1
|
Shinjo-Nagahara S, Okada Y, Hiratsuka G, Kitano Y, Chiba K. Improved Electrochemical Peptide Synthesis Enabled by Electron-Rich Triaryl Phosphines. Chemistry 2024; 30:e202402552. [PMID: 38981861 DOI: 10.1002/chem.202402552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/06/2024] [Accepted: 07/09/2024] [Indexed: 07/11/2024]
Abstract
While remarkable progress has been made in the development of peptide medicines, many problems related to peptide synthesis remain unresolved. Previously, we reported electrochemical peptide synthesis using a phosphine as a potentially recyclable coupling reagent. However, there was room for improvement from the point of view of reaction efficiency, especially in the carboxylic acid activation step and the peptide bond formation step. To overcome these challenges, we searched for the optimal phosphine. Among phosphines with various electronic properties, we found that electron-rich triaryl phosphines improved the reaction efficiency. Consequently, we successfully performed electrochemical peptide synthesis on sterically hindered and valuable amino acids. We also synthesized oligopeptides that were challenging with our previous method. Finally, we examined the effect of substituents on the phosphine cations, and gained some insights into reactivity, which will aid researchers designing reactions involving phosphine cations.
Collapse
Affiliation(s)
- Shingo Shinjo-Nagahara
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, 3-5-8- Saiwai-cho, Fuchu Tokyo, 183-8509, Japan
| | - Yohei Okada
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, 3-5-8- Saiwai-cho, Fuchu Tokyo, 183-8509, Japan
| | - Goki Hiratsuka
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, 3-5-8- Saiwai-cho, Fuchu Tokyo, 183-8509, Japan
| | - Yoshikazu Kitano
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, 3-5-8- Saiwai-cho, Fuchu Tokyo, 183-8509, Japan
| | - Kazuhiro Chiba
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, 3-5-8- Saiwai-cho, Fuchu Tokyo, 183-8509, Japan
| |
Collapse
|
2
|
Li Z, Du Q, Feng X, Song X, Ren Z, Lu H. A Versatile One-Step Enzymatic Strategy for Efficient Imaging and Mapping of Tumor-Associated Tn Antigen. J Am Chem Soc 2024; 146:20539-20543. [PMID: 39041660 DOI: 10.1021/jacs.4c03632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Tn antigen (CD175), recognized as the precursor monosaccharide (α-GalNAc) of mucin O-glycan, is a well-known tumor-associated carbohydrate antigen (TACA). It has emerged as a potential biomarker for cancer diagnosis and prognosis. However, the role it plays in cancer biology remains elusive due to the absence of a sensitive and selective detection method. In this study, we synthesized two new probes based on a unique uridine-5'-diphospho-α-d-galactose (UDP-Gal) derivative, each functionalized with either a fluorescence or a cleavable biotin tag, to develop an innovative one-step enzymatic labeling strategy, enabling the visualization, enrichment, and site-specific mapping of the Tn antigen with unparalleled sensitivity and specificity. Our versatile strategy has been successfully applied to detect and image Tn antigen across various samples, including the complex cell lysates, live cells, serum, and tissue samples. Compared to the traditional lectin method, this one-step enzymatic method is simpler and more efficient (>10/100-fold in sensitivity). Furthermore, it allowed us to map 454 Tn-glycoproteins and 624 Tn-glycosylation sites from HEK293FTn+ and Jurkat cells. Therefore, our strategy provides an exceptionally promising tool for revealing the biological functions of the Tn antigen and advancing cancer diagnostics.
Collapse
Affiliation(s)
- Zhonghua Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Liver Cancer Institute of Zhongshan Hospital, Fudan University, Shanghai 200032, China
- NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, China
| | - Qi Du
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Liver Cancer Institute of Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Liver Cancer Institute, Zhongshan Hospital, Fudan University and National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Xiaoxiao Feng
- Institutes of Biomedical Sciences & Department of Chemistry, Fudan University, Shanghai 200032, China
| | - Xuezheng Song
- Department of Biochemistry, Emory Glycomics and Molecular Interactions Core, Emory University, Atlanta, Georgia 30322, United States
| | - Zhenggang Ren
- Liver Cancer Institute, Zhongshan Hospital, Fudan University and National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Haojie Lu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Liver Cancer Institute of Zhongshan Hospital, Fudan University, Shanghai 200032, China
- NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, China
- Institutes of Biomedical Sciences & Department of Chemistry, Fudan University, Shanghai 200032, China
| |
Collapse
|
3
|
Wu Y, Zhou Y, Guo Y, Ling Y, Li Y, Cai H. Protocol to prepare MUC1 glycopeptide vaccines and evaluate immunization effects in mice. STAR Protoc 2024; 5:103047. [PMID: 38691463 PMCID: PMC11070643 DOI: 10.1016/j.xpro.2024.103047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/07/2024] [Accepted: 04/15/2024] [Indexed: 05/03/2024] Open
Abstract
The tumor-associated mucin MUC1 is overexpressed in almost all types of epithelial tumor tissues, making it an attractive target antigen for cancer immunotherapy. Here we present a protocol to prepare MUC1 glycopeptide vaccines and to evaluate immunization effects in mice. We describe steps for synthesizing glycopeptide antigen and conjugating it with carrier protein to make vaccine candidates. We then detail procedures for mice immunization, antibody response evaluation, and cellular immune response. For complete details on the use and execution of this protocol, please refer to Cai et al.1,2.
Collapse
Affiliation(s)
- Ye Wu
- School of Pharmaceutical Sciences (Shenzhen) Shenzhen Campus of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China
| | - Yang Zhou
- School of Pharmaceutical Sciences (Shenzhen) Shenzhen Campus of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China
| | - Yajing Guo
- School of Pharmaceutical Sciences (Shenzhen) Shenzhen Campus of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China
| | - Yi Ling
- School of Pharmaceutical Sciences (Shenzhen) Shenzhen Campus of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China
| | - Yiliang Li
- The Eighth Affiliated Hospital Sun Yat-sen University, Shenzhen, Guangdong 518033, China.
| | - Hui Cai
- School of Pharmaceutical Sciences (Shenzhen) Shenzhen Campus of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China.
| |
Collapse
|
4
|
Weng W, Ren S, Teng C, Guo J, Guo Q, Zhang W, Zong C, Ding N. Chemoenzymatic synthesis and immunological evaluation of sialyl-Thomsen-Friedenreich (sTF) antigen conjugate to CRM197. Bioorg Med Chem 2024; 100:117615. [PMID: 38342079 DOI: 10.1016/j.bmc.2024.117615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/13/2024]
Abstract
sTF (sialyl-Thomsen-Friedenreich) is a type of tumor-associated carbohydrate antigens (TACAs) and is highly expressed in various human malignancies. To validate if sTF could be a valuable molecular target for future cancer vaccine development, in this work the sTF antigen was prepared by adopting a strategy combining chemical and enzymatic methods, and then was covalently conjugated to a carrier protein, CRM197. The preliminary immunological evaluation, performed on BALB/c mice, revealed that the sTF-CRM197 conjugate elicited high titers of specific IgG antibodies. FACS experiments showed that the antisera induced by sTF-CRM197 conjugate could specifically recognize and bind to sTF-positive cancer cells T-47D. Furthermore, the conjugate mediated effective and specific antibody-mediated complement-dependent cytotoxicity (CDC).
Collapse
Affiliation(s)
- Weizhao Weng
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Sumei Ren
- Research Center of Basic Medicine, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Changcai Teng
- School of Pharmaceutical Sciences, College of Marine Science, Hainan University, Haikou 570228, China
| | - Jia Guo
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Qiuyu Guo
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Wei Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Chengli Zong
- School of Pharmaceutical Sciences, College of Marine Science, Hainan University, Haikou 570228, China.
| | - Ning Ding
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China.
| |
Collapse
|
5
|
Hu ZF, Zhong K, Cao H. Recent advances in enzymatic and chemoenzymatic synthesis of N- and O-glycans. Curr Opin Chem Biol 2024; 78:102417. [PMID: 38141531 DOI: 10.1016/j.cbpa.2023.102417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/25/2023]
Abstract
Glycosylation is one of the most common post-translational modifications of proteins, which plays essential roles in regulating the biological functions of proteins. Efficient and versatile methods for the synthesis of homogeneous and well-defined N- and O-glycans remain an urgent need for biological studies and biomedical applications. Despite their structural complexity, tremendous progress has been made in the synthesis of N- and O-glycans in recent years. This review discusses some recent advances in the enzymatic and chemoenzymatic synthesis of N- and O-glycans.
Collapse
Affiliation(s)
- Zhi-Fei Hu
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 266003, China; Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao, Shandong, 266237, China
| | - Kan Zhong
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 266003, China; Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao, Shandong, 266237, China
| | - Hongzhi Cao
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 266003, China; Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao, Shandong, 266237, China.
| |
Collapse
|
6
|
Galashov A, Kazakova E, Stieger CE, Hackenberger CPR, Seitz O. Rapid building block-economic synthesis of long, multi- O-GalNAcylated MUC5AC tandem repeat peptides. Chem Sci 2024; 15:1297-1305. [PMID: 38274058 PMCID: PMC10806717 DOI: 10.1039/d3sc05006h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
The study of mucin function requires access to highly O-glycosylated peptides with multiple tandem repeats. Solid-phase synthesis would be a suitable method, however, the central problem in the synthesis of mucin glycopeptides is the need to use precious and potentially vulnerable glycoamino acid building blocks in excess. In this article, we report the development of a method based on SPPS and native chemical ligation/desulfurization chemistry that allows the rapid, reliable, and glyco-economical synthesis of long multi-O-GalNAcylated peptides. To facilitate access to the glycosyl donor required for the preparation of Fmoc-Ser/Thr(αAc3GalNAc)-OH we used an easily scalable azidophenylselenylation of galactal instead of azidonitration. The problem of low yield when coupling glycoamino acids in small excess was solved by carrying out the reactions in 2-MeTHF instead of DMF and using DIC/Oxyma. Remarkably, quantitative coupling was achieved within 10 minutes using only 1.5 equivalents of glycoamino acid. The method does not require (microwave) heating, thus avoiding side reactions such as acetyl transfer to the N-terminal amino acid. This method also improved the difficult coupling of glycoamino acid to the hydrazine-resin and furnished peptides carrying 10 GalNAc units in high purities (>95%) of crude products. Combined with a one-pot method involving native chemical ligation at a glycoamino acid junction and superfast desulfurization, the method yielded highly pure MUC5AC glycopeptides comprising 10 octapeptide tandem repeats with 20 α-O-linked GalNAc residues within a week.
Collapse
Affiliation(s)
- Arseniy Galashov
- Department of Chemistry, Humboldt-Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Germany
| | - Ekaterina Kazakova
- Department of Chemistry, Humboldt-Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Germany
| | - Christian E Stieger
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Robert-Rössle-Strasse 10 13125 Berlin Germany
| | - Christian P R Hackenberger
- Department of Chemistry, Humboldt-Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Germany
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Robert-Rössle-Strasse 10 13125 Berlin Germany
| | - Oliver Seitz
- Department of Chemistry, Humboldt-Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Germany
| |
Collapse
|
7
|
Kofsky JM, Babulic JL, Boddington ME, De León González FV, Capicciotti CJ. Glycosyltransferases as versatile tools to study the biology of glycans. Glycobiology 2023; 33:888-910. [PMID: 37956415 DOI: 10.1093/glycob/cwad092] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 11/05/2023] [Accepted: 11/06/2023] [Indexed: 11/15/2023] Open
Abstract
All cells are decorated with complex carbohydrate structures called glycans that serve as ligands for glycan-binding proteins (GBPs) to mediate a wide range of biological processes. Understanding the specific functions of glycans is key to advancing an understanding of human health and disease. However, the lack of convenient and accessible tools to study glycan-based interactions has been a defining challenge in glycobiology. Thus, the development of chemical and biochemical strategies to address these limitations has been a rapidly growing area of research. In this review, we describe the use of glycosyltransferases (GTs) as versatile tools to facilitate a greater understanding of the biological roles of glycans. We highlight key examples of how GTs have streamlined the preparation of well-defined complex glycan structures through chemoenzymatic synthesis, with an emphasis on synthetic strategies allowing for site- and branch-specific display of glyco-epitopes. We also describe how GTs have facilitated expansion of glyco-engineering strategies, on both glycoproteins and cell surfaces. Coupled with advancements in bioorthogonal chemistry, GTs have enabled selective glyco-epitope editing of glycoproteins and cells, selective glycan subclass labeling, and the introduction of novel biomolecule functionalities onto cells, including defined oligosaccharides, antibodies, and other proteins. Collectively, these approaches have contributed great insight into the fundamental biological roles of glycans and are enabling their application in drug development and cellular therapies, leaving the field poised for rapid expansion.
Collapse
Affiliation(s)
- Joshua M Kofsky
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, ON K7L 3N6, Canada
| | - Jonathan L Babulic
- Department of Biomedical and Molecular Sciences, Queen's University, 18 Stuart Street, Kingston, ON K7L 2V7, Canada
| | - Marie E Boddington
- Department of Biomedical and Molecular Sciences, Queen's University, 18 Stuart Street, Kingston, ON K7L 2V7, Canada
| | | | - Chantelle J Capicciotti
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, ON K7L 3N6, Canada
- Department of Biomedical and Molecular Sciences, Queen's University, 18 Stuart Street, Kingston, ON K7L 2V7, Canada
- Department of Surgery, Queen's University, 76 Stuart Street, Kingston, ON K7L 2V7, Canada
| |
Collapse
|
8
|
Zhao J, Ye F, Huang P, Wang P. Recent advances in chemical synthesis of O-linked glycopeptides and glycoproteins: An advanced synthetic tool for exploring the biological realm. Curr Opin Chem Biol 2023; 77:102405. [PMID: 37897925 DOI: 10.1016/j.cbpa.2023.102405] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/30/2023]
Abstract
Glycoproteins play crucial roles in various biological processes. To investigate the relationship between glycan structure and function, researchers have employed various chemical methods to precisely synthesize homogeneous O-glycoproteins. This review summarizes the recent progress of their synthetic strategies, highlighting the significant advancements in this area.
Collapse
Affiliation(s)
- Jie Zhao
- Center for Chemical Glycobiology, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China; Shenzhen Research Institute of Shanghai Jiao Tong University, Shenzhen, 518057, China
| | - Farong Ye
- Center for Chemical Glycobiology, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ping Huang
- Center for Chemical Glycobiology, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Ping Wang
- Center for Chemical Glycobiology, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China; Shenzhen Research Institute of Shanghai Jiao Tong University, Shenzhen, 518057, China.
| |
Collapse
|
9
|
Abstract
Glycans, carbohydrate molecules in the realm of biology, are present as biomedically important glycoconjugates and a characteristic aspect is that their structures in many instances are branched. In determining the primary structure of a glycan, the sugar components including the absolute configuration and ring form, anomeric configuration, linkage(s), sequence, and substituents should be elucidated. Solution state NMR spectroscopy offers a unique opportunity to resolve all these aspects at atomic resolution. During the last two decades, advancement of both NMR experiments and spectrometer hardware have made it possible to unravel carbohydrate structure more efficiently. These developments applicable to glycans include, inter alia, NMR experiments that reduce spectral overlap, use selective excitations, record tilted projections of multidimensional spectra, acquire spectra by multiple receivers, utilize polarization by fast-pulsing techniques, concatenate pulse-sequence modules to acquire several spectra in a single measurement, acquire pure shift correlated spectra devoid of scalar couplings, employ stable isotope labeling to efficiently obtain homo- and/or heteronuclear correlations, as well as those that rely on dipolar cross-correlated interactions for sequential information. Refined computer programs for NMR spin simulation and chemical shift prediction aid the structural elucidation of glycans, which are notorious for their limited spectral dispersion. Hardware developments include cryogenically cold probes and dynamic nuclear polarization techniques, both resulting in enhanced sensitivity as well as ultrahigh field NMR spectrometers with a 1H NMR resonance frequency higher than 1 GHz, thus improving resolution of resonances. Taken together, the developments have made and will in the future make it possible to elucidate carbohydrate structure in great detail, thereby forming the basis for understanding of how glycans interact with other molecules.
Collapse
Affiliation(s)
- Carolina Fontana
- Departamento
de Química del Litoral, CENUR Litoral Norte, Universidad de la República, Paysandú 60000, Uruguay
| | - Göran Widmalm
- Department
of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden
| |
Collapse
|
10
|
Rong Y, Wang X, Mao W, Yuan F, Chen M, Wang S, Wang PG, Wu Z, He Y, Kong Y. Chemoenzymatic Synthesis of SARS-CoV-2 Homogeneous O-Linked Glycopeptides for Exploring Their Inhibition Functions. ACS Infect Dis 2022; 8:2198-2206. [PMID: 36095241 DOI: 10.1021/acsinfecdis.2c00383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Harnessing highly conserved peptides derived from the receptor binding domain (RBD) of spike (S) protein to construct peptide-based inhibitors is one of the most effective strategies to fight against the ever-mutating coronavirus SARS-CoV-2. But how the O-glycosylation affects their inhibition abilities has not been intensively explored. Herein, an intrinsic O-glycosylated peptide P320-334 derived from RBD was screened and homogeneous O-linked glycopeptides containing Tn (GalNAcα1-O-Ser/Thr), T (Galβ1-3GalNAcα1-O-Ser/Thr), sialyl-Tn (sTn, Siaα2-6GalNAcα1-O-Ser/Thr), and sialyl-T (sT, Siaα2-3Galβ1-3GalNAcα1-O-Ser/Thr) structures were first synthesized via chemoenzymatic strategies. Compared with the unglycosylated peptide, the binding of sT-P320-334 to hACE2 was enhanced to 133% and the inhibition capacity against RBD-hACE2 binding of sTn- and sT-P320-334 was significantly increased up to 150-410%. Thus, our results suggest the sialic acid residue on the terminal of short O-glycan structures might strengthen the inhibition capacities of these peptide-based inhibitors, which might provide novel optimization directions for the inhibitor design.
Collapse
Affiliation(s)
- Yongheng Rong
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Xingyun Wang
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Weian Mao
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Fang Yuan
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Min Chen
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Shengjun Wang
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266071, China
| | - Peng George Wang
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhigang Wu
- College of Food and Biology, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Yunjiao He
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yun Kong
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| |
Collapse
|
11
|
Vanable EP, Habgood LG, Patrone JD. Current Progress in the Chemoenzymatic Synthesis of Natural Products. Molecules 2022; 27:molecules27196373. [PMID: 36234909 PMCID: PMC9571504 DOI: 10.3390/molecules27196373] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Natural products, with their array of structural complexity, diversity, and biological activity, have inspired generations of chemists and driven the advancement of techniques in their total syntheses. The field of natural product synthesis continuously evolves through the development of methodologies to improve stereoselectivity, yield, scalability, substrate scope, late-stage functionalization, and/or enable novel reactions. One of the more interesting and unique techniques to emerge in the last thirty years is the use of chemoenzymatic reactions in the synthesis of natural products. This review highlights some of the recent examples and progress in the chemoenzymatic synthesis of natural products from 2019–2022.
Collapse
Affiliation(s)
- Evan P. Vanable
- Department of Chemistry and Biochemistry, Elmhurst University, Elmhurst, IL 60126, USA
| | - Laurel G. Habgood
- Department of Chemistry, Rollins College, Winter Park, FL 32789, USA
| | - James D. Patrone
- Department of Chemistry, Rollins College, Winter Park, FL 32789, USA
- Correspondence:
| |
Collapse
|