1
|
Tang H, Liang Y, Yang CY, Luo X, Yu J, Zhang K, Fabiano S, Huang F. Polyethylene glycol-decorated n-type conducting polymers with improved ion accessibility for high-performance organic electrochemical transistors. MATERIALS HORIZONS 2024; 11:5419-5428. [PMID: 39188189 DOI: 10.1039/d4mh00979g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
High-performance n-type organic mixed ionic-electronic conductors (OMIECs) are essential for advancing complementary circuits based on organic electrochemical transistors (OECTs). Despite significant progress, current n-type OMIECs often exhibit lower transconductance and slower response times compared to their p-type counterparts, limiting the development of OECT-based complementary circuits. Optimizing the conjugated backbone and side chain structures of OMIECs is critical for enhancing both ion and electron transport efficiencies while maintaining a delicate balance between the two. In this study, hydrophilic polyethylene glycol (PEG) side chains were incorporated into the highly conductive n-type polymer poly(3,7-dihydrobenzo[1,2-b:4,5-b']difuran-2,6-dione) (PBFDO) backbone to achieve this goal. The incorporation of PEG chains improved ion accessibility, and by adjusting the PEG content, the electronic and ionic transport properties were fine-tuned, ultimately enhancing the performance of OECTs and related p-n complementary circuits. The n-type OECTs based on PBFDO-PEG50wt% demonstrated exceptional transfer characteristics, including a transient response time (τON) as low as 72 μs, a high geometry-normalized transconductance exceeding 400 S cm-1, and an impressive μC* value surpassing 720 F cm-1 V-1 s-1. Notably, the use of PBFDO-PEG50wt% in a complementary inverter resulted in a voltage gain of 20 V/V, more than five times higher than that achieved with unmodified PBFDO (<4 V/V). These findings highlight the importance of balancing electron and ion transport characteristics in OMIECs to achieve high performance in OECTs and their associated circuits, and they validate PEG decoration as an effective approach.
Collapse
Affiliation(s)
- Haoran Tang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou 510640, China.
| | - Yuanying Liang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou 510640, China.
- Guangdong Artificial Intelligence and Digital Economy Laboratory (Guangzhou), Guangzhou 510335, Guangdong, China
| | - Chi-Yuan Yang
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden.
| | - Xi Luo
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou 510640, China.
| | - Jiangkai Yu
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou 510640, China.
| | - Kai Zhang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou 510640, China.
| | - Simone Fabiano
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden.
| | - Fei Huang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
2
|
Zhou H, Wang W, Duan Y, Sun R, Li Y, Xie Z, Xu D, Wu M, Wang Y, Li H, Fan Q, Peng Y, Yao Y, Liao C, Peng Q, Liu S, Liu Z. Glycol Monomethyl Ether-Substituted Carbazolyl Hole-Transporting Material for Stable Inverted Perovskite Solar Cells with Efficiency of 25.52 . Angew Chem Int Ed Engl 2024; 63:e202403068. [PMID: 38687308 DOI: 10.1002/anie.202403068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/15/2024] [Accepted: 04/29/2024] [Indexed: 05/02/2024]
Abstract
Organic self-assembled molecules (OSAMs) based hole-transporting materials play a pivotal role in achieving highly efficient and stable inverted perovskite solar cells (IPSCs). However, the reported carbazol-based OSAMs have serious drawbacks, such as poor wettability for perovskite solution spreading due to the nonpolar surface, worse matched energy arrangement with perovskite, and limited molecular species, which greatly limit the device performance. To address above problems, a novel OSAM [4-(3,6-glycol monomethyl ether-9H-carbazol-9-yl) butyl]phosphonic acid (GM-4PACz) was synthesized as hole-transporting material by introducing glycol monomethyl ether (GM) side chains at carbazolyl unit. GM groups enhance the surface energy of Indium Tin Oxide (ITO)/SAM substrate to facilitate the nucleation and growth of up perovskite film, suppress cation defects, release the residual stress at SAM/perovskite interface, and evaluate energy level for matching with perovskite. Consequently, the GM-4PACz based IPSC achieves a champion PCE of 25.52 %, a respectable open-circuit voltage (VOC) of 1.21 V, a high stability, possessing 93.29 % and 91.75 % of their initial efficiency after aging in air for 2000 h or tracking at maximum power point for 1000 h, respectively.
Collapse
Affiliation(s)
- Hui Zhou
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Weilin Wang
- School of Chemistry, Xi'an Jiaotong University, 710049, Xi'an, P. R. China
| | - Yuwei Duan
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, China
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Rui Sun
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Yong Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Zhuang Xie
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, China
| | - Dongfang Xu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Meizi Wu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Youliang Wang
- School of Chemistry, Xi'an Jiaotong University, 710049, Xi'an, P. R. China
| | - Hongxiang Li
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Qunping Fan
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yang Peng
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, China
| | - Yao Yao
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, China
| | - Chentong Liao
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, China
| | - Qiang Peng
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, China
| | - Shengzhong Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Zhike Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
3
|
Pan T, Jiang X, van Doremaele ERW, Li J, van der Pol TPA, Yan C, Ye G, Liu J, Hong W, Chiechi RC, van de Burgt Y, Zhang Y. Over 60 h of Stable Water-Operation for N-Type Organic Electrochemical Transistors with Fast Response and Ambipolarity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400872. [PMID: 38810112 PMCID: PMC11304290 DOI: 10.1002/advs.202400872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/28/2024] [Indexed: 05/31/2024]
Abstract
Organic electrochemical transistors (OECTs) are of great interest in low-power bioelectronics and neuromorphic computing, as they utilize organic mixed ionic-electronic conductors (OMIECs) to transduce ionic signals into electrical signals. However, the poor environmental stability of OMIEC materials significantly restricts the practical application of OECTs. Therefore, the non-fused planar naphthalenediimide (NDI)-dialkoxybithiazole (2Tz) copolymers are fine-tuned through varying ethylene glycol (EG) side chain lengths from tri(ethylene glycol) to hexa(ethylene glycol) (namely P-XO, X = 3-6) to achieve OECTs with high-stability and low threshold voltage. As a result, the NDI-2Tz copolymers exhibit ambipolarity, rapid response (<10 ms), and ultra-high n-type stability. Notably, the P-6O copolymers display a threshold voltage as low as 0.27 V. They can operate in n-type mode in an aqueous solution for over 60 h, maintaining an on-off ratio of over 105. This work sheds light on the design of exceptional n-type/ambipolar materials for OECTs. It demonstrates the potential of incorporating these ambipolar polymers into water-operational integrated circuits for long-term biosensing systems and energy-efficient brain-inspired computing.
Collapse
Affiliation(s)
- Tao Pan
- The Institute of Flexible Electronics (IFE, Future Technologies) & IKKEM & State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005P. R. China
| | - Xinnian Jiang
- The Institute of Flexible Electronics (IFE, Future Technologies) & IKKEM & State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005P. R. China
| | - Eveline R. W. van Doremaele
- MicrosystemsDepartment of Mechanical Engineering & Institute for Complex Molecular SystemsEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
| | - Junyu Li
- Sinopec Shanghai Research Institute of Petrochemical TechnologyShanghai201028P. R. China
| | - Tom P. A. van der Pol
- Molecular Materials and Nanosystems & Institute for Complex Molecular SystemsEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
| | - Chenshuai Yan
- The Institute of Flexible Electronics (IFE, Future Technologies) & IKKEM & State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005P. R. China
| | - Gang Ye
- Key Laboratory for the Green Preparation and Application of Functional MaterialsHubei Key Laboratory of Polymer MaterialsSchool of Materials Science and EngineeringHubei UniversityYouyi Road 368Wuhan430062P. R. China
| | - Jian Liu
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022P. R. China
| | - Wenjing Hong
- The Institute of Flexible Electronics (IFE, Future Technologies) & IKKEM & State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005P. R. China
| | - Ryan C. Chiechi
- Department of Chemistry & Organic and Carbon Electronics ClusterNorth Carolina State UniversityRaleighNC27695‐8204USA
| | - Yoeri van de Burgt
- MicrosystemsDepartment of Mechanical Engineering & Institute for Complex Molecular SystemsEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
| | - Yanxi Zhang
- The Institute of Flexible Electronics (IFE, Future Technologies) & IKKEM & State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005P. R. China
| |
Collapse
|
4
|
Charland-Martin A, Collier GS. Understanding Degradation Dynamics of Azomethine-containing Conjugated Polymers. Macromolecules 2024; 57:6146-6155. [PMID: 39005947 PMCID: PMC11238594 DOI: 10.1021/acs.macromol.4c01168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 06/11/2024] [Indexed: 07/16/2024]
Abstract
Understanding the influence of chemical environments on the degradation properties of conjugated polymers is an important task for the continued development of sustainable materials with potential utility in biomedical and optoelectronic applications. Azomethine-containing polymers were synthesized via palladium-catalyzed direct arylation polymerization (DArP) and used to study fundamental degradation trends upon exposure to acid. Shifts in the UV-vis absorbance spectra and the appearance/disappearance of aldehyde and imine diagnostic peaks within the 1H NMR spectra indicate that the polymers will degrade in the presence of acid. After degradation, the aldehyde starting material was recovered in high yields and was shown to maintain structural integrity when compared with commercial starting materials. Solution-degradation studies found that rates of degradation vary from 5 h to 90 s depending on the choice of solvent or acid used for hydrolysis. Additionally, the polymer was shown to degrade in the presence of perfluoroalkyl substances (PFASs), which makes them potentially useful as PFAS-sensitive sensors. Ultimately, this research provides strategies to control the degradation kinetics of azomethine-containing polymers through the manipulation of environmental factors and guides the continued development of azomethine-based materials.
Collapse
Affiliation(s)
- Ariane Charland-Martin
- Department
of Chemistry and Biochemistry, Kennesaw
State University, Kennesaw, Georgia 30144, United States
| | - Graham S. Collier
- Department
of Chemistry and Biochemistry, Kennesaw
State University, Kennesaw, Georgia 30144, United States
- School
of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| |
Collapse
|
5
|
Quill TJ, LeCroy G, Marks A, Hesse SA, Thiburce Q, McCulloch I, Tassone CJ, Takacs CJ, Giovannitti A, Salleo A. Charge Carrier Induced Structural Ordering And Disordering in Organic Mixed Ionic Electronic Conductors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310157. [PMID: 38198654 DOI: 10.1002/adma.202310157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/11/2023] [Indexed: 01/12/2024]
Abstract
Operational stability underpins the successful application of organic mixed ionic-electronic conductors (OMIECs) in a wide range of fields, including biosensing, neuromorphic computing, and wearable electronics. In this work, both the operation and stability of a p-type OMIEC material of various molecular weights are investigated. Electrochemical transistor measurements reveal that device operation is very stable for at least 300 charging/discharging cycles independent of molecular weight, provided the charge density is kept below the threshold where strong charge-charge interactions become likely. When electrochemically charged to higher charge densities, an increase in device hysteresis and a decrease in conductivity due to a drop in the hole mobility arising from long-range microstructural disruptions are observed. By employing operando X-ray scattering techniques, two regimes of polaron-induced structural changes are found: 1) polaron-induced structural ordering at low carrier densities, and 2) irreversible structural disordering that disrupts charge transport at high carrier densities, where charge-charge interactions are significant. These operando measurements also reveal that the transfer curve hysteresis at high carrier densities is accompanied by an analogous structural hysteresis, providing a microstructural basis for such instabilities. This work provides a mechanistic understanding of the structural dynamics and material instabilities of OMIEC materials during device operation.
Collapse
Affiliation(s)
- Tyler J Quill
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Garrett LeCroy
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Adam Marks
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Sarah A Hesse
- Stanford Synchrotron Radiation Lightsource SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Quentin Thiburce
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Iain McCulloch
- Department of Chemistry University of Oxford, Oxford, OX1 3TA, UK
| | - Christopher J Tassone
- Stanford Synchrotron Radiation Lightsource SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Christopher J Takacs
- Stanford Synchrotron Radiation Lightsource SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Alexander Giovannitti
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, SE-412 96, Sweden
| | - Alberto Salleo
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
6
|
Durbin M, Balzer AH, Reynolds JR, Ratcliff EL, Stingelin N, Österholm AM. Role of Side-Chain Free Volume on the Electrochemical Behavior of Poly(propylenedioxythiophenes). CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:2634-2641. [PMID: 38558922 PMCID: PMC10976628 DOI: 10.1021/acs.chemmater.3c02122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 04/04/2024]
Abstract
Mixed ionic/electronic conducting polymers are versatile systems for, e.g., energy storage, heat management (exploiting electrochromism), and biosensing, all of which require electrochemical doping, i.e., the electrochemical oxidation or reduction of their macromolecular backbones. Electrochemical doping is achieved via electro-injection of charges (i.e., electronic carriers), stabilized via migration of counterions from a supporting electrolyte. Since the choice of the polymer side-chain functionalization influences electrolyte and/or ion sorption and desorption, it in turn affects redox properties, and, thus, electrochemically induced mixed conduction. However, our understanding of how side-chain versus backbone design can increase ion flow while retaining high electronic transport remains limited. Hence, heuristic design approaches have typically been followed. Herein, we consider the redox and swelling behavior of three poly(propylenedioxythiophene) derivatives, P(ProDOT)s, substituted with different side-chain motifs, and demonstrate that passive swelling is controlled by the surface polarity of P(ProDOT) films. In contrast, active swelling under operando conditions (i.e., under an applied bias) is dictated by the local side-chain free volume on the length scale of a monomer unit. Such insights deliver important design criteria toward durable soft electrochemical systems for diverse energy and biosensing platforms and new understanding into electrochemical conditioning ("break-in") in many conducting polymers.
Collapse
Affiliation(s)
- Marlow
M. Durbin
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Alex H. Balzer
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - John R. Reynolds
- School
of Materials Science and Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| | - Erin L. Ratcliff
- Department
of Chemical and Environmental Engineering, The University of Arizona, Tucson, Arizona 85721-0012, United States
| | - Natalie Stingelin
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School
of Materials Science and Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Anna M. Österholm
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
7
|
Bakry A, Yadav P, Chen SYE, Luscombe CK. The unexpected fast polymerization during the synthesis of a glycolated polythiophene. Faraday Discuss 2024; 250:74-82. [PMID: 37994514 DOI: 10.1039/d3fd00146f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Conjugated polymers with ethylene glycol side chains are emerging as ideal materials for bioelectronics, particularly for application in organic electrochemical transistors (OECTs). To improve the OECT device performance, it is important to develop an efficient synthetic strategy that will provide access to novel high-performing materials besides focusing on molecular design. While a lot of efforts are being devoted to designing of new polymers by modifying the glycol side chains, understanding how their nature affects the polymerization kinetics and eventually the polymer structure and properties is not known. In this work, we have studied the influence of the content of the ethylene glycol side chain and its linkage on the formation of the active Grignard monomer species upon Grignard metathesis in three thiophene derivatives. A strong dependence of the monomer's concentration on polymerization was noted in our study indicating that for synthesizing P3MEEMT, a high-performing OECT material, by Kumada catalyst transfer polymerization (KCTP) a minimum of 0.15 M monomer is needed. Furthermore, kinetic studies by GPC show uncontrolled polymerization behavior contrary to the controlled chain growth characteristics of the KCTP.
Collapse
Affiliation(s)
- Abdulrahman Bakry
- pi-Conjugated Polymers Unit, Okinawa Institute of Science and Technology Graduate University, Kunigami-gun, Okinawa 9040495, Japan.
| | - Preeti Yadav
- pi-Conjugated Polymers Unit, Okinawa Institute of Science and Technology Graduate University, Kunigami-gun, Okinawa 9040495, Japan.
| | - Shin-Ya Emerson Chen
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA 98195, USA
| | - Christine K Luscombe
- pi-Conjugated Polymers Unit, Okinawa Institute of Science and Technology Graduate University, Kunigami-gun, Okinawa 9040495, Japan.
| |
Collapse
|
8
|
Wan Q, Thompson BC. Control of Properties through Hydrogen Bonding Interactions in Conjugated Polymers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305356. [PMID: 37946703 PMCID: PMC10885672 DOI: 10.1002/advs.202305356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/22/2023] [Indexed: 11/12/2023]
Abstract
Molecular design is crucial for endowing conjugated polymers (CPs) with unique properties and enhanced electronic performance. Introducing Hydrogen-bonding (H-bonding) into CPs has been a broadly exploited, yet still emerging strategy capable of tuning a range of properties encompassing solubility, crystallinity, electronic properties, solid-state morphology, and stability, as well as mechanical properties and self-healing properties. Different H-bonding groups can be utilized to tailor CPs properties based on the applications of interest. This review provides an overview of classes of H-bonding CPs (assorted by the different H-bond functional groups), the synthetic methods to introduce the corresponding H-bond functional groups and the impact of H-bonding in CPs on corresponding electronic and materials properties. Recent advances in addressing the trade-off between electronic performance and mechanical durability are also highlighted. Furthermore, insights into future directions and prospects for H-bonded CPs are discussed.
Collapse
Affiliation(s)
- Qingpei Wan
- Department of Chemistry and Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, CA, 90089-1661, USA
| | - Barry C Thompson
- Department of Chemistry and Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, CA, 90089-1661, USA
| |
Collapse
|
9
|
Gilhooly-Finn PA, Jacobs IE, Bardagot O, Zaffar Y, Lemaire A, Guchait S, Zhang L, Freeley M, Neal W, Richard F, Palma M, Banerji N, Sirringhaus H, Brinkmann M, Nielsen CB. Interplay between Side Chain Density and Polymer Alignment: Two Competing Strategies for Enhancing the Thermoelectric Performance of P3HT Analogues. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2023; 35:9029-9039. [PMID: 38027547 PMCID: PMC10653083 DOI: 10.1021/acs.chemmater.3c01680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/06/2023] [Indexed: 12/01/2023]
Abstract
A series of polythiophenes with varying side chain density was synthesized, and their electrical and thermoelectric properties were investigated. Aligned and non-aligned thin films of the polymers were characterized in the neutral and chemically doped states. Optical and diffraction measurements revealed an overall lower order in the thin films with lower side chain density, also confirmed using polarized optical experiments on aligned thin films. However, upon doping the non-aligned films, a sixfold increase in electrical conductivity was observed for the polythiophene with the lowest side chain density compared to poly(3-hexylthiophene) (P3HT). We found that the improvement in conductivity was not due to a larger charge carrier density but an increase in charge carrier mobility after doping with 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ). On the other hand, doped aligned films did not show the same trend; lower side chain density instead led to a lower conductivity and Seebeck coefficient compared to those for P3HT. This was attributed to the poorer alignment of the polymer thin films with lower side chain density. The study demonstrates that optimizing side chain density is a synthetically simple and effective way to improve electrical conductivity in polythiophene films relevant to thermoelectric applications.
Collapse
Affiliation(s)
- Peter A. Gilhooly-Finn
- Department
of Chemistry, University College London, Gower Street, London WC1E 6BT, U.K.
- Department
of Chemistry, Queen Mary University of London, Mile End Road, London E1 4NS, U.K.
| | - Ian E. Jacobs
- Optoelectronics
Group, University of Cambridge, Cavendish
Laboratory, J J Thomson Avenue, Cambridge CB3 0HE, U.K.
| | - Olivier Bardagot
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Yasser Zaffar
- Department
of Chemistry, Queen Mary University of London, Mile End Road, London E1 4NS, U.K.
| | - Antoine Lemaire
- Charles
Sadron Institute (ICS), CNRS Université de Strasbourg, UPR
22, 23 Rue du Loess, Strasbourg Cedex 02, 67034, France
| | - Shubhradip Guchait
- Charles
Sadron Institute (ICS), CNRS Université de Strasbourg, UPR
22, 23 Rue du Loess, Strasbourg Cedex 02, 67034, France
| | - Lu Zhang
- Optoelectronics
Group, University of Cambridge, Cavendish
Laboratory, J J Thomson Avenue, Cambridge CB3 0HE, U.K.
| | - Mark Freeley
- Department
of Chemistry, Queen Mary University of London, Mile End Road, London E1 4NS, U.K.
| | - William Neal
- Department
of Chemistry, Queen Mary University of London, Mile End Road, London E1 4NS, U.K.
| | - Fanny Richard
- Université
de Strasbourg, CNRS, ISIS UMR 7006, Strasbourg 67000, France
| | - Matteo Palma
- Department
of Chemistry, Queen Mary University of London, Mile End Road, London E1 4NS, U.K.
| | - Natalie Banerji
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Henning Sirringhaus
- Optoelectronics
Group, University of Cambridge, Cavendish
Laboratory, J J Thomson Avenue, Cambridge CB3 0HE, U.K.
| | - Martin Brinkmann
- Charles
Sadron Institute (ICS), CNRS Université de Strasbourg, UPR
22, 23 Rue du Loess, Strasbourg Cedex 02, 67034, France
| | - Christian B. Nielsen
- Department
of Chemistry, Queen Mary University of London, Mile End Road, London E1 4NS, U.K.
| |
Collapse
|
10
|
Sun Z, Khau B, Dong H, Takacs CJ, Yuan S, Sun M, Mosevitzky Lis B, Nguyen D, Reichmanis E. Carboxyl-Alkyl Functionalized Conjugated Polyelectrolytes for High Performance Organic Electrochemical Transistors. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2023; 35:9299-9312. [PMID: 38027548 PMCID: PMC10653087 DOI: 10.1021/acs.chemmater.3c02103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/10/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023]
Abstract
Contemporary design principles for organic mixed ionic electronic conductors (OMIECs) are mostly based on the ethylene glycol moiety, which may not be representative of the OMIEC class as a whole. Furthermore, glycolated polymers can be difficult to synthesize and process effectively. As an emerging alternative, we present a series of polythiophenes functionalized with a hybrid carboxyl-alkyl side chain. By variation of the alkyl spacer length, a comprehensive evaluation of both the impact of carboxylic acid functionalization and alkyl spacer length was conducted. COOH-functionalization endows the polymer with preferential intrinsic low-swelling behavior and water processability to yield solvent-resistant conjugated polyelectrolytes while retaining substantial electroactivity in aqueous environments. Advanced in situ techniques, including time-resolved spectroelectrochemistry and Raman spectroscopy, are used to interrogate the materials' microstructure, ionic-electronic coupling, and operational stability in devices. To compare these materials' performance to state-of-the-art technology for the design of OMIECs, we benchmarked the materials and demonstrated significant application potential in both planar and interdigitated organic electrochemical transistors (OECTs). The polythiophene bearing carboxyl-butyl side chains exhibits greater electrochemical performance and faster doping kinetics within the polymer series, with a record-high OECT performance among conjugated polyelectrolytes ([μC*]pOECT = 107 ± 4 F cm-1 V-1 s-1). The results provide an enhanced understanding of structure-property relationships for conjugated polyelectrolytes operating in aqueous media and expand the materials options for future OMIEC development. Further, this work demonstrates the potential for conjugated polymers bearing alkyl-COOH side chains as a path toward robust OMIEC designs that may facilitate further facile (bio)chemical functionalization for a range of (bio)sensing applications.
Collapse
Affiliation(s)
- Zeyuan Sun
- Department
of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Brian Khau
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Hao Dong
- Department
of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Christopher J. Takacs
- Stanford
Synchrotron Radiation Lightsource SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Shuhan Yuan
- Department
of Applied Health Science, School of Public Health, Indiana University, Bloomington, Indiana 47405, United States
| | - Mengting Sun
- Department
of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Bar Mosevitzky Lis
- Department
of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Dang Nguyen
- Department
of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Elsa Reichmanis
- Department
of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
11
|
He R, Lv A, Jiang X, Cai C, Wang Y, Yue W, Huang L, Yin XB, Chi L. Organic Electrochemical Transistor Based on Hydrophobic Polymer Tuned by Ionic Gels. Angew Chem Int Ed Engl 2023; 62:e202304549. [PMID: 37439325 DOI: 10.1002/anie.202304549] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/06/2023] [Accepted: 07/11/2023] [Indexed: 07/14/2023]
Abstract
Hydrophobic conjugated polymers have poor ionic transport property, so hydrophilic side chains are often grafted for their application as organic electrochemical transistors (OECTs). However, this modification lowers their charge transport ability. Here, an ionic gel interfacial layer is applied to improve the ionic transport while retaining the charge transport ability of the polymers. By using the ionic gels comprising gel matrix and ionic liquids as the interfacial layers, the hydrophobic polymer achieves the OECT feature with high transconductance, low threshold voltage, high current on/off ratio, short switching time, and high operational stability. The working mechanism is also revealed. Moreover, the OECT performance can be tuned by varying the types and ratios of ionic gels. With the proposed ionic gel strategy, OECTs can be effectively realized with hydrophobic conjugated polymers.
Collapse
Affiliation(s)
- Rongxiang He
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai, 201620, China
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Renai Road, Suzhou, 215123, China
| | - Aifeng Lv
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai, 201620, China
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Renai Road, Suzhou, 215123, China
| | - Xingyu Jiang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Renai Road, Suzhou, 215123, China
| | - Chang Cai
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai, 201620, China
| | - Yazhou Wang
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Wan Yue
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Lizhen Huang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Renai Road, Suzhou, 215123, China
| | - Xue-Bo Yin
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai, 201620, China
| | - Lifeng Chi
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Renai Road, Suzhou, 215123, China
| |
Collapse
|
12
|
Kuang Y, Yao ZF, Lim S, Ngo C, Rocha MA, Fishman DA, Ardoña HAM. Biomimetic Sequence-Templating Approach toward a Multiscale Modulation of Chromogenic Polymer Properties. Macromolecules 2023; 56:4526-4540. [PMID: 37397164 PMCID: PMC10311629 DOI: 10.1021/acs.macromol.3c00403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/28/2023] [Indexed: 07/04/2023]
Abstract
Precision control via molecular structure over adaptive conjugated polymer properties in aqueous environments is critical for realizing their biomedical applications. Here, we unravel the dependence of amphiphilic peptide-polydiacetylene (PDA) conjugate properties on the characteristic steric and hydrophobic contributions within peptide segments that serve as a biomimetic template for diacetylene polymerization in water. We investigated the functional impacts of molecular volume and polarity changes brought by dipeptide substitution domains on the following peptide-PDA material properties at multiple length scales: supramolecular assembly behavior, chain conformation-dependent photophysical properties, cell-material interfacing, and for the first time, bulk electrical properties of their films processed in water. A library of peptide-PDAs with systematically varied sequences show that the contributions of steric effects predominantly influence the electronic structure and resulting trends in photophysical properties, while the interplay between size and hydrophobicity of individual residues becomes more significant for higher-order assemblies affecting bulk properties. This work demonstrates sequence-tunable molecular volume and polarity as synthetic handles to rationally modulate PDA material properties across length scales, providing insights into the programmability of biomimetic conjugated polymers with adaptive functionalities.
Collapse
Affiliation(s)
- Yuyao Kuang
- Department
of Chemical and Biomolecular Engineering, Samueli School of Engineering, University of California, Irvine, Irvine, California 92697, United States
| | - Ze-Fan Yao
- Department
of Chemical and Biomolecular Engineering, Samueli School of Engineering, University of California, Irvine, Irvine, California 92697, United States
- Department
of Biomedical Engineering, Samueli School of Engineering, University of California, Irvine, Irvine, California 92697, United States
| | - Sujeung Lim
- Department
of Chemical and Biomolecular Engineering, Samueli School of Engineering, University of California, Irvine, Irvine, California 92697, United States
| | - Catherine Ngo
- Department
of Chemical and Biomolecular Engineering, Samueli School of Engineering, University of California, Irvine, Irvine, California 92697, United States
| | - Megan Alma Rocha
- Department
of Chemistry, School of Physical Sciences, University of California, Irvine, Irvine, California 92697, United States
| | - Dmitry A. Fishman
- Department
of Chemistry, School of Physical Sciences, University of California, Irvine, Irvine, California 92697, United States
| | - Herdeline Ann M. Ardoña
- Department
of Chemical and Biomolecular Engineering, Samueli School of Engineering, University of California, Irvine, Irvine, California 92697, United States
- Department
of Biomedical Engineering, Samueli School of Engineering, University of California, Irvine, Irvine, California 92697, United States
- Department
of Chemistry, School of Physical Sciences, University of California, Irvine, Irvine, California 92697, United States
- Sue
& Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, California 92697, United States
| |
Collapse
|
13
|
Giri D, Saha SK, Siemons N, Anderson I, Yu H, Nelson J, Canjeevaram Balasubramanyam RK, Patil S. Ion Size-Dependent Electrochromism in Air-Stable Napthalenediimide-Based Conjugated Polymers. ACS APPLIED MATERIALS & INTERFACES 2023; 15:17767-17778. [PMID: 37011231 DOI: 10.1021/acsami.2c21394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Conjugated polymers (CPs) that show stable and reversible cation insertion/deinsertion under ambient conditions hold great potential for optoelectronic and energy storage devices. However, n-doped CPs are prone to parasitic reactions upon exposure to moisture or oxygen. This study reports a new family of napthalenediimide (NDI) based conjugated polymers capable of undergoing electrochemical n-type doping in ambient air. By functionalizing the NDI-NDI repeating unit with alternating triethylene glycol and octadecyl side chains, the polymer backbone shows stable electrochemical doping at ambient conditions. We systematically investigate the extent of volumetric doping involving monovalent cations of varying size (Li+, Na+, tetraethylammonium (TEA+)) with electrochemical methods, including cyclic voltammetry, differential pulse voltammetry, spectroelectrochemistry, and electrochemical impedance spectroscopy. We observed that introducing hydrophilic side chains on the polymer backbone improves the local dielectric environment of the backbones and lowers the energetic barrier for ion insertion. Surprisingly, when using Na+ electrolyte, the polymer films exhibit higher volumetric doping efficiency, faster-switching kinetics, higher optical contrast, and selective multielectrochromism when compared to Li+ or TEA+ electrolytes. Using well-tempered metadynamics, we characterize the free energetics of side chain-ion interactions to find that Li+ binds more tightly to the glycolated NDI moieties than Na+, hindering Li+ ion transport, switching kinetics, and limiting the films' doping efficiency.
Collapse
Affiliation(s)
- Dipanjan Giri
- Solid State and Structural Chemistry Unit, Indian Institute of Science (IISc), Bengaluru 560012, Karnataka, India
| | - Shraman Kumar Saha
- Solid State and Structural Chemistry Unit, Indian Institute of Science (IISc), Bengaluru 560012, Karnataka, India
| | - Nicholas Siemons
- Department of Physics and Centre for Processible Electronics, Imperial College London, London SW7 2AZ, United Kingdom
| | - Iona Anderson
- Department of Physics and Centre for Processible Electronics, Imperial College London, London SW7 2AZ, United Kingdom
| | - Hang Yu
- Department of Physics and Centre for Processible Electronics, Imperial College London, London SW7 2AZ, United Kingdom
| | - Jenny Nelson
- Department of Physics and Centre for Processible Electronics, Imperial College London, London SW7 2AZ, United Kingdom
| | | | - Satish Patil
- Solid State and Structural Chemistry Unit, Indian Institute of Science (IISc), Bengaluru 560012, Karnataka, India
| |
Collapse
|