1
|
He CC, Xu SG, Zeng J, Huang W, Yao Y, Zhao YJ, Xu H, Yang XB. A graph-based statistical model for carbon nanostructures. J Chem Phys 2025; 162:154104. [PMID: 40231869 DOI: 10.1063/5.0244219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 03/24/2025] [Indexed: 04/16/2025] Open
Abstract
Energy degeneracy in physical systems may be induced by symmetries of the Hamiltonian, and the resonance of degeneracy states in carbon nanostructures can effectively enhance the stability of the system. Combining the octet rule, we introduce a statistical model to determine the physical properties by lifting the energy degeneracy in carbon nanostructures. This model offers a direct path to accurately ascertain electron density distributions in quantum systems, akin to how charge density is used in density functional theory to deduce system properties. Our methodology diverges from traditional quantum mechanics, focusing instead on this unique statistical model by maximizing bonding entropy to determine the fundamental properties of materials. Applied to carbon nanoclusters and graphynes, our model not only precisely predicts bonding energies and electron density without relying on external parameters but also enhances the prediction of electronic structures through bond occupancy numbers, which act as effective hopping integrals. This innovation offers insights into the structural properties and quantum behavior of electrons across various dimensions.
Collapse
Affiliation(s)
- Chang-Chun He
- Schol of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, China
| | - Shao-Gang Xu
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
- Quantum Science Center of Guangdong-Hong Kong-Macao Greater Bay Area (Guangdong), Shenzhen 518045, People's Republic of China
| | - Jiarui Zeng
- Schol of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, China
| | - Weijie Huang
- Schol of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, China
| | - Yao Yao
- Schol of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, China
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Yu-Jun Zhao
- Schol of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, China
| | - Hu Xu
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
- Quantum Science Center of Guangdong-Hong Kong-Macao Greater Bay Area (Guangdong), Shenzhen 518045, People's Republic of China
| | - Xiao-Bao Yang
- Schol of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
2
|
Gapin A, Chatir E, Alévêque O, Pasgrimaud C, David AHG, De Maria A, Legros M, Le Bras L, Levillain E, Goujon A. Synthesis of Electron-Deficient BisAzaCoroneneDiimide-Conjugated Polymers by Light-Locking Dynamic Covalent Bonds. J Am Chem Soc 2025; 147:12218-12227. [PMID: 40156551 DOI: 10.1021/jacs.5c01351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2025]
Abstract
We present a novel light-locked dynamic covalent polymerization methodology to synthesize conjugated polymers based on BisAzaCoroneneDiimides (BACDs). This metal-free process converts reversible poly imines into kinetically locked conjugated polymers using visible light, generating minimal side products. By incorporating aldehyde-functionalized comonomers, the approach enables the creation of diverse n-type semiconducting polymers with tunable optical band gaps and low LUMO levels. The polymers exhibit exceptional thermal, electrochemical, and photostability with strong interchain interactions upon electrochemical reduction observed in solution, attributed to the BACD core. Broad absorption from the visible to the near-infrared range underscores their potential in charge and energy transport applications for organic electronics. This scalable, sustainable strategy unlocks access to a versatile class of n-type diimide polymers.
Collapse
Affiliation(s)
- Adèle Gapin
- University Angers, CNRS, MOLTECH-Anjou, SFR MATRIX, F-49000 Angers, France
| | - Elarbi Chatir
- University Angers, CNRS, MOLTECH-Anjou, SFR MATRIX, F-49000 Angers, France
| | - Olivier Alévêque
- University Angers, CNRS, MOLTECH-Anjou, SFR MATRIX, F-49000 Angers, France
| | - Clara Pasgrimaud
- University Angers, CNRS, MOLTECH-Anjou, SFR MATRIX, F-49000 Angers, France
| | - Arthur H G David
- University Angers, CNRS, MOLTECH-Anjou, SFR MATRIX, F-49000 Angers, France
| | - Anaïs De Maria
- Université de Strasbourg, CNRS, Institut Charles Sadron, F 67000 Strasbourg, France
| | - Mélanie Legros
- Université de Strasbourg, CNRS, Institut Charles Sadron, F 67000 Strasbourg, France
| | - Laura Le Bras
- Université Marie et Louis Pasteur, CNRS, Chrono-environnement (UMR 6249), F-25000 Besançon, France
| | - Eric Levillain
- University Angers, CNRS, MOLTECH-Anjou, SFR MATRIX, F-49000 Angers, France
| | - Antoine Goujon
- University Angers, CNRS, MOLTECH-Anjou, SFR MATRIX, F-49000 Angers, France
| |
Collapse
|
3
|
Li C, Sun Y, Xue N, Guo Y, Jiang R, Wang Y, Liu Y, Jiang L, Liu X, Wang Z, Jiang W. BN-Acene Ladder with Enhanced Charge Transport for Organic Field-Effect Transistors. Angew Chem Int Ed Engl 2025; 64:e202423002. [PMID: 39726333 DOI: 10.1002/anie.202423002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/16/2024] [Accepted: 12/26/2024] [Indexed: 12/28/2024]
Abstract
The in-depth research on the charge transport properties of BN-embedded polycyclic aromatic hydrocarbons (BN-PAHs) still lags far behind studies of their emitting properties. Herein, we report the successfully synthesis of novel ladder-type BN-PAHs (BCNL1 and BCNL2) featuring a highly ordered BC3N2 acene unit, achieved via a nitrogen-directed tandem C-H borylation. Single-crystal X-ray diffraction analysis unambiguously revealed their unique and compact herringbone packing structures. Micro-sized single-crystalline organic field-effect transistors (OFETs) demonstrated that an enhanced charge transport capability, with BCNL2 achieving a hole mobility of up to 0.62 cm2 V-1 s-1-three orders of magnitude higher than that of BCNL1 (μh max=6 × 10-4 cm2 V-1 s-1), ranking among the highest values for BN-PAHs-based OFETs. Detailed calculations attribute this significant enhancement in the hole mobility to the marked reduction in reorganization energy (λ) of BCNL2, resulting from the five-membered pyrrole ring annulation and molecular skeleton elongation. This work provides insight into molecular design principles for potential BN-PAHs in optoelectronic applications.
Collapse
Affiliation(s)
- Chenglong Li
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, P. R. China
| | - Yanan Sun
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Ning Xue
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, P.R. China
| | - Yongkang Guo
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, P. R. China
| | - Ruijun Jiang
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, P. R. China
| | - Yuanhui Wang
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, P. R. China
| | - Yujian Liu
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, P.R. China
| | - Lang Jiang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Xuguang Liu
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, P. R. China
| | - Zhaohui Wang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, P.R. China
| | - Wei Jiang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, P.R. China
| |
Collapse
|
4
|
Qiu SQ, Yao TL, Xiao Y, Parthasarathy G, Xu C, Wu Y, Xin H, Ouyang G, Liu MH, Yu ZQ. Pathway-Dependent Control of Chiral Phases for Higher Performance and Inverted Circularly Polarized Luminescence. Angew Chem Int Ed Engl 2025:e202500956. [PMID: 40055969 DOI: 10.1002/anie.202500956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/05/2025] [Accepted: 03/06/2025] [Indexed: 03/18/2025]
Abstract
Chiral luminescent materials have garnered increasing attention for their exceptional ability to emit circularly polarized luminescence (CPL) along with their excellent applications. Here, a cyclohexylidene scaffold was conceptualized as a chiral source for developing higher-performance CPL materials in terms of simultaneously enhanced quantum yields (PLQYs) and dissymmetry factor. It was found that the axially chiral scaffold attached with a cyanostilbene showed a pathway-dependent assembly route to form chiral luminescent liquid crystals and crystals upon fast and slow cooling, respectively. A significant enhancement of PLQYs (98.4%) and a dissymmetry factor (glum) value (2.1 × 10-2), and consequently, a high figure of merit (FM) of up to 0.02 was achieved in the chiral liquid crystal phase. Moreover, the liquid crystal and crystal phases showed the opposite CPL signals while maintaining the same circular dichroism signs. Through a thorough evaluation of UV absorption, CPL emission, wide-angle X-ray diffraction, and theoretical calculations, it was revealed that the reversal of the CPL sign was linked to distinct phases of excited state molecular packing. This research utilized a novel intrinsically axially chiral source to develop a pathway-dependent and higher-performance CPL materials.
Collapse
Affiliation(s)
- Sheng-Qi Qiu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Tian-Lin Yao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yao Xiao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Gayathri Parthasarathy
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Chao Xu
- MOE Key Laboratory of Environmental Theoretical Chemistry & Key Laboratory of Chemical Pollution and Environmental Safety, School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Yue Wu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Hong Xin
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Guanghui Ouyang
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, China
| | - Ming-Hua Liu
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, China
| | - Zhen-Qiang Yu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
5
|
Li M, Li W, Zhou J, Tian X, Li H, Jiang Z, Liu D, Liu Y, Wang Y, Shi Y. N-oxide-Functionalized Bipyridines as Strong Electron-Deficient Units to Construct High-Performance n-Type Conjugated Polymers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2414059. [PMID: 39804963 PMCID: PMC11884590 DOI: 10.1002/advs.202414059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/09/2024] [Indexed: 01/16/2025]
Abstract
Developing low-cost unipolar n-type organic thin-film transistors (OTFTs) is necessary for logic circuits. To achieve this objective, the usage of new electron-deficient building blocks with simple structure and easy synthetic route is desirable. Among all electron-deficient building units, N-oxide-functionalized bipyridines can be prepared through a simple oxidized transformation of bipyridines. However, employing N-oxide-functionalized bipyridines as the building unit to construct efficient N-type polymers has been overlooked. This gap strongly encourages us to design and synthesize two new N-oxide building blocks, 5,5'-dibromo-[2,2'-bipyridine] 1-oxide (BPyO) and 5,5'-dibromo-[2,2'-bipyridine] 1,1'-dioxide (BPyDO), through the oxidation of sp2-N in 2,2'-bipyridine. The single-crystal X-ray diffraction shows that BPyO and BPyDO possess planar structure with strong π-stacking, which is beneficial for charge transport. Incorporation of these building blocks into acceptor-acceptor backbones leads to two new polymers, namely P(DPP-BPyO) and P(DPP-BPyDO). Both P(DPP-BPyO) and P(DPP-BPyDO) possess lower frontier molecular orbital energy levels than the non-oxide polymer P(DPP-BPy). Consequently, the transition from P(DPP-BPy) (without oxide group) to P(DPP-BPyO) (mono-oxide group) and then to P(DPP-BPyDO) (dioxide group) can decrease hole-transport performance and gradually switch the transport nature from p-type to n-type via ambipolar. These results prove that the introduction of sp2-N oxide groups in building units would be a promising strategy to approach high-performance n-type polymers.
Collapse
Affiliation(s)
- Mingwei Li
- Key Laboratory of Functional Molecular SolidsMinistry of EducationSchool of Chemistry and Materials ScienceAnhui Normal UniversityNo.189Jiuhua South RoadWuhuAnhui241002China
| | - Wenhao Li
- Department of Materials ScienceState Key Laboratory of Molecular Engineering of PolymersLaboratory of Advanced MaterialsFudan University2005Songhu RoadShanghai200438China
| | - Junkang Zhou
- Key Laboratory of Functional Molecular SolidsMinistry of EducationSchool of Chemistry and Materials ScienceAnhui Normal UniversityNo.189Jiuhua South RoadWuhuAnhui241002China
| | - Xiaowen Tian
- Key Laboratory of Functional Molecular SolidsMinistry of EducationSchool of Chemistry and Materials ScienceAnhui Normal UniversityNo.189Jiuhua South RoadWuhuAnhui241002China
| | - Hongxiang Li
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Zhen Jiang
- Department of Materials ScienceState Key Laboratory of Molecular Engineering of PolymersLaboratory of Advanced MaterialsFudan University2005Songhu RoadShanghai200438China
| | - Di Liu
- Department of Materials ScienceState Key Laboratory of Molecular Engineering of PolymersLaboratory of Advanced MaterialsFudan University2005Songhu RoadShanghai200438China
| | - Yunqi Liu
- Department of Materials ScienceState Key Laboratory of Molecular Engineering of PolymersLaboratory of Advanced MaterialsFudan University2005Songhu RoadShanghai200438China
| | - Yang Wang
- Department of Materials ScienceState Key Laboratory of Molecular Engineering of PolymersLaboratory of Advanced MaterialsFudan University2005Songhu RoadShanghai200438China
| | - Yongqiang Shi
- Key Laboratory of Functional Molecular SolidsMinistry of EducationSchool of Chemistry and Materials ScienceAnhui Normal UniversityNo.189Jiuhua South RoadWuhuAnhui241002China
| |
Collapse
|
6
|
You X, Liu H, Zhou H, Chen X, Xu J, Wang D, Wu D, Xia J. Synthesis, Stable Radical Anion and Energy Storage Performance of Pentacene Tetraimides. Angew Chem Int Ed Engl 2025; 64:e202417362. [PMID: 39278829 DOI: 10.1002/anie.202417362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/13/2024] [Accepted: 09/15/2024] [Indexed: 09/18/2024]
Abstract
Imide functionalization has been widely proved to be an effective approach to enrich optoelectronic properties of polycyclic aromatic hydrocarbons (PAHs). However, appending multiple imide groups onto linear acenes is still a synthetic challenge. Herein, we demonstrate that by taking advantage of a "breaking and mending" strategy, a linear pentacene tetraimides (PeTI) was synthesized through a three-step sequence started from the naphthalene diimides (NDI). Compared with the parent pentacene, PeTI shows a deeper-lying lowest unoccupied molecular orbital (LUMO) energy level, narrower band gap and better stability. The redox behavior of PeTI was firstly evaluated by generating a stable radical anion specie with the assistance of cobaltocene (CoCp2), and the structure of the electron transfer (ET) complex was confirmed by the X-ray crystallography. Moreover, due to the presence of multiple redox-active sites, we are able to show that the state-of-the-art energy storage performance of the dealkylated PeTI (designated as PeTCTI) in organic potassium ion batteries (OPIBs) as an anode. Our results shed light on the application of multiple imides functionalized linear acenes, and the reported synthetic strategy provides an effective way to get access to longer nanoribbon imides with fascinating electronic properties.
Collapse
Affiliation(s)
- Xiaoxiao You
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan, 430070, China
| | - Hang Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan, 430070, China
| | - Hao Zhou
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Xingyu Chen
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Jingwen Xu
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Dongxue Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan, 430070, China
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, China
| | - Di Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan, 430070, China
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, China
| | - Jianlong Xia
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan, 430070, China
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, China
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| |
Collapse
|
7
|
Teichmann B, Sárosi M, Shoyama K, Niyas MA, Dubey RK, Würthner F. 'Invisible' Molecular Dynamics Revealed for a Conformationally Chiral π-Stacked Perylene Bisimide Foldamer. Angew Chem Int Ed Engl 2025; 64:e202414069. [PMID: 39382569 DOI: 10.1002/anie.202414069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/09/2024] [Accepted: 10/09/2024] [Indexed: 10/10/2024]
Abstract
Whilst energetic and kinetic aspects of folding processes are meanwhile well understood for natural biomacromolecules, the folding dynamics in so far studied artificial foldamer counterparts remain largely unexplored. This is due to the low energy barriers between their conformational isomers that make the dynamic processes undetectable with conventional methods such as UV/Vis absorption, fluorescence, and NMR spectroscopy, making such processes 'invisible'. Here we present an asymmetric perylene bisimide dimer (bis-PBI 1) that possesses conformational chirality in its folded state. Owing to the large interconversion barrier (≥116 kJ mol-1), four stereoisomers could be separated and isolated. Since the interconversion between these stereoisomers requires the foldamer to first open and then to re-fold, the transformation of one stereoisomer into others allowed us to 'visualize' the dynamics of folding with time and determine its lifetimes and the energetic barriers associated with the folding process. Supported by quantum chemical calculations, we identified the open structure to be only a fleetingly metastable state of higher energy. Our experimental observation of the kinetics associated with the molecular dynamics in the PBI foldamer advances the fundamental understanding of folding in synthetic foldamers and paves the way for the design of smart functional materials.
Collapse
Affiliation(s)
- Ben Teichmann
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Menyhárt Sárosi
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
- Center for Nanosystems Chemistry, Universität Würzburg, Theodor-Boveri-Weg, 97074, Würzburg, Germany
| | - Kazutaka Shoyama
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
- Center for Nanosystems Chemistry, Universität Würzburg, Theodor-Boveri-Weg, 97074, Würzburg, Germany
| | - M A Niyas
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Rajeev K Dubey
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Frank Würthner
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
- Center for Nanosystems Chemistry, Universität Würzburg, Theodor-Boveri-Weg, 97074, Würzburg, Germany
| |
Collapse
|
8
|
Li L, Xu K, Qi T. D-π-A Type [7]Helicene-like Imide Derivatives with Tunable Photophysical Properties and Circularly Polarized Luminescence. Chemistry 2024; 30:e202403292. [PMID: 39367805 DOI: 10.1002/chem.202403292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/07/2024]
Abstract
Helicenes and their derivatives show great application prospects as circularly polarized luminescence (CPL) materials, but their fluorescence quantum yields (ΦFLs) need a breakthrough urgently. Herein, we reported a series of D-π-A type helical luminescent emitters by combining the [7]helicene-like imide acceptor with five different donors. The obtained five emitters display blue-to-orange luminescence and markedly enhanced ΦFL. Notably, TPA-NiBTI exhibits the maximum ΦFL in solution, while TPE-NiBTI achieves a maximum ΦFL in the solid state. Their two pairs of enantiomers, (P/M)-TPA-NiBTI and (P/M)-TPE-NiBTI, exhibit remarkable CPL activities, and their doped PS film both displayed doubled ΦFLs. Among them, [(P/M)-TPE-NiBTI]-doped PS film exhibits the maximum luminescence dissymmetry factor (|glum|) value of 9.0×10-4 and the maximum ΦFL of 22 %. This molecular design strategy presents a promising approach to improving the ΦFL of helicene derivatives, thereby facilitating their potential application into chiral optoelectronic devices.
Collapse
Affiliation(s)
- Linkuo Li
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Kunhan Xu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Ting Qi
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
| |
Collapse
|
9
|
Kumar R, Chmielewski PJ, Lis T, Czarnecki M, Stępień M. Pentacosacyclenes: cruciform molecular nanocarbons based on cyclooctatetraene. Chem Sci 2024:d4sc05938g. [PMID: 39464614 PMCID: PMC11499954 DOI: 10.1039/d4sc05938g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/07/2024] [Indexed: 10/29/2024] Open
Abstract
Pentacosacyclene (PC) and pentacosacyclene tetraimide (PCTI) were obtained in concise syntheses involving radial extension of tridecacyclene. PC is an electron-rich hydrocarbon with a C88 π-conjugated framework, whereas PCTI is electron-deficient and contains a C96N4 core. PC and PCTI both have non-planar saddle-shaped conformations, and PC was found to self-assemble with C60 to produce a uniquely structured supramolecular crystalline phase. In solution, PCTI undergoes eight single-electron reductions, while PC exhibits two reversible oxidations and three reversible reduction events. Chemically generated anions of PC and PCTI showcase extended near-infrared to infrared absorptions, with the lowest energy bands observed at >3200 nm for the PCTI monoanion and ca. 2800 nm for the PCTI dianion. The electronic and redox properties of pentacosacyclenes can be explained using molecular orbital and valence bond theories as originating from changes in the local aromaticity of five- and eight-membered rings.
Collapse
Affiliation(s)
- Rakesh Kumar
- Wydział Chemii, Uniwersytet Wrocławski ul. F. Joliot-Curie 14 50-383 Wrocław Poland
| | - Piotr J Chmielewski
- Wydział Chemii, Uniwersytet Wrocławski ul. F. Joliot-Curie 14 50-383 Wrocław Poland
| | - Tadeusz Lis
- Wydział Chemii, Uniwersytet Wrocławski ul. F. Joliot-Curie 14 50-383 Wrocław Poland
| | - Mirosław Czarnecki
- Wydział Chemii, Uniwersytet Wrocławski ul. F. Joliot-Curie 14 50-383 Wrocław Poland
| | - Marcin Stępień
- Wydział Chemii, Uniwersytet Wrocławski ul. F. Joliot-Curie 14 50-383 Wrocław Poland
| |
Collapse
|
10
|
Huang HJ, Tian KL, Wong SQ, Lian NX, Wang J, Sun HJ, Bermeshev MV, Zhong LW, Chen Z, Ren XK. Room-Temperature Liquid Crystalline Tetraphenylethylene-Surfactant Complex with Chiral Supramolecular Structure and Tunable Circularly Polarized Luminescence. Chemistry 2024; 30:e202402667. [PMID: 39109456 DOI: 10.1002/chem.202402667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Indexed: 09/25/2024]
Abstract
A novel room-temperature liquid crystal of tetraphenylethylene derivative (TPE-DHAB) was synthesized using an ionic self-assembly strategy. The TPE-DHAB complex exhibits typical aggregation-induced emission properties and a unique helical supramolecular structure. Moreover, the generation and handedness inversion of circularly polarized luminescence (CPL) can be achieved through further chiral solvation, providing a facile approach to fabricate room-temperature liquid crystalline materials with controllable supramolecular structures and tunable CPL properties through a synergistic strategy of ionic self-assembly and chiral solvation process.
Collapse
Affiliation(s)
- Han-Jun Huang
- School of Chemical Engineering and Technology, Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin, 300350, P. R. China
| | - Kai-Li Tian
- School of Chemical Engineering and Technology, Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin, 300350, P. R. China
| | - Shi-Qing Wong
- School of Chemical Engineering and Technology, Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin, 300350, P. R. China
| | - Ning-Xiao Lian
- School of Chemical Engineering and Technology, Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin, 300350, P. R. China
| | - Jie Wang
- Zhejiang Institute of Tianjin University, Ningbo, 315201, P. R. China
| | - Hai-Jun Sun
- School of Chemical Engineering and Technology, Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin, 300350, P. R. China
- Zhejiang Institute of Tianjin University, Ningbo, 315201, P. R. China
| | - Maxim V Bermeshev
- A. V. Topchiev Institute of Petrochemical Synthesis of Russian Academy of Sciences, Moscow, 119991, Russia
| | - Lu-Wei Zhong
- Huajin Aramco Petrochemical Company Limited, Panjin, 124021, P. R. China
| | - Zhijian Chen
- School of Chemical Engineering and Technology, Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin, 300350, P. R. China
| | - Xiang-Kui Ren
- School of Chemical Engineering and Technology, Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin, 300350, P. R. China
- Zhejiang Institute of Tianjin University, Ningbo, 315201, P. R. China
| |
Collapse
|
11
|
Liu P, Wu MX, Yu ML, Kang H, Huang B, Yang HB, Zhao XL, Shi X. Synthesis of Polycyclic Aromatic Compounds by Electrocyclization-Dehydrogenation of Diradicaloids. Org Lett 2024; 26:7914-7919. [PMID: 39240235 DOI: 10.1021/acs.orglett.4c02886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Herein, we present a novel and efficient method for the synthesis of two new polycyclic aromatic hydrocarbons, 1 and 2, through the electrocyclization-dehydrogenation of diradicaloids. The proposed oxidative electrocyclization via intermediate diradicaloids is monitored by electron paramagnetic resonance and ultraviolet-visible spectroscopy. Interestingly, 1 exhibits chirality because of its inherent helical skeleton, and 2 features long-wavelength absorption and near-infrared emission properties due to its extended π-conjugation.
Collapse
Affiliation(s)
- Peipei Liu
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Meng-Xiang Wu
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Meng-Ling Yu
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Hao Kang
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Bin Huang
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Hai-Bo Yang
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Xiao-Li Zhao
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Xueliang Shi
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| |
Collapse
|
12
|
He HX, Zhou HY, Wang YH, Qin T, Liu B. Perylene Diimide-Embedded Chiral Carbaporphyrin. Org Lett 2024; 26:7695-7700. [PMID: 39214602 DOI: 10.1021/acs.orglett.4c02818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Herein, we report the synthesis of a novel carbaporphyrin incorporating perylene diimide (PDI) and dipyrromethane units. The twisted plane of the PDI subunits imbues carbaporphyrin with intriguing conformational chirality and stable chiroptical properties. Both experimental and theoretical studies reveal that the unique properties arise from the rigidly conjugated macrocyclic architecture and the reduced interchromophoric distance. This work successfully integrates PDIs into carbaporphyrins, thereby expanding their structural diversity and functional potential.
Collapse
Affiliation(s)
- Hua-Xi He
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, China
| | - He-Ye Zhou
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, China
| | - Yu-Hua Wang
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, China
| | - Tao Qin
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, China
| | - Bin Liu
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, China
| |
Collapse
|
13
|
Ren P, Chen L, Sun C, Hua X, Luo N, Fan B, Chen P, Shao X, Zhang HL, Liu Z. Linear Non-benzenoid Isomer of Acene Fusing Chrysene with Azulene Units. J Phys Chem Lett 2024; 15:8410-8419. [PMID: 39116005 DOI: 10.1021/acs.jpclett.4c01917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Non-benzenoid polycyclic aromatic hydrocarbons (PAHs) have received considerable attention owing to their distinctive optical and electrical properties. Nevertheless, the synthesis and optoelectronic application of non-benzenoid PAHs remain challenging. Herein, we present a facile synthesis of linear non-benzenoid PAH with an armchair edge, diACh, by fusing chrysene with two azulene units. We systematically investigated the optical and electrical properties, which were also compared to its isomers, including benzenoid and non-benzenoid zigzag edge isomers. diACh exhibits global aromaticity, good planarity, and suitable highest occupied molecular orbital/lowest unoccupied molecular orbital energy levels. The protonation of diACh in solution successively forms a stable tropylium cation and dication. Moreover, the neutral, cationic, and dicationic states of diACh can be transformed with remarkable reversibility during the protonation-deprotonation process, as confirmed by ultraviolet-visible absorptions, fluorescence spectra, 1H nuclear magnetic resonance, and theoretical calculations. Additionally, we fabricate p-type organic field-effect transistor (OFET) devices based on diACh with hole mobility up to 0.026 cm2 V-1 s-1, and we further develop OFET-based acid vapor sensors with good sensitivity, recyclability, and selectivity. These findings underscore the unique properties of linear non-benzenoid PAHs with an armchair edge engendered by the fusion of azulene with the acene backbone, showcasing prospective applications in organic optoelectronics.
Collapse
Affiliation(s)
- Peng Ren
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Liangliang Chen
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, People's Republic of China
| | - Chunlin Sun
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Xinqiang Hua
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Nan Luo
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Baojin Fan
- College of Chemistry and Chemical Engineering Institute of Polymers and Energy Chemistry, Nanchang University, Nanchang, Jiangxi 330031, People's Republic of China
| | - Pinyu Chen
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Xiangfeng Shao
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Hao-Li Zhang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Zitong Liu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| |
Collapse
|
14
|
Liu Y, Yuan L, Fan Z, Yang J, Wang Y, Dou C. Boron-doped double [6]carbohelicenes: a combination of helicene and boron-doped π-systems. Chem Sci 2024; 15:12819-12826. [PMID: 39148780 PMCID: PMC11322965 DOI: 10.1039/d4sc03124e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/07/2024] [Indexed: 08/17/2024] Open
Abstract
Helicenes, featuring unique helical structures, have a long history as three-dimensional polycyclic aromatic hydrocarbons (PAHs). Incorporation of heteroatoms into helicenes may alter their electronic structures and achieve unexpected physical properties. Here, we disclose fusion of boron-doped π-systems onto helicenes as an efficient strategy to design boron-doped carbohelicenes. Two boron-doped double [6]carbohelicenes were synthesized, which possess the C58B2 and C86B2 polycyclic π-skeletons containing two [6]helicene subunits, respectively. The C86B2 molecule thus represents the largest-size helicene-based boron-doped PAH. A thorough investigation reveals that the helicene moieties and boron atoms endow the polycyclic π-systems with delocalized electronic structures, and well-tunable ground-state and excited-state photophysical properties. It is notable that the C58B2 molecule displays excited-state stimulated emission behavior and amplified spontaneous emission (ASE) properties in not only the blend films with various doped concentrations but also the pure film. To our knowledge, it is the first example of ASE-active [n]helicene (n ≥ 6), and moreover, such robust ASE performance has rarely been observed in PAHs, demonstrating the promising utility of boron-doped carbohelicenes for laser materials.
Collapse
Affiliation(s)
- Yujia Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 P. R. China
| | - Liuzhong Yuan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 P. R. China
| | - Zengming Fan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 P. R. China
| | - Jingyuan Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 P. R. China
| | - Yue Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 P. R. China
| | - Chuandong Dou
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 P. R. China
| |
Collapse
|
15
|
Niyas MA, Garain S, Shoyama K, Würthner F. Room-Temperature Near-Infrared Phosphorescence from C 64 Nanographene Tetraimide by π-Stacking Complexation with Platinum Porphyrin. Angew Chem Int Ed Engl 2024; 63:e202406353. [PMID: 38713529 DOI: 10.1002/anie.202406353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 05/09/2024]
Abstract
Near-Infrared (NIR) phosphorescence at room temperature is challenging to achieve for organic molecules due to negligible spin-orbit coupling and a low energy gap leading to fast non-radiative transitions. Here, we show a supramolecular host-guest strategy to harvest the energy from the low-lying triplet state of C64 nanographene tetraimide 1. 1H NMR and X-ray analysis confirmed the 1 : 2 stoichiometric binding of a Pt(II) porphyrin on the two π-surfaces of 1. While the free 1 does not show emission in the NIR, the host-guest complex solution shows NIR phosphorescence at 77 K. Further, between 860-1100 nm, room temperature NIR phosphorescence (λmax=900 nm, τavg=142 μs) was observed for a solid-state sample drop-casted from a preformed complex in solution. Theoretical calculations reveal a non-zero spin-orbit coupling between isoenergetic S1 and T3 of π-stacked [1 ⋅ Pt(II) porphyrin] complex. External heavy-atom-induced spin-orbit coupling along with rigidification and protection from oxygen in the solid-state promotes both the intersystem crossing from the first excited singlet state into the triplet manifold and the NIR phosphorescence from the lowest triplet state of 1.
Collapse
Affiliation(s)
- M A Niyas
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Swadhin Garain
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Kazutaka Shoyama
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
- Center for Nanosystems Chemistry (CNC), Universität Würzburg, Theodor-Boveri-Weg, 97074, Würzburg, Germany
| | - Frank Würthner
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
- Center for Nanosystems Chemistry (CNC), Universität Würzburg, Theodor-Boveri-Weg, 97074, Würzburg, Germany
| |
Collapse
|
16
|
Kingsbury CJ, Senge MO. Quantifying near-symmetric molecular distortion using symmetry-coordinate structural decomposition. Chem Sci 2024:d4sc01670j. [PMID: 39129773 PMCID: PMC11310747 DOI: 10.1039/d4sc01670j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 08/01/2024] [Indexed: 08/13/2024] Open
Abstract
We imagine molecules to be perfect, but rigidified units can be designed to bend from their ideal shape, discarding their symmetric elements as they progress through vibrations and larger, more permanent distortions. The shape of molecules is either simulated or measured by crystallography and strongly affects chemical properties but, beyond an image or tabulation of atom-to-atom distances, little is often discussed of the accessed conformation. We have simplified the process of shape quantification across multiple molecular types with a new web-accessible program - SCSD - through which a molecular subunit possessing near-symmetry can be dissected into symmetry coordinates with ease. This parameterization allows a common set of numbers for comparing and understanding molecular shape, and is a simple method for database analysis; this program is available at https://www.kingsbury.id.au/scsd.
Collapse
Affiliation(s)
- Christopher J Kingsbury
- School of Chemistry, Chair of Organic Chemistry, Trinity College Dublin, The University of Dublin, Trinity Biomedical Sciences Institute 152-160 Pearse Street Dublin D02R590 Ireland
| | - Mathias O Senge
- School of Chemistry, Chair of Organic Chemistry, Trinity College Dublin, The University of Dublin, Trinity Biomedical Sciences Institute 152-160 Pearse Street Dublin D02R590 Ireland
- Institute for Advanced Study (TUM-IAS), Technical University of Munich Lichtenberg-Str. 2a 85748 Garching Germany
| |
Collapse
|
17
|
Li J, Xue N, Gao S, Yang Y, Weng Z, Ju H, Wang Z, Li X, Jiang W. Dithio-Fused Boron Dipyrromethenes: Synthesis and Impact of S-Heteroaromatic Annulation Mode. Org Lett 2024; 26:5472-5477. [PMID: 38913068 DOI: 10.1021/acs.orglett.4c01757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Three dithio-fused boron dipyrromethenes (BODIPYs), DTFB-1, DTFB-2, and DTFB-3, in which symmetrically S-heteroaromatic ring units fused at [a], zigzag, and [b] bonds of the parent BODIPY core, respectively, were prepared from the facile and efficient post-functionalization of tetra-halogenated BODIPYs through Pd-catalyzed cyclization. Dithio-fusion at various positions of BODIPY effectively tunes their photophysical properties and single-crystal structural packing arrangements. The single-crystalline microribbons of DTFB-2 exhibit commendable hole mobilities in air, reaching up to 0.03 cm2 V-1 s-1.
Collapse
Affiliation(s)
- Jie Li
- School of Physical Science and Technology, Kunming University, Kunming, Yunnan 650214, People's Republic of China
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, Kunming, Yunnan 650214, People's Republic of China
| | - Ning Xue
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Shulin Gao
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, Kunming, Yunnan 650214, People's Republic of China
| | - Yanhua Yang
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, Kunming, Yunnan 650214, People's Republic of China
| | - Zhehui Weng
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, Kunming, Yunnan 650214, People's Republic of China
| | - Haidong Ju
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, Kunming, Yunnan 650214, People's Republic of China
| | - Zhaohui Wang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Xiangguang Li
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, Kunming, Yunnan 650214, People's Republic of China
| | - Wei Jiang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
18
|
Huang R, Liu T, Peng H, Liu J, Liu X, Ding L, Fang Y. Molecular design and architectonics towards film-based fluorescent sensing. Chem Soc Rev 2024; 53:6960-6991. [PMID: 38836431 DOI: 10.1039/d4cs00347k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
The past few decades have witnessed encouraging progress in the development of high-performance film-based fluorescent sensors (FFSs) for detecting explosives, illicit drugs, chemical warfare agents (CWAs), and hazardous volatile organic chemicals (VOCs), among others. Several FFSs have transitioned from laboratory research to real-world applications, demonstrating their practical relevance. At the heart of FFS technology lies the sensing films, which play a crucial role in determining the analytes and the resulting signals. The selection of sensing fluorophores and the fabrication strategies employed in film construction are key factors that influence the fluorescence properties, active-layer structures, and overall sensing behaviors of these films. This review examines the progress and innovations in the research field of FFSs over the past two decades, focusing on advancements in fluorophore design and active-layer structural engineering. It underscores popular sensing fluorophore scaffolds and the dynamics of excited state processes. Additionally, it delves into six distinct categories of film fabrication technologies and strategies, providing insights into their advantages and limitations. This review further addresses important considerations such as photostability and substrate effects. Concluding with an overview of the field's challenges and prospects, it sheds light on the potential for further development in this burgeoning area.
Collapse
Affiliation(s)
- Rongrong Huang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, West Chang'an Street, Xi'an, Shaanxi 710062, P. R. China.
- Fluorescence Research Group, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore.
| | - Taihong Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, West Chang'an Street, Xi'an, Shaanxi 710062, P. R. China.
| | - Haonan Peng
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, West Chang'an Street, Xi'an, Shaanxi 710062, P. R. China.
| | - Jing Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, West Chang'an Street, Xi'an, Shaanxi 710062, P. R. China.
| | - Xiaogang Liu
- Fluorescence Research Group, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore.
| | - Liping Ding
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, West Chang'an Street, Xi'an, Shaanxi 710062, P. R. China.
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, West Chang'an Street, Xi'an, Shaanxi 710062, P. R. China.
| |
Collapse
|
19
|
Liu X, Zhang H, Liu C, Wang Z, Zhang X, Yu H, Zhao Y, Li MJ, Li Y, He YL, He G. Commercializable Naphthalene Diimide Anolytes for Neutral Aqueous Organic Redox Flow Batteries. Angew Chem Int Ed Engl 2024; 63:e202405427. [PMID: 38603586 DOI: 10.1002/anie.202405427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/13/2024]
Abstract
Neutral aqueous organic redox flow batteries (AORFBs) hold the potential to facilitate the transition of renewable energy sources from auxiliary to primary energy, the commercial production of anolyte materials still suffers from insufficient performance of high-concentration and the high cost of the preparation problem. To overcome these challenges, this study provides a hydrothermal synthesis methodology and introduces the charged functional groups into hydrophobic naphthalene diimide cores, and prepares a series of high-performance naphthalene diimide anolytes. Under the synergistic effect of π-π stacking and H-bonding networks, the naphthalene diimide exhibits excellent structural stability and the highest water solubility (1.85 M for dex-NDI) reported to date. By employing the hydrothermal method, low-cost naphthalene diimides are successfully synthesized on a hundred-gram scale of $0.16 g-1 ($2.43 Ah-1), which is also the lowest price reported to date. The constructed full battery achieves a high electron concentration of 2.4 M, a high capacity of 54.4 Ah L-1, and a power density of 318 mW cm-2 with no significant capacity decay observed during long-duration cycling. These findings provide crucial support for the commercialization of AORFBs and pave the way for revolutionary developments in neutral AORFBs.
Collapse
Affiliation(s)
- Xu Liu
- Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Engineering Research Center of Key Materials for Efficient Utilization of Clean Energy of Shaanxi Province, Xi'an Photoelectromagnetic Functional Materials International Science and Technology Cooperation Center, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, China
| | - Heng Zhang
- Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Engineering Research Center of Key Materials for Efficient Utilization of Clean Energy of Shaanxi Province, Xi'an Photoelectromagnetic Functional Materials International Science and Technology Cooperation Center, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, China
| | - Chenjing Liu
- Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Engineering Research Center of Key Materials for Efficient Utilization of Clean Energy of Shaanxi Province, Xi'an Photoelectromagnetic Functional Materials International Science and Technology Cooperation Center, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, China
| | - Zengrong Wang
- Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Engineering Research Center of Key Materials for Efficient Utilization of Clean Energy of Shaanxi Province, Xi'an Photoelectromagnetic Functional Materials International Science and Technology Cooperation Center, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, China
| | - Xuri Zhang
- Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Engineering Research Center of Key Materials for Efficient Utilization of Clean Energy of Shaanxi Province, Xi'an Photoelectromagnetic Functional Materials International Science and Technology Cooperation Center, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, China
| | - Haiyan Yu
- Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Engineering Research Center of Key Materials for Efficient Utilization of Clean Energy of Shaanxi Province, Xi'an Photoelectromagnetic Functional Materials International Science and Technology Cooperation Center, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, China
| | - Yujie Zhao
- Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Engineering Research Center of Key Materials for Efficient Utilization of Clean Energy of Shaanxi Province, Xi'an Photoelectromagnetic Functional Materials International Science and Technology Cooperation Center, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, China
| | - Ming-Jia Li
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Yinshi Li
- National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710049, China
| | - Ya-Ling He
- National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710049, China
| | - Gang He
- Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Engineering Research Center of Key Materials for Efficient Utilization of Clean Energy of Shaanxi Province, Xi'an Photoelectromagnetic Functional Materials International Science and Technology Cooperation Center, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, China
- National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710049, China
| |
Collapse
|
20
|
Qiu S, Valdivia AC, Zhuang W, Hung FF, Che CM, Casado J, Liu J. Nonalternant Nanographenes Containing N-Centered Cyclopenta[ ef]heptalene and Aza[7]Helicene Units. J Am Chem Soc 2024; 146:16161-16172. [PMID: 38720418 DOI: 10.1021/jacs.4c03815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Introducing helical subunits into negatively curved π-systems has a significant effect on both the molecular geometry and photophysical properties; however, the synthesis of these helical π-systems embedded with nonbenzenoid subunits remains challenging due to the high strain deriving from both the curvature and helix. Here, we report a family of nonalternant nanographenes containing a nitrogen (N)-doped cyclopenta[ef]heptalene unit. Among them, CPH-2 and CPH-3 can be viewed as hybrids of benzoannulated cyclopenta[ef]heptalene and aza[7]helicene. The crystal structures revealed a saddle geometry for CPH-1, a saddle-helix hybrid for CPH-2, and a twist-helix hybrid for CPH-3. Experimental measurements and theoretical calculations indicate that the saddle moieties in CPHs undergo flexible conformational changes at room temperature, while the aza[7]helicene subunit exhibits a dramatically increased racemization energy barrier (78.2 kcal mol-1 for CPH-2, 143.2 kcal mol-1 for CPH-3). The combination of the nitrogen lone electron pairs of the N-doped cyclopenta[ef]heptalene unit with the twisted helix fragments results in rich photophysics with distinctive fluorescence and phosphorescence in CPH-1 and CPH-2 and the similar energy fluorescence and phosphorescence in CPH-3. Both enantiopure CPH-2 and CPH-3 display distinct circular dichroism (CD) signals in the UV-vis range. Notably, compared to the reported fully π-extended helical nanographenes, CPH-3 exhibits excellent chiroptical properties with a |gabs| value of 1.0 × 10-2 and a |glum| value of 7.0 × 10-3; these values are among the highest for helical nanographenes.
Collapse
Affiliation(s)
- Shuhai Qiu
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road Hong Kong 999077, China
| | - Abel Cárdenas Valdivia
- Department of Physical Chemistry, Faculty of Science, University of Málaga, Málaga 29071, Spain
| | - Weiwen Zhuang
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road Hong Kong 999077, China
| | - Faan-Fung Hung
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road Hong Kong 999077, China
| | - Chi-Ming Che
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road Hong Kong 999077, China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515031, China
| | - Juan Casado
- Department of Physical Chemistry, Faculty of Science, University of Málaga, Málaga 29071, Spain
| | - Junzhi Liu
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road Hong Kong 999077, China
| |
Collapse
|
21
|
Chen K, Liu Y, Wang Z, Hu S, Zhao Y, Wang W, Liu G, Wang Z, Jiang W. Longitudinal Extension of Double π-Helix Enables Near-Infrared Amplified Dissymmetry and Chiroptical Response. J Am Chem Soc 2024; 146:13499-13508. [PMID: 38696816 DOI: 10.1021/jacs.4c02914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
Near-infrared (NIR) circularly polarized light absorbing or emitting holds great promise for highly sensitive and precise bioimaging, biosensing, and photodetectors. Aiming at designing NIR chiral molecular systems with amplified dissymmetry and robust chiroptical response, herein, we present a series of double π-helical dimers with longitudinally extended π-entwined substructures via Ullmann or Yamamoto homocoupling reactions. Circular dichroism (CD) spectra revealed an approximate linear bathochromic shift with the rising number of naphthalene subunits, indicating a red to NIR chiroptical response. Particularly, the terrylene diimide-entwined dimers exhibited the strongest CD intensities, with the maximal |Δε| reaching up to 393 M-1 cm-1 at 666 nm for th-TDI[2]; and a record-high chiroptical response (|ΔΔε|) between the neutral and dianionic species of 520 M-1 cm-1 at 833 nm for th-TDI[2]Cl was achieved upon further reduction to its dianionic state. Time-dependent density functional theory (TDDFT) calculations suggested that the pronounced intensification of the CD spectra originated from a simultaneous enhancement of both electric (μ) and magnetic (m) transition dipole moments, ultimately leading to an overall increase in the rotatory strength (R). Notably, the circularly polarized luminescence (CPL) brightness (BCPL) reached 77 M-1 cm-1 for th-TDI[2]Cl, among the highest values reported for NIR-CPL emitters. Furthermore, all chiral dianions exhibited excellent air stability under ambient conditions with half-life times of up to 10 days in N-methylpyrrolidone (NMP), which is significant for future biological applications and chiroptic switches.
Collapse
Affiliation(s)
- Kai Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yujian Liu
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zhaolong Wang
- State Key Laboratory of Molecular Reaction Dynamics and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Shunlong Hu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yilun Zhao
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wei Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Guogang Liu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhaohui Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Wei Jiang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
22
|
Zhang T, Zhang Y, He Z, Yang T, Hu X, Zhu T, Zhang Y, Tang Y, Jiao J. Recent Advances of Chiral Isolated and Small Organic Molecules: Structure and Properties for Circularly Polarized Luminescence. Chem Asian J 2024; 19:e202400049. [PMID: 38450996 DOI: 10.1002/asia.202400049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/08/2024]
Abstract
This paper explores recent advancements in the field of circularly polarized luminescence (CPL) exhibited by small and isolated organic molecules. The development and application of small CPL molecule are systematically reviewed through eight different chiral skeleton sections. Investigating the intricate interplay between molecular structure and CPL properties, the paper aims at providing and enlighting novel strategies for CPL-based applications.
Collapse
Affiliation(s)
- Tingwei Zhang
- School of Chemistry and Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Yue Zhang
- School of Chemistry and Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Zhiyuan He
- School of Chemistry and Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Tingjun Yang
- School of Chemistry and Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Xu Hu
- School of Chemistry and Chemical Engineering at, Shaanxi Normal University, Xi'an, 710062, P.R. China
| | - Tengfei Zhu
- Engineering Research Center of Oil and Gas Field Chemistry, Xi'an Shiyou University, Xi'an, 710065, China
| | - Yanfeng Zhang
- School of Chemistry and Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Yuhai Tang
- School of Chemistry and Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Jiao Jiao
- School of Chemistry and Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| |
Collapse
|
23
|
Zhao J, Xu J, Huang H, Wang K, Wu D, Jasti R, Xia J. Appending Coronene Diimide with Carbon Nanohoops Allows for Rapid Intersystem Crossing in Neat Film. Angew Chem Int Ed Engl 2024; 63:e202400941. [PMID: 38458974 DOI: 10.1002/anie.202400941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/22/2024] [Accepted: 03/08/2024] [Indexed: 03/10/2024]
Abstract
The development of innovative triplet materials plays a significant role in various applications. Although effective tuning of triplet formation by intersystem crossing (ISC) has been well established in solution, the modulation of ISC processes in the solid state remains a challenge due to the presence of other exciton decay channels through intermolecular interactions. The cyclic structure of cycloparaphenylenes (CPPs) offers a unique platform to tune the intermolecular packing, which leads to controllable exciton dynamics in the solid state. Herein, by integrating an electron deficient coronene diimide (CDI) unit into the CPP framework, a donor-acceptor type of conjugated macrocycle (CDI-CPP) featuring intramolecular charge-transfer (CT) interaction was designed and synthesized. Effective intermolecular CT interaction resulting from a slipped herringbone packing was confirmed by X-ray crystallography. Transient spectroscopy studies showed that CDI-CPP undergoes ISC in both solution and the film state, with triplet generation time constants of 4.5 ns and 238 ps, respectively. The rapid triplet formation through ISC in the film state can be ascribed to the cooperation between intra- and intermolecular charge-transfer interactions. Our results highlight that intermolecular CT interaction has a pronounced effect on the ISC process in the solid state, and shed light on the use of the characteristic structure of CPPs to manipulate intermolecular CT interactions.
Collapse
Affiliation(s)
- Jingjing Zhao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, 430070, Wuhan, China
| | - Jingwen Xu
- International School of Materials Science and Engineering, Wuhan University of Technology, 430070, Wuhan, China
| | - Huaxi Huang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 430070, Wuhan, China
| | - Kangwei Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, 430070, Wuhan, China
| | - Di Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, 430070, Wuhan, China
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 430070, Wuhan, China
| | - Ramesh Jasti
- Department of Chemistry and Biochemistry, Materials Science Institute, University of Oregon, 97403, Eugene, Oregon, USA
| | - Jianlong Xia
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, 430070, Wuhan, China
- International School of Materials Science and Engineering, Wuhan University of Technology, 430070, Wuhan, China
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 430070, Wuhan, China
| |
Collapse
|
24
|
Zhang Z, Hu X, Qiu S, Su J, Bai R, Zhang J, Tian W. Boron-Nitrogen-Embedded Polycyclic Aromatic Hydrocarbon-Based Controllable Hierarchical Self-Assemblies through Synergistic Cation-π and C-H···π Interactions for Bifunctional Photo- and Electro-Catalysis. J Am Chem Soc 2024. [PMID: 38602776 DOI: 10.1021/jacs.4c00706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Boron-Nitrogen-embedded polycyclic aromatic hydrocarbons (BN-PAHs) as novel π-conjugated systems have attracted immense attention owing to their superior optoelectronic properties. However, constructing long-range ordered supramolecular assemblies based on BN-PAHs remains conspicuously scarce, primarily attributed to the constraints arising from coordinating multiple noncovalent interactions and the intrinsic characteristics of BN-PAHs, which hinder precise control over delicate self-assembly processes. Herein, we achieve the successful formation of BN-PAH-based controllable hierarchical assemblies through synergistically leveraged cation-π and C-H···π interactions. By carefully adjusting the solvent conditions in two progressive assembly hierarchies, the one-dimensional (1D) supramolecular assemblies with "rigid yet flexible" assembled units are first formed by cation-π interactions, and then they can be gradually fused into two-dimensional (2D) structures under specific C-H···π interactions, thus realizing the precise control of the transformation process from BN-PAH-based 1D primary structures to 2D higher-order assemblies. The resulting 2D-BNSA, characterized by enhanced electrical conductivity and ordered 2D layered structure, provides anchoring and dispersion sites for loading two appropriate nanocatalysts, thus facilitating the efficient photocatalytic CO2 reduction (with a remarkable CH4 evolution rate of 938.7 μmol g-1 h-1) and electrocatalytic acetylene semihydrogenation (reaching a Faradaic efficiency for ethylene up to 98.5%).
Collapse
Affiliation(s)
- Zhelin Zhang
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xiao Hu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Shuai Qiu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Junlong Su
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Rui Bai
- State Key Laboratory of Solidification Processing and School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Jian Zhang
- State Key Laboratory of Solidification Processing and School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Wei Tian
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
25
|
Wu ZH, Zhu X, Yang Q, Zagranyarski Y, Mishra K, Strickfaden H, Wong RP, Basché T, Koynov K, Bonn M, Li C, Liu X, Müllen K. Near-Infrared Perylenecarboximide Fluorophores for Live-Cell Super-Resolution Imaging. J Am Chem Soc 2024; 146:7135-7139. [PMID: 38441879 PMCID: PMC10958508 DOI: 10.1021/jacs.3c13368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/08/2024]
Abstract
Organic near-infrared (NIR) photoblinking fluorophores are highly desirable for live-cell super-resolution imaging based on single-molecule localization microscopy (SMLM). Herein we introduce a novel small chromophore, PMIP, through the fusion of perylenecarboximide with 2,2-dimetheylpyrimidine. PMIP exhibits an emission maximum at 732 nm with a high fluorescence quantum yield of 60% in the wavelength range of 700-1000 nm and excellent photoblinking without any additives. With resorcinol-functionalized PMIP (PMIP-OH), NIR SMLM imaging of lysosomes is demonstrated for the first time in living mammalian cells under physiological conditions. Moreover, metabolically labeled nascent DNA is site-specifically detected using azido-functionalized PMIP (PMIP-N3) via click chemistry, thereby enabling the super-resolution imaging of nascent DNA in phosphate-buffered saline with a 9-fold improvement in spatial resolution. These results indicate the potential of PMIP-based NIR blinking fluorophores for biological applications of SMLM.
Collapse
Affiliation(s)
- Ze-Hua Wu
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Department
of Chemistry, Johannes Gutenberg-University, 55099 Mainz, Germany
| | - Xingfu Zhu
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Qiqi Yang
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Yulian Zagranyarski
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Krishna Mishra
- Department
of Chemistry, Johannes Gutenberg-University, 55099 Mainz, Germany
| | | | - Ronald P. Wong
- Institute
of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany
| | - Thomas Basché
- Department
of Chemistry, Johannes Gutenberg-University, 55099 Mainz, Germany
| | - Kaloian Koynov
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Mischa Bonn
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Chen Li
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Xiaomin Liu
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Klaus Müllen
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Department
of Chemistry, Johannes Gutenberg-University, 55099 Mainz, Germany
| |
Collapse
|
26
|
Yang H, Chen G, Zhang R, Zhu Y, Xiao J. Coumarin-embedded [5]helicene derivatives: synthesis, X-ray analysis and photoconducting properties. NANOSCALE 2024; 16:5395-5400. [PMID: 38376253 DOI: 10.1039/d3nr05887e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Two novel coumarin-embedded π-extended [5]helicene derivatives (3a and 6a) have been strategically synthesized and characterized, and the structure of 3a was determined via single crystal X-ray analysis. Both of them exhibit green fluorescence in dichloromethane. In addition, molecule 3a can aggregate to form a large quantity of nanowires through the re-precipitation method. More importantly, the photoelectric conversion properties of 3a nanowire-C60 based films are much better than those of the thin film of bulk 3a-C60, indicating that the ordered nanostructures are a crucial factor for enhancing device performance.
Collapse
Affiliation(s)
- Hui Yang
- College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding 071002, P. R. China.
| | - Guofeng Chen
- College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding 071002, P. R. China.
| | - Ran Zhang
- College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding 071002, P. R. China.
| | - Yanjie Zhu
- College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding 071002, P. R. China.
| | - Jinchong Xiao
- College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding 071002, P. R. China.
| |
Collapse
|
27
|
Yang K, Li Z, Huang Y, Zeng Z. bay/ ortho-Octa-substituted Perylene: A Versatile Building Block toward Novel Polycyclic (Hetero)Aromatic Hydrocarbons. Acc Chem Res 2024; 57:763-775. [PMID: 38386871 DOI: 10.1021/acs.accounts.3c00793] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
ConspectusPolycyclic (hetero)aromatic hydrocarbons (PAHs) have emerged as a focal point in current interdisciplinary research, spanning the realms of chemistry, physics, and materials science. Possessing distinctive optical, electronic, and magnetic properties, these π-functional materials exhibit significant potential across diverse applications, including molecular electronic devices, organic spintronics, and biomedical functions, among others. Despite the extensive documentation of various PAHs over the decades, the efficient and precise synthesis of π-extended PAHs remains a formidable challenge, hindering their broader application. This challenge is primarily attributed to the intricate and often elusive nature of their synthesis, compounded by issues related to low solubility and unfavored stability.The development of π-building blocks that can be facilely and modularly transformed into diverse π-frameworks constitutes a potent strategy for the creation of novel PAH materials. For instance, based on the classic perylene diimide (PDI) unit, researchers such as Würthner, Wang, and Nuckolls have successfully synthesized a plethora of structurally diverse PAHs, as well as numerous other π-functional materials. However, until now the availability of such versatile building blocks is still severely limited, especially for those simultaneously having a facile preparation process, adequate solubilizing groups, favored material stability, and critically, rich possibilities for structural extension spaces.In this Account, we present an overview of our invention of a highly versatile bay-/ortho-octa-substituted perylene building block, designated as Per-4Br, for the construction of a series of novel PAH scaffolds with tailor-made structures and rich optoelectronic and magnetic properties. First, starting with a brief discussion of current challenges associated with the bottom-up synthesis of π-extended PAHs, we rationalize the key features of Per-4Br that enable facile access to new PAH molecules including its ease of large-scale preparation, favored material stability and solubility, and multiple flexible reaction sites, with a comparison to the PDI motif. Then, we showcase our rational design and sophisticated synthesis of a body of neutral or charged, closed- or open-shell, curved, or planar PAHs via controlled annulative π-extensions in different directions such as peripheral, diagonal, or multiple dimensions of the Per-4Br skeleton. In this part, the fundamental structure-property relationships between molecular conformations, electronic structures, and self-assembly behaviors of these PAHs and their unique physiochemical properties such as unusual open-shell ground states, global aromaticity, state-associated/stimuli-responsive magnetic activity, and charge transport characteristics will be emphatically elaborated. Finally, we offer our perspective on the continued advancement of π-functional materials based on Per-4Br, which, we posit, may stimulate heightened research interest in the versatile structural motifs typified by Per-4Br, consequently catalyzing further progress in the realm of organic π-functional materials.
Collapse
Affiliation(s)
- Kun Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Zuhao Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Yulin Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Zebing Zeng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| |
Collapse
|
28
|
Shao G, Liu H, Chen L, Wu M, Wang D, Wu D, Xia J. Precise synthesis of BN embedded perylene diimide oligomers for fast-charging and long-life potassium-organic batteries. Chem Sci 2024; 15:3323-3329. [PMID: 38425535 PMCID: PMC10901525 DOI: 10.1039/d3sc06331c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/22/2024] [Indexed: 03/02/2024] Open
Abstract
Replacing the C[double bond, length as m-dash]C bond with an isoelectronic BN unit is an effective strategy to tune the optoelectronic properties of polycyclic aromatic hydrocarbons (PAHs). However, precise control of the BN orientations in large PAH systems is still a synthetic challenge. Herein, we demonstrate a facile approach for the synthesis of BN embedded perylene diimide (PDI) nanoribbons, and the polarization orientations of the BN unit were precisely regulated in the two PDI trimers. These BN doped PDI oligomers show great potential as organic cathodes for potassium-ion batteries (PIBs). In particular, trans-PTCDI3BN exhibits great improvement in voltage potential, reversible capacities (ca. 130 mA h g-1), superior rate performance (19 s to 69% of the maximum capacity) and ultralong cyclic stability (nearly no capacity decay over 30 000 cycles), which are among those of state-of-the-art organic-based cathodes. Our synthetic approach stands as an effective way to access large PAHs with precisely controlled BN orientations, and the BN doping strategy provides useful insight into the development of organic electrode materials for secondary batteries.
Collapse
Affiliation(s)
- Guangwei Shao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology Wuhan 430070 China
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology Wuhan 430070 China
| | - Hang Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology Wuhan 430070 China
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology Wuhan 430070 China
| | - Li Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology Wuhan 430070 China
| | - Mingliang Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology Wuhan 430070 China
| | - Dongxue Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology Wuhan 430070 China
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology Wuhan 430070 China
| | - Di Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology Wuhan 430070 China
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology Wuhan 430070 China
| | - Jianlong Xia
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology Wuhan 430070 China
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology Wuhan 430070 China
- International School of Materials Science and Engineering, Wuhan University of Technology Wuhan 430070 China
| |
Collapse
|
29
|
Liu Y, Li Z, Wang MW, Chan J, Liu G, Wang Z, Jiang W. Highly Luminescent Chiral Double π-Helical Nanoribbons. J Am Chem Soc 2024; 146:5295-5304. [PMID: 38363710 DOI: 10.1021/jacs.3c11942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
Unveiling the mechanism behind chirality propagation and dissymmetry amplification at the molecular level is of significance for the development of chiral systems with comprehensively outstanding chiroptical performances. Herein, we have presented a straightforward Cu-mediated Ullmann homocoupling approach to synthesize perylene diimide-entwined double π-helical nanoribbons encompassing dimer, trimer, and tetramer while producing homochiral or heterochiral linking of chiral centers. A significant dissymmetry amplification was achieved, with absorption dissymmetry factors (|gabs|) increasing from 0.009 to 0.017 and further to 0.019, and luminescence dissymmetry factors (|glum|) rising from 0.007 to 0.013 and eventually to 0.015 for homochiral double π-helical oligomers. The disparity of magnetic transition dipole moment (m) densities in homochiral and heterochiral tetramers by time-dependent density functional theory calculations confirmed that homochiral oligomerization can maximize the total m, which is favorable for achieving ever-increasing g factors. Notably, these double π-helices exhibited exceptional photoluminescence quantum yields (ΦPL) ranging from 83 to 95%. The circularly polarized luminescence brightness (BCPL) eventually reached a remarkable 575 M-1 cm-1 for the homochiral tetramer, which is among the highest values reported for chiral small molecules. This kind of linearly extended double π-helices offers a platform for a comprehensive understanding of the mechanism behind chirality propagation and dissymmetry amplification.
Collapse
Affiliation(s)
- Yujian Liu
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zuoyu Li
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Ming-Wei Wang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jiangtao Chan
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Guogang Liu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhaohui Wang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Wei Jiang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
30
|
Dong X, Zhang Z, Xiao H, Liu G, Lei SN, Wang Z, Yan X, Wang S, Tung CH, Wu LZ, Cong H. Assembly and Utility of a Drawstring-Mimetic Supramolecular Complex. Angew Chem Int Ed Engl 2024; 63:e202318368. [PMID: 38165266 DOI: 10.1002/anie.202318368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/20/2023] [Accepted: 01/02/2024] [Indexed: 01/03/2024]
Abstract
Inspired by the drawstring structure in daily life, here we report the development of a drawstring-mimetic supramolecular complex at the molecular scale. This complex consists of a rigid figure-of-eight macrocyclic host molecule and a flexible linear guest molecule which could interact through three-point non-covalent binding to form a highly selective and efficient host-guest assembly. The complex not only resembles the drawstring structure, but also mimics the properties of a drawstring with regard to deformations under external forces. The supramolecular drawstring can be utilized as an interlocked crosslinker for poly(methyl acrylate), and the corresponding polymer samples exhibit comprehensive enhancement of macroscopic mechanical performance including stiffness, strength, and toughness.
Collapse
Affiliation(s)
- Xiangyu Dong
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhaoming Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hongyan Xiao
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Guoquan Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Sheng-Nan Lei
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhao Wang
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xuzhou Yan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shutao Wang
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Chen-Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Huan Cong
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
31
|
Wang L, Gao T, Yan J, Hong Y, Ma Y, Jin R, Kang C, Gao L. Enantiomer Recognition Based on Chirality Transfer from Chiral Amines to Ternary Dynamic Covalent Systems. J Org Chem 2024; 89:1797-1806. [PMID: 38197600 DOI: 10.1021/acs.joc.3c02475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Enantiomer recognition is usually required in organic synthesis and materials and life sciences. This paper describes an enantiomer recognition method based on ternary dynamic covalent systems constructed via the complexation of chiral amines with a chiral boronate derived from 1,4-phenylenediboric acid and an L-DOPA-modified naphthalenediimide. The ternary systems aggregate into chiral assemblies driven by π-π interactions, and the chirality is transferred from the chiral amines to assemblies with high stereospecificity. Consequently, the enantiomer composition of chiral amines and the absolute configuration of the major enantiomer can be determined according to the sign of the Cotton effect of the ternary system by using circular dichroism (CD) spectroscopy. This method offers the advantage of using the long wavelength CD signals of the boronate at around 520 nm, thereby avoiding interference with those of the carbon skeleton. This ternary system provides a novel approach to the design of enantiomer recognition systems.
Collapse
Affiliation(s)
- Liangpeng Wang
- Center for Innovative Drug Discovery, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Tingting Gao
- Center for Innovative Drug Discovery, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Jijun Yan
- Center for Innovative Drug Discovery, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Yun Hong
- Center for Innovative Drug Discovery, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Yiming Ma
- Center for Innovative Drug Discovery, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Rizhe Jin
- Center for Innovative Drug Discovery, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Chuanqing Kang
- Center for Innovative Drug Discovery, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Lianxun Gao
- Center for Innovative Drug Discovery, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| |
Collapse
|
32
|
Zhang J, Shi Z, Liu K, Shi Q, Yi L, Wang J, Peng L, Liu T, Ma M, Fang Y. Fast and Selective Luminescent Sensing by Langmuir-Schaeffer Films Based on Controlled Assembly of Perylene Bisimide Modified with A Cyclometalated Au III Complex. Angew Chem Int Ed Engl 2023; 62:e202314996. [PMID: 37965846 DOI: 10.1002/anie.202314996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/06/2023] [Accepted: 11/14/2023] [Indexed: 11/16/2023]
Abstract
Condensed films of functional luminophores dominated by the magnitude and dimensionality of the intermolecular interactions play important roles in sensing performance. However, controlling the molecular assembly and regulating photophysical properties remain challenging. In this study, a new luminophore, ortho-PBI-Au, was synthesized by anchoring a cyclometalated alkynyl-gold(III) unit at the ortho-position of perylene bisimide. An unprecedented T-type packing model driven by weak Au-π interaction and Au-H bonds was observed, laying foundation for striking properties of the luminophore. Controlled assembly of ortho-PBI-Au at the air-water interface, realized using the classical Langmuir-Schaeffer technique, afforded the obtained luminescent films with different packing structures. With an optimized film, sensitive, selective, and rapid detection of a hazardous new psychoactive substance, phenylethylamine (PEA), was achieved. The detection limit, response time, and recovery time were <4 ppb, <1 s, and <5 s, respectively, surpassing the performance of the PEA sensors known thus far. The relationship between the characters of films and the sensing performance was systematically examined by grey relational analysis (GRA). The present study suggests that designing novel molecular aggregation with definite adlayer structure is a crucial strategy to enhance the sensing performance, which could be favorable for the film-based fluorescent sensors.
Collapse
Affiliation(s)
- Jing Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Zhiwei Shi
- School of Computer Science, Shaanxi Normal University, Xi'an, 710019, P. R. China
| | - Ke Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Qiyuan Shi
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Liang Yi
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Junjie Wang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Lingya Peng
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Taihong Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Miao Ma
- School of Computer Science, Shaanxi Normal University, Xi'an, 710019, P. R. China
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| |
Collapse
|
33
|
Xue N, Chen K, Liu G, Wang Z, Jiang W. Molecular Engineering of Rylene Diimides via Sila-Annulation Toward High-Mobility Organic Semiconductors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2307875. [PMID: 38072766 DOI: 10.1002/smll.202307875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/14/2023] [Indexed: 12/19/2023]
Abstract
The continuous innovation of captivating new organic semiconducting materials remains pivotal in the development of high-performance organic electronic devices. Herein, a molecular engineering by combining sila-annulation with the vertical extension of rylene diimides (RDIs) toward high-mobility organic semiconductors is presented. The unilateral and bilateral sila-annulated quaterrylene diimides (Si-QDI and 2Si-QDI) are designed and synthesized. In particular, the symmetrical bilateral 2Si-QDI exhibits a compact, 1D slipped π-π stacking arrangement through the synergistic combination of a sizable π-conjugated core and intercalating alkyl chains. Combining the appreciable elevated HOMO levels and reduced energy gaps, the single-crystalline organic field-effect transistors (SC-OFETs) based on 2Si-QDI demonstrate exceptional ambipolar transport characteristics with an impressive hole mobility of 3.0 cm2 V-1 s-1 and an electron mobility of 0.03 cm2 V-1 s-1 , representing the best ampibolar SC-OFETs based on RDIs. Detailed theoretical calculations rationalize that the larger transfer integral along the π-π stacking direction is responsible for the achievement of the superior charge transport. This study showcases the remarkable potential of sila-annulation in optimizing carrier transport performances of polycyclic aromatic hydrocarbons (PAHs).
Collapse
Affiliation(s)
- Ning Xue
- Key Laboratory of Organic Optoelectronics and Molecular Engineering Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Kai Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Guogang Liu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Zhaohui Wang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Wei Jiang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
34
|
Niu W, Fu Y, Qiu ZL, Schürmann CJ, Obermann S, Liu F, Popov AA, Komber H, Ma J, Feng X. π-Extended Helical Multilayer Nanographenes with Layer-Dependent Chiroptical Properties. J Am Chem Soc 2023. [PMID: 38048528 DOI: 10.1021/jacs.3c09350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Helical nanographenes (NGs) have attracted increasing attention recently because of their intrinsic chirality and exotic chiroptical properties. However, the efficient synthesis of extended helical NGs featuring a multilayer topology is still underdeveloped, and their layer-dependent chiroptical properties remain elusive. In this study, we demonstrate a modular synthetic strategy to construct a series of novel helical NGs (1-3) with a multilayer topology through a consecutive Diels-Alder reaction and regioselective cyclodehydrogenation from the readily accessible phenanthrene-based precursors bearing ethynyl groups. The resultant NGs exhibit bilayer, trilayer, and tetralayer structures with elongated π extension and rigid helical backbones, as unambiguously confirmed by single-crystal X-ray or electron diffraction analysis. We find that the photophysical properties of these helical NGs are notably influenced by the degree of π extension, which varies with the number of layers, leading to obvious redshifted absorption, a fast rising molar extinction coefficient (ε), and markedly boosted fluorescence quantum yield (Φf). Moreover, the embedded [7]helicene subunits in these NGs result in stable chirality, enabling both chiral resolution and exploration of their layer-dependent chiroptical properties. Profiting from the good alignment of electric and magnetic dipole moments determined by the multilayer structure, the resultant NGs exhibit excellent circular dichroism and circularly polarized luminescence response with unprecedented high CPL brightness up to 168 M-1 cm-1, rendering them promising candidates for CPL emitters.
Collapse
Affiliation(s)
- Wenhui Niu
- Max Planck Institute of Microstructure Physics, Weinberg 2, Halle 06120, Germany
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062 Dresden, Germany
| | - Yubin Fu
- Max Planck Institute of Microstructure Physics, Weinberg 2, Halle 06120, Germany
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062 Dresden, Germany
| | - Zhen-Lin Qiu
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062 Dresden, Germany
| | | | - Sebastian Obermann
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062 Dresden, Germany
| | - Fupin Liu
- Leibniz Institute for Solid State and Materials Research, 01069 Dresden, Germany
| | - Alexey A Popov
- Leibniz Institute for Solid State and Materials Research, 01069 Dresden, Germany
| | - Hartmut Komber
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
| | - Ji Ma
- Max Planck Institute of Microstructure Physics, Weinberg 2, Halle 06120, Germany
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062 Dresden, Germany
| | - Xinliang Feng
- Max Planck Institute of Microstructure Physics, Weinberg 2, Halle 06120, Germany
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062 Dresden, Germany
| |
Collapse
|
35
|
Murai M, Enoki T, Yamaguchi S. Dithienoazepine-Based Near-Infrared Dyes: Janus-Faced Effects of a Thiophene-Fused Structure on Antiaromatic Azepines. Angew Chem Int Ed Engl 2023; 62:e202311445. [PMID: 37699858 DOI: 10.1002/anie.202311445] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/10/2023] [Accepted: 09/12/2023] [Indexed: 09/14/2023]
Abstract
We here disclose that the incorporation of thiophene rings into a seven-membered 8π azepine in a fused fashion produces a useful antiaromatic core for near-infrared (NIR) dyes. In contrast to dibenzazepine derivatives with bent structures, dithieno-fused derivatives with electron-accepting groups adopt flat conformations in the ground state. The dithieno-fused derivatives exhibited broad absorption spectra that cover the visible region as well as sharp emission bands in the NIR region, which are considerably red-shifted relative to those of the dibenzo-fused congeners. Theoretical study revealed two contradictory effects of the less-aromatic thiophene-fused structure, i.e., the enhancement of the antiaromaticity of the adjacent azepine ring and the relief of the antiaromaticity through the contribution of a quinoidal resonance form. The combination of the dithienoazepine core with cationic electron-accepting groups produced a NIR fluorescent dye with an emission at 878 nm in solution.
Collapse
Affiliation(s)
- Masahito Murai
- Department of Chemistry, Graduate School of Science, and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo, Chikusa, Nagoya, 464-8602, Japan
| | - Takahiro Enoki
- Department of Chemistry, Graduate School of Science, and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo, Chikusa, Nagoya, 464-8602, Japan
| | - Shigehiro Yamaguchi
- Department of Chemistry, Graduate School of Science, and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo, Chikusa, Nagoya, 464-8602, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo, Chikusa, Nagoya, 464-8601, Japan
| |
Collapse
|
36
|
Saal F, Swain A, Schmiedel A, Holzapfel M, Lambert C, Ravat P. Push-pull [7]helicene diimide: excited-state charge transfer and solvatochromic circularly polarised luminescence. Chem Commun (Camb) 2023; 59:14005-14008. [PMID: 37941499 DOI: 10.1039/d3cc04470j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
In this communication we describe a helically chiral push-pull molecule named 9,10-dimethoxy-[7]helicene diimide, displaying fluorescence (FL) and circularly polarised luminescence (CPL) over nearly the entire visible spectrum dependent on solvent polarity. The synthesised molecule exhibits an unusual solvent polarity dependence of FL quantum yield and nonradiative rate constant, as well as remarkable gabs and glum values along with high configurational stability.
Collapse
Affiliation(s)
- Fridolin Saal
- Julius-Maximilians-Universität Würzburg, Institut für Organische Chemie, Am Hubland, D-97074 Würzburg, Germany.
| | - Asim Swain
- Julius-Maximilians-Universität Würzburg, Institut für Organische Chemie, Am Hubland, D-97074 Würzburg, Germany.
| | - Alexander Schmiedel
- Julius-Maximilians-Universität Würzburg, Institut für Organische Chemie, Am Hubland, D-97074 Würzburg, Germany.
| | - Marco Holzapfel
- Julius-Maximilians-Universität Würzburg, Institut für Organische Chemie, Am Hubland, D-97074 Würzburg, Germany.
| | - Christoph Lambert
- Julius-Maximilians-Universität Würzburg, Institut für Organische Chemie, Am Hubland, D-97074 Würzburg, Germany.
| | - Prince Ravat
- Julius-Maximilians-Universität Würzburg, Institut für Organische Chemie, Am Hubland, D-97074 Würzburg, Germany.
| |
Collapse
|
37
|
Sun W, Yang Y, Tian X, Yuan L, Wang Y, Dou C. A Combination of B- and N-Doped π-Systems Enabling Systematic Tuning of Electronic Structures and Properties. Chemistry 2023; 29:e202302459. [PMID: 37641524 DOI: 10.1002/chem.202302459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 08/31/2023]
Abstract
Doping heteroatoms into polycyclic aromatic hydrocarbons (PAHs) may alter their structures and thereby physical properties. This study reports the construction of B/N-codoped PAHs via combining the B- and N-doped π-systems. Two π-extended B/N-codoped PAHs were synthesized through the Mallory photoreaction. Both feature a C48 BN2 π-skeleton, which is assembled by linearly fusing three substructures including B-doped and sp2 -hybridized N-doped π-moieties and one pyrene unit. In comparison to the pristine B-doped analog, their intramolecular charge transfer (ICT) states are distinctly modulated by the fused N-doped π-system and the further incorporated cyano group, leading to their tunable optical properties, as revealed by detailed theoretical and experimental analysis. Furthermore, these three molecules have sufficient Lewis acidity and can coordinate with Lewis base to form Lewis acid-base adducts, and notably, such intermolecular complexation can further dynamically modulate their ICT transitions and thereby photophysical properties, such as producing blue, green and red fluorescence.
Collapse
Affiliation(s)
- Wenting Sun
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Yue Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Xinyu Tian
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Liuzhong Yuan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Yue Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Chuandong Dou
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
38
|
Xu Y, Liu D, Wang M. Enhancing Gating Performance in Organic Molecular Field-Effect Transistors by Introducing Polar Azulene Components. Chemistry 2023; 29:e202301294. [PMID: 37589330 DOI: 10.1002/chem.202301294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 08/18/2023]
Abstract
Organic molecular field-effect transistors (FETs) are promising building components for future electronic circuits. Efficient control of charge transport properties is one key issue in the design of organic molecular FETs. In this study, we propose a redesign of a naphthalene-based FET by introducing two azulene components in opposite dipole moment directions. Using density functional theory combined with non-equilibrium Green's function, the simulated electronic transport characteristics reveal that the introduction of polar azulene components effectively narrows the frontier molecular orbitals gap, leading to an increase in the ON-state current. Meanwhile, the OFF-state current is significantly suppressed by highly localizing the dominant electronic transport channel. As a result, improved gate controllability is achieved with a higher ON-OFF current ratio, which is nearly seven times higher than that of the naphthalene-based FET device. These findings provide theoretical directions for future design of organic molecular FET devices with enhanced gating regulation efficiency.
Collapse
Affiliation(s)
- Yuqing Xu
- School of Physics and Optoelectronic Engineering, Ludong University, Yantai, 264025, P. R. China
| | - Desheng Liu
- School of Physics, Shandong University, Jinan, 250100, P. R. China
- Department of Physics, Jining University, Ji Ning Shi, Qufu, 273155, P. R. China
| | - Meishan Wang
- School of Integrated Circuits, Ludong University, Yantai, 264025, P. R. China
| |
Collapse
|
39
|
Wang MW, Fan W, Li X, Liu Y, Li Z, Jiang W, Wu J, Wang Z. Molecular Carbons: How Far Can We Go? ACS NANO 2023; 17:20734-20752. [PMID: 37889626 DOI: 10.1021/acsnano.3c07970] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
The creation and development of carbon nanomaterials promoted material science significantly. Bottom-up synthesis has emerged as an efficient strategy to synthesize atomically precise carbon nanomaterials, namely, molecular carbons, with various sizes and topologies. Different from the properties of the feasibly obtained mixture of carbon nanomaterials, numerous properties of single-component molecular carbons have been discovered owing to their well-defined structures as well as potential applications in various fields. This Perspective introduces recent advances in molecular carbons derived from fullerene, graphene, carbon nanotube, carbyne, graphyne, and Schwarzite carbon acquired with different synthesis strategies. By selecting a variety of representative examples, we elaborate on the relationship between molecular carbons and carbon nanomaterials. We hope these multiple points of view presented may facilitate further advancement in this field.
Collapse
Affiliation(s)
- Ming-Wei Wang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Wei Fan
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Xiaonan Li
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yujian Liu
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zuoyu Li
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Wei Jiang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jishan Wu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Zhaohui Wang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
- Laboratory of Flexible Electronic Technology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
40
|
Yuan L, Yang J, Qi S, Liu Y, Tian X, Jia T, Wang Y, Dou C. Diradicaloid Boron-Doped Molecular Carbons Achieved by Pentagon-Fusion. Angew Chem Int Ed Engl 2023:e202314982. [PMID: 37924227 DOI: 10.1002/anie.202314982] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/06/2023]
Abstract
Molecular carbons (MCs) are molecular cutouts of carbon materials. Doping with heteroatoms and constructing open-shell structures are two powerful approaches to achieve unexpected and unique properties of MCs. Herein, we disclose a new strategy to design open-shell boron-doped MCs (BMCs), namely by pentagon-fusion of an organoborane π-system. We synthesized two diradicaloid BMC molecules that feature C24 B and C38 B π-skeletons containing a pentagonal ring. A thorough investigation reveals that such pentagon-fusion not only leads to their local antiaromaticity, but also incorporates an internal quinoidal substructure and thereby induces open-shell singlet diradical states. Moreover, their fully fused structures enable efficient π conjugation, which is expanded over the whole frameworks. Consequently, some intriguing physical properties are achieved, such as narrow energy gaps, very broad light absorptions, and superior photothermal capability, along with excellent photostability. Notably, the solid of the C38 B molecule exhibits absorption that covers the range of 300-1200 nm and an efficiency of 93.5 % for solar-driven water evaporation, thus demonstrating the potential of diradicaloid BMCs as high-performance organic photothermal materials.
Collapse
Affiliation(s)
- Liuzhong Yuan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012, Changchun, P. R. China
| | - Jingyuan Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012, Changchun, P. R. China
| | - Shuo Qi
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 150040, Harbin, P. R. China
| | - Yujia Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012, Changchun, P. R. China
| | - Xinyu Tian
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012, Changchun, P. R. China
| | - Tao Jia
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 150040, Harbin, P. R. China
| | - Yue Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012, Changchun, P. R. China
| | - Chuandong Dou
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012, Changchun, P. R. China
| |
Collapse
|
41
|
Kimura R, Yoneda Y, Kuramochi H, Saito S. Environment-sensitive fluorescence of COT-fused perylene bisimide based on symmetry-breaking charge separation. Photochem Photobiol Sci 2023; 22:2541-2552. [PMID: 37656334 DOI: 10.1007/s43630-023-00468-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/09/2023] [Indexed: 09/02/2023]
Abstract
Flexible and aromatic photofunctional system (FLAP) is composed of flapping rigid aromatic wings fused with a flexible 8π ring at the center such as cyclooctatetraene (COT). A series of FLAP have been actively studied for the interesting dynamic behaviors. Here, we synthesized a new flapping molecule bearing naphtho-perylenebisimide wings (NPBI-FLAP), in which two perylene units are arranged side by side. As a reference compound, we also prepared COT-fused NPBI (NPBI-COT) that contains only single perylene unit. In both compounds, inherent strong fluorescence of the NPBI moiety is almost quenched and the FL lifetime becomes much shortened in highly polar solvents (acetone and DMF). Through the analyses of environment-sensitive fluorescence, electrochemical reduction/oxidation, and femtosecond transient absorption, the fluorescence quenching behavior was attributed to rapid symmetry-breaking charge separation (SB-CS) for NPBI-FLAP and to intramolecular charge transfer (ICT) for NPBI-COT. Most of the excited species of these compounds decay with the bent geometry, which is in contrast with the excited-state planarization behavior of a previously reported COT-fused peryleneimides with the double-headed arrangement of the perylene moieties. These results indicate that changing the fusion manners between COT and other π skeletons offers new functional molecules with distinct dynamics.
Collapse
Affiliation(s)
- Ryo Kimura
- Graduate School of Science, Kyoto University, Kitashirakawa Oiwake, Sakyo, Kyoto, 606-8502, Japan
| | - Yusuke Yoneda
- Research Center of Integrative Molecular Systems (CIMoS), Institute for Molecular Science, 38 Nishigo-Naka, Myodaiji, Okazaki, 444-8585, Japan
| | - Hikaru Kuramochi
- Research Center of Integrative Molecular Systems (CIMoS), Institute for Molecular Science, 38 Nishigo-Naka, Myodaiji, Okazaki, 444-8585, Japan.
| | - Shohei Saito
- Graduate School of Science, Kyoto University, Kitashirakawa Oiwake, Sakyo, Kyoto, 606-8502, Japan.
| |
Collapse
|
42
|
Duan J, Shi Y, Zhao F, Li C, Duan Z, Zhang N, Chen P. Chiral Luminescent Aza[7]helicenes Functionalized with a Triarylborane Acceptor and Near-Infrared-Emissive Doublet-State Radicals. Inorg Chem 2023; 62:15829-15833. [PMID: 37713177 DOI: 10.1021/acs.inorgchem.3c02470] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
This paper presents new chiral luminescent molecules (N7-BMes2 and N7-TTM) using configurationally stable aza[7]helicene (1) as a universal heteroatom-doped chiral scaffold. The respective reactions of electron-donating 1 with a triarylborane acceptor via palladium-catalyzed Buchwald-Hartwig C-N coupling and with the open-shell doublet-state TTM radical via nucleophilic aromatic substitution (SN2Ar) resulted not only in tunable emissions from blue to the NIR domain but also in significantly enhanced emission quantum efficiency up to Φ = 50%.
Collapse
Affiliation(s)
- Jiaxian Duan
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Yafei Shi
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Fei Zhao
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Chenglong Li
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Zhihua Duan
- Baoshan Animal Disease Prevention and Control Center, Baoshan 678000, Yunnan, China
| | - Niu Zhang
- Analysis and Testing Centre, Beijing Institute of Technology, Beijing 102488, China
| | - Pangkuan Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| |
Collapse
|
43
|
Bao ST, Jiang H, Jin Z, Nuckolls C. Fusing perylene diimide with helicenes. Chirality 2023; 35:656-672. [PMID: 36941527 DOI: 10.1002/chir.23561] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/13/2023] [Accepted: 02/23/2023] [Indexed: 03/23/2023]
Abstract
Incorporating perylene diimide (PDI) units into helicene structures has become a useful strategy for giving access to non-planar electron acceptors as well as a method of creating molecules with unique and intriguing chiroptical properties. This minireview describes this fusion of PDIs with helicenes.
Collapse
Affiliation(s)
- Si Tong Bao
- Department of Chemistry, Columbia University, New York, New York, USA
| | - Haoyu Jiang
- Department of Chemistry, Columbia University, New York, New York, USA
| | - Zexin Jin
- Department of Chemistry, Columbia University, New York, New York, USA
| | - Colin Nuckolls
- Department of Chemistry, Columbia University, New York, New York, USA
| |
Collapse
|
44
|
Wu Z, Liu W, Yang X, Li W, Zhao L, Chi K, Xiao X, Yan Y, Zeng W, Liu Y, Chen H, Zhao Y. An In-Situ Cyanidation Strategy To Access Tetracyanodiacenaphthoanthracene Diimides with High Electron Mobilities Exceeding 10 cm 2 V -1 s -1. Angew Chem Int Ed Engl 2023; 62:e202307695. [PMID: 37394618 DOI: 10.1002/anie.202307695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/25/2023] [Accepted: 06/30/2023] [Indexed: 07/04/2023]
Abstract
A family of novel highly π-extended tetracyano-substituted acene diimides, named as tetracyanodiacenaphthoanthracene diimides (TCDADIs), have been synthesized using a facile four-fold Knoevenagel condensation strategy. Unlike conventional cyano substitution reactions, our approach enables access to a large π-conjugated backbone with the in-situ formation of four cyano substitutents at room temperature while avoiding extra cyano-functionalization reactions. TCDADIs decorated with different N-alkyl substituents present good solubility, near-coplanar backbones, good crystallinity, and low-lying lowest unoccupied molecular orbital energies of -4.33 eV, all of which contribute to desirable electron-transport performance when applied in organic field-effect transistors (OFET). The highest electron mobility of an OFET based on a 2-hexyldecyl-substituted TCDADI single crystal reaches 12.6 cm2 V-1 s-1 , which is not only among the highest values for the reported n-type organic semiconductor materials (OSMs) but also exceeds that of most n-type OSMs decorated with imide units.
Collapse
Affiliation(s)
- Zeng Wu
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Wentao Liu
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Xin Yang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Wenhao Li
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Lingli Zhao
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Kai Chi
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Xuetao Xiao
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Yongkun Yan
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Weixuan Zeng
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Yunqi Liu
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Huajie Chen
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Yan Zhao
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
45
|
Zhang S, Li W, Chen Y, Wu Z, Chen Z, Zhao Y, Wang Y, Liu Y. Perylenediimide regioisomers with tunable physicochemical and charge-transport properties. Chem Commun (Camb) 2023; 59:9876-9879. [PMID: 37492025 DOI: 10.1039/d3cc02510a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Two perylenediimide (PDI) regioisomers with the central core substituted at the ortho (Y-αPDI) and bay (Y-βPDI) areas of the PDIs were successfully prepared. The regioisomeric effects on the physicochemical and charge-transport properties were thoroughly investigated. The results unravel that Y-βPDI shows ambipolar transport with higher mobilities compared to its α-counterpart, which is due to its favourable molecular geometry, stronger intermolecular interaction and improved electron-withdrawing ability.
Collapse
Affiliation(s)
- Shuixin Zhang
- Laboratory of Molecular Materials and Devices, Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 2005, Songhu Road, Shanghai 200438, China.
| | - Wenhao Li
- Laboratory of Molecular Materials and Devices, Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 2005, Songhu Road, Shanghai 200438, China.
| | - Yuzhong Chen
- Laboratory of Molecular Materials and Devices, Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 2005, Songhu Road, Shanghai 200438, China.
| | - Zeng Wu
- Laboratory of Molecular Materials and Devices, Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 2005, Songhu Road, Shanghai 200438, China.
| | - Zekun Chen
- Laboratory of Molecular Materials and Devices, Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 2005, Songhu Road, Shanghai 200438, China.
| | - Yan Zhao
- Laboratory of Molecular Materials and Devices, Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 2005, Songhu Road, Shanghai 200438, China.
| | - Yang Wang
- Laboratory of Molecular Materials and Devices, Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 2005, Songhu Road, Shanghai 200438, China.
| | - Yunqi Liu
- Laboratory of Molecular Materials and Devices, Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 2005, Songhu Road, Shanghai 200438, China.
| |
Collapse
|
46
|
Liang S, Xiao C, Xie C, Liu B, Fang H, Li W. 13% Single-Component Organic Solar Cells based on Double-Cable Conjugated Polymers with Pendent Y-Series Acceptors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300629. [PMID: 36814317 DOI: 10.1002/adma.202300629] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/16/2023] [Indexed: 05/05/2023]
Abstract
Double-cable conjugated polymers with pendent electron acceptors, including fullerene, rylene diimides, and nonfused acceptors, have been developed for application in single-component organic solar cells (SCOSCs) with efficiencies approaching 10%. In this work, Y-series electron acceptors have been firstly incorporated into double-cable polymers in order to further improve the efficiencies of SCOSCs. A highly crystalline Y-series acceptor based on quinoxaline core and the random copolymerized strategy are used to optimize the ambipolar charge transport and the nanophase separation of the double-cable polymers. As a result, an efficiency of 13.02% is obtained in the random double-cable polymer, representing the highest performance in SCOSCs, while the regular double-cable polymer only provides a low efficiency of 2.75%. The significantly enhanced efficiencies are attributed to higher charge carrier mobilities, better ordering conjugated backbones and Y-series acceptors in random double-cable polymers.
Collapse
Affiliation(s)
- Shijie Liang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Chengyi Xiao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Chengcheng Xie
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Baiqiao Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Haisheng Fang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Weiwei Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
47
|
Zhao F, Zhao J, Liu H, Wang Y, Duan J, Li C, Di J, Zhang N, Zheng X, Chen P. Synthesis of π-Conjugated Chiral Organoborane Macrocycles with Blue to Near-Infrared Emissions and the Diradical Character of Cations. J Am Chem Soc 2023; 145:10092-10103. [PMID: 37125835 DOI: 10.1021/jacs.3c00306] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Highly emissive π-conjugated macrocycles with tunable circularly polarized luminescence (CPL) have sparked theoretical and synthetic interests in recent years. Herein, we report a synthetic approach to obtain new chiral organoborane macrocycles (CMC1, CMC2, and CMC3) that are built on the structurally chiral [5]helicenes and highly luminescent triarylborane/amine moieties embedded into the cyclic systems. These rarely accessible B/N-doped main-group chiral macrocycles show a unique topology dependence of the optoelectronic and chiroptical properties. CMC1 and CMC2 show a higher luminescence dissymmetry factor (glum) together with an enhanced CPL brightness (BCPL) as compared with CMC3. Electronic effects were also tuned and resulted in bathochromic shifts of their emission and CPL responses from blue for CMC1 to the near-infrared (NIR) region for CMC3. Furthermore, chemical oxidations of the N donor sites in CMC1 gave rise to a highly stable radical cation (CMC1·+SbF6-) and diradical dication species (CMC12·2+2SbF6-) that serve as a rare example of a positively charged open-shell chiral macrocycle.
Collapse
Affiliation(s)
- Fei Zhao
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Jingyi Zhao
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Houting Liu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Yu Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Jiaxian Duan
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Chenglong Li
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Jiaqi Di
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Niu Zhang
- Analysis & Testing Centre, Beijing Institute of Technology, Beijing 102488, China
| | - Xiaoyan Zheng
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Pangkuan Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| |
Collapse
|
48
|
Tian X, Shoyama K, Mahlmeister B, Brust F, Stolte M, Würthner F. Naphthalimide-Annulated [ n]Helicenes: Red Circularly Polarized Light Emitters. J Am Chem Soc 2023; 145:9886-9894. [PMID: 37083394 DOI: 10.1021/jacs.3c03441] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Two [n]heliceno-bis(naphthalimides) 1 and 2 (n = 5 and 6, respectively) where two electron-accepting naphthalimide moieties are attached at both ends of helicene core were synthesized by effective two-step strategy, and their enantiomers could be resolved by chiral stationary-phase high-performance liquid chromatography (HPLC). The single-crystal X-ray diffraction analysis of enantiopure fractions of 1 and 2 confirmed their helical structure, and together with experimental and calculated circular dichroism (CD) spectra, the absolute configuration was unambiguously assigned. Both 1 and 2 exhibit high molar extinction coefficients for the S0-S1 transition and high fluorescence quantum yields (73% for 1 and 69% for 2), both being outstanding for helicene derivatives. The red circularly polarized luminescence (CPL) emission up to 615 nm for 2 with CPL brightness (BCPL) up to 66.5 M-1 cm-1 demonstrates its potential for applications in chiral optoelectronics. Time-dependent density functional theory (TD-DFT) calculations unambiguously showed that the large transition magnetic dipole moment |m| of 2 is responsible for its high absorbance dissymmetry (gabs) and luminescence dissymmetry (glum) factor.
Collapse
Affiliation(s)
- Xiaoqi Tian
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Kazutaka Shoyama
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Bernhard Mahlmeister
- Center for Nanosystems Chemistry (CNC), Universität Würzburg, Theodor-Boveri-Weg, 97074 Würzburg, Germany
| | - Felix Brust
- Center for Nanosystems Chemistry (CNC), Universität Würzburg, Theodor-Boveri-Weg, 97074 Würzburg, Germany
| | - Matthias Stolte
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Center for Nanosystems Chemistry (CNC), Universität Würzburg, Theodor-Boveri-Weg, 97074 Würzburg, Germany
| | - Frank Würthner
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Center for Nanosystems Chemistry (CNC), Universität Würzburg, Theodor-Boveri-Weg, 97074 Würzburg, Germany
| |
Collapse
|
49
|
Lin L, Wang C, Deng Y, Geng Y. Isomerically Pure Oxindole-Terminated Quinoids for n-Type Organic Thin-Film Transistors Enabled by the Chlorination of Quinoidal Core. Chemistry 2023; 29:e202203336. [PMID: 36456528 DOI: 10.1002/chem.202203336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/03/2022]
Abstract
Quinoidal compounds have great potential utility as high-performance organic semiconducting materials because of their rigid planar structures and extended π-conjugation. However, the existence of E and Z isomers adversely affects the charge-transport properties of quinoidal compounds. In this study, three isomerically pure oxindole-terminated quinoids were developed by introducing chlorine atoms in the quinoidal core. The synthesized quinoids were confirmed to have a Z,Z configuration by means of 1 H NMR spectroscopy, density functional theory calculations, and single-crystal X-ray analysis. Importantly, the strategy of chlorination allowed to maintain low-lying frontier molecular orbital energy levels and ensure favorable intermolecular packing. Consequently, all three quinoidal compounds showed n-type transport characteristics in organic thin-film transistors, with electron mobilities up to 0.35 cm2 V-1 s-1 , which is the highest value reported to date for oxindole-terminated quinoids. Our study can provide new guidelines for the design of isomerically pure quinoids with high electron mobilities.
Collapse
Affiliation(s)
- Linlin Lin
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, P. R. China
| | - Cheng Wang
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, P. R. China
| | - Yunfeng Deng
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, P. R. China.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Binhai New City, Fuzhou, 350207, China
| | - Yanhou Geng
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, P. R. China.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Binhai New City, Fuzhou, 350207, China
| |
Collapse
|
50
|
Zhang Y, Wang Y, Gao C, Ni Z, Zhang X, Hu W, Dong H. Recent advances in n-type and ambipolar organic semiconductors and their multi-functional applications. Chem Soc Rev 2023; 52:1331-1381. [PMID: 36723084 DOI: 10.1039/d2cs00720g] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Organic semiconductors have received broad attention and research interest due to their unique integration of semiconducting properties with structural tunability, intrinsic flexibiltiy and low cost. In order to meet the requirements of organic electronic devices and their integrated circuits, p-type, n-type and ambipolar organic semiconductors are all necessary. However, due to the limitation in both material synthesis and device fabrication, the development of n-type and ambipolar materials is quite behind that of p-type materials. Recent development in synthetic methods of organic semiconductors greatly enriches the range of n-type and ambipolar materials. Moreover, the newly developed materials with multiple functions also put forward multi-functional device applications, including some emerging research areas. In this review, we give a timely summary on these impressive advances in n-type and ambipolar organic semiconductors with a special focus on their synthesis methods and advanced materials with enhanced properties of charge carrier mobility, integration of high mobility and strong emission and thermoelectric properties. Finally, multi-functional device applications are further demonstrated as an example of these developed n-type and ambipolar materials.
Collapse
Affiliation(s)
- Yihan Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongshuai Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Can Gao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Zhenjie Ni
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaotao Zhang
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China.,Department of Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China.,Joint School of National University of Singapore and Tianjin University, Fuzhou International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| | - Huanli Dong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|