1
|
Hassan F, Velmurugan N, Yamane Y, Nic Chormaic S, Luscombe CK. One-Step Palladium-Catalyzed Heterocyclic Ring Closure of Benzofurans with Aryl Iodides through a Heck-Type Pathway. Org Lett 2024. [PMID: 39505830 DOI: 10.1021/acs.orglett.4c03602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
An operationally simple and robust method for the direct arylation and ring closure of benzofurans is reported. Besides the mild conditions and good reaction yields, the methodology is applicable for a wide range of derivatives using commercially available aryl iodides with complete C2 regioselectivity. The reaction is proposed to follow a Heck-type oxyarylation mechanism. The facile synthesis method will enable the development of new materials for diverse applications in biology and catalysis and as precursors for organic semiconductors.
Collapse
Affiliation(s)
- Fathy Hassan
- pi-Conjugated Polymers Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
- Light-Matter Interactions for Quantum Technologies Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
- Chemistry Department, Faculty of Science, Tanta University, Tanta, El Gharbia 31527, Egypt
| | - Nivedha Velmurugan
- pi-Conjugated Polymers Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
| | - Yusuke Yamane
- School of Medicine, Keio University, Shinjuku, Tokyo 160-8582, Japan
| | - Síle Nic Chormaic
- Light-Matter Interactions for Quantum Technologies Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
| | - Christine K Luscombe
- pi-Conjugated Polymers Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
| |
Collapse
|
2
|
Lee K, Yoon S, Noh HC, Kim D, Lee PH. Rhodium(III)-Catalyzed B(4)-Azo Coupling of o-Carboranes with Aryl Diazonium Tetrafluoroborates. Org Lett 2024; 26:8410-8415. [PMID: 39320152 DOI: 10.1021/acs.orglett.4c03250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Rh(III)-catalyzed B(4)-azo coupling reactions of o-carborane acids with aryl diazonium tetrafluoroborates have been developed, leading to the regioselective formation of B(4)-azo-coupled o-carboranes. Moreover, B(4)-azo-coupled o-carboranes can be further functionalized by introducing a second azo group, producing B(4)-C(1)-di(arylazo) o-carborane. The B(4)-azo group as an efficient directing group enables catalytic C-H amidation reactions, providing a new synthetic route for complex o-carborane derivatives.
Collapse
Affiliation(s)
- Kyungsup Lee
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sugyeong Yoon
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hee Chan Noh
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Dongwook Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science, Daejeon 34141, Republic of Korea
| | - Phil Ho Lee
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
3
|
Ren H, Zhou N, Ma W, Zhang P, Tu D, Lu CS, Yan H. Dative Bonding Activation Enables Precise Functionalization of the Remote B-H Bond of nido-Carborane Clusters. J Am Chem Soc 2024; 146:26543-26555. [PMID: 39267603 DOI: 10.1021/jacs.4c10728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
The innovation of synthetic strategies for selective B-H functionalization is a pivotal objective in the realm of boron cluster chemistry. However, the precise, efficient, and rapid functionalization of a B-H bond of carboranes that is distant from the existing functional groups remains intractable owing to the limited approaches for site-selective control from the established methods. Herein, we report a dative bonding activation strategy for the selective functionalization of a nonclassical remote B-H site of nido-carboranes. By leveraging the electronic effects brought by the exopolyhedral B(9)-dative bond, a cross-nucleophile B-H/S-H coupling protocol of the distal B(5)-H bond has been established. The dative bond not only amplifies the subtle reactivity difference among B-H bonds but also significantly changes the reactive sites, further infusing nido-carboranes with additional structural diversity. This reaction paradigm features mild conditions, rapid conversion, efficient production, broad scope, and excellent group tolerance, thus enabling the applicability to an array of complex bioactive molecules. The efficient and scalable reaction platform is amenable to the modular construction of photofunctional molecules and boron delivery agents for boron neutron capture therapy. This work not only provides an unprecedented solution for the selective diversification of distal B-H sites in nido-carboranes but also holds the potential for expediting the discovery of novel carborane-based functional molecules.
Collapse
Affiliation(s)
- Hongyuan Ren
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Ningning Zhou
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wenli Ma
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Ping Zhang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Deshuang Tu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Chang-Sheng Lu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hong Yan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
4
|
Sun Z, Zong J, Ren H, Lu C, Tu D, Poater J, Solà M, Shi Z, Yan H. Couple-close construction of non-classical boron cluster-phosphonium conjugates. Nat Commun 2024; 15:7934. [PMID: 39256342 PMCID: PMC11387837 DOI: 10.1038/s41467-024-51506-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 08/09/2024] [Indexed: 09/12/2024] Open
Abstract
Heteropolycyclic molecular systems, which are essential components in the fields of materials and pharmacology, frequently consist of 2D extended organic aromatic rings. Here, we introduce a type of inorganic-organic hybrid 3D conjugates by merging an aromatic boron cluster with a phosphine and a π-conjugated unit. To achieve this, a couple-close synthetic strategy via B-H activation of nido-carboranes with alkynes has been developed, which leads to diverse boron cluster-extended phosphoniums in a twisted structure with high yields under mild conditions. Experimental and theoretical results reveal that the fusion between the boron cluster and the formed borophosphonium heterocycle facilitates electron delocalization throughout the structure. The unusual framework demonstrates distinct properties from bare boron clusters and pure aromatic ring-extended counterparts, such as improved thermal/chemical stability and photophysical properties. Thus, the boron cluster-based 3D conjugates expand the library of aromatic-based heterocyclics, showcasing great potential in functional materials.
Collapse
Affiliation(s)
- Zhaofeng Sun
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jibo Zong
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Hongyuan Ren
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Changsheng Lu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Deshuang Tu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Jordi Poater
- Departament de Química Inorgànica i Orgànica & IQTCUB, Universitat de Barcelona, Martí i Franquès 1-11, Barcelona, 08028, Spain.
- ICREA, Pg. Lluís Companys 23, Barcelona, 08010, Spain.
| | - Miquel Solà
- Institut de Química Computacional i Catàlisi, Universitat de Girona, C/ Maria Aurèlia Capmany, 69, Girona, 17003, Catalonia, Spain.
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Hong Yan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
5
|
Zhu M, Wang P, Wu Z, Zhong Y, Su L, Xin Y, Spokoyny AM, Zou C, Mu X. A Pd-catalyzed route to carborane-fused boron heterocycles. Chem Sci 2024; 15:10392-10401. [PMID: 38994428 PMCID: PMC11234826 DOI: 10.1039/d4sc02214a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/28/2024] [Indexed: 07/13/2024] Open
Abstract
Due to the expanding applications of icosahedral carboranes in medicinal and materials chemistry research, their functionalizations have become one of the central themes in boron-rich cluster chemistry. Although several strategies for incorporating nitrogen-containing nucleophiles on a single boron vertex of the icosahedral carboranes (C2B10H12) have been developed, methods for preparing clusters with vicinal B-N moieties are still lacking. The steric bulk of icosahedral carboranes and disparate electronic and steric nature of the N-containing groups have rendered the vicinal diamination challenging. In this article, we show how a developed Pd-catalyzed process is used to incorporate an array of NH-heterocycles, anilines, and heteroanilines with various electronic and steric profiles onto the vicinal boron vertices of a meta-carborane cluster via sequential or one-pot fashion. Importantly, oxidative cyclizations of the cross-coupling products with indoles and pyrroles appended to boron vertices generate a previously unknown class of all-boron-vertex bound carborane-fused six- and seven-membered ring heterocycles. Photophysical studies of the meta-carborane-fused heterocycles show that these structures can exhibit luminescence with high quantum yields and are amenable to further manipulations.
Collapse
Affiliation(s)
- Mengjie Zhu
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology 130 Meilong Road 200237 Shanghai China
| | - Puzhao Wang
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology 130 Meilong Road 200237 Shanghai China
| | - Zhengqiu Wu
- Functional Coordination Material Group-Frontier Research Center, Songshan Lake Materials Laboratory, Dongguan Dongguan 523808 Guangdong China
| | - Yangfa Zhong
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology 130 Meilong Road 200237 Shanghai China
| | - Laiman Su
- School of Biotechnology, East China University of Science and Technology 130 Meilong Road 200237 Shanghai China
| | - Yuquan Xin
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology 130 Meilong Road 200237 Shanghai China
| | - Alexander M Spokoyny
- Department of Chemistry and Biochemistry, University of California, Los Angeles 607 Charles E. Young Drive East Los Angeles California 90095 USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles Los Angeles California 90095 USA
| | - Chao Zou
- Functional Coordination Material Group-Frontier Research Center, Songshan Lake Materials Laboratory, Dongguan Dongguan 523808 Guangdong China
| | - Xin Mu
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology 130 Meilong Road 200237 Shanghai China
| |
Collapse
|
6
|
Yang J, Li CR, Guo X, Chen Z, Hu K, Li LX. Photoinduced Palladium-Catalyzed 1,2-Aminoalkylation of Aromatic Alkenes with Hydroxyl as the Directing Group. Org Lett 2024; 26:5110-5114. [PMID: 38848135 DOI: 10.1021/acs.orglett.4c01389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
The hybrid nature of Pd(I)-alkyl radical species has enabled a wide array of radical-based transformations. However, in this transformation, the secondary Pd(I)-alkyl radical species are prone to recombining into Pd(II)-alkyl species to give Heck-type products via β-H loss. Herein, we report a visible-light-induced, three-component Pd-catalyzed 1,2-aminoalkylation of alkenes with readily available alkyl halides and amines to construct C-C and C-N bonds simultaneously. Mechanistic investigation shows that the intermediate of o-quinone methide produced is the key factor in the transformation.
Collapse
Affiliation(s)
- Jing Yang
- Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Chen-Rui Li
- Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Xu Guo
- Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Zhuo Chen
- Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Kai Hu
- Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Li-Xin Li
- Henan University of Chinese Medicine, Zhengzhou 450046, China
| |
Collapse
|
7
|
Liu XR, Cui PF, García-Rodeja Y, Solà M, Jin GX. Formation and reactivity of a unique M⋯C-H interaction stabilized by carborane cages. Chem Sci 2024; 15:9274-9280. [PMID: 38903214 PMCID: PMC11186334 DOI: 10.1039/d4sc01158a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/16/2024] [Indexed: 06/22/2024] Open
Abstract
Broadening carborane applications has consistently been the goal of chemists in this field. Herein, compared to alkyl or aryl groups, a carborane cage demonstrates an advantage in stabilizing a unique bonding interaction: M⋯C-H interaction. Experimental results and theoretical calculations have revealed the characteristic of this two-center, two-electron bonding interaction, in which the carbon atom in the arene ring provides two electrons to the metal center. The reduced aromaticity of the benzene moiety, long distance between the metal and carbon atom in arene, and the upfield shift of the signal of M⋯C-H in the nuclear magnetic resonance spectrum distinguished this interaction from metal⋯C π interaction and metal-C(H) σ bonds. Control experiments demonstrate the unique electronic effects of carborane in stabilizing the M⋯C-H bonding interaction in organometallic chemistry. Furthermore, the M⋯C-H interaction can convert into C-H bond metallization under acidic conditions or via treatment with t-butyl isocyanide. These findings deepen our understanding regarding the interactions between metal centers and carbon atoms and provide new opportunities for the use of carboranes.
Collapse
Affiliation(s)
- Xin-Ran Liu
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University 2005 Songhu Road Shanghai 200433 P. R. China
| | - Peng-Fei Cui
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University 2005 Songhu Road Shanghai 200433 P. R. China
| | - Yago García-Rodeja
- Institut de Química Computacional i Catàlisi, Departament de Química, Universitat de Girona C/Maria Aurèlia Capmany, 69 17003 Girona Spain
| | - Miquel Solà
- Institut de Química Computacional i Catàlisi, Departament de Química, Universitat de Girona C/Maria Aurèlia Capmany, 69 17003 Girona Spain
| | - Guo-Xin Jin
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University 2005 Songhu Road Shanghai 200433 P. R. China
| |
Collapse
|
8
|
Zhu YX, Yuan RZ, Zhang HN, Jin GX. Selective B(3)-H Activation Affording Multinuclear Ir(III) Complexes with (o-Carboranyl)dithioester Ligands. Chemistry 2024; 30:e202401154. [PMID: 38627216 DOI: 10.1002/chem.202401154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Indexed: 06/19/2024]
Abstract
A method was developed to link two or three o-carborane moieties to form a series of carboranyl dithioester bridging ligands via in situ substitution of haloalkanes by tetraphenylphosphonium carboranyldithiocarboxylates. Based on these ligands, direct B-H activation without the assistance of Ag(I) and alkali was successfully achieved with half-sandwich Ir(III) substrate [Cp*IrCl2]2 to yield corresponding bimetallic or trimetallic complexes. Single crystal structure analyses of the B-H activated complexes and corresponding SnCl2-inserted derivatives confirm the selective B(3)-H activation in these complexes.
Collapse
Affiliation(s)
- Yong-Xiao Zhu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai, 200433, P. R. China
| | - Run-Ze Yuan
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai, 200433, P. R. China
| | - Hai-Ning Zhang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai, 200433, P. R. China
| | - Guo-Xin Jin
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
9
|
Xu S, Zhang H, Xu J, Suo W, Lu CS, Tu D, Guo X, Poater J, Solà M, Yan H. Photoinduced Selective B-H Activation of nido-Carboranes. J Am Chem Soc 2024; 146:7791-7802. [PMID: 38461434 DOI: 10.1021/jacs.4c00550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The development of new synthetic methods for B-H bond activation has been an important research area in boron cluster chemistry, which may provide opportunities to broaden the application scope of boron clusters. Herein, we present a new reaction strategy for the direct site-selective B-H functionalization of nido-carboranes initiated by photoinduced cage activation via a noncovalent cage···π interaction. As a result, the nido-carborane cage radical is generated through a single electron transfer from the 3D nido-carborane cage to a 2D photocatalyst upon irradiation with green light. The resulting transient nido-carborane cage radical could be directly probed by an advanced time-resolved EPR technique. In air, the subsequent transformations of the active nido-carborane cage radical have led to efficient and selective B-N, B-S, and B-Se couplings in the presence of N-heterocycles, imines, thioethers, thioamides, and selenium ethers. This protocol also facilitates both the late-stage modification of drugs and the synthesis of nido-carborane-based drug candidates for boron neutron capture therapy (BNCT).
Collapse
Affiliation(s)
- Shengwen Xu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hongjian Zhang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jingkai Xu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Weiqun Suo
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Chang-Sheng Lu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Deshuang Tu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xingwei Guo
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jordi Poater
- Departament de Química Inorgànica i Orgànica & IQTCUB, Universitat de Barcelona, Martí i Franquès 1-11, Barcelona 08028, Spain
- ICREA, Pg. Lluís Companys 23, Barcelona 08010, Spain
| | - Miquel Solà
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, C/Maria Aurèlia Capmany 69, Girona, Catalonia 17003, Spain
| | - Hong Yan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
10
|
Chen F, Zhao XX, Zhang HT, Ma YN, Chen X. Facile Friedel-Crafts alkylation of arenes under solvent-free conditions. Org Biomol Chem 2024; 22:2187-2191. [PMID: 38391292 DOI: 10.1039/d4ob00162a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
The Friedel-Crafts alkylation of arenes is an important part of electrophilic aromatic substitution reactions. However, the reactivity of arenes is weakened by electron-withdrawing substituents, leading to limited substrate scopes and applications. Herein, we developed an efficient HOTf-promoted Friedel-Crafts alkylation reaction of broad arenes with α-aryl-α-diazoesters under metal-free and solvent-free conditions.
Collapse
Affiliation(s)
- Feijing Chen
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| | - Xiao-Xiao Zhao
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| | - Hao-Tian Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| | - Yan-Na Ma
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| | - Xuenian Chen
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
11
|
Yang HB, Guo Y, Cao K, Jiang QJ, Teng CC, Zhu DY, Wang SH. Iridium-catalyzed selective arylation of B(6)-H of 3-aryl- o-carboranes with arylboronic acid via direct B-H activation. Chem Commun (Camb) 2024; 60:1124-1127. [PMID: 38193475 DOI: 10.1039/d3cc05630a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
This work discloses an iridium-catalyzed selective arylation of B(6)-H of 3-Ar-o-carboranes with arylboronic acid via direct B-H activation for the first time. A series of unsymmetric and symmetric 3,6-diaryl-o-carboranes decorated with diverse active groups have been synthesized with moderate to excellent yields under mild conditions. This work offers an efficient approach for selective arylation of B(6)-H with arylboronic acid and has important value for selective functionalization of o-carboranes.
Collapse
Affiliation(s)
- Han-Bo Yang
- State Key Laboratory of Environment-friendly Energy Materials & School of Materials and Chemistry, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, Sichuan, P. R. China.
| | - Yan Guo
- Department of Oncology, Sichuan Science City Hospital, Mianyang, Sichuan, 621000, P. R. China
| | - Ke Cao
- State Key Laboratory of Environment-friendly Energy Materials & School of Materials and Chemistry, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, Sichuan, P. R. China.
| | - Qi-Jia Jiang
- State Key Laboratory of Environment-friendly Energy Materials & School of Materials and Chemistry, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, Sichuan, P. R. China.
| | - Chao-Chao Teng
- State Key Laboratory of Environment-friendly Energy Materials & School of Materials and Chemistry, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, Sichuan, P. R. China.
| | - Dao-Yong Zhu
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - Shao-Hua Wang
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
12
|
Chen F, Guo W, Ma YN, Chen X. 9,9'-Bis- o-carboranes: synthesis and exploration of properties. Chem Commun (Camb) 2024; 60:614-617. [PMID: 38100063 DOI: 10.1039/d3cc05041f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
A highly efficient Pd-catalyzed B(9)-H/B(9)-H oxidative dehydrogenation coupling of carboranes to synthesize 9,9'-bis-o-carboranes has been developed. The properties and derivatization of 9,9'-bis-o-carborane were also examined, which provided diverse bis-o-carborane derivatives and bis-nido-carborane.
Collapse
Affiliation(s)
- Feijing Chen
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Wenjing Guo
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Yan-Na Ma
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Xuenian Chen
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China.
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
13
|
Ki Au Y, Ma Q, Zhang J, Xie Z. Ir-Catalyzed B(3)-Amination of o-Carboranes with Amines via Acceptorless Dehydrogenative BH/NH Cross-Coupling. Chem Asian J 2023; 18:e202300611. [PMID: 37694997 DOI: 10.1002/asia.202300611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/09/2023] [Accepted: 09/11/2023] [Indexed: 09/12/2023]
Abstract
An efficient and convenient strategy for Ir-catalyzed selective B(3)-amination of o-carboranes with amines via acceptorless BH/NH dehydrocoupling was developed, affording a series of B(3)-aminated-o-carboranes in moderate to high isolated yields with H2 gas as a sole by-product. Such an oxidant-free system endues the protocol sustainability, atom-economy and environmental friendliness. A reaction mechanism via an Ir(I)-Ir(III)-Ir(I) catalytic cycle involving oxidative addition, dehydrogenation and reductive elimination was proposed.
Collapse
Affiliation(s)
- Yik Ki Au
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong Shatin, N.T., Hong Kong, P.R. China
| | - Qiangqiang Ma
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong Shatin, N.T., Hong Kong, P.R. China
| | - Jie Zhang
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong Shatin, N.T., Hong Kong, P.R. China
| | - Zuowei Xie
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong Shatin, N.T., Hong Kong, P.R. China
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, P.R.China
| |
Collapse
|
14
|
Gruzdev DA, Telegina AA, Levit GL, Ezhikova MA, Kodess MI, Krasnov VP. Synthesis of Charge-Compensated nido-Carboranyl Derivatives of Sulfur-Containing Amino Acids and Biotin. J Org Chem 2023; 88:14022-14032. [PMID: 37737724 DOI: 10.1021/acs.joc.3c01569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
A new group of charge-compensated nido-carboranyl derivatives of sulfur-containing amino acids and biotin has been synthesized in which the boron atom in position 9 or 10 of carborane is attached to a positively charged sulfur atom. The possibilities of obtaining symmetrical B(10)-substituted and asymmetric B(9)-substituted nido-carboranes were studied. Using the example of (S)-methionine and D-biotin derivatives, water-soluble S-substituted charge-compensated nido-carboranes with free functional groups were prepared. The results obtained open up prospects for the development of potential boron delivery agents for BNCT as well as new bioactive compounds containing a negatively charged nido-carboranyl fragment bearing a positive charge on the sulfur atom associated with the boron cluster.
Collapse
Affiliation(s)
- Dmitry A Gruzdev
- Postovsky Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences, 22/20, S. Kovalevskoy St., Ekaterinburg 620108, Russia
| | - Angelina A Telegina
- Postovsky Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences, 22/20, S. Kovalevskoy St., Ekaterinburg 620108, Russia
| | - Galina L Levit
- Postovsky Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences, 22/20, S. Kovalevskoy St., Ekaterinburg 620108, Russia
| | - Marina A Ezhikova
- Postovsky Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences, 22/20, S. Kovalevskoy St., Ekaterinburg 620108, Russia
| | - Mikhail I Kodess
- Postovsky Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences, 22/20, S. Kovalevskoy St., Ekaterinburg 620108, Russia
| | - Victor P Krasnov
- Postovsky Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences, 22/20, S. Kovalevskoy St., Ekaterinburg 620108, Russia
| |
Collapse
|
15
|
Park K, Han GU, Yoon S, Lee E, Noh HC, Lee K, Maeng C, Kim D, Lee PH. Iridium(III)-Catalyzed Regioselective B(4)-H Amination of o-Carboranes with Sufilimines. Org Lett 2023; 25:5989-5994. [PMID: 37540091 DOI: 10.1021/acs.orglett.3c02114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Iridium(III)-catalyzed regioselective B(4)-H amination is developed from the reaction of o-carborane acids with sulfilimines without any oxidants under mild conditions, which leads to a wide range of B(4)-H aminated o-carboranes in good yields with a broad substrate scope. Moreover, the selective B(3,6)-diamination reaction of the o-carborane acid was achieved. The present reaction is attractive from a practical point of view because dibenzothiophene is quantitatively recovered and reused.
Collapse
Affiliation(s)
- Kyeongna Park
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Gi Uk Han
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sugyeong Yoon
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Eunseo Lee
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hee Chan Noh
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Kyungsup Lee
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Chanyoung Maeng
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Dongwook Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Phil Ho Lee
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
16
|
Zhang QS, He L, Liu Q, Chen XY. Charge Transfer Complex-Enabled Synthesis of (Hetero)arylated m-Carboranes from m-Carborane Phosphonium Salts. Org Lett 2023; 25:5768-5773. [PMID: 37534925 DOI: 10.1021/acs.orglett.3c01989] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
A photoinduced charge transfer complex (CTC)-enabled photoreduction of carborane phosphonium salts for the cage carbon (hetero)arylation of carboranes was developed. It offers a convenient approach for introducing a wide range of aryl and heteroaryl groups, such as pyrroles, thiophenes, indoles, thianaphthenes, benzofurans, pyridines, and benzenes, into carboranes. This strategy offers operational simplicity, mild reaction conditions, and a broad substrate scope, making it highly advantageous.
Collapse
Affiliation(s)
- Qing-Shuang Zhang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, Xinjiang 832000, People's Republic of China
| | - Lin He
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, Xinjiang 832000, People's Republic of China
| | - Qiang Liu
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang-Yu Chen
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
- Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou 256606, China
| |
Collapse
|
17
|
Wu Y, Lu W, Ma YN, Chen F, Ren W, Chen X. Trifluoromethanesulfonic Acid Promoted Controllable Electrophilic Aromatic Nitration. J Org Chem 2023. [PMID: 37463455 DOI: 10.1021/acs.joc.3c00892] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
In this work, we developed a facile and controllable electrophilic aromatic nitration method with commercially available 68% HNO3 as the nitrating reagent and trifluoromethanesulfonic acid (HOTf) as the catalyst in hexafluoroisopropanol or under solvent-free conditions. The electrophilic nitration products of different arenes can be obtained in almost quantitative yields by tuning the loading of HOTf. The strong acidity and water absorbing property of HOTf allowed this transformation to reach completion in a short time at room temperature.
Collapse
Affiliation(s)
- Yanxuan Wu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Wen Lu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yan-Na Ma
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Feijing Chen
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Wei Ren
- Henan Scientific Research Platform Service Center, Zhengzhou 450000, China
| | - Xuenian Chen
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| |
Collapse
|
18
|
Pushpanandan P, Behera KC, Ravikanth M. Pd(II), Ni(II), and Cu(II) complexes of α,α'-ditolylmethanone dipyrroethene. Dalton Trans 2023; 52:6882-6889. [PMID: 37157997 DOI: 10.1039/d3dt00476g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Dipyrromethenes containing two pyrrole rings connected by one meso-carbon are versatile monoanionic bidentate ligands and form coordination complexes with many metals/nonmetals/metalloids. Dipyrroethenes containing one additional meso-carbon compared to dipyrromethenes have more space between coordinating pyrrole nitrogens and provide a good coordination environment but have not been explored as ligands in coordination chemistry. Dipyrroethenes are dianionic bidentate ligands and by suitable modifications, the coordination environment of dipyrroethenes can be changed further. Herein, we successfully synthesized α,α'-ditolylmethanone dipyrroethene which is a bipyrrolic tetradentate ligand with an ONNO ligand core and used it for the synthesis of novel Pd(II), Ni(II), and Cu(II) metal complexes by treating it with respective metal salts in CH2Cl2/CH3OH at room temperature. The X-ray crystallographic structure of the metal complexes showed that the M(II) ion was coordinated to the ONNO atoms of the ligand in a perfect square planar geometry. The NMR studies of Pd(II) and Ni(II) complexes also supported the highly symmetric nature of the metal complexes. The absorption spectra of the metal complexes showed strong bands in the region of 300-550 nm. The electrochemical studies of metal complexes revealed that only ligand-based oxidation and reduction were observed. The DFT and TD-DFT studies were in agreement with the experimental observations. Our preliminary studies indicated that the Pd(II) complex can be used as a catalyst for the Fujiwara-Moritani olefination reaction.
Collapse
|
19
|
Harmgarth N, Liebing P, Lorenz V, Engelhardt F, Hilfert L, Busse S, Goldhahn R, Edelmann FT. Synthesis and Structural Characterization of p-Carboranylamidine Derivatives. Molecules 2023; 28:molecules28093837. [PMID: 37175246 PMCID: PMC10179778 DOI: 10.3390/molecules28093837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/27/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
In this contribution, the first amidinate and amidine derivatives of p-carborane are described. Double lithiation of p-carborane (1) with n-butyllithium followed by treatment with 1,3-diorganocarbodiimides, R-N=C=N-R (R = iPr, Cy (= cyclohexyl)), in DME or THF afforded the new p-carboranylamidinate salts p-C2H10B10[C(NiPr)2Li(DME)]2 (2) and p-C2H10B10[C(NCy)2Li(THF)2]2 (3). Subsequent treatment of 2 and 3 with 2 equiv. of chlorotrimethylsilane (Me3SiCl) provided the silylated neutral bis(amidine) derivatives p-C2H10B10[C{iPrN(SiMe3)}(=NiPr)]2 (4) and p-C2H10B10[C{CyN(SiMe3)}(=NCy)]2 (5). The new compounds 3 and 4 have been structurally characterized by single-crystal X-ray diffraction. The lithium carboranylamidinate 3 comprises a rare trigonal planar coordination geometry around the lithium ions.
Collapse
Affiliation(s)
- Nicole Harmgarth
- Chemisches Institut, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Phil Liebing
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstr. 8, 07743 Jena, Germany
| | - Volker Lorenz
- Chemisches Institut, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Felix Engelhardt
- Chemisches Institut, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Liane Hilfert
- Chemisches Institut, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Sabine Busse
- Chemisches Institut, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Rüdiger Goldhahn
- Institut für Physik, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Frank T Edelmann
- Institut für Physik, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
| |
Collapse
|
20
|
Ma YN, Ren H, Wu Y, Li N, Chen F, Chen X. B(9)-OH- o-Carboranes: Synthesis, Mechanism, and Property Exploration. J Am Chem Soc 2023; 145:7331-7342. [PMID: 36962083 DOI: 10.1021/jacs.2c13570] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
Herein, we present a chemically robust and efficient synthesis route for B(9)-OH-o-carboranes by the oxidation of o-carboranes with commercially available 68% HNO3 under the assistance of trifluoromethanesulfonic acid (HOTf) and hexafluoroisopropanol (HFIP). The reaction is highly efficient with a wide scope of carboranes, and the selectivity of B(9)/B(8) is up to 98:2. The success of this transformation relies on the strong electrophilicity and oxidizability of HNO3, promoted through hydrogen bonds of the Brønsted acid HOTf and the solvent HFIP. Mechanism studies reveal that the oxidation of o-carborane involves an initial electrophilic attack of HNO3 to the hydrogen atom at the most electronegative B(9) of o-carborane. In this transformation, the hydrogen atom of the B-H bond is the nucleophilic site, which is different from the electrophilic substitution reaction, where the boron atom is the nucleophilic site. Therefore, this is an oxidation-reduction reaction of o-carborane under mild conditions in which N(V) → N(III) and H(-I) → H(I). The derivatization of 9-OH-o-carborane was further examined, and the carboranyl group was successfully introduced to an amino acid, polyethylene glycol, biotin, deoxyuridine, and saccharide. Undoubtedly, this approach provides a selective way for the rapid incorporation of carborane moieties into small molecules for application in boron neutron capture therapy, which requires the targeted delivery of boron-rich groups.
Collapse
Affiliation(s)
- Yan-Na Ma
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Huazhan Ren
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yanxuan Wu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Na Li
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Henan Normal University, Xinxiang, Henan 453007, China
| | - Feijing Chen
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xuenian Chen
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
21
|
Ren H, Zhang P, Xu J, Ma W, Tu D, Lu CS, Yan H. Direct B-H Functionalization of Icosahedral Carboranes via Hydrogen Atom Transfer. J Am Chem Soc 2023; 145:7638-7647. [PMID: 36946888 DOI: 10.1021/jacs.3c01314] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
The efficient and selective functionalization of icosahedral carboranes (C2B10H12) at the boron vertexes is a long-standing challenge owing to the presence of 10 inert B-H bonds in a similar chemical environment. Herein, we report a new reaction paradigm for direct B-H functionalization of icosahedral carboranes via B-H homolysis enabled by a nitrogen-centered radical-mediated hydrogen atom transfer (HAT) strategy. Both the HAT process of the carborane B-H bond and the resulting boron-centered carboranyl radical intermediate have been confirmed experimentally. The reaction occurs at the most electron-rich boron vertex with the lowest B-H bond dissociation energy (BDE). Using this strategy, diverse carborane derivatization, including thiolation, selenation, alkynylation, alkenylation, cyanation, and halogenation, have been achieved in satisfactory yields under a photoinitiated condition in a metal-free and redox-neutral fashion. Moreover, the synthetic utility of the current protocol was also demonstrated by both the scale-up reaction and the construction of carborane-based functional molecules. Therefore, this methodology opens a radical pathway to carborane functionalization, which is distinct from the B-H heterolytic mechanism in the traditional strategies.
Collapse
Affiliation(s)
- Hongyuan Ren
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Ping Zhang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jingkai Xu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wenli Ma
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Deshuang Tu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Chang-Sheng Lu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hong Yan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
22
|
Hu X, Zhao X, Lv X, Wu YB, Bu Y, Lu G. Ab Initio Metadynamics Simulations of Hexafluoroisopropanol Solvent Effects: Synergistic Role of Solvent H-Bonding Networks and Solvent-Solute C-H/π Interactions. Chemistry 2023; 29:e202203879. [PMID: 36575142 DOI: 10.1002/chem.202203879] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 12/27/2022] [Indexed: 12/29/2022]
Abstract
The solvent effects in Friedel-Crafts cycloalkylation of epoxides and Cope rearrangement of aldimines were investigated by using ab initio molecular dynamics simulations. Explicit molecular treatments were applied for both reactants and solvents. The reaction mechanisms were elucidated via free energy calculations based on metadynamics simulations. The results reveal that both reactions proceed in a concerted fashion. Key solvent-substrate interactions are identified from the structures of transition states with explicit solvent molecules. The remarkable promotion effect of hexafluoroisopropanol solvent is ascribed to the synergistic effect of H-bonding networks and C-H/π interactions with substrates.
Collapse
Affiliation(s)
- Xinmin Hu
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Xia Zhao
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Xiangying Lv
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Yan-Bo Wu
- Key Lab for Materials of Energy Conversion and Storage of Shanxi Province, and Key Lab of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan, Shanxi, 030006, P. R. China
| | - Yuxiang Bu
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Gang Lu
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong, 250100, P. R. China
| |
Collapse
|
23
|
Zhang CY, Cao K, Liu D, Yang HB, Teng CC, Li B, Yang J. Iridium-catalyzed selective amination of B(4)-H for the synthesis of o-carborane-fused indolines. Dalton Trans 2023; 52:2933-2936. [PMID: 36815456 DOI: 10.1039/d3dt00316g] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
An iridium-catalyzed selective amination of B(4)-H via dehydrogenative cross-coupling of B-H/N-H bonds for the synthesis of o-carborane-fused indolines has been developed for the first time. Various types of unprecedented o-carborane-fused indolines have been synthesized, which would be potential candidates for applications in drug discovery, pharmaceutical chemistry and functional materials. This work offers a valuable reference for the designing and synthesis of o-carborane-fused heterocycles.
Collapse
Affiliation(s)
- Cai-Yan Zhang
- State Key Laboratory of Environment-friendly Energy Materials & School of Materials and Chemistry, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, Sichuan, P. R. China.
| | - Ke Cao
- State Key Laboratory of Environment-friendly Energy Materials & School of Materials and Chemistry, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, Sichuan, P. R. China.
| | - Dechun Liu
- State Key Laboratory of Environment-friendly Energy Materials & School of Materials and Chemistry, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, Sichuan, P. R. China.
| | - Han-Bo Yang
- State Key Laboratory of Environment-friendly Energy Materials & School of Materials and Chemistry, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, Sichuan, P. R. China.
| | - Chao-Chao Teng
- State Key Laboratory of Environment-friendly Energy Materials & School of Materials and Chemistry, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, Sichuan, P. R. China.
| | - Bo Li
- Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, Sichuan 621900, P. R. China
| | - Junxiao Yang
- State Key Laboratory of Environment-friendly Energy Materials & School of Materials and Chemistry, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, Sichuan, P. R. China.
| |
Collapse
|
24
|
Sun F, Tan S, Cao HJ, Lu CS, Tu D, Poater J, Solà M, Yan H. Facile Construction of New Hybrid Conjugation via Boron Cage Extension. J Am Chem Soc 2023; 145:3577-3587. [PMID: 36744315 DOI: 10.1021/jacs.2c12526] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Aromatic polycyclic systems have been extensively utilized as structural subunits for the preparation of various functional molecules. Currently, aromatics-based polycyclic systems are predominantly generated from the extension of two-dimensional (2D) aromatic rings. In contrast, polycyclic compounds based on the extension of three-dimensional (3D) aromatics such as boron clusters are less studied. Here, we report three types of boron cluster-cored tricyclic molecular systems, which are constructed from a 2D aromatic ring, a 3D aromatic nido-carborane, and an alkyne. These new tricyclic compounds can be facilely accessed by Pd-catalyzed B-H activation and the subsequent cascade heteroannulation of carborane and pyridine with an alkyne in an isolated yield of up to 85% under mild conditions without any additives. Computational results indicate that the newly generated ring from the fusion of the 3D carborane, the 2D pyridyl ring, and an alkyne is non-aromatic. However, such fusion not only leads to a 1H chemical shift considerably downfield shifted owing to the strong diatropic ring current of the embedded carborane but also devotes to new/improved physicochemical properties including increased thermal stability, the emergence of a new absorption band, and a largely red-shifted emission band and enhanced emission efficiency. Besides, a number of bright, color-tunable solid emitters spanning over all visible light are obtained with absolute luminescence efficiency of up to 61%, in contrast to aggregation-caused emission quenching of, e.g., Rhodamine B containing a 2D-aromatics-fused structure. This work demonstrates that the new hybrid conjugated tricyclic systems might be promising structural scaffolds for the construction of functional molecules.
Collapse
Affiliation(s)
- Fangxiang Sun
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Shuaimin Tan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hou-Ji Cao
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Chang-Sheng Lu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Deshuang Tu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jordi Poater
- Departament de Química Inorgànica i Orgànica & IQTCUB, Universitat de Barcelona, Martí i Franquès 1-11, Barcelona 08028, Spain.,ICREA, Pg. Lluís Companys 23, Barcelona 08010, Spain
| | - Miquel Solà
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, C/ Maria Aurèlia Capmany, 69, Girona 17003, Catalonia, Spain
| | - Hong Yan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
25
|
Lu W, Wu Y, Ma YN, Chen F, Chen X. A Method for Highly Selective Halogenation of o-Carboranes and m-Carboranes. Inorg Chem 2023; 62:885-892. [PMID: 36584667 DOI: 10.1021/acs.inorgchem.2c03694] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A facile halogenation method for highly selective synthesis of 9-X-o-carboranes, 9,12-X2-o-carboranes, 9-X-12-X'-o-carboranes, 9-X-m-carboranes, 9,10-X2-m-carboranes, and 9-X-10-X'-m-carboranes (X, X' = Cl, Br, I) has been developed on the basis of our previous work. The success of this transformation relies on the usage of trifluoromethanesulfonic acid (HOTf), the easily available strong Brønsted acid. The addition of HOTf greatly increases the electrophilicity of N-haloamides through hydrogen bonding interaction, resulting in the low loading of N-haloamides, short reaction time, and mild reaction conditions. Additionally, the solvent 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) is also essential to further increase the acidity of HOTf.
Collapse
Affiliation(s)
- Wen Lu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yanxuan Wu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yan-Na Ma
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Feijing Chen
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xuenian Chen
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| |
Collapse
|
26
|
Jia H, Qiu Z. Recent Advances in Transition Metal-Catalyzed B—H Bond Activation for Synthesis of o-Carborane Derivatives with B—Heteroatom Bond. CHINESE J ORG CHEM 2023. [DOI: 10.6023/cjoc202211040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
|
27
|
Chen J, Xu Y, Shao W, Ji J, Wang B, Yang M, Mao G, Xiao F, Deng GJ. Pd-Catalyzed C–O Bond Formation Enabling the Synthesis of Congested N, N, O-Trisubstituted Hydroxylamines. Org Lett 2022; 24:8271-8276. [DOI: 10.1021/acs.orglett.2c02975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jiaxing Chen
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, P. R. China
| | - Yongzhuo Xu
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, P. R. China
| | - Wen Shao
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, P. R. China
| | - Jianhua Ji
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, P. R. China
| | - Boqiang Wang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, P. R. China
| | - Muyang Yang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, P. R. China
| | - Guojiang Mao
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Fuhong Xiao
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, P. R. China
| | - Guo-Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, P. R. China
| |
Collapse
|
28
|
Li S, Zhang J, Xie Z. Visible-Light-Induced Palladium-Catalyzed Cross-Coupling of Iodocarboranes with (Hetero)Arenes. Org Lett 2022; 24:7497-7501. [PMID: 36201284 DOI: 10.1021/acs.orglett.2c02648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This work describes a general method for the efficient production of a class of cage B-centered carboranyl radicals at the B3, B4, and B9 sites via a visible-light-promoted palladium(0)/palladium(I) pathway using readily available iodo-o-carboranes as the starting materials. The electrophilicities of these hypervalent boron-centered radicals decrease in the following order: B3 > B4 > B9. They are useful intermediates for the preparation of a family of cage B-(hetero)arylated o-carboranes at ambient temperature.
Collapse
Affiliation(s)
- Shimeng Li
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Jie Zhang
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Zuowei Xie
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| |
Collapse
|
29
|
Li HJ, Feng R, Shi X, Wei J, Xi Z. Synthesis and isolation of dinuclear N,C-chelate organoboron compounds bridged by neutral, anionic, and dianionic 4,4'-bipyridine via reductive coupling of pyridines. Dalton Trans 2022; 51:15696-15702. [PMID: 36173201 DOI: 10.1039/d2dt02650c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reaction of Bppy(Mes)2 (BN1; ppy = 2-phenylpyridine) and BCH2ppy(Mes)2 (BN3) with the reducing reagent KC8 resulted in C-C bond formation via intermolecular radical coupling to generate the 4,4'-bipyridyl ligand compounds BN2 and BN4. Adding 1 equivalent of KC8 to a THF solution of BN2 and BN4 generated the 4,4'-bipyridyl radical anions BN2K and BN4K. The dianion species BN2K2 and BN4K2 could be obtained by adding 2 equivalents of KC8 to the THF solution of BN2 and BN4. In the presence of 2,2,2-cryptand or 18-crown-6, the radical anion salt BN2K(crypt) and the dianion salt BN2K2(18c6)2 were isolated for single-crystal X-ray diffraction analysis. Structural, spectroscopic, and computational studies were performed on the three species of BN2 derivatives (neutral, radical anion, and dianion species). BN2 and BN4 were stable and did not undergo photoisomerization or photoelimination under UV light irradiation.
Collapse
Affiliation(s)
- Hai-Jun Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China.
| | - Rui Feng
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China.
| | - Xianghui Shi
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China.
| | - Junnian Wei
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China.
| | - Zhenfeng Xi
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China.
| |
Collapse
|
30
|
Zhang LB, Xie Z. Iridium-Catalyzed Selective B(4)-H Amination of o-Carboranes with Anthranils. Org Lett 2022; 24:7077-7081. [PMID: 36148973 DOI: 10.1021/acs.orglett.2c02590] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report here a catalytic selective cage B4-H amination of o-carboranes employing an Ir(III) complex as a catalyst and anthranils as aminating agents, leading to a large class of B4-aminated o-carboranes with very high yields and a broad substrate scope under mild conditions without any oxidants. In these reactions, the carboxyl group serves as a traceless directing unit to determine the site selectivity and degree of substitution.
Collapse
Affiliation(s)
- Lin-Bao Zhang
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.,State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Zuowei Xie
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| |
Collapse
|
31
|
Lyu H, Xie Z. Transition metal catalyzed selective B(3)-H or B(4)-H amination of o-carboranes via dehydrogenative BH/NH cross-coupling. Chem Commun (Camb) 2022; 58:8392-8395. [PMID: 35792563 DOI: 10.1039/d2cc02852b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A unique approach to vertex-selective catalytic B-H amination at either the B(3)- or B(4)-position in o-carboranes has been developed. Using different transition metal catalysts, dehydrogenative BH/NH cross-coupling of o-carboranes and free amines has been achieved, leading to a wide variety of cage B(3)- or B(4)-aminated o-carboranes in moderate to high yields with excellent regioselectivity, where carboranyl carboxylic acids and amines can serve as competent coupling partners without any pre-functionalization. The isolation and structural identification of a key intermediate provide an insight into the reaction mechanism in the catalytic B(4)-H amination.
Collapse
Affiliation(s)
- Hairong Lyu
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, NT, China.
| | - Zuowei Xie
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, NT, China.
| |
Collapse
|
32
|
Miao YQ, Pan QJ, Liu Z, Chen X. Visible-light-induced 1,2-diphenyldisulfane-catalyzed regioselective hydroboration of electron-deficient alkenes. NEW J CHEM 2022. [DOI: 10.1039/d2nj03930c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A photoinduced PhSSPh-catalyzed regioselective borylation of electron-deficient alkenes has been developed for the synthesis of borylated carbonyl, nitrile, sulfone, phosphonate, trifluoromethyl, and gem-diboron compounds.
Collapse
Affiliation(s)
- Yu-Qi Miao
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, China
| | - Qiao-Jing Pan
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, China
| | - Zhenxing Liu
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan, China
| | - Xuenian Chen
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, China
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
33
|
Wang Y, Gao Y, Guo W, Zhao Q, Ma YN, Chen X. Highly selective electrophilic B(9)-amination of o-carborane driven by HOTf and HFIP. Org Chem Front 2022. [DOI: 10.1039/d2qo00732k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient B(9) electrophilic amination of o-carboranes with azodicarboxylates, promoted by a Brønsted acid and HFIP, was developed.
Collapse
Affiliation(s)
- Yan Wang
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yan Gao
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Henan Normal University, Xinxiang, Henan 453007, China
| | - Wenjing Guo
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Qianyi Zhao
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yan-Na Ma
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xuenian Chen
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Henan Normal University, Xinxiang, Henan 453007, China
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| |
Collapse
|
34
|
Transition metal catalyzed synthesis of derivatives of polyhedral boron hydrides with B N, B P, B O and B S bonds. ADVANCES IN CATALYSIS 2022. [DOI: 10.1016/bs.acat.2022.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|