, 67087, Strasbourg Cedex 2, France
| | - Emeric Wasielewski
- Plateforme RMN Cronenbourg, Université de Strasbourg et CNRS (UMR 7042, LIMA) Ecole Européenne de Chimie, Polymères et Matériaux, 25 rue Becquerel, 67087, Strasbourg Cedex 2, France
| | - Rym Abidi
- Laboratoire d'Applications de la Chimie aux Ressources et Substances Naturelles et l'Environnement, Faculté des Sciences de Bizerte, Université de Carthage, 7021, Zarzouna Bizerte, Tunisia
| | - Jean-François Nierengarten
- Laboratoire de Chimie des Matériaux Moléculaires, Université de Strasbourg et CNRS (UMR 7042, LIMA), Ecole Européenne de Chimie, Polymères et Matériaux, 25 rue Becquerel, 67087, Strasbourg Cedex 2, France
| |
Collapse
|
11
|
Wada K, Yasuzawa K, Fa S, Nagata Y, Kato K, Ohtani S, Ogoshi T. Diastereoselective Rotaxane Synthesis with Pillar[5]arenes via Co-crystallization and Solid-State Mechanochemical Processes. J Am Chem Soc 2023. [PMID: 37411034 DOI: 10.1021/jacs.3c02919] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Chiral rotaxanes have attracted much attention in recent decades for their unique chirality based on their interlocked structures. Thus, selective synthesis methods of chiral rotaxanes have been developed. The introduction of substituents with chiral centers to produce diastereomers is a powerful strategy for the construction of chiral rotaxanes. However, in case of a small energy difference between the diastereomers, diastereoselective synthesis is extremely difficult. Herein, we report a new diastereoselective rotaxane synthesis method using solid-phase diastereoselective [3]pseudorotaxane formation and mechanochemical solid-phase end-capping reactions of the [3]pseudorotaxanes. By co-crystallization of stereodynamic planar chiral pillar[5]arene with stereogenic carbons at both rims and axles with suitable end groups and lengths, the [3]pseudorotaxane with a high diastereomeric excess (ca. 92% de) was generated in the solid state because of higher effective molarity with aid by packing effects and significant energy differences between [3]pseudorotaxane diastereomers. In contrast, the de of the pillar[5]arene was low in solution (ca. 10% de) because of a small energy difference between diastereomers. Subsequent end-capping reactions of the polycrystalline [3]pseudorotaxane with high de in solvent-free conditions successfully yielded rotaxanes while maintaining the high de generated by the co-crystallization.
Collapse
Affiliation(s)
- Keisuke Wada
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kiichi Yasuzawa
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Shixin Fa
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P.R. China
| | - Yuuya Nagata
- WPI Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo 001-0021, Japan
| | - Kenichi Kato
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Shunsuke Ohtani
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Tomoki Ogoshi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
12
|
Zhang Y, Wang Y, Chen T, Han Y, Yan C, Wang J, Lu B, Ma L, Ding Y, Yao Y. Pillar[5]arene based water-soluble [3]pseudorotaxane with enhanced fluorescence emission for cell imaging and both type I and II photodynamic cancer therapy. Chem Commun (Camb) 2023. [PMID: 37314502 DOI: 10.1039/d3cc01929b] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Water-soluble [3]pseudorotaxane with enhanced fluorescence emission was successfully constructed and applied in cell imaging and photodynamic cancer therapy.
Collapse
Affiliation(s)
- Yue Zhang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Yang Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Tingting Chen
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Ying Han
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225001, P. R. China.
| | - Chaoguo Yan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225001, P. R. China.
| | - Jin Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Bing Lu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Longtao Ma
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225001, P. R. China.
| | - Yue Ding
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Yong Yao
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| |
Collapse
|
13
|
Comparison of the Conventional and Mechanochemical Syntheses of Cyclodextrin Derivatives. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020467. [PMID: 36677527 PMCID: PMC9861519 DOI: 10.3390/molecules28020467] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/19/2022] [Accepted: 12/27/2022] [Indexed: 01/05/2023]
Abstract
Many scientists are working hard to find green alternatives to classical synthetic methods. Today, state-of-the-art ultrasonic and grinding techniques already drive the production of organic compounds on an industrial scale. The physicochemical and chemical behavior of cyclodextrins often differs from the typical properties of classic organic compounds and carbohydrates. The usually poor solubility and complexing properties of cyclodextrins can require special techniques. By eliminating or reducing the amount of solvent needed, green alternatives can reform classical synthetic methods, making them attractive for environmentally friendly production and the circular economy. The lack of energy-intensive synthetic and purification steps could transform currently inefficient processes into feasible methods. Mechanochemical reaction mechanisms are generally different from normal solution-chemistry mechanisms. The absence of a solvent and the presence of very high local temperatures for microseconds facilitate the synthesis of cyclodextrin derivatives that are impossible or difficult to produce under classical solution-chemistry conditions. Although mechanochemistry does not provide a general solution to all problems, several good examples show that this new technology can open up efficient synthetic pathways.
Collapse
|