1
|
Lyu X, Zhang H, Shen S, Gong Y, Zhou P, Zou Z. Multi-Modal Sensing Ionogels with Tunable Mechanical Properties and Environmental Stability for Aquatic and Atmospheric Environments. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2410572. [PMID: 39292213 DOI: 10.1002/adma.202410572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/11/2024] [Indexed: 09/19/2024]
Abstract
Ionogels have garnered significant interest due to their great potential in flexible iontronic devices. However, their limited mechanical tunability and environmental intolerance have posed significant challenges for their integration into next-generation flexible electronics in different scenarios. Herein, the synergistic effect of cation-oxygen coordination interaction and hydrogen bonding is leveraged to construct a 3D supramolecular network, resulting in ionogels with tunable modulus, stretchability, and strength, achieving an unprecedented elongation at break of 10 800%. Moreover, the supramolecular network endows the ionogels with extremely high fracture energy, crack insensitivity, and high elasticity. Meanwhile, the high environmental stability and hydrophobic network of the ionogels further shield them from the unfavorable effects of temperature variations and water molecules, enabling them to operate within a broad temperature range and exhibit robust underwater adhesion. Then, the ionogel is assembled into a wearable sensor, demonstrating its great potential in flexible sensing (temperature, pressure, and strain) and underwater signal transmission. This work can inspire the applications of ionogels in multifunctional sensing and wearable fields.
Collapse
Affiliation(s)
- Xiaolin Lyu
- Key Laboratory of Advanced Materials Technologies, International (HongKong Macao and Taiwan) Joint Laboratory on Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, China
| | - Haoqi Zhang
- Key Laboratory of Advanced Materials Technologies, International (HongKong Macao and Taiwan) Joint Laboratory on Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Shengtao Shen
- Key Laboratory of Advanced Materials Technologies, International (HongKong Macao and Taiwan) Joint Laboratory on Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Yue Gong
- Key Laboratory of Advanced Materials Technologies, International (HongKong Macao and Taiwan) Joint Laboratory on Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Piaopiao Zhou
- Department of Critical Care Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, China
| | - Zhigang Zou
- Key Laboratory of Advanced Materials Technologies, International (HongKong Macao and Taiwan) Joint Laboratory on Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, China
- Eco-materials and Renewable Energy Research Center, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
2
|
Ye G, Zhu L, Ma Y, He M, Zheng C, Shen K, Hong X, Xiao Z, Jia Y, Gao P, Pang Q. Molecular Design of Solid Polymer Electrolytes with Enthalpy-Entropy Manipulation for Li Metal Batteries with Aggressive Cathode Chemistry. J Am Chem Soc 2024; 146:27668-27678. [PMID: 39323328 DOI: 10.1021/jacs.4c09062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Solid polymer electrolytes (SPEs) with high ion conductivity, high Li+ transference number, and a wide electrochemical window are promising for the next-generation high-energy Li metal batteries (LMBs). Here we describe an enthalpy-entropy manipulation strategy enabling a class of polycarbonate-based copolymeric electrolytes (PCCEs) with regulated cation/anion solvation via a molecular design of the polymer backbone. By integrating a weakly solvating linear carbonate with another strongly solvating cyclic carbonate segment in the polymer backbone, the cation-dipole coordination for Li+ ions (with two types of carbonyl groups) is weakened (low enthalpy penalty) and nondirectional (high entropy penalty), which enables a weak solvation and rapid diffusion of Li+. We further introduce a bis-acrylamide-based cross-linking segment which, other than imparting high mechanical strength, exhibits dihydrogen bonding with the difluoro(oxalate) borate anions, which is strong (high enthalpy penalty) and directional (low entropy penalty), thus restricting the migration of anions. As a result, the PCCE delivers a high ionic conductivity of 0.66 mS cm-1 with a high Li+ transference number (0.76) at 25 °C, as well as high oxidation stability. By an in situ polymerization approach, the PCCE enables LMBs using high-nikel LiNi0.8Co0.1Mn0.1O2 cathodes with a high capacity retention of 82.2% over 800 cycles with a cutoff voltage of 4.5 V and further LMBs using aggressive LiNi0.5Mn1.5O4 cathodes with a 96.4% capacity retention over 300 cycles with a cutoff voltage of 5.0 V. The described enthalpy-entropy manipulation approach offers a unique perspective for the molecular design of high-performance SPEs for high-energy Li metal batteries.
Collapse
Affiliation(s)
- Guo Ye
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Lujun Zhu
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Yue Ma
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Mengxue He
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Chenxi Zheng
- International Centre for Quantum Materials, Collaborative Innovation Centre of Quantum Matter, Peking University, Beijing 100871, China
| | - Kaier Shen
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Xufeng Hong
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Zhitong Xiao
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Yongfeng Jia
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Peng Gao
- International Centre for Quantum Materials, Collaborative Innovation Centre of Quantum Matter, Peking University, Beijing 100871, China
| | - Quanquan Pang
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
3
|
Qiu M, Liang Y, Hong J, Li J, Sun P, Mai W. Entropy-Driven Hydrated Eutectic Electrolytes with Diverse Solvation Configurations for All-Temperature Zn-ion Batteries. Angew Chem Int Ed Engl 2024; 63:e202407012. [PMID: 38943544 DOI: 10.1002/anie.202407012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/13/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Batteries always encounter uncontrollable failure or performance decay under extreme temperature environments, which is largely limited by the properties of electrolytes. Herein, an entropy-driven hydrated eutectic electrolyte (HEE) with diverse solvation configurations is proposed to expand the operating temperature range of Zn-ion batteries. The HEE possesses over 40 types of Zn2+ solvation structure with uniform distribution, contributing to its much higher solvation configurational entropy compared to the conventional aqueous counterpart (only 6 types). These effectively promote its anti-freezing ability under ultralow temperatures, with a high ionic conductivity of 0.42 mS cm-1 even at a low temperature of -40 °C. Moreover, the entropy-driven property can simultaneously enhance the thermal stability under a high temperature over +140 °C. Therefore, the HEE can enable full cells stably working over a wide temperature range of -40~+80 °C, performing over 1500 cycles with 100 % capacity retention at -40 °C and 1000 cycles with ~72 % capacity retention at +80 °C. This inspiring concept of entropy-driven electrolyte with quantized solvation configurational entropy value has charming potential for designing future special batteries with excellent adaptability towards extreme temperature environments.
Collapse
Affiliation(s)
- Meijia Qiu
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Department of Physics, College of Physics & Optoelectronic Engineering, Jinan University, Guangdong, 510632, People's Republic of China
| | - Yuxuan Liang
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Department of Physics, College of Physics & Optoelectronic Engineering, Jinan University, Guangdong, 510632, People's Republic of China
| | - Jiahong Hong
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Department of Physics, College of Physics & Optoelectronic Engineering, Jinan University, Guangdong, 510632, People's Republic of China
| | - Jiale Li
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Department of Physics, College of Physics & Optoelectronic Engineering, Jinan University, Guangdong, 510632, People's Republic of China
| | - Peng Sun
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Department of Physics, College of Physics & Optoelectronic Engineering, Jinan University, Guangdong, 510632, People's Republic of China
| | - Wenjie Mai
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Department of Physics, College of Physics & Optoelectronic Engineering, Jinan University, Guangdong, 510632, People's Republic of China
| |
Collapse
|
4
|
Zhan W, Zhang J, Zhang Q, Ye Z, Li B, Zhang C, Yang Z, Xue L, Zhang Z, Ma F, Peng N, Lyu Y, Su Y, Liu M, Zhang X. Flexible iontronics with super stretchability, toughness and enhanced conductivity based on collaborative design of high-entropy topology and multivalent ion-dipole interactions. MATERIALS HORIZONS 2024; 11:4159-4170. [PMID: 38899460 DOI: 10.1039/d4mh00338a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
All-solid-state ionic conductive elastomers (ASSICEs) are emerging as a promising alternative to hydrogels and ionogels in flexible electronics. Nevertheless, the synthesis of ASSICEs with concomitant mechanical robustness, superior ionic conductivity, and cost-effective recyclability poses a formidable challenge, primarily attributed to the inherent contradiction between mechanical strength and ionic conductivity. Herein, we present a collaborative design of high-entropy topological network and multivalent ion-dipole interaction for ASSICEs, and successfully mitigate the contradiction between mechanical robustness and ionic conductivity. Benefiting from the synergistic effect of this design, the coordination, de-coordination, and intrachain transfer of Li+ are effectively boomed. The resultant ASSICEs display exceptional mechanical robustness (breaking strength: 7.45 MPa, fracture elongation: 2621%, toughness: 107.19 MJ m-3) and impressive ionic conductivity (1.15 × 10-2 S m-1 at 25 °C). Furthermore, these ASSICEs exhibit excellent environmental stability (fracture elongation exceeding 1400% at 50 °C or -60 °C) and recyclability. Significantly, the application of these ASSICEs in a strain sensor highlights their potential in various fields, including human-interface communication, aerospace vacuum measurement, and medical balloon monitoring.
Collapse
Affiliation(s)
- Wang Zhan
- State Key Laboratory for Manufacturing Systems Engineering, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Center for Mitochondrial Biology and Medicine, School of Life Science and Technology, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Xi'an Key Laboratory for Biomedical Testing and High-end Equipment, Xi'an Jiaotong University, Xi'an 710049, Shannxi, P. R. China.
| | - Jianrui Zhang
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Qi Zhang
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Key Laboratory of Magnetic Medicine, Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 West Yanta Road, Xi'an, 710061, Shaanxi, China
- State Key Laboratory for Manufacturing Systems Engineering, Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, Engineering Research Center of Spin Quantum Sensor Chips, Universities of Shaanxi Province, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Zhilu Ye
- State Key Laboratory for Manufacturing Systems Engineering, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Center for Mitochondrial Biology and Medicine, School of Life Science and Technology, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Xi'an Key Laboratory for Biomedical Testing and High-end Equipment, Xi'an Jiaotong University, Xi'an 710049, Shannxi, P. R. China.
| | - Boyang Li
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Cuiling Zhang
- State Key Laboratory for Manufacturing Systems Engineering, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Center for Mitochondrial Biology and Medicine, School of Life Science and Technology, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Xi'an Key Laboratory for Biomedical Testing and High-end Equipment, Xi'an Jiaotong University, Xi'an 710049, Shannxi, P. R. China.
| | - Zihao Yang
- State Key Laboratory for Manufacturing Systems Engineering, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Center for Mitochondrial Biology and Medicine, School of Life Science and Technology, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Xi'an Key Laboratory for Biomedical Testing and High-end Equipment, Xi'an Jiaotong University, Xi'an 710049, Shannxi, P. R. China.
| | - Li Xue
- State Key Laboratory for Manufacturing Systems Engineering, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Center for Mitochondrial Biology and Medicine, School of Life Science and Technology, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Xi'an Key Laboratory for Biomedical Testing and High-end Equipment, Xi'an Jiaotong University, Xi'an 710049, Shannxi, P. R. China.
| | - Zeying Zhang
- State Key Laboratory for Manufacturing Systems Engineering, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Center for Mitochondrial Biology and Medicine, School of Life Science and Technology, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Xi'an Key Laboratory for Biomedical Testing and High-end Equipment, Xi'an Jiaotong University, Xi'an 710049, Shannxi, P. R. China.
| | - Feng Ma
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Niancai Peng
- State Key Laboratory for Manufacturing Systems Engineering, School of Instrument Science and Technology, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Xi'an Key Laboratory for Biomedical Testing and High-end Equipment, Xi'an Jiaotong University, Xi'an 710054, China
| | - Yi Lyu
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yaqiong Su
- State Key Laboratory for Manufacturing Systems Engineering, Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, Engineering Research Center of Spin Quantum Sensor Chips, Universities of Shaanxi Province, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Ming Liu
- State Key Laboratory for Manufacturing Systems Engineering, Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, Engineering Research Center of Spin Quantum Sensor Chips, Universities of Shaanxi Province, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Xiaohui Zhang
- State Key Laboratory for Manufacturing Systems Engineering, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Center for Mitochondrial Biology and Medicine, School of Life Science and Technology, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technology, Xi'an Key Laboratory for Biomedical Testing and High-end Equipment, Xi'an Jiaotong University, Xi'an 710049, Shannxi, P. R. China.
| |
Collapse
|
5
|
Ye H, Wu B, Sun S, Wu P. A Solid-Liquid Bicontinuous Fiber with Strain-Insensitive Ionic Conduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402501. [PMID: 38562038 DOI: 10.1002/adma.202402501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/23/2024] [Indexed: 04/04/2024]
Abstract
Stretchable ionic conductors are crucial for enabling advanced iontronic devices to operate under diverse deformation conditions. However, when employed as interconnects, existing ionic conductors struggle to maintain stable ionic conduction under strain, hindering high-fidelity signal transmission. Here, it is shown that strain-insensitive ionic conduction can be achieved by creating a solid-liquid bicontinuous microstructure. A bicontinuous fiber from polymerization-induced phase separation, which contains a solid elastomer phase interpenetrated by a liquid ion-conducting phase, is fabricated. The spontaneous partitioning of dissolved salts leads to the formation of a robust self-wrinkled interface, fostering the development of highly tortuous ionic channels. Upon stretch, these meandering ionic channels are straightened, effectively enhancing ionic conductivity to counteract the strain effect. Remarkably, the fiber retains highly stable ionic conduction till fracture, with only 7% resistance increase at 200% strain. This approach presents a promising avenue for designing durable ionic cables capable of signal transmission with minimal strain-induced distortion.
Collapse
Affiliation(s)
- Huating Ye
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering & Center for Advanced Low-dimension Materials, Donghua University, Shanghai, 201620, China
| | - Baohu Wu
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ) Forschungszentrum Jülich, Lichtenbergstr. 1, 85748, Garching, Germany
| | - Shengtong Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering & Center for Advanced Low-dimension Materials, Donghua University, Shanghai, 201620, China
| | - Peiyi Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering & Center for Advanced Low-dimension Materials, Donghua University, Shanghai, 201620, China
| |
Collapse
|
6
|
Thrasher CJ, Jia F, Yee DW, Kubiak JM, Wang Y, Lee MS, Onoda M, Hart AJ, Macfarlane RJ. Rationally Designing the Supramolecular Interfaces of Nanoparticle Superlattices with Multivalent Polymers. J Am Chem Soc 2024. [PMID: 38622048 DOI: 10.1021/jacs.4c02617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
In supramolecular materials, multiple weak binding groups can act as a single collective unit when confined to a localized volume, thereby producing strong but dynamic bonds between material building blocks. This principle of multivalency provides a versatile means of controlling material assembly, as both the number and the type of supramolecular moieties become design handles to modulate the strength of intermolecular interactions. However, in materials with building blocks significantly larger than individual supramolecular moieties (e.g., polymer or nanoparticle scaffolds), the degree of multivalency is difficult to predict or control, as sufficiently large scaffolds inherently preclude separated supramolecular moieties from interacting. Because molecular models commonly used to examine supramolecular interactions are intrinsically unable to examine any trends or emergent behaviors that arise due to nanoscale scaffold geometry, our understanding of the thermodynamics of these massively multivalent systems remains limited. Here we address this challenge via the coassembly of polymer-grafted nanoparticles and multivalent polymers, systematically examining how multivalent scaffold size, shape, and spacing affect their collective thermodynamics. Investigating the interplay of polymer structure and supramolecular group stoichiometry reveals complicated but rationally describable trends that demonstrate how the supramolecular scaffold design can modulate the strength of multivalent interactions. This approach to self-assembled supramolecular materials thus allows for the manipulation of polymer-nanoparticle composites with controlled thermal stability, nanoparticle organization, and tailored meso- to microscopic structures. The sophisticated control of multivalent thermodynamics through precise modulation of the nanoscale scaffold geometry represents a significant advance in the ability to rationally design complex hierarchically structured materials via self-assembly.
Collapse
Affiliation(s)
- Carl J Thrasher
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Fei Jia
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Daryl W Yee
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Joshua M Kubiak
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Yuping Wang
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Margaret S Lee
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Michika Onoda
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - A John Hart
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Robert J Macfarlane
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
7
|
Wang J, Liu Y, Liu T, Zhang S, Wei Z, Luo B, Cai C, Chi M, Wang S, Nie S. Dynamic Thermostable Cellulosic Triboelectric Materials from Multilevel-Non-Covalent Interactions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307504. [PMID: 38018269 DOI: 10.1002/smll.202307504] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/17/2023] [Indexed: 11/30/2023]
Abstract
Triboelectric materials present great potential for harvesting huge amounts of dispersed energy, and converting them directly into useful electricity, a process that generates power more sustainably. Triboelectric nanogenerators (TENGs) have emerged as a technology to power electronics and sensors, and it is expected to solve the problem of energy harvesting and self-powered sensing from extreme environments. In this paper, a high-temperature-resistant triboelectric material is designed based on multilevel non-covalent bonding interactions, which achieves an ultra-high surface charge density of 192 µC m-2 at high temperatures. TENGs based on the triboelectric material exhibit more than an order of magnitude higher power output (2750 mW m-2 at 200 °C) than the existing devices at high temperatures. These remarkable properties are achieved based on enthalpy-driven molecular assembly in highly unbonded states. Thus, the material maintains bond strength and ultra-high surface charge density in entropy-dominated high-temperature environments. This molecular design concept points out a promising direction for the preparation of polymers with excellent triboelectric properties.
Collapse
Affiliation(s)
- Jinlong Wang
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, P. R. China
| | - Yanhua Liu
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, P. R. China
| | - Tao Liu
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, P. R. China
| | - Song Zhang
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, P. R. China
| | - Zhiting Wei
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, P. R. China
| | - Bin Luo
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, P. R. China
| | - Chenchen Cai
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, P. R. China
| | - Mingchao Chi
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, P. R. China
| | - Shuangfei Wang
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, P. R. China
| | - Shuangxi Nie
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, P. R. China
| |
Collapse
|
8
|
Bian Y, Zhu M, Wang C, Liu K, Shi W, Zhu Z, Qin M, Zhang F, Zhao Z, Wang H, Liu Y, Guo Y. A detachable interface for stable low-voltage stretchable transistor arrays and high-resolution X-ray imaging. Nat Commun 2024; 15:2624. [PMID: 38521822 PMCID: PMC10960804 DOI: 10.1038/s41467-024-47026-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 03/18/2024] [Indexed: 03/25/2024] Open
Abstract
Challenges associated with stretchable optoelectronic devices, such as pixel size, power consumption and stability, severely brock their realization in high-resolution digital imaging. Herein, we develop a universal detachable interface technique that allows uniform, damage-free and reproducible integration of micropatterned stretchable electrodes for pixel-dense intrinsically stretchable organic transistor arrays. Benefiting from the ideal heterocontact and short channel length (2 μm) in our transistors, switching current ratio exceeding 106, device density of 41,000 transistors/cm2, operational voltage down to 5 V and excellent stability are simultaneously achieved. The resultant stretchable transistor-based image sensors exhibit ultrasensitive X-ray detection and high-resolution imaging capability. A megapixel image is demonstrated, which is unprecedented for stretchable direct-conversion X-ray detectors. These results forge a bright future for the stretchable photonic integration toward next-generation visualization equipment.
Collapse
Affiliation(s)
- Yangshuang Bian
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mingliang Zhu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chengyu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kai Liu
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Wenkang Shi
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhiheng Zhu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mingcong Qin
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fan Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhiyuan Zhao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hanlin Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yunqi Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yunlong Guo
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
9
|
Qiao H, Wu B, Sun S, Wu P. Entropy-Driven Design of Highly Impact-Stiffening Supramolecular Polymer Networks with Salt-Bridge Hydrogen Bonds. J Am Chem Soc 2024; 146:7533-7542. [PMID: 38451015 DOI: 10.1021/jacs.3c13392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Impact-stiffening materials that undergo a strain rate-induced soft-to-rigid transition hold great promise as soft armors in the protection of the human body and equipment. However, current impact-stiffening materials, such as polyborosiloxanes and shear-thickening fluids, often exhibit a limited impact-stiffening response. Herein, we propose a design strategy for fabricating highly impact-stiffening supramolecular polymer networks by leveraging high-entropy-penalty physical interactions. We synthesized a fully biobased supramolecular polymer comprising poly(α-thioctic acid) and arginine clusters, whose chain dynamics are governed by highly specific guanidinium-carboxylate salt-bridge hydrogen bonds. The resulting material exhibits an exceptional impact-stiffening response of ∼2100 times, transitioning from a soft dissipating state (21 kPa, 0.1 Hz) to a highly stiffened glassy state (45.3 MPa, 100 Hz) with increasing strain rates. Moreover, the material's high energy-dissipating and hot-melting properties bring excellent damping performance and easy hybridization with other scaffolds. This entropy-driven approach paves the way for the development of next-generation soft, sustainable, and impact-resistant materials.
Collapse
Affiliation(s)
- Haiyan Qiao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering & Center for Advanced Low-dimension Materials, Donghua University, Shanghai 201620, China
| | - Baohu Wu
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ) Forschungszentrum Jülich, Garching 85748, Germany
| | - Shengtong Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering & Center for Advanced Low-dimension Materials, Donghua University, Shanghai 201620, China
| | - Peiyi Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering & Center for Advanced Low-dimension Materials, Donghua University, Shanghai 201620, China
| |
Collapse
|
10
|
Niu W, Li Z, Liang F, Zhang H, Liu X. Ultrastable, Superrobust, and Recyclable Supramolecular Polymer Networks. Angew Chem Int Ed Engl 2024; 63:e202318434. [PMID: 38234012 DOI: 10.1002/anie.202318434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/13/2024] [Accepted: 01/17/2024] [Indexed: 01/19/2024]
Abstract
Supramolecular polymer networks (SPNs), crosslinked by noncovalent bonds, have emerged as reorganizable and recyclable polymeric materials with unique functionality. However, poor stability is an imperative challenge faced by SPNs, because SPNs are susceptible to heat, water, and/or solvents due to the dynamic and reversible nature of noncovalent bonds. Herein, the design of a noncovalent cooperative network (NCoN) to simultaneously stabilize and reinforce SPNs is reported, resulting in an ultrastable, superrobust, and recyclable SPN. The NCoN is constructed by multiplying the H-bonding sites and tuning the conformation/geometry of the H-bonding segment to optimize the multivalence cooperativity of H-bonds. The rationally designed H-bonding segment with high conformational compliance favors the formation of tightly packed H-bond arrays comprising higher-density and stronger H-bonds. Consequently, the H-bonded crosslinks in the NCoN display a covalent crosslinking effect but retain on-demand dynamics and reversibility. The resultant ultrastable SPN not only displays remarkable resistance to heat up to 120 °C, water soaking, and a broad spectrum of solvents, but also possesses a superhigh true stress at break (1.1 GPa) and an ultrahigh toughness (406 MJ m-3 ). Despite the covalent-network-like stability, the SPN is recyclable through activating its reversibility in a high-polarity solvent heated to a threshold temperature.
Collapse
Affiliation(s)
- Wenwen Niu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Zequan Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, P. R. China
| | - Fengli Liang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Houyu Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Xiaokong Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
11
|
Jin Z, Liu Y, Xu H, Chen T, Wang C. Intrinsic Solubilization of Lithium Nitrate in Ester Electrolyte by Multivalent Low-Entropy-Penalty Design for Stable Lithium-Metal Batteries. Angew Chem Int Ed Engl 2024; 63:e202318197. [PMID: 38189772 DOI: 10.1002/anie.202318197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/09/2024]
Abstract
LiNO3 is a remarkable additive that can dramatically enhance the stability of ether-based electrolytes at lithium metal anodes. However, it has long been constrained by its incompatibility with commercially used ester electrolytes. Herein, we correlated the fundamental role of entropy with the limited LiNO3 solubility and proposed a new low-entropy-penalty design that achieves high intrinsic LiNO3 solubility in ester solvents by employing multivalent linear esters. This strategy is conceptually different from the conventional enthalpic methods that relies on extrinsic high-polarity carriers. In this way, LiNO3 can directly interact with the primary ester solvents and fundamentally alters the electrolyte properties, resulting in substantial improvements in lithium-metal batteries with high Coulombic efficiency and cycling stability. This work illustrates the significance of regulating the solvation entropy for high-performance electrolyte design.
Collapse
Affiliation(s)
- Zhekai Jin
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yuncong Liu
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Hao Xu
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Tao Chen
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
- Institute of Smart City and Intelligent Transportation, Southwest Jiaotong University, Chengdu, 610032, P. R. China
| | - Chao Wang
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
12
|
Wu Q, Liu H, Xiong H, Hou Y, Peng Y, Zhao L, Wu J. Thermomechanically stable supramolecular elastomers inspired by heat shock proteins. MATERIALS HORIZONS 2024; 11:1014-1022. [PMID: 38054273 DOI: 10.1039/d3mh01737k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Supramolecular polymers are usually thermomechanically unstable, as their mechanical strength decreases drastically upon heating, which is a fatal shortcoming for their application. Herein, inspired by heat shock proteins (HSPs) which enable living organisms to tolerate lethal high temperatures, we design an HSP-like response to impart a supramolecular elastomer with high thermomechanical stability. The HSP-like response relies on the reversible hydrolysis of boronic acid and the tunable association strength of boron dative bonds. As the temperature increases, the boronic acid dehydrates and transforms into boroxane. The boroxane, acting as a heat shock chemical, prevents the disintegration of the supramolecular network through formation of multiple and stronger dative bonds with imidazole-containing polymers, thereby enabling the material to retain its mechanical strength at high temperatures. Such chemical transformation and network change induced by the HSP-like response are fully reversible during the heating and cooling processes. Moreover, due to the dynamic nature of the supramolecular network, the elastomer possesses recycling and self-healing abilities.
Collapse
Affiliation(s)
- Qi Wu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| | - Hui Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| | - Hui Xiong
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| | - Yujia Hou
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| | - Yan Peng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| | - Lijuan Zhao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, China
| | - Jinrong Wu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
13
|
Li L, Wang X, Gao S, Zheng S, Zou X, Xiong J, Li W, Yan F. High-Toughness and High-Strength Solvent-Free Linear Poly(ionic liquid) Elastomers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308547. [PMID: 37816506 DOI: 10.1002/adma.202308547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/08/2023] [Indexed: 10/12/2023]
Abstract
Solvent-free elastomers, unlike gels, do not suffer from solvent evaporation and leakage in practical applications. However, it is challenging to realize the preparation of high-toughness (with both high stress and strain) ionic elastomers. Herein, high-toughness linear poly(ionic liquid) (PIL) elastomers are constructed via supramolecular ionic networks formed by the polymerization of halometallate ionic liquid (IL) monomers, without any chemical crosslinking. The obtained linear PIL elastomers exhibit high strength (16.5 MPa), Young's modulus (157.49 MPa), toughness (130.31 MJ m-3 ), and high crack propagation insensitivity (fracture energy 243.37 kJ m-2 ), owing to the enhanced intermolecular noncovalent interactions of PIL chains. Furthermore, PIL elastomer-based strain, pressure, and touch sensors have shown high sensitivity. The linear noncovalent crosslinked network endows the PIL elastomers with self-healing and recyclable properties, and broad application prospects in the fields of flexible sensor devices, health monitoring, and human-machine interaction.
Collapse
Affiliation(s)
- Lingling Li
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xiaowei Wang
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Shuna Gao
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Sijie Zheng
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xiuyang Zou
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Jiaofeng Xiong
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Weizheng Li
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Feng Yan
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| |
Collapse
|
14
|
Zeng W, Yang W, Chai L, Jiang Y, Deng L, Yang G. Liquid-Free, Self-Repairable, Recyclable, and Highly Stretchable Colorless Solid Ionic Conductive Elastomers for Strain/Temperature Sensors. Chemistry 2023; 29:e202301800. [PMID: 37496278 DOI: 10.1002/chem.202301800] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 07/28/2023]
Abstract
Solid-state ionic conductive elastomers (ICEs) can fundamentally overcome the disadvantages of hydrogels and ionogels (their liquid components tend to leak or evaporate), and are considered to be ideal materials for flexible ionic sensors. In this study, a liquid-free ionic polyurethane (PU) type conductive elastomer (ICE-2) was synthesized and studied. The PU type matrix with microphase separation endowed ICE-2 with excellent mechanical versatility. The disulfide bond exchange reaction in the hard phase and intermolecular hydrogen bonds contributed to damage repairing ability. ICE-2 exhibited good ionic conductivity (2.86×10-6 S/cm), high transparency (average transmittance >89 %, 400~800 nm), excellent mechanical properties (tensile strength of 3.06 MPa, elongation at break of 1760 %, and fracture energy of 14.98 kJ/m2 ), appreciable self-healing ability (healing efficiency >90 %), satisfactory environmental stability, and outstanding recyclability. The sensor constructed by ICE-2 could not only realize the perception of temperature changes, but also accurately and sensitively detect various human activities, including joint movements and micro-expression changes. This study provides a simple and effective strategy for the development of flexible and soft ionic conductors for sensors and human-machine interfaces.
Collapse
Affiliation(s)
- Wangyi Zeng
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China
- National Engineering Research Center of, Electromagnetic Radiation Control Materials, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Wenhao Yang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China
- National Engineering Research Center of, Electromagnetic Radiation Control Materials, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Liang Chai
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China
- National Engineering Research Center of, Electromagnetic Radiation Control Materials, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Yanxin Jiang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China
- National Engineering Research Center of, Electromagnetic Radiation Control Materials, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Longjiang Deng
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China
- National Engineering Research Center of, Electromagnetic Radiation Control Materials, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Guang Yang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China
- National Engineering Research Center of, Electromagnetic Radiation Control Materials, University of Electronic Science and Technology of China, Chengdu, 611731, China
| |
Collapse
|
15
|
Bin Asghar Abbasi B, Gigliotti M, Aloko S, Jolfaei MA, Spinks GM, Jiang Z. Designing strong, fast, high-performance hydrogel actuators. Chem Commun (Camb) 2023; 59:7141-7150. [PMID: 37194593 DOI: 10.1039/d3cc01545a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Hydrogel actuators displaying programmable shape transformations are particularly attractive for integration into future soft robotics with safe human-machine interactions. However, these materials are still in their infancy, and many significant challenges remain presenting impediments to their practical implementation, including poor mechanical properties, slow actuation speed and limited actuation performance. In this review, we discuss the recent advances in hydrogel designs to address these critical limitations. First, the material design concepts to improve mechanical properties of hydrogel actuators will be introduced. Examples are also included to highlight strategies to realize fast actuation speed. In addition, recent progress about creating strong and fast hydrogel actuators are sumarized. Finally, a discussion of different methods to realize high values in several aspects of actuation performance metrics for this class of materials is provided. The advances and challenges discussed in this highlight could provide useful guidelines for rational design to manipulate the properties of hydrogel actuators toward widespread real-world applications.
Collapse
Affiliation(s)
- Burhan Bin Asghar Abbasi
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW 2522, Australia.
| | - Matthew Gigliotti
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW 2522, Australia.
| | - Sinmisola Aloko
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW 2522, Australia.
| | - Maryam Adavoudi Jolfaei
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW 2522, Australia.
| | - Geoffrey M Spinks
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW 2522, Australia.
| | - Zhen Jiang
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW 2522, Australia.
| |
Collapse
|
16
|
Peng L, Hou L, Wu P. Synergetic Lithium and Hydrogen Bonds Endow Liquid-Free Photonic Ionic Elastomer with Mechanical Robustness and Electrical/Optical Dual-Output. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211342. [PMID: 36878193 DOI: 10.1002/adma.202211342] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/28/2023] [Indexed: 05/19/2023]
Abstract
Photonic ionic elastomers (PIEs) capable of multiple signal outputs are intriguing in flexible interactive electronics. However, fabricating PIEs with simultaneous mechanical robustness, good ionic conductivity, and brilliant structure color still remains challenging. Here, the limitations are broken through introducing the synergistic effect of lithium and hydrogen bonds into an elastomer. In virtue of lithium bonding between lithium ions and carbonyl groups in the polymer matrix as well as hydrogen bonding between silanol on the surface of silica nanoparticles (SiNPs) and ether groups along polymer chains, the PIEs demonstrate mechanical strength up to 4.3 MPa and toughness up to 8.6 MJ m-3 . Meanwhile, the synchronous electrical and optical output under mechanical strains can be achieved in the PIEs with the presence of dissociated ions contributed by lithium bond and non-close-packed SiNPs stabilized by the hydrogen bond. Moreover, due to their liquid-free nature, the PIEs exhibit extraordinary stability and durability, which can withstand extreme conditions including both high and low temperatures as well as high humidity. This work provides a promising molecular engineering route to construct high-performance photonic ionic conductors toward advanced ionotronic applications.
Collapse
Affiliation(s)
- Lei Peng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Lei Hou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, P. R. China
- National Innovation Center of Advanced Dyeing & Finishing Technology, Tai'an, Shandong, 271000, P. R. China
| | - Peiyi Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, P. R. China
| |
Collapse
|