1
|
Zhang Z, Li X, Cheng Y, Yao Y, Li R, Liu Q, Yang H, Chen X. Stimuli-Responsive Photoluminescent Molecular Tweezers for Highly Enantioselective Discrimination of Chiral Primary Amines. Anal Chem 2024; 96:19632-19640. [PMID: 39600136 DOI: 10.1021/acs.analchem.4c04726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
To address the challenge of chiral recognition in terms of efficiency and generality, we propose a novel fluorescence sensing approach by rationally designing metal-ion-responsive chiral molecular tweezers. The flexible and adaptable molecular tweezers enable facile recognition of 31 structurally varied chiral primary amine compounds, including amino acids, amino acid esters, and chiral amines. Notably, upon stimulation by zinc ions, the chiral molecular tweezers demonstrate a higher enantioselective fluorescence response. Combined density functional theory calculations reveal that the chiral sensing mechanism relies on differential reaction rates and potential hydrogen-bonding interactions between the two enantiomers and the chiral receptor, which results in one of the enantiomers forming a more abundant, stable, and structurally rigid complex with the receptor, resulting in a significant increase in the fluorescence intensity and enantioselectivity. The stimuli-responsive molecular tweezers approach provides a novel strategy for precise stereocontrol and universality of chiral recognition, offering a promising tool for applications in various fields.
Collapse
Affiliation(s)
- Zhipeng Zhang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Xiaoxing Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Yujun Cheng
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Yao Yao
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Ruili Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Qi Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Xiaoqing Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
- Xiangjiang Laboratory, Changsha 410205, China
| |
Collapse
|
2
|
Zhang J, Hao A, Xing P. Hypervalent Iodine(III) Mediated Halogen Bonded Supramolecular Chiral System with Cholesteryl Naphthalimides. Chemistry 2024:e202401004. [PMID: 38584138 DOI: 10.1002/chem.202401004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 04/09/2024]
Abstract
Halogen bonding acknowledged as a noteworthy weak interaction, has gained growing recognition in the field of supramolecular chemistry. In this study, we selected structurally rigid diaryliodonium ions (I(III)) with two biaxial σ-holes as halogen-bond donors, to bind with three chiral acceptor molecules bearing cholesteryl and naphthalimides with distinct geometries. The abundant carbonyl oxygen atoms in side-arm substituents function as multiple acceptors for halogen bonding. The self-aggregation of chiral acceptor molecules demonstrates adaptiveness to solvent media, evidenced by the inversion of the Cotton effect and the morphological evolution from spherical to rod-like nanoarchitectures in different solvent systems. The distinct geometries of the acceptor molecules conferred various binding modes with I(III). The introduction of I(III) as a halogen-bond donor regulates the aggregation of the donors, achieving amplification of chiroptical signals and inheriting solvent responsiveness from the self-aggregated assembly. This study successfully utilized rational structural design and multimodal control strategies to achieve regulation of supramolecular chirality.
Collapse
Affiliation(s)
- Jie Zhang
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, People's Republic of China
| | - Aiyou Hao
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, People's Republic of China
| | - Pengyao Xing
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, People's Republic of China
| |
Collapse
|
3
|
Das P, N M, Singh N, Datta P. Supramolecular Nanostructures for the Delivery of Peptides in Cancer Therapy. J Pharmacol Exp Ther 2024; 388:67-80. [PMID: 37827700 DOI: 10.1124/jpet.123.001698] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 08/31/2023] [Accepted: 09/18/2023] [Indexed: 10/14/2023] Open
Abstract
Supramolecular nanostructured based delivery systems are emerging as a meaningful approach in the treatment of cancer, offering controlled drug release and improved therapeutic efficacy. The self-assembled structures can be small molecules, polymers, peptides, or proteins, which can be used and functionalized to achieve tailored release and target specific cells, tissues, or organs. These structures can improve the solubility and stability of drugs having low aqueous solubility by encapsulating and protecting them from degradation. Alongside, peptides as natural biomolecules have gained increasing attention as potential candidates in cancer treatment because of their biocompatibility, low cytotoxicity, and high specificity toward tumor cells. The amino acid sequences in peptide molecules are tunable, efficiently controlling the morphology of peptide-based self-assembled nanosystems and offering flexibility to form supramolecular nanostructures (SNs). It is evident from the current literature that the supramolecular nanostructures based delivery of peptide for cancer treatment hold great promise for future cancer therapy, offering potential strategies for personalized medicine with improved patient outcomes. SIGNIFICANCE STATEMENT: This review focuses on fundamentals and various drug delivery mechanisms based on SNs. Different SN approaches and recent literature reviews on peptide delivery are also presented to the readers.
Collapse
Affiliation(s)
- Priyanka Das
- Polymer-Based Medical Devices and Complex Drug Delivery Systems Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, India
| | - Manasa N
- Polymer-Based Medical Devices and Complex Drug Delivery Systems Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, India
| | - Nidhi Singh
- Polymer-Based Medical Devices and Complex Drug Delivery Systems Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, India
| | - Pallab Datta
- Polymer-Based Medical Devices and Complex Drug Delivery Systems Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, India
| |
Collapse
|
4
|
Lee H, Lee D. Assembling Molecular Clips To Build π-Stacks. Chemistry 2023; 29:e202302523. [PMID: 37658276 DOI: 10.1002/chem.202302523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/01/2023] [Accepted: 09/01/2023] [Indexed: 09/03/2023]
Abstract
Nature utilizes an intimate stacking of aromatic motifs to construct functional structures, as demonstrated in protein folding and polynucleotide assembly. However, organized π-stacks of artificial molecules are difficult to build, primarily due to the weak, non-directional, and context-sensitive nature of van der Waals forces. To overcome these challenges, chemists have invented ingenious architectural designs to construct π-stacked supramolecular assemblies using clip-like molecules. This Concept article focuses on molecular clips that enable precise spatial control over assembly patterns, beyond the scope of simple host-guest chemistry. Different design strategies are analyzed and compared that leverage non-covalent interactions to create multi-layer π-stacks. Particular emphasis is placed on the choice of spine units as they play a crucial role in controlling the (i) spacing, (ii) orientation, and (iii) conformational pre-organization of linked aromatics to achieve long-range spatial ordering.
Collapse
Affiliation(s)
- Hyun Lee
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea
| | - Dongwhan Lee
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea
| |
Collapse
|
5
|
Liang B, Xia D, Cheng Y, Zheng Q, Wang P. A supramolecular polymer network constructed using a pillararene-based multi-functional monomer and its application as a rewritable fluorescent paper. Dalton Trans 2023; 52:17099-17103. [PMID: 37971419 DOI: 10.1039/d3dt03284a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
A simple and mild stimulus-responsive fluorescent supramolecular polymer network was constructed from a pillararene-based multi-functional monomer through multiple noncovalent interactions and used as a rewritable paper.
Collapse
Affiliation(s)
- Bicong Liang
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, P. R. China.
| | - Danyu Xia
- Scientific Instrument Center, Shanxi University, Taiyuan 030006, P. R. China.
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yujie Cheng
- Scientific Instrument Center, Shanxi University, Taiyuan 030006, P. R. China.
| | - Qiang Zheng
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, P. R. China.
| | - Pi Wang
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, P. R. China.
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
6
|
Yang Y, Ronson TK, Hou D, Zheng J, Jahović I, Luo KH, Nitschke JR. Hetero-Diels-Alder Reaction between Singlet Oxygen and Anthracene Drives Integrative Cage Self-Sorting. J Am Chem Soc 2023; 145:19164-19170. [PMID: 37610128 PMCID: PMC10485901 DOI: 10.1021/jacs.3c04228] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Indexed: 08/24/2023]
Abstract
A ZnII8L6 pseudocube containing anthracene-centered ligands, a ZnII4L'4 tetrahedron with a similar side length as the cube, and a trigonal prism ZnII6L3L'2 were formed in equilibrium from a common set of subcomponents. Hetero-Diels-Alder reaction with photogenerated singlet oxygen transformed the anthracene-containing "L" ligands into endoperoxide "LO" ones and ultimately drove the integrative self-sorting to form the trigonal prismatic cage ZnII6LO3L'2 exclusively. This ZnII6LO3L'2 structure lost dioxygen in a retro-Diels-Alder reaction after heating, which resulted in reversion to the initial ZnII8L6 + ZnII4L'4 ⇌ 2 × ZnII6L3L'2 equilibrating system. Whereas the ZnII8L6 pseudocube had a cavity too small for guest encapsulation, the ZnII6L3L'2 and ZnII6LO3L'2 trigonal prisms possessed peanut-shaped internal cavities with two isolated compartments divided by bulky anthracene panels. Guest binding was also observed to drive the equilibrating system toward exclusive formation of the ZnII6L3L'2 structure, even in the absence of reaction with singlet oxygen.
Collapse
Affiliation(s)
- Yuchong Yang
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, United
Kingdom
| | - Tanya K. Ronson
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, United
Kingdom
| | - Dingyu Hou
- Department
of Mechanical Engineering, University College
London, London WC1E 7JE, United
Kingdom
| | - Jieyu Zheng
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, United
Kingdom
| | - Ilma Jahović
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, United
Kingdom
| | - Kai Hong Luo
- Department
of Mechanical Engineering, University College
London, London WC1E 7JE, United
Kingdom
| | - Jonathan R. Nitschke
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, United
Kingdom
| |
Collapse
|
7
|
Li J, Cui Y, Lu YL, Zhang Y, Zhang K, Gu C, Wang K, Liang Y, Liu CS. Programmable supramolecular chirality in non-equilibrium systems affording a multistate chiroptical switch. Nat Commun 2023; 14:5030. [PMID: 37596287 PMCID: PMC10439165 DOI: 10.1038/s41467-023-40698-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 08/03/2023] [Indexed: 08/20/2023] Open
Abstract
The dynamic regulation of supramolecular chirality in non-equilibrium systems can provide valuable insights into molecular self-assembly in living systems. Herein, we demonstrate the use of chemical fuels for regulating self-assembly pathway, which thereby controls the supramolecular chirality of assembly in non-equilibrium systems. Depending on the nature of different fuel acids, the system shows pathway-dependent non-equilibrium self-assembly, resulting in either dynamic self-assembly with transient supramolecular chirality or kinetically trapped self-assembly with inverse supramolecular chirality. More importantly, successive conducting of chemical-fueled process and thermal annealing process allows for the sequential programmability of the supramolecular chirality between four different chiral hydrogels, affording a new example of a multistate supramolecular chiroptical switch that can be recycled multiple times. The current finding sheds new light on the design of future supramolecular chiral materials, offering access to alternative self-assembly pathways and kinetically controlled non-equilibrium states.
Collapse
Affiliation(s)
- Jingjing Li
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Yihan Cui
- College of New Energy, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
| | - Yi-Lin Lu
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin, 300071, China
| | - Yunfei Zhang
- College of New Energy, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
| | - Kaihuang Zhang
- College of New Energy, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
| | - Chaonan Gu
- College of New Energy, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
| | - Kaifang Wang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, China
- College of New Energy, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
| | - Yujia Liang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, China
- College of New Energy, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
| | - Chun-Sen Liu
- College of New Energy, Zhengzhou University of Light Industry, Zhengzhou, 450002, China.
| |
Collapse
|
8
|
Liu Y, Wu Y, Luo Z, Li M. Designing supramolecular self-assembly nanomaterials as stimuli-responsive drug delivery platforms for cancer therapy. iScience 2023; 26:106279. [PMID: 36936787 PMCID: PMC10014307 DOI: 10.1016/j.isci.2023.106279] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Stimuli-responsive nanomaterials have attracted substantial interest in cancer therapy, as they hold promise to deliver anticancer agents to tumor sites in a precise and on-demand manner. Interestingly, supramolecular chemistry is a burgeoning discipline that entails the reversible bonding between components at the molecular and nanoscale levels, and the recent advances in this area offer the possibility to design nanotherapeutics with improved controllability and functionality for cancer therapy. Herein, we provide a comprehensive summary of typical non-covalent interaction modes, which primarily include hydrophobic interaction, hydrogel bonding, host-guest interaction, π-π stacking, and electrostatic interaction. Special emphasis is placed on the implications of these interaction modes to design novel stimuli-responsive drug delivery principles and concepts, aiming to enhance the spatial, temporal, and dosage precision of drug delivery to cancer cells. Finally, future perspectives are discussed to highlight current challenges and future opportunities in self-assembly-based stimuli-responsive drug delivery nanotechnologies for cancer therapy.
Collapse
Affiliation(s)
- Yingqi Liu
- School of Life Science, Chongqing University, Chongqing 400044, P. R. China
| | - Yunyun Wu
- Chongqing Municipal Center for Disease Control and Prevention, Chongqing 400042, China
| | - Zhong Luo
- School of Life Science, Chongqing University, Chongqing 400044, P. R. China
| | - Menghuan Li
- School of Life Science, Chongqing University, Chongqing 400044, P. R. China
| |
Collapse
|
9
|
Javorskis T, Rakickas T, Janku̅naitė A, Vaitekonis Š, Ulčinas A, Orentas E. Maskless, Reusable Visible-Light Direct-Write Stamp for Microscale Surface Patterning. ACS APPLIED MATERIALS & INTERFACES 2023; 15:11259-11267. [PMID: 36797999 PMCID: PMC11008783 DOI: 10.1021/acsami.2c20568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
We report a straightforward method for creating large-area, microscale resolution patterns of functional amines on self-assembled monolayers by the photoinduced local acidification of a flat elastomeric stamp enriched with photoacid. The limited diffusivity of the photoactivated merocyanine acid in poly(dimethylsiloxane) (PDMS) enabled to confine efficient deprotection of N-tert-butyloxycarbonyl amino group (N-Boc) to line widths below 10 μm. The experimental setup is very simple and is built around the conventional HD-DVD optical pickup. The method allows cost-efficient, maskless, large-area chemical patterning while avoiding potentially cytotoxic photochemical reaction products. The activation of the embedded photoacid occurs within the stamp upon illumination with the laser beam and the process is fully reversible. Preliminary positive results highlight the possibility of repeatable use of the same stamp for the creation of different patterns.
Collapse
Affiliation(s)
- Tomas Javorskis
- Department
of Nanoengineering, Center for Physical
Sciences and Technology, Savanorių 231, LT-02300 Vilnius, Lithuania
| | - Tomas Rakickas
- Department
of Nanoengineering, Center for Physical
Sciences and Technology, Savanorių 231, LT-02300 Vilnius, Lithuania
| | - Alberta Janku̅naitė
- Department
of Organic Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
| | - Šaru̅nas Vaitekonis
- Department
of Nanoengineering, Center for Physical
Sciences and Technology, Savanorių 231, LT-02300 Vilnius, Lithuania
| | - Artu̅ras Ulčinas
- Department
of Nanoengineering, Center for Physical
Sciences and Technology, Savanorių 231, LT-02300 Vilnius, Lithuania
| | - Edvinas Orentas
- Department
of Nanoengineering, Center for Physical
Sciences and Technology, Savanorių 231, LT-02300 Vilnius, Lithuania
- Department
of Organic Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
| |
Collapse
|
10
|
Effect of spatial configuration on adhesion of 1,2-disubstituted cyclohexane derivatives. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|