1
|
Sobczak SK, Drwęska J, Gromelska W, Roztocki K, Janiak AM. Multivariate Flexible Metal-Organic Frameworks and Covalent Organic Frameworks. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2402486. [PMID: 39380355 DOI: 10.1002/smll.202402486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 09/20/2024] [Indexed: 10/10/2024]
Abstract
Precise control of the void environment, achieved through multiple functional groups and enhanced by structural adaptations to guest molecules, stands at the forefront of scientific inquiry. Flexible multivariate open framework materials (OFMs), including covalent organic frameworks and metal-organic frameworks, meet these criteria and are expected to play a crucial role in gas storage and separation, pollutant removal, and catalysis. Nevertheless, there is a notable lack of critical evaluation of achievements in their chemistry and future prospects for their development or implementation. To provide a comprehensive historical context, the initial discussion explores into the realm of "classical" flexible OFMs, where their origin, various modes of flexibility, similarities to proteins, advanced tuning methods, and recent applications are explored. Subsequently, multivariate flexible materials, the methodologies involved in their synthesis, and horizons of their application are focussed. Furthermore, the reader to the concept of spatial distribution is introduced, providing a brief overview of the latest reports that have contributed to its elucidation. In summary, the critical review not only explores the landscape of multivariate flexible materials but also sheds light on the obstacles that the scientific community must overcome to fully unlock the potential of this fascinating field.
Collapse
Affiliation(s)
- Szymon K Sobczak
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, Poznań, 61-614, Poland
| | - Joanna Drwęska
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, Poznań, 61-614, Poland
| | - Wiktoria Gromelska
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, Poznań, 61-614, Poland
| | - Kornel Roztocki
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, Poznań, 61-614, Poland
| | - Agnieszka M Janiak
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, Poznań, 61-614, Poland
| |
Collapse
|
2
|
Khotchasanthong K, Chinchan K, Kongpatpanich K, Pinyo W, Kielar F, Dungkaew W, Sukwattanasinitt M, Laksee S, Chainok K. Construction of 2D zinc(II) MOFs with tricarboxylate and N-donor mixed ligands for multiresponsive luminescence sensors and CO 2 adsorption. Dalton Trans 2024. [PMID: 39364617 DOI: 10.1039/d4dt01825g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
The solvothermal reactions of ZnCl2·6H2O, benzene-1,3,5-tribenzoic acid (H3btb), and N-heterocyclic ancillary imidazole (Im) or aminopyrimidine (a mp) ligands led to the creation of two-dimensional (2D) zinc(II) based metal-organic frameworks (MOFs), (Me2NH2)2[Zn2(btb)2(Im)2]·2DMF·3MeOH (1) and (Me2NH2)2[Zn2(btb)2(amp)]·H2O·2DMF·MeOH (2). The btb3- ligands in 1 and 2 form an anionic 2D layered structure with a (63) honeycomb (hcb) topology by linking to Zn(II) centres through their carboxylate groups. The incorporation of N-heterocyclic auxiliary ligands Im and amp into the hcb nets resulted in the formation of a 2D hydrogen-bonded and covalently pillared bilayer structure featuring two-fold interpenetrating networks. Each of these networks consists of small channels that are occupied by Me2NH2 cations and solvent molecules. Both 1 and 2 emit blue luminescence emissions in the solid state at room temperature and exhibit a great selectivity and sensitivity for the detection of acetone and multiple heavy metal ions including Hg2+, Cu2+, Fe2+, Pb2+, Cr3+, and Fe3+ ions. At 1 bar, activated 1 and 2 demonstrate moderate capacities for adsorbing CO2 at room temperature, with a preference for CO2 over N2. Notably, at higher pressures (up to 20 bar), their activated samples 1 and 2 show a temperature-dependent enhancement of CO2 uptake while retaining good stability.
Collapse
Affiliation(s)
- Kenika Khotchasanthong
- Thammasat University Research Unit in Multifunctional Crystalline Materials and Applications (TU-MCMA), Faculty of Science and Technology, Thammasat University, Pathum Thani 12121, Thailand.
| | - Kunlanit Chinchan
- Thammasat University Research Unit in Multifunctional Crystalline Materials and Applications (TU-MCMA), Faculty of Science and Technology, Thammasat University, Pathum Thani 12121, Thailand.
| | - Kanokwan Kongpatpanich
- School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong 21210, Thailand
| | - Waraporn Pinyo
- NSTDA Characterization and Testing Center, Thailand Science Park, Pathum Thani 12120, Thailand
| | - Filip Kielar
- Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Winya Dungkaew
- Department of Chemistry, Faculty of Science, Mahasarakham University, Maha Sarakham 43100, Thailand
| | | | - Sakchai Laksee
- Nuclear Technology Research and Development Center, Thailand Institute of Nuclear Technology (Public Organization), Nakhon Nayok, 26120, Thailand
| | - Kittipong Chainok
- Thammasat University Research Unit in Multifunctional Crystalline Materials and Applications (TU-MCMA), Faculty of Science and Technology, Thammasat University, Pathum Thani 12121, Thailand.
- Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
3
|
Bassani CL, van Anders G, Banin U, Baranov D, Chen Q, Dijkstra M, Dimitriyev MS, Efrati E, Faraudo J, Gang O, Gaston N, Golestanian R, Guerrero-Garcia GI, Gruenwald M, Haji-Akbari A, Ibáñez M, Karg M, Kraus T, Lee B, Van Lehn RC, Macfarlane RJ, Mognetti BM, Nikoubashman A, Osat S, Prezhdo OV, Rotskoff GM, Saiz L, Shi AC, Skrabalak S, Smalyukh II, Tagliazucchi M, Talapin DV, Tkachenko AV, Tretiak S, Vaknin D, Widmer-Cooper A, Wong GCL, Ye X, Zhou S, Rabani E, Engel M, Travesset A. Nanocrystal Assemblies: Current Advances and Open Problems. ACS NANO 2024; 18:14791-14840. [PMID: 38814908 DOI: 10.1021/acsnano.3c10201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
We explore the potential of nanocrystals (a term used equivalently to nanoparticles) as building blocks for nanomaterials, and the current advances and open challenges for fundamental science developments and applications. Nanocrystal assemblies are inherently multiscale, and the generation of revolutionary material properties requires a precise understanding of the relationship between structure and function, the former being determined by classical effects and the latter often by quantum effects. With an emphasis on theory and computation, we discuss challenges that hamper current assembly strategies and to what extent nanocrystal assemblies represent thermodynamic equilibrium or kinetically trapped metastable states. We also examine dynamic effects and optimization of assembly protocols. Finally, we discuss promising material functions and examples of their realization with nanocrystal assemblies.
Collapse
Affiliation(s)
- Carlos L Bassani
- Institute for Multiscale Simulation, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Greg van Anders
- Department of Physics, Engineering Physics, and Astronomy, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Uri Banin
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Dmitry Baranov
- Division of Chemical Physics, Department of Chemistry, Lund University, SE-221 00 Lund, Sweden
| | - Qian Chen
- University of Illinois, Urbana, Illinois 61801, USA
| | - Marjolein Dijkstra
- Soft Condensed Matter & Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CC Utrecht, The Netherlands
| | - Michael S Dimitriyev
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01003, USA
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843, USA
| | - Efi Efrati
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| | - Jordi Faraudo
- Institut de Ciencia de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, E-08193 Bellaterra, Barcelona, Spain
| | - Oleg Gang
- Department of Chemical Engineering, Columbia University, New York, New York 10027, USA
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, USA
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Nicola Gaston
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Department of Physics, The University of Auckland, Auckland 1142, New Zealand
| | - Ramin Golestanian
- Max Planck Institute for Dynamics and Self-Organization (MPI-DS), 37077 Göttingen, Germany
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3PU, UK
| | - G Ivan Guerrero-Garcia
- Facultad de Ciencias de la Universidad Autónoma de San Luis Potosí, 78295 San Luis Potosí, México
| | - Michael Gruenwald
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, USA
| | - Amir Haji-Akbari
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, USA
| | - Maria Ibáñez
- Institute of Science and Technology Austria (ISTA), 3400 Klosterneuburg, Austria
| | - Matthias Karg
- Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Tobias Kraus
- INM - Leibniz-Institute for New Materials, 66123 Saarbrücken, Germany
- Saarland University, Colloid and Interface Chemistry, 66123 Saarbrücken, Germany
| | - Byeongdu Lee
- X-ray Science Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Reid C Van Lehn
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53717, USA
| | - Robert J Macfarlane
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Bortolo M Mognetti
- Center for Nonlinear Phenomena and Complex Systems, Université Libre de Bruxelles, 1050 Brussels, Belgium
| | - Arash Nikoubashman
- Leibniz-Institut für Polymerforschung Dresden e.V., 01069 Dresden, Germany
- Institut für Theoretische Physik, Technische Universität Dresden, 01069 Dresden, Germany
| | - Saeed Osat
- Max Planck Institute for Dynamics and Self-Organization (MPI-DS), 37077 Göttingen, Germany
| | - Oleg V Prezhdo
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, USA
| | - Grant M Rotskoff
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | - Leonor Saiz
- Department of Biomedical Engineering, University of California, Davis, California 95616, USA
| | - An-Chang Shi
- Department of Physics & Astronomy, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Sara Skrabalak
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA
| | - Ivan I Smalyukh
- Department of Physics and Chemical Physics Program, University of Colorado, Boulder, Colorado 80309, USA
- International Institute for Sustainability with Knotted Chiral Meta Matter, Hiroshima University, Higashi-Hiroshima City 739-0046, Japan
| | - Mario Tagliazucchi
- Universidad de Buenos Aires, Ciudad Universitaria, C1428EHA Ciudad Autónoma de Buenos Aires, Buenos Aires 1428 Argentina
| | - Dmitri V Talapin
- Department of Chemistry, James Franck Institute and Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, USA
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Alexei V Tkachenko
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Sergei Tretiak
- Theoretical Division and Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - David Vaknin
- Iowa State University and Ames Lab, Ames, Iowa 50011, USA
| | - Asaph Widmer-Cooper
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Sydney, Sydney, New South Wales 2006, Australia
- The University of Sydney Nano Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Gerard C L Wong
- Department of Bioengineering, University of California, Los Angeles, California 90095, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Xingchen Ye
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA
| | - Shan Zhou
- Department of Nanoscience and Biomedical Engineering, South Dakota School of Mines and Technology, Rapid City, South Dakota 57701, USA
| | - Eran Rabani
- Department of Chemistry, University of California and Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- The Raymond and Beverly Sackler Center of Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 69978, Israel
| | - Michael Engel
- Institute for Multiscale Simulation, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Alex Travesset
- Iowa State University and Ames Lab, Ames, Iowa 50011, USA
| |
Collapse
|
4
|
Cortés-Martínez A, von Baeckmann C, Hernández-López L, Carné-Sánchez A, Maspoch D. Giant oligomeric porous cage-based molecules. Chem Sci 2024; 15:7992-7998. [PMID: 38817590 PMCID: PMC11134396 DOI: 10.1039/d4sc01974a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 04/29/2024] [Indexed: 06/01/2024] Open
Abstract
Most reported porous materials are either extended networks or monomeric discrete cavities; indeed, porous structures of intermediate size have scarcely been explored. Herein, we present the stepwise linkage of discrete porous metal-organic cages or polyhedra (MOPs) into oligomeric structures with a finite number of MOP units. The synthesis of these new oligomeric porous molecules entails the preparation of 1-connected (1-c) MOPs with only one available azide reactive site on their surface. The azide-terminated 1-c MOP is linked through copper(i)-catalysed azide-alkyne cycloaddition click chemistry with additional alkyne-terminated 1-c MOPs, 4-c clusters, or 24-c MOPs to yield three classes of giant oligomeric molecules: dimeric, tetrameric, or satellite-like, respectively. Importantly, all the giant molecules that we synthesised are soluble in water and permanently porous in the solid state.
Collapse
Affiliation(s)
- Alba Cortés-Martínez
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology Campus UAB, Bellaterra 08193 Barcelona Spain
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona (UAB) Cerdanyola del Vallès 08193 Barcelona Spain
| | - Cornelia von Baeckmann
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology Campus UAB, Bellaterra 08193 Barcelona Spain
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona (UAB) Cerdanyola del Vallès 08193 Barcelona Spain
| | - Laura Hernández-López
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology Campus UAB, Bellaterra 08193 Barcelona Spain
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona (UAB) Cerdanyola del Vallès 08193 Barcelona Spain
| | - Arnau Carné-Sánchez
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology Campus UAB, Bellaterra 08193 Barcelona Spain
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona (UAB) Cerdanyola del Vallès 08193 Barcelona Spain
| | - Daniel Maspoch
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology Campus UAB, Bellaterra 08193 Barcelona Spain
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona (UAB) Cerdanyola del Vallès 08193 Barcelona Spain
- ICREA Pg. Lluís Companys 23 08010 Barcelona Spain
| |
Collapse
|
5
|
Tian L, Song X, Liu Y, Zhang C, Shi L, Chen Q, Deng Y, Cui W, Shan S, Hu T. Defect-engineering improves the activity of Metal-Organic frameworks for catalyzing hydroboration of Alkynes: A combination of experimental investigation and Density functional theory calculations. J Colloid Interface Sci 2024; 662:263-275. [PMID: 38354554 DOI: 10.1016/j.jcis.2024.02.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/16/2024]
Abstract
Defect-engineered metal-organic frameworks (DEMOFs) are emerging advanced materials. The construction of DEMOFs is of great significance; however, DEMOF-based catalysis remains unexplored. (E)-vinylboronates, an important building block for asymmetric synthesis, can be synthesized via the hydroboration of alkynes. However, the lack of high-performance catalysts considerably hinders their synthesis. Herein, a series of DEHKUST-1 (HKUST = Hong Kong University of Science and Technology) (Da-f) catalysts with missing occupation of linkers at Cu nodes were designed by partially replacing benzene-1,3,5-tricarboxylate (H3BTC) with defective connectors of pyridine-3,5-dicarboxylate (PYDC) to efficiently promote the hydroboration of alkynes. Results showed that the Dd containing 0.8 doping ratio of PYDC exhibited remarkable catalytic activity than the defect-free HKUST-1. This originated from the improved accessibility for reactants towards the Lewis acid active Cu sites of DEHKUST-1 due to the presence of plenty of rooms next to the Cu sites and enhanced coordination ability in such 'defective' HKUST-1. Dd had high selectivity (>99 %) and yield (>96 %) for (E)-vinylboronates and extensive functional group compatibility for terminal alkynes. Density functional theory (DFT) calculations were performed to elucidate the mechanism of hydroboration. Compared with that of defect-free HKUST-1, the low energy barrier of DEHKUST-1 can be attributed to the lower coordination number of Cu sites and enhanced accessibility of Cu active sites towards reagents.
Collapse
Affiliation(s)
- Long Tian
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Xiaonan Song
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Yi Liu
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Churu Zhang
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Lan Shi
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Qinglin Chen
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Yanyan Deng
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Weigang Cui
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Shaoyun Shan
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, PR China.
| | - Tianding Hu
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, PR China.
| |
Collapse
|
6
|
Delaporte S, Abánades Lázaro I, López-Cabrelles J, Mazarakioti EC, Chebourou S, Vitórica-Yrezábal IJ, Giménez-Marqués M, Mínguez Espallargas G. Imparting structural robustness of metal-organic cages based on oxo-dimolybdenum clusters. Dalton Trans 2023; 52:15682-15687. [PMID: 37646573 PMCID: PMC10628856 DOI: 10.1039/d3dt02482b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023]
Abstract
A family of robust and stable molybdenum-based metal-organic cages have been obtained based on the [Mo2O2(μ2-O)2]2+ secondary building unit. The resulting cages are decorated with different pyrdine derivatives that impart structural stability, resulting in the structural elucidation of the activated cage with single-crystal diffraction. The chemical robustness of the cage is also demonstrated by the post-synthetic modification of the cage, which allows the exchange of the pyridine derivatives without rupture of the cage.
Collapse
Affiliation(s)
- Solène Delaporte
- Instituto de Ciencia Molecular (ICMol), Universitat de València, Catedrático José Beltrán 2, 46980 Paterna, Spain.
- ENS Paris-Saclay, Département de Chimie, 4 Av. des Sciences, 91190 Gif-sur-Yvette, France
| | - Isabel Abánades Lázaro
- Instituto de Ciencia Molecular (ICMol), Universitat de València, Catedrático José Beltrán 2, 46980 Paterna, Spain.
| | - Javier López-Cabrelles
- Instituto de Ciencia Molecular (ICMol), Universitat de València, Catedrático José Beltrán 2, 46980 Paterna, Spain.
| | - Eleni C Mazarakioti
- Instituto de Ciencia Molecular (ICMol), Universitat de València, Catedrático José Beltrán 2, 46980 Paterna, Spain.
| | - Sarah Chebourou
- Instituto de Ciencia Molecular (ICMol), Universitat de València, Catedrático José Beltrán 2, 46980 Paterna, Spain.
| | | | - Mónica Giménez-Marqués
- Instituto de Ciencia Molecular (ICMol), Universitat de València, Catedrático José Beltrán 2, 46980 Paterna, Spain.
| | | |
Collapse
|
7
|
von Baeckmann C, Ruiz-Relaño S, Imaz I, Handke M, Juanhuix J, Gándara F, Carné-Sanchez A, Maspoch D. Stepwise assembly of heterometallic, heteroleptic "triblock Janus-type" metal-organic polyhedra. Chem Commun (Camb) 2023; 59:3423-3426. [PMID: 36853262 PMCID: PMC10019128 DOI: 10.1039/d2cc06815j] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/13/2023] [Indexed: 02/17/2023]
Abstract
Increasing the chemical complexity of metal-organic cages (MOCs) or polyhedra (MOPs) demands control over the simultaneous organization of diverse organic linkers and metal ions into discrete caged structures. Herein, we show that a pre-assembled complex of the archetypical cuboctahedral MOP can be used as a template to replicate such caged structure, one having a "triblock Janus-type" configuration that is both heterometallic and heteroleptic.
Collapse
Affiliation(s)
- Cornelia von Baeckmann
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, Barcelona 08193, Spain.
- Departament de Química, Facultat de Ciències Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Sara Ruiz-Relaño
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, Barcelona 08193, Spain.
- Departament de Química, Facultat de Ciències Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Inhar Imaz
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, Barcelona 08193, Spain.
- Departament de Química, Facultat de Ciències Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Marcel Handke
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, Barcelona 08193, Spain.
- Departament de Química, Facultat de Ciències Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Judith Juanhuix
- Alba Synchrotron Light Facility, Cerdanyola del Vallès, Barcelona 08290, Spain
| | - Felipe Gándara
- Materials Science Institute of Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Calle Sor Juana Inés de la Cruz, 3, Madrid 28049, Spain
| | - Arnau Carné-Sanchez
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, Barcelona 08193, Spain.
- Departament de Química, Facultat de Ciències Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Daniel Maspoch
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, Barcelona 08193, Spain.
- Departament de Química, Facultat de Ciències Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
- ICREA, Pg. Lluís Companys 23, Barcelona 08010, Spain
| |
Collapse
|