1
|
Guan X, Wang H, Zhang W, Xie Z. Asymmetric Total Synthesis of (+)-Hyperbeanol A. Org Lett 2025; 27:8-13. [PMID: 39696798 DOI: 10.1021/acs.orglett.4c02930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
A bioinspired alkylation dearomatization reaction was developed to construct the 5/6/6 fused-spiro tricyclic core framework and spiro-quaternary carbon chiral center. The usage of this approach for assembling these natural products of spirocyclic polycyclic polyprenylated acylphloroglucinols with an octahydrospiro-[cyclohexan-1,5'-indene] core is demonstrated by the first asymmetric total synthesis of highly oxidized hyperbeanol A.
Collapse
Affiliation(s)
- Xingchao Guan
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Haodong Wang
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Wanqiao Zhang
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Zhixiang Xie
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
2
|
Fang K, Dou BH, Zhang FM, Wang YP, Shan ZR, Wang XY, Hou SH, Tu YQ, Ding TM. Expansion of Structure Property in Cascade Nazarov Cyclization and Cycloexpansion Reaction to Diverse Angular Tricycles and Total Synthesis of Nominal Madreporanone. Angew Chem Int Ed Engl 2024; 63:e202412337. [PMID: 39106111 DOI: 10.1002/anie.202412337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/02/2024] [Accepted: 08/04/2024] [Indexed: 08/09/2024]
Abstract
A cascade Nazarov cyclization/dicycloexpansions reaction was developed for the precise synthesis of the angularly fused M/5/N (M=5, 6; N=4-9, 13) tricyclic skeletons. The prioritized expansion of the first ring played a critical role in the transformations, due to the release of ring strain, and the nature of the substituents present on the substrate is another influencing factor. This pioneering cascade reaction features broad substrates scope (33 examples), short reaction time, exceptional yields (up to 95 %), and remarkable regioselectivities (>20 : 1). Exploiting the synthetic application of this cascade reaction, we successfully executed a succinct total synthesis of nominal madreporanone for the first time.
Collapse
Affiliation(s)
- Kun Fang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Bao-Heng Dou
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Fu-Min Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Yun-Peng Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zi-Rui Shan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Xiao-Yu Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Si-Hua Hou
- School of Pharmaceutical Sciences, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yong-Qiang Tu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tong-Mei Ding
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
3
|
Li Q, Sun Y, Fu MX, Lin JH, Xiao JC. Ph 3P═O-Catalyzed Reductive Deoxygenation of Alcohols. J Org Chem 2024; 89:16022-16027. [PMID: 39390897 DOI: 10.1021/acs.joc.4c01847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Reductive deoxygenation of alcohols is particularly challenging because of the high bond dissociation energy of the C-OH bond and the poor leaving ability of the hydroxyl group. Herein we describe a Ph3P═O-catalyzed reductive deoxygenation of benzyl alcohols with PhSiH3 under an air atmosphere within 30 min of reaction time. The use of catalytic loading of Ph3P═O enhances the practicality of this protocol.
Collapse
Affiliation(s)
- Qiang Li
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, 200032 Shanghai, China
| | - Yu Sun
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, 200032 Shanghai, China
| | - Mu-Xian Fu
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, 200032 Shanghai, China
- Department of Chemistry, Innovative Drug Research Center, Shanghai University, 200444 Shanghai, China
| | - Jin-Hong Lin
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, 200032 Shanghai, China
- Department of Chemistry, Innovative Drug Research Center, Shanghai University, 200444 Shanghai, China
| | - Ji-Chang Xiao
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, 200032 Shanghai, China
| |
Collapse
|
4
|
Fu MX, Lin JH, Xiao JC. Desulfurization of Thiols for Nucleophilic Substitution. Org Lett 2024; 26:6065-6069. [PMID: 38984702 DOI: 10.1021/acs.orglett.4c02256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Although the desulfurization of thiols is a topic of great importance and has received significant attention, most efforts have focused on the hydrodesulfurization of thiols. In this work, we describe the desulfurization of thiols for nucleophilic substitution. This process occurs rapidly, promoted by the Ph3P/ICH2CH2I system, and can be extended to a wide range of nucleophiles. Notably, free amines can be employed as nucleophiles to synthesize various secondary and tertiary amines. This method tolerates a wide array of functional groups, including hydroxyl groups in amination reactions. Benzyl thiols are particularly reactive and can be completely converted at room temperature within 15 min. Although alkyl thiols show lower reactivity, they can also be converted smoothly at a reaction temperature of 70 °C overnight.
Collapse
Affiliation(s)
- Mu-Xian Fu
- Department of Chemistry, Innovative Drug Research Center, Shanghai University, 200444 Shanghai, China
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, 200032 Shanghai, China
| | - Jin-Hong Lin
- Department of Chemistry, Innovative Drug Research Center, Shanghai University, 200444 Shanghai, China
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, 200032 Shanghai, China
| | - Ji-Chang Xiao
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, 200032 Shanghai, China
| |
Collapse
|
5
|
Wilson RH, Chatterjee S, Smithwick ER, Damodaran AR, Bhagi-Damodaran A. Controllable multi-halogenation of a non-native substrate by SyrB2 iron halogenase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.08.593161. [PMID: 38766225 PMCID: PMC11100670 DOI: 10.1101/2024.05.08.593161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Geminal, multi-halogenated functional groups are widespread in natural products and pharmaceuticals, yet no synthetic methodologies exist that enable selective multi-halogenation of unactivated C-H bonds. Biocatalysts are powerful tools for late-stage C-H functionalization, as they operate with high degrees of regio-, chemo-, and stereoselectivity. 2-oxoglutarate (2OG)-dependent non-heme iron halogenases chlorinate and brominate aliphatic C-H bonds offering a solution for achieving these challenging transformations. Here, we describe the ability of a non-heme iron halogenase, SyrB2, to controllably halogenate non-native substrate alpha-aminobutyric acid (Aba) to yield mono-chlorinated, di-chlorinated, and tri-chlorinated products. These chemoselective outcomes are achieved by controlling the loading of 2OG cofactor and SyrB2 biocatalyst. By using a ferredoxin-based biological reductant for electron transfer to the catalytic center of SyrB2, we demonstrate order-of-magnitude enhancement in the yield of tri-chlorinated product that were previously inaccessible using any single halogenase enzyme. We also apply these strategies to broaden SyrB2's reactivity scope to include multi-bromination and demonstrate chemoenzymatic conversion of the ethyl side chain in Aba to an ethylyne functional group. We show how steric hindrance induced by the successive addition of halogen atoms on Aba's C4 carbon dictates the degree of multi-halogenation by hampering C3-C4 bond rotation within SyrB2's catalytic pocket. Overall, our work showcases the synthetic potential of iron halogenases to facilitate multi-C-H functionalization chemistry.
Collapse
Affiliation(s)
- R Hunter Wilson
- Department of Chemistry, University of Minnesota, Twin Cities, Minneapolis, MN, 55455, United States
| | - Sourav Chatterjee
- Department of Chemistry, University of Minnesota, Twin Cities, Minneapolis, MN, 55455, United States
| | - Elizabeth R Smithwick
- Department of Chemistry, University of Minnesota, Twin Cities, Minneapolis, MN, 55455, United States
| | - Anoop R Damodaran
- Department of Chemistry, University of Minnesota, Twin Cities, Minneapolis, MN, 55455, United States
| | - Ambika Bhagi-Damodaran
- Department of Chemistry, University of Minnesota, Twin Cities, Minneapolis, MN, 55455, United States
| |
Collapse
|
6
|
Reese PB. Remote functionalization reactions in steroids: discovery and application. Steroids 2024; 204:109362. [PMID: 38278283 DOI: 10.1016/j.steroids.2023.109362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 12/23/2023] [Accepted: 12/30/2023] [Indexed: 01/28/2024]
Abstract
Research published between 2001 and 2022 on the functionalization of remote positions of steroids, as well as the use of this technique in the generation of biologically active compounds has been reviewed. In the first section of the analysis established and novel methods for activation of sites deemed to be remote were reported. A series of manganese- (mainly), rhodium-, ruthenium- and osmium-centered porphyrins as catalysts in the presence of PIDA as oxidant have effected hydroxylation at C-1, -5, -6, -7, -11, -14, -15, -16, -17, -20, -24 and -25. Dioxiranes have been utilized in inserting hydroxyl groups at the 5, 12, 14, 15, 16, 17, 20, 24 and 25 positions (tertiary centers for the most part). Alcohols at C-12 and -16 were oxidized further to ketones. The Schönecker oxidation, discovered and developed during the period, has revolutionized the selective functionalization at C-12 of steroids possessing a 17-keto group. In the presence of iron-centered PDP- and MCP-based catalysts, hydrogen peroxide and acetic acid, substrates tended to be hydroxylated at C-6 and -12, with further oxidation to ketones often accompanying this reaction. The hypohalite reaction, utilizing the more modern Suarez conditions (irradiation in the presence of iodine and PIDA), was reported to facilitate the insertion of a hydroxyl moiety five atoms away from an existing alcohol oxygen. Steroidal-3β-diazoacetates tend to decompose on heating with di-rhodium-centered catalysts while activating carbons four or five atoms away. Chromium- and iron-based acetates were observed to functionalize C-5 and -25. Other reactions involving ring cleavage and halogenation, ketone irradiation and α-hydroxylation of ethers were also covered. The syntheses of compounds with marked biological activity from readily available steroids is described in the second section of the study. Cyclopamine, cephalostatin-1, ritterazine B and three polyhydroxypregnanaes (pergularin, utendin and tomentogenin) were generated in sequences in which a key step required hydroxylation at C-12 using the Schönecker reaction. A crucial stage in the preparation of cortistatin A, the saundersioside core, eurysterol A, 5,6-dihydroglaucogenin C, as well as clinostatins A and B involved the functionalization of C-18 or -19 utilizing hypohalite chemistry. The synthetic route to xestobergsterol A, pavonin-4-aglycone and ouagabagenin included a transformation where ketone irradiation played a part in either producing a Δ14 or a C-19 activated steroid. The radical relay reaction, where a 17α-chloro-steroid was formed, was central in the generation of pythocholic acid. The lead tetraacetate reaction was pivotal in the functionalization of C-19 during the synthesis of cyclocitrinol.
Collapse
Affiliation(s)
- Paul B Reese
- Department of Chemistry, The University of the West Indies, Mona, Kingston 7, Jamaica.
| |
Collapse
|
7
|
Tang WY, Zheng X, Yao X, Lin JH, Zheng QT, Xiao JC. Ph 3P/ICH 2CH 2I-promoted reductive deoxygenation of alcohols. Org Biomol Chem 2023; 21:8989-8992. [PMID: 37937947 DOI: 10.1039/d3ob01698f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Owing to the ubiquity of the hydroxyl group, reductive deoxygenation of alcohols has become an active research area. The classic Barton-McCombie reaction suffers from a tedious two-step procedure. New efficient methods have been developed, but they have some limitations, such as a narrow substrate scope and the use of moisture-sensitive Lewis acids. In this work, we describe the Ph3P/ICH2CH2I-promoted reductive deoxygenation of alcohols with NaBH4. The process is applicable to benzyl, allyl and propargyl alcohols, and also to primary and secondary alcohols, demonstrating a wide substrate scope and a good level of functional group tolerance. This protocol features convenient operation and low cost of all reagents.
Collapse
Affiliation(s)
- Wei-Ying Tang
- Institute of Pharmacy and Pharmacology, Hengyang Medicinal School, University of South China, Hengyang, Hunan, 421001, China
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Xing Zheng
- Institute of Pharmacy and Pharmacology, Hengyang Medicinal School, University of South China, Hengyang, Hunan, 421001, China
- Department of Pharmacy, Hunan Vocational College of Science and Technology, Third Zhongyi Shan Road, Changsha, Hunan, 410004, China
| | - Xu Yao
- Institute of Pharmacy and Pharmacology, Hengyang Medicinal School, University of South China, Hengyang, Hunan, 421001, China
| | - Jin-Hong Lin
- Department of Chemistry, Innovative Drug Research Center, Shanghai University, 200444 Shanghai, China.
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Qu-Tong Zheng
- Hunan University of Chinese Medicine, School of Pharmacy, Changsha, Hunan 410208, China.
| | - Ji-Chang Xiao
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
8
|
Sun Y, Feng J, Qin S, Fu S, Liu B. Asymmetric Construction of the Core of C 6, C 7-Epoxy Daphnane Diterpenoid Orthoesters. Org Lett 2023; 25:8072-8076. [PMID: 37916924 DOI: 10.1021/acs.orglett.3c03136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Asymmetric construction of the core of C6, C7-epoxy daphnane diterpenoid orthoesters is developed through a convergent synthetic strategy. The salient features include a diastereoselective nucleophilic assembly of two bulky cyclic fragments, an oxidative cleavage/transesterification/aldol cascade to fashion the seven-membered ring, and a base-mediated transesterification/retro-aldol/aldol/epoxidation cascade to install the epoxy moiety with proper stereochemistry.
Collapse
Affiliation(s)
- Ying Sun
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Jing Feng
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Song Qin
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Shaomin Fu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Bo Liu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
9
|
Yu H, Zhang J, Ma D, Li X, Xu T. Enantioselective Total Syntheses of (-)-Caulamidine D and (-)-Isocaulamidine D and Their Absolute Configuration Reassignment. J Am Chem Soc 2023; 145:22335-22340. [PMID: 37792337 DOI: 10.1021/jacs.3c08714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
The first enantioselective total syntheses of (-)-caulamidine D (5) and (-)-isocaulamidine D (6) were accomplished. Their absolute configurations were unambiguously elucidated through X-ray crystallography. The isolated natural samples of both 5 and 6 are determined to be the TFA salts instead of the neutral forms. It took 16 steps (longest linear sequence) to divergently access both 5 and 6 following a unified strategy. The key reactions include (1) development and application of an asymmetric Meerwein-Eschenmoser-Claisen rearrangement to construct the challenging C10, C23 consecutive stereocenters and (2) application of a cascade 6-exo-dig/6-exo-tet amine/nitrile cyclization reaction.
Collapse
Affiliation(s)
- Haiyong Yu
- Molecular Synthesis Center and Key Laboratory of Marine Drugs, MOE, and School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Junhao Zhang
- Molecular Synthesis Center and Key Laboratory of Marine Drugs, MOE, and School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Dongxu Ma
- Molecular Synthesis Center and Key Laboratory of Marine Drugs, MOE, and School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Xiaotong Li
- Molecular Synthesis Center and Key Laboratory of Marine Drugs, MOE, and School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Tao Xu
- Molecular Synthesis Center and Key Laboratory of Marine Drugs, MOE, and School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts of Marine Natural Products, Laoshan Lab, Qingdao 266237, China
| |
Collapse
|
10
|
Cui H, Shen Y, Wang R, Wei H, Lei X, Chen Y, Fu P, Wang H, Bi R, Zhang Y. Synthesis of Clionastatins A and B through Enhancement of Chlorination and Oxidation Levels of Testosterone. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Hao Cui
- Department of Chemistry and Key Laboratory of Chemical Biology of Fujian Province, iChEM, College of Chemistry and Chemical Engineering Xiamen University Xiamen Fujian 361005 China
| | - Yang Shen
- Department of Chemistry and Key Laboratory of Chemical Biology of Fujian Province, iChEM, College of Chemistry and Chemical Engineering Xiamen University Xiamen Fujian 361005 China
| | - Ruifeng Wang
- Department of Chemistry and Key Laboratory of Chemical Biology of Fujian Province, iChEM, College of Chemistry and Chemical Engineering Xiamen University Xiamen Fujian 361005 China
| | - Haoxiang Wei
- Department of Chemistry and Key Laboratory of Chemical Biology of Fujian Province, iChEM, College of Chemistry and Chemical Engineering Xiamen University Xiamen Fujian 361005 China
| | - Xin Lei
- Department of Chemistry and Key Laboratory of Chemical Biology of Fujian Province, iChEM, College of Chemistry and Chemical Engineering Xiamen University Xiamen Fujian 361005 China
| | - Yanyu Chen
- Department of Chemistry and Key Laboratory of Chemical Biology of Fujian Province, iChEM, College of Chemistry and Chemical Engineering Xiamen University Xiamen Fujian 361005 China
| | - Pengfei Fu
- Department of Chemistry and Key Laboratory of Chemical Biology of Fujian Province, iChEM, College of Chemistry and Chemical Engineering Xiamen University Xiamen Fujian 361005 China
| | - Haoxiang Wang
- Department of Chemistry and Key Laboratory of Chemical Biology of Fujian Province, iChEM, College of Chemistry and Chemical Engineering Xiamen University Xiamen Fujian 361005 China
| | - Ruihao Bi
- Department of Chemistry and Key Laboratory of Chemical Biology of Fujian Province, iChEM, College of Chemistry and Chemical Engineering Xiamen University Xiamen Fujian 361005 China
| | - Yandong Zhang
- Department of Chemistry and Key Laboratory of Chemical Biology of Fujian Province, iChEM, College of Chemistry and Chemical Engineering Xiamen University Xiamen Fujian 361005 China
| |
Collapse
|