1
|
Angle SR, Sharma HA, Choi CK, Carlson KE, Hou Y, Nwachukwu JC, Kim SH, Katzenellenbogen BS, Nettles KW, Katzenellenbogen JA, Jacobsen EN. Iterative Catalyst-Controlled Diastereoselective Matteson Homologations Enable the Selective Synthesis of Benzestrol Isomers. J Am Chem Soc 2024; 146:30771-30777. [PMID: 39481083 DOI: 10.1021/jacs.4c12857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
We report the development of an iterative Matteson homologation reaction with catalyst-controlled diastereoselectivity through the design of a new catalyst. This reaction was applied to the selective synthesis of each stereoisomer of benzestrol, a bioactive compound with estrogenic activity featuring three contiguous stereocenters. The different stereoisomers were assayed to determine their binding affinity for the estrogen receptor α (ERα), and the absolute configuration of the compound having uniquely high activity was determined. This research lays a framework for the catalytic synthesis and study of complete stereoisomeric sets of other bioactive molecules and chemical probes containing contiguous stereocenters.
Collapse
Affiliation(s)
- Samantha R Angle
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Hayden A Sharma
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Christie K Choi
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Kathryn E Carlson
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Yingwei Hou
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Jerome C Nwachukwu
- Department of Immunology and Microbiology, The Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, Florida 33458, United States
| | - Sung Hoon Kim
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Benita S Katzenellenbogen
- Department of Molecular and Integrative Physiology and Cancer Center, University of Illinois, Urbana, Illinois 61801, United States
| | - Kendall W Nettles
- Department of Immunology and Microbiology, The Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, Florida 33458, United States
| | | | - Eric N Jacobsen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
2
|
Adak S, Hazra PS, Fox CB, Brown MK. Boron Enabled Directed [2+2]- and Dearomative [4+2]-Cycloadditions Initiated by Energy Transfer. Angew Chem Int Ed Engl 2024:e202416215. [PMID: 39508634 DOI: 10.1002/anie.202416215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Indexed: 11/15/2024]
Abstract
A strategy for the photosensitized [2+2]-cycloaddition between styrenyl dihaloboranes and unactivated allylamines to access cyclobutylboronates with control of stereochemistry and regiochemistry is presented. The success of the reaction relies on the temporary coordination between in situ generated dihaloboranes and amines under mild reaction conditions. In addition, cyclobutanes with varying substitution patterns have been prepared using N-heterocycles as directing group. Manipulation of the C-B bond allows for the synthesis of a diverse class of cyclobutanes from simple precursors. Moreover, these reactions lead to the synthesis of complex amines and heteroaromatic compounds, which have significant utility in medicinal chemistry. Finally, a dearomative [4+2]-cycloaddition of naphthalenes using a boron-enabled temporary tethering strategy has also been uncovered to synthesize complex 3-dimensional borylated building blocks.
Collapse
Affiliation(s)
- Souvik Adak
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, IN, 47401, US
| | - Partha Sarathi Hazra
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, IN, 47401, US
| | - Carter B Fox
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, IN, 47401, US
| | - M Kevin Brown
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, IN, 47401, US
| |
Collapse
|
3
|
Xu N, Holmgren JL, Morken JP. Site-Selective Activation and Stereospecific Functionalization of Bis(boronic Esters) Derived from 2-Alkenes: Construction of Propionates and Other 1,2-Difunctional Motifs. Angew Chem Int Ed Engl 2024; 63:e202408436. [PMID: 38924653 DOI: 10.1002/anie.202408436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 06/28/2024]
Abstract
Non-directed regioselective activation of bis(boronic esters), followed by functionalization, is reported. A bulky activator is shown to selectively activate the less hindered boronic ester enabling it to undergo stereospecific cross-coupling to a variety of electrophiles. This steric-based regioselectivity provides a simple and efficient method to prepare highly functionalized, enantiomerically enriched products starting from simple alkenes.
Collapse
Affiliation(s)
- Ningxin Xu
- Department of Chemistry, Boston College, Chestnut Hill, MA 02467, USA
| | - John L Holmgren
- Department of Chemistry, Boston College, Chestnut Hill, MA 02467, USA
| | - James P Morken
- Department of Chemistry, Boston College, Chestnut Hill, MA 02467, USA
| |
Collapse
|
4
|
Zhang M, Chapman M, Sarode BR, Xiong B, Liang H, Chen JK, Weerapana E, Morken JP. Catalytic asymmetric synthesis of meta benzene isosteres. Nature 2024; 633:90-95. [PMID: 39169193 DOI: 10.1038/s41586-024-07865-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/22/2024] [Indexed: 08/23/2024]
Abstract
Although aromatic rings are common elements in pharmaceutically active compounds, the presence of these motifs brings several liabilities with respect to the developability of a drug1. Nonoptimal potency, metabolic stability, solubility and lipophilicity in pharmaceutical compounds can be improved by replacing aromatic rings with non-aromatic isosteric motifs2. Moreover, whereas aromatic rings are planar and lack three-dimensionality, the binding pockets of most pharmaceutical targets are chiral. Thus, the stereochemical configuration of the isosteric replacements may offer an added opportunity to improve the affinity of derived ligands for target receptors. A notable impediment to this approach is the lack of simple and scalable catalytic enantioselective syntheses of candidate isosteres from readily available precursors. Here we present a previously unknown palladium-catalysed reaction that converts hydrocarbon-derived precursors to chiral boron-containing nortricyclanes and we show that the shape of these nortricyclanes makes them plausible isosteres for meta disubstituted aromatic rings. With chiral catalysts, the Pd-catalysed reaction can be accomplished in an enantioselective fashion and subsequent transformation of the boron group provides access to a broad array of structures. We also show that the incorporation of nortricyclanes into pharmaceutical motifs can result in improved biophysical properties along with stereochemistry-dependent activity. We anticipate that these features, coupled with the simple, inexpensive synthesis of the functionalized nortricyclane scaffold, will render this platform a useful foundation for the assembly of new biologically active agents.
Collapse
Affiliation(s)
- Mingkai Zhang
- Department of Chemistry, Boston College, Chestnut Hill, MA, USA
| | - Matthew Chapman
- Department of Chemistry, Boston College, Chestnut Hill, MA, USA
| | - Bhagyesh R Sarode
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| | - Bingcong Xiong
- Department of Chemistry, Boston College, Chestnut Hill, MA, USA
| | - Hao Liang
- Department of Chemistry, Boston College, Chestnut Hill, MA, USA
| | - James K Chen
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA.
- Department of Developmental Biology, Stanford University, Stanford, CA, USA.
- Department of Chemistry, Stanford University, Stanford, CA, USA.
| | | | - James P Morken
- Department of Chemistry, Boston College, Chestnut Hill, MA, USA.
| |
Collapse
|
5
|
Liang H, Berwanger MR, Morken JP. Stereospecific Phosphination and Thioetherification of Organoboronic Esters. J Am Chem Soc 2024; 146:18873-18878. [PMID: 38954635 DOI: 10.1021/jacs.4c06526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Alkyllithium-activated organoboronic esters are found to undergo stereospecific phosphination with copper chloride and chlorophosphines. They also react with thiolsulfonate electrophiles under copper catalysis. These reactions enable stereospecific phosphination and thiolation of organoboronic esters, which are further applied in preparation of chiral ligands and biologically active molecules.
Collapse
Affiliation(s)
- Hao Liang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Michael R Berwanger
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - James P Morken
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
6
|
Shen HC, Wang ZS, Noble A, Aggarwal VK. Simultaneous Stereoinvertive and Stereoselective C(sp 3)-C(sp 3) Cross-Coupling of Boronic Esters and Allylic Carbonates. J Am Chem Soc 2024; 146:13719-13726. [PMID: 38721780 PMCID: PMC11117407 DOI: 10.1021/jacs.4c03686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/03/2024] [Accepted: 05/03/2024] [Indexed: 05/23/2024]
Abstract
With increasing interest in constructing more three-dimensional entities, there has been growing interest in cross-coupling reactions that forge C(sp3)-C(sp3) bonds, which leads to additional challenges as it is not just a more difficult bond to construct but issues of stereocontrol also arise. Herein, we report the stereocontrolled cross-coupling of enantioenriched boronic esters with racemic allylic carbonates enabled by iridium catalysis, leading to the formation of C(sp3)-C(sp3) bonds with single or vicinal stereogenic centers. The method shows broad substrate scope, enabling primary, secondary, and even tertiary boronic esters to be employed, and can be used to prepare any of the four possible stereoisomers of a coupled product with vicinal chiral centers. The new method, which combines the simultaneous enantiospecific reaction of a chiral nucleophile with the enantioselective reaction of a chiral electrophile in a single process, offers a solution for stereodivergent cross-coupling of two C(sp3) fragments.
Collapse
Affiliation(s)
| | | | - Adam Noble
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| | - Varinder K. Aggarwal
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| |
Collapse
|
7
|
Patil MD, Ghosh KK, RajanBabu TV. Cobalt-Catalyzed Enantioselective Hydroboration of α-Substituted Acrylates. J Am Chem Soc 2024; 146:6604-6617. [PMID: 38431968 PMCID: PMC11407689 DOI: 10.1021/jacs.3c12020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Even though metal-catalyzed enantioselective hydroborations of alkenes have attracted enormous attention, few preparatively useful reactions of α-alkyl acrylic acid derivatives are known, and most use rhodium catalysts. No examples of asymmetric hydroboration of the corresponding α-arylacrylic acid esters are known. In our continuing efforts to search for new applications of earth-abundant cobalt catalysts for broadly applicable organic transformations, we have identified 2-(2-diarylphosphinophenyl)oxazoline ligands and mild reaction conditions for efficient and highly regio- and enantioselective hydroboration of α-alkyl- and α-aryl- acrylates, giving β-borylated propionates. Since the C-B bonds in these compounds can be readily replaced by C-O, C-N, and C-C bonds, these intermediates could serve as valuable chiral synthons, some from feedstock carbon sources, for the synthesis of propionate-bearing motifs including polyketides and related molecules. Two-step syntheses of "Roche" ester from methyl methacrylate (79%; er 99:1), arguably the most widely used chiral fragment in polyketide synthesis, and tropic acid esters (∼80% yield; er ∼93:7), which are potential intermediates for several medicinally important classes of compounds, illustrate the power of the new methods. Mechanistic studies confirm the requirement of a cationic Co(I) species [(L)Co]+as the viable catalyst in these reactions and rule out the possibility of a [L]Co-H-initiated route, which has been well-established in related hydroborations of other classes of alkenes. A mechanism involving an oxidative migration of a boryl group to the β-carbon of an η4-coordinated acrylate-cobalt complex is proposed as a plausible route.
Collapse
Affiliation(s)
- Manoj D Patil
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, United States
| | - Kiron Kumar Ghosh
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, United States
| | - T V RajanBabu
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, United States
| |
Collapse
|
8
|
Zheng W, Tan BB, Ge S, Lu Y. Enantioselective Copper-Catalyzed Ring-Opening Diboration of Arylidenecyclopropanes to Access Chiral Skipped 1,4- and 1,3-Diboronates. J Am Chem Soc 2024; 146:5366-5374. [PMID: 38354313 DOI: 10.1021/jacs.3c12675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Two enantioselective approaches to synthesize chiral skipped diboronate compounds have been developed, relying on copper-catalyzed one-pot asymmetric ring-opening diboration of arylidenecyclopropanes. A wide range of arylidenecyclopropanes react smoothly with HBpin in the presence of CuOAc and (R)-DTBM-Segphos, affording chiral 1,4-diboronates with high enantioselectivity (up to 99% ee). Meanwhile, a variety of arylidenecyclopropanes react selectively with HBpin and B2pin2 in the presence of CuOAc and (S,S)-Ph-BPE with the sequential addition of MeOH, providing chiral 1,3-diboronates with high enantioselectivity (up to 98% ee). These enantioenriched 1,3- and 1,4-diboronates can undergo various enantiospecific transformations with minimal loss of their enantiopurity. Mechanistic studies reveal that these two diboration processes start with CuH-catalyzed ring-opening hydroboration of arylidenecyclopropanes to form a mixture of Z/E-homoallyl boronate intermediates, which subsequently undergo enantioselective CuH-catalyzed second hydroboration or Cu-Bpin-catalyzed protoboration to produce chiral 1,4-diboronates or 1,3-diboronates, respectively.
Collapse
Affiliation(s)
- Wenrui Zheng
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Boon Beng Tan
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Shaozhong Ge
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Yixin Lu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| |
Collapse
|
9
|
Lyu MY, Morais GN, Chen S, Brown MK. Ni-Catalyzed 1,1- and 1,3-Aminoboration of Unactivated Alkenes. J Am Chem Soc 2023; 145:27254-27261. [PMID: 38078874 PMCID: PMC11078560 DOI: 10.1021/jacs.3c12770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Alkene borylfunctionalization reactions have emerged as useful methods for chemical synthesis. While much progress has been made on 1,2-borylamination reactions, the related 1,1- and 1,3-borylaminations have not been reported. Herein, a Ni-catalyzed 1,1-borylamination of 1,1-disubstituted and monosubstituted alkenes and a 1,3-borylamination of cyclic alkenes are presented. Key to development of these reactions was the identification of an alkyllithium activator in combination with Mg salts. The utility of the products and the mechanistic details are discussed.
Collapse
Affiliation(s)
- Mao-Yun Lyu
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave, Bloomington, Indiana 47405, United States
| | - Gabriel N Morais
- Department of Chemistry and Biochemistry, Oberlin College, 119 Woodland St, Oberlin, Ohio 44074, United States
| | - Shuming Chen
- Department of Chemistry and Biochemistry, Oberlin College, 119 Woodland St, Oberlin, Ohio 44074, United States
| | - M Kevin Brown
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave, Bloomington, Indiana 47405, United States
| |
Collapse
|
10
|
Valdés-Maqueda Á, López L, Plaza M, Valdés C. Synthesis of substituted benzylboronates by light promoted homologation of boronic acids with N-sulfonylhydrazones. Chem Sci 2023; 14:13765-13775. [PMID: 38075646 PMCID: PMC10699570 DOI: 10.1039/d3sc05678c] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 11/21/2023] [Indexed: 07/30/2024] Open
Abstract
The synthesis of benzylboronates by photochemical homologation of boronic acids with N-tosylhydrazones under basic conditions is described. The reaction involves the photolysis of the N-tosylhydrazone salt to give a diazoalkane followed by the geminal carboborylation of the diazoalkane. Under the mild reaction conditions, the protodeboronation of the unstable benzylboronic acid is circumvented and the pinacolboronates can be isolated after reaction of the benzylboronic acid with pinacol. The metholodogy has been applied to the reactions of alkylboronic acids with N-tosylhydrazones of aromatic aldehydes and ketones, and to the reactions of arylboronic acids with N-tosylhydrazones of aliphatic ketones. Moreover, the employment of the DBU/DIPEA bases combination allows for homogeneous reactions which have been adapted to photochemical continuous flow conditions. Additionally, the synthetic versatility of boronates enables their further transformation via Csp3-C or Csp3-X bond forming reactions converting this methodology into a novel method for the geminal difunctionalization of carbonyls via N-tosylhydrazones.
Collapse
Affiliation(s)
- Álvaro Valdés-Maqueda
- Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Química Organometálica "Enrique Moles" and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Oviedo C/Julián Clavería 8 33006 Oviedo Spain
| | - Lucía López
- Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Química Organometálica "Enrique Moles" and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Oviedo C/Julián Clavería 8 33006 Oviedo Spain
| | - Manuel Plaza
- Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Química Organometálica "Enrique Moles" and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Oviedo C/Julián Clavería 8 33006 Oviedo Spain
| | - Carlos Valdés
- Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Química Organometálica "Enrique Moles" and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Oviedo C/Julián Clavería 8 33006 Oviedo Spain
| |
Collapse
|
11
|
Chen A, Qiao Y, Gao DW. Controllable Regiodivergent Alkynylation of 1,3-Bis(Boronic) Esters Activated by Distinct Organometallic Reagents. Angew Chem Int Ed Engl 2023; 62:e202312605. [PMID: 37849448 DOI: 10.1002/anie.202312605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 10/19/2023]
Abstract
1,3-Bis(boronic) esters can be readily synthesized from alkylBpin precursors. Selective transformations of these compounds hold the potential for late-stage functionalization of the remaining C-B bond, leading to a diverse array of molecules. Currently, there are no strategies available to address the reactivity and, more importantly, the controllable regiodivergent functionalization of 1,3-bis(boronic) esters. In this study, we have achieved controllable regiodivergent alkynylation of these molecules. The regioselectivity has been clarified based on the unique chelation patterns observed with different organometallic reagents. Remarkably, this methodology effectively addresses the low reactivity of 1,3-bis(boronic) esters and bridges the gap in radical chemistry, which typically yields only the classical products formed via stable radical intermediates. Furthermore, the compounds synthesized through this approach serve as potent building blocks for creating molecular diversity.
Collapse
Affiliation(s)
- Ang Chen
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Yang Qiao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - De-Wei Gao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| |
Collapse
|
12
|
Kuznetsov DM, Ready JM. Asymmetric Catalytic Hydroboration of Enol Carbamates Enables an Enantioselective Matteson Homologation. Synlett 2023; 34:2181-2186. [PMID: 39092078 PMCID: PMC11293623 DOI: 10.1055/a-2106-1461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Rh-catalyzed asymmetric hydroboration of enol carbamates yields α-boryl carbamates in good enantioselectivity. The enol carbamate starting materials can be prepared with moderate Z selectivity using a modified Juila olefination and used as an E/Z mixture, taking advantage of the faster reactivity of the major Z isomer in the directed hydroboration. Optically active α-boryl carbamates participate in a Matteson-type homologation with Grignard reagents in which the O-carbamate is substituted with high conservation of optical activity to provide enantioenriched secondary boronic esters.
Collapse
Affiliation(s)
- Dmitry M Kuznetsov
- UT Southwestern Medical Center, Department of Biochemistry, 5323 Harry Hines Blvd., Dallas Texas 75390-9038
| | - Joseph M Ready
- UT Southwestern Medical Center, Department of Biochemistry, 5323 Harry Hines Blvd., Dallas Texas 75390-9038
| |
Collapse
|
13
|
Liang H, Morken JP. Substrate Plasticity Enables Group-Selective Transmetalation: Catalytic Stereospecific Cross-Couplings of Tertiary Boronic Esters. J Am Chem Soc 2023; 145:20755-20760. [PMID: 37651751 PMCID: PMC10924285 DOI: 10.1021/jacs.3c07129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Activation of enantiomerically enriched tertiary alkylboronic esters with adamantyllithium generated in situ enables stereoretentive boron-to-copper transmetalation. The resulting alkylcopper species can undergo cross-coupling reactions with an array of electrophiles to furnish synthetically useful compounds bearing quaternary stereocenters. DFT calculations of the transmetalation process provide insights for reactivity and selectivity.
Collapse
Affiliation(s)
- Hao Liang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - James P Morken
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
14
|
Barker TJ, Bogatkevich A, Crowder DW, Gierszal SG, Hayes JC, Hollerbach MR, Russell RW. Reactions of Benzylboronate Nucleophiles. SYNTHESIS-STUTTGART 2023; 55:2639-2647. [PMID: 37790600 PMCID: PMC10545366 DOI: 10.1055/a-2072-2754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
This short review summarizes our laboratory's development of benzylboronic esters as nucleophiles. Activation of the benzylboronic ester is achieved by irreversible coordination of an alkyllithium Lewis base to form a nucleophilic benzylboronate. This boronate was found to react with aldehydes, imines, ketones and alkyl bromides. A copper catalyst was employed in reactions of the boronate with epoxides and aziridines.
Collapse
Affiliation(s)
- Timothy J Barker
- College of Charleston, Department of Chemistry and Biochemistry, 66 George St., Charleston, SC
| | - Andrew Bogatkevich
- College of Charleston, Department of Chemistry and Biochemistry, 66 George St., Charleston, SC
| | - Dallas W Crowder
- College of Charleston, Department of Chemistry and Biochemistry, 66 George St., Charleston, SC
| | - Sophia G Gierszal
- College of Charleston, Department of Chemistry and Biochemistry, 66 George St., Charleston, SC
| | - Jacob C Hayes
- College of Charleston, Department of Chemistry and Biochemistry, 66 George St., Charleston, SC
| | - Michael R Hollerbach
- College of Charleston, Department of Chemistry and Biochemistry, 66 George St., Charleston, SC
| | - Richard W Russell
- College of Charleston, Department of Chemistry and Biochemistry, 66 George St., Charleston, SC
| |
Collapse
|
15
|
Liang H, Morken JP. Stereospecific Transformations of Alkylboronic Esters Enabled by Direct Boron-to-Zinc Transmetalation. J Am Chem Soc 2023; 145:9976-9981. [PMID: 37126565 PMCID: PMC10407644 DOI: 10.1021/jacs.3c01677] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Chiral secondary organoboronic esters, when activated with t-butyllithium, are shown to undergo efficient stereoretentive transmetalation with either zinc acetate or zinc chloride. This reaction provides chiral secondary alkylzinc reagents that are configurationally stable under practical experimental conditions. The organozinc compounds were found to engage in stereospecific reactions with difluorocarbene, catalytic cross-couplings with palladium-based catalysts, and trifluoromethylation with a copper(III) complex. Mechanistic and computational studies shed light on the inner workings of the transmetalation event.
Collapse
Affiliation(s)
- Hao Liang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - James P Morken
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
16
|
Zhang M, Lee PS, Allais C, Singer RA, Morken JP. Desymmetrization of Vicinal Bis(boronic) Esters by Enantioselective Suzuki-Miyaura Cross-Coupling Reaction. J Am Chem Soc 2023; 145:10.1021/jacs.3c01571. [PMID: 37023255 PMCID: PMC10556193 DOI: 10.1021/jacs.3c01571] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
The development of an enantioselective catalytic Suzuki-Miyaura reaction that applies to meso 1,2-diborylcycloalkanes is described. This reaction provides a modular route to enantiomerically enriched substituted carbocycles and heterocycles that retain a synthetically versatile boronic ester. With appropriately constructed substrates, compounds bearing additional stereogenic centers and fully substituted carbon atoms can be generated in a straightforward fashion. Preliminary mechanistic experiments suggest that substrate activation arises from the cooperative effect of vicinal boronic esters during the transmetalation step.
Collapse
Affiliation(s)
- Mingkai Zhang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Paul S. Lee
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Christophe Allais
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Robert A. Singer
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - James P. Morken
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
17
|
Parsutkar MM, Bhunia S, Majumder M, Lalisse RF, Hadad CM, RajanBabu TV. Ligand Control in Co-Catalyzed Regio- and Enantioselective Hydroboration: Homoallyl Secondary Boronates via Uncommon 4,3-Hydroboration of 1,3-Dienes. J Am Chem Soc 2023; 145:7462-7481. [PMID: 36972549 PMCID: PMC10563392 DOI: 10.1021/jacs.3c00181] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Enantiopure homoallylic boronate esters are versatile intermediates because the C-B bond in these compounds can be stereospecifically transformed into C-C, C-O, and C-N bonds. Regio- and enantioselective synthesis of these precursors from 1,3-dienes has few precedents in the literature. We have identified reaction conditions and ligands for the synthesis of nearly enantiopure (er >97:3 to >99:1) homoallylic boronate esters via a rarely seen cobalt-catalyzed [4,3]-hydroboration of 1,3-dienes. Monosubstituted or 2,4-disubstituted linear dienes undergo highly efficient regio- and enantioselective hydroboration with HBPin catalyzed by [(L*)Co]+[BARF]-, where L* is typically a chiral bis-phosphine ligand with a narrow bite angle. Several such ligands (e.g., i-PrDuPhos, QuinoxP*, Duanphos, and BenzP*) that give high enantioselectivities for the [4,3]-hydroboration product have been identified. In addition, the equally challenging problem of regioselectivity is uniquely solved with a dibenzooxaphosphole ligand, (R,R)-MeO-BIBOP. A cationic cobalt(I) complex of this ligand is a very efficient (TON >960) catalyst while also providing excellent regioselectivities (rr >98:2) and enantioselectivities (er >98:2) for a broad range of substrates. A detailed computational investigation of the reactions using Co complexes from two widely different ligands (BenzP* and MeO-BIBOP) employing the B3LYP-D3 density functional theory provides key insights into the mechanism and the origins of selectivities. The computational results are in full agreement with the experiments. For the complexes we have examined thus far, the relative stabilities of the diastereomeric diene-bound complexes [(L*)Co(η4-diene)]+ lead to the initial diastereofacial selectivity, which in turn is retained in the subsequent steps, providing exceptional enantioselectivity for the reactions.
Collapse
Affiliation(s)
- Mahesh M Parsutkar
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Subhajit Bhunia
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Mayukh Majumder
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Remy F Lalisse
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Christopher M Hadad
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - T V RajanBabu
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
18
|
Roh B, Farah AO, Kim B, Feoktistova T, Moeller F, Kim KD, Cheong PHY, Lee HG. Stereospecific Acylative Suzuki–Miyaura Cross-Coupling: General Access to Optically Active α-Aryl Carbonyl Compounds. J Am Chem Soc 2023; 145:7075-7083. [PMID: 37016901 DOI: 10.1021/jacs.3c00637] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
A novel strategy for the stereospecific Pd-catalyzed acylative cross-coupling of enantiomerically enriched alkylboron compounds has been developed. The protocol features an extremely high level of enantiospecificity to allow facile access to synthetically challenging and valuable chiral ketones and carboxylic acid derivatives. The use of a sterically encumbered and electron-rich phosphine ligand proved to be crucial for the success of the reaction. Furthermore, on the basis of experimental and computational studies, a unique mechanism for the transmetalation, assisted by the noncovalent interactions of the C(sp3)-based organoboron reagent, has been identified.
Collapse
Affiliation(s)
- Byeongdo Roh
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Abdikani Omar Farah
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331-2145, United States
| | - Beomsu Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Taisiia Feoktistova
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331-2145, United States
| | - Finn Moeller
- Department of Chemistry, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Kyeong Do Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Paul Ha-Yeon Cheong
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331-2145, United States
| | - Hong Geun Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
19
|
Bao Z, Huang M, Xu Y, Zhang X, Wu YD, Wang J. Selective Formal Carbene Insertion into Carbon-Boron Bonds of Diboronates by N-Trisylhydrazones. Angew Chem Int Ed Engl 2023; 62:e202216356. [PMID: 36576426 DOI: 10.1002/anie.202216356] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/22/2022] [Accepted: 12/28/2022] [Indexed: 12/29/2022]
Abstract
Bisborylalkanes play important roles in organic synthesis as versatile bifunctional reagents. The two boron moieties in these compounds can be selectively converted into other functional groups through cross-coupling, oxidation or radical reactions. Thus, the development of efficient methods for synthesizing bisborylalkanes is highly demanded. Herein we report a new strategy to access bisborylalkanes through the reaction of N-trisylhydrazones with diboronate, in which the bis(boryl) methane is transformed into 1,2-bis(boronates) via formal carbene insertion. Since the N-trisylhydrazones can be readily derived from the corresponding aldehydes, this strategy represents a practical synthesis of 1,2-diboronates with broad substrate scope. Mechanistic studies reveal an unusual neighboring group effect of 1,1-bis(boronates), which accounts for the observed regioselectivity when unsymmetric 1,1-diboronates are applied.
Collapse
Affiliation(s)
- Zhicheng Bao
- Beijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing, 100871, China
| | - Meirong Huang
- Shenzhen Bay Laboratory, Shenzhen, 518132, P. R. China.,Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Yan Xu
- Beijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing, 100871, China
| | - Xinhao Zhang
- Shenzhen Bay Laboratory, Shenzhen, 518132, P. R. China.,Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Yun-Dong Wu
- Shenzhen Bay Laboratory, Shenzhen, 518132, P. R. China.,Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Jianbo Wang
- Beijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing, 100871, China
| |
Collapse
|
20
|
Pavlíčková T, Stöckl Y, Marek I. Synthesis and Functionalization of Tertiary Propargylic Boronic Esters by Alkynyllithium-Mediated 1,2-Metalate Rearrangement of Borylated Cyclopropanes. Org Lett 2022; 24:8901-8906. [PMID: 36446049 PMCID: PMC9791689 DOI: 10.1021/acs.orglett.2c03756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Indexed: 11/30/2022]
Abstract
Implementing the use of alkynyllithium reagents in a stereospecific 1,2-metalate rearrangement-mediated ring opening of polysubstituted cyclopropyl boronic esters provides a variety of tertiary pinacol boranes bearing adjacent tertiary or quaternary carbon stereocenters with high levels of diastereomeric purity. The potential of this strategy was demonstrated through a selection of α- and γ-functionalization of the propargyl boronic esters.
Collapse
Affiliation(s)
- Tereza Pavlíčková
- Schulich Faculty of Chemistry, Technion − Israel Institute of Technology, Technion City, Haifa 3200009, Israel
| | - Yannick Stöckl
- Schulich Faculty of Chemistry, Technion − Israel Institute of Technology, Technion City, Haifa 3200009, Israel
| | - Ilan Marek
- Schulich Faculty of Chemistry, Technion − Israel Institute of Technology, Technion City, Haifa 3200009, Israel
| |
Collapse
|
21
|
Xu N, Kong Z, Wang JZ, Lovinger GJ, Morken JP. Copper-Catalyzed Coupling of Alkyl Vicinal Bis(boronic Esters) to an Array of Electrophiles. J Am Chem Soc 2022; 144:17815-17823. [PMID: 36137527 PMCID: PMC10436226 DOI: 10.1021/jacs.2c02817] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A neighboring boronate group in the substrate provides a dramatic rate acceleration in transmetalation to copper and thereby enables organoboronic esters to participate in unprecedented site-selective cross-couplings. This cross-coupling operates under practical experimental conditions and allows for coupling between vicinal bis(boronic esters) and allyl, alkynyl, and propargyl electrophiles as well as a simple proton. Because the reactive substrates are vicinal bis(boronic esters), the cross-coupling described herein provides an expedient new method for the construction of boron-containing reaction products from alkenes. Mechanistic experiments suggest that chelated cyclic ate complexes may play a role in the transmetalation.
Collapse
Affiliation(s)
- Ningxin Xu
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Ziyin Kong
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Johnny Z Wang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Gabriel J Lovinger
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - James P Morken
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
22
|
Zhu J, Wang Y, Charlack AD, Wang YM. Enantioselective and Diastereodivergent Allylation of Propargylic C-H Bonds. J Am Chem Soc 2022; 144:15480-15487. [PMID: 35976157 PMCID: PMC9437123 DOI: 10.1021/jacs.2c07297] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An iridium-catalyzed stereoselective coupling of allylic ethers and alkynes to generate 3,4-substituted 1,5-enynes is reported. Under optimized conditions, the coupling products are formed with excellent regio-, diastereo-, and enantioselectivities, and the protocol is functional group tolerant. Moreover, we report conditions that allow the reaction to proceed with complete reversal of diastereoselectivity. Mechanistic studies are consistent with an unprecedented dual role for the iridium catalyst, enabling the propargylic deprotonation of the alkyne through π-coordination, as well as the generation of a π-allyl species from the allylic ether starting material.
Collapse
Affiliation(s)
- Jin Zhu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania15260, United States
| | - Yidong Wang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania15260, United States
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu225002, China
| | - Aaron D Charlack
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania15260, United States
| | - Yi-Ming Wang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania15260, United States
| |
Collapse
|
23
|
Viso A, Fernández de la Pradilla R, Tortosa M. Site-Selective Functionalization of C(sp 3) Vicinal Boronic Esters. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alma Viso
- Instituto de Química Orgánica General, IQOG-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
| | | | - Mariola Tortosa
- Departamento de Química Orgánica and Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid 28049, Spain
| |
Collapse
|