1
|
Wu M, Zhu J, Wu Y, Liu S, Zheng K, Wang S, Li B, Li J, Liu C, Hu J, Zhu J, Pan Y, Sun Y, Xie Y. Photocatalytic Oxidative Coupling of Methane to Ethane Using CO 2 as a Soft Oxidant over the Au/TiO 2-V o Nanosheets. Angew Chem Int Ed Engl 2025; 64:e202414814. [PMID: 39731404 DOI: 10.1002/anie.202414814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/20/2024] [Accepted: 12/27/2024] [Indexed: 12/29/2024]
Abstract
Photocatalytic oxidative coupling of methane (OCM) offers an appealing route for converting greenhouse gas into valuable C2 hydrocarbons. However, O2, as the most commonly used oxidant, tends to result in inevitable overoxidation and waste of methane feedstock. Herein, we first report a photocatalytic OCM using CO2 as a soft oxidant for C2H6 production under mild conditions, where an efficient photocatalyst with unique interface sites is designed and constructed to facilitate CO2 adsorption and activation, while concurrently boosting CH4 dissociation. As a prototype, the Au quantum dots anchored on oxygen-deficient TiO2 nanosheets are fabricated, where the Au-Vo-Ti interface sites for CO2 adsorption and activation are collectively disclosed by in situ Kelvin probe force microscopy, quasi in situ X-ray photoelectron spectroscopy and theoretical calculations. Compared with single metal site, the Au-Vo-Ti interface sites exhibit the lower CO2 adsorption energy and decrease the energy barrier of the *CO2 hydrogenation step from 1.05 to 0.77 eV via Au-C and Ti-O dual-site bonding. The adsorbed CO2 on the photocatalyst reduces the energy barrier of *CH4 dissociation to *CH3 from 2.13 to 1.59 eV, contributing to CH4 oxidation. Additionally, in situ Fourier-transform infrared spectroscopy unveils the Au site facilitates ethane production by engaging in *CH3-Au interaction and accelerating CH3-CH3 coupling. Thus, the photocatalyst demonstrates a high C2H6 evolution rate of 2.60 mmol g-1 h-1 for OCM using CO2 as the soft oxidant, surpassing most of previously reported photocatalysts regardless of OCM and nonoxidative coupling of methane. This work highlights the importance of soft oxidants for improving oxidation reaction efficiency and provides atomic scale insight into the design of photocatalysts for CH4 conversion.
Collapse
Affiliation(s)
- Mingyu Wu
- Hefei National Research Center for Physical Science at Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Juncheng Zhu
- Hefei National Research Center for Physical Science at Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Yang Wu
- Hefei National Research Center for Physical Science at Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Siying Liu
- Hefei National Research Center for Physical Science at Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Kai Zheng
- Hefei National Research Center for Physical Science at Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Shumin Wang
- Hefei National Research Center for Physical Science at Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Bangwang Li
- Hefei National Research Center for Physical Science at Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Jing Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chengyuan Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230026, China
| | - Jun Hu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230026, China
| | - Junfa Zhu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230026, China
| | - Yang Pan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230026, China
| | - Yongfu Sun
- Hefei National Research Center for Physical Science at Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Yi Xie
- Hefei National Research Center for Physical Science at Microscale, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
2
|
Li B, Xu Z, Wang R, Nie R, Tao Z, Huang X. Mineralizing Biofilm towards Sustainable Conversion of Plastic Wastes to Hydrogen. Angew Chem Int Ed Engl 2025; 64:e202416577. [PMID: 39604799 DOI: 10.1002/anie.202416577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/24/2024] [Accepted: 11/27/2024] [Indexed: 11/29/2024]
Abstract
The integration of inorganic materials with biological machinery to convert plastics into fuels offers a promising strategy to alleviate environmental pollution and energy crisis. Herein, we develop a type of hybrid living material via biomineralization of CdS onto Shewanella oneidensis-based biofilm, which is capable of sustainable hydrogen production from poly(lactic acid) (PLA) wastes under daylight. We reveal that the formed biofilm microstructure provides an independent anaerobic microenvironment that simultaneously supports cellular viability, maintains hydrogenase activity, and preserves the functional stability of CdS, giving rise to the efficient plastic-to-hydrogen conversion efficiency as high as 3751 μmol H2 g-1 PLA. Besides, by genetically engineering transmembrane pili conduit and incorporating conductive nanomaterials to strengthen the electron transfer across cellular interface and biofilm matrices, we show that the conversion efficiency is further enhanced to 5862 μmol H2 g-1 PLA. Significantly, we exhibit that a long-term sustainable plastic-to-hydrogen conversion of 63 d could be achieved by periodically replenishing PLA wastes. Overall, by the synergistic integration of biotic-abiotic characteristics the developed biofilm-based biomineralized hybrid living material is anticipated to provide a new platform toward the efficient conversion of plastic wastes into valuable fuels, and bridge the gap between environmental contamination and green energy production.
Collapse
Affiliation(s)
- Baoyuan Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 150001, Harbin, Heilongjiang, China
| | - Zhijun Xu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 150001, Harbin, Heilongjiang, China
| | - Ruifang Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 150001, Harbin, Heilongjiang, China
| | - Rui Nie
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 150001, Harbin, Heilongjiang, China
| | - Zhengyu Tao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 150001, Harbin, Heilongjiang, China
| | - Xin Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 150001, Harbin, Heilongjiang, China
| |
Collapse
|
3
|
Wu Y, Nguyen PTT, Wong SS, Feng M, Han P, Yao B, He Q, Sum TC, Zhang T, Yan N. Photocatalytic upcycling of polylactic acid to alanine by sulfur vacancy-rich cadmium sulfide. Nat Commun 2025; 16:846. [PMID: 39833202 PMCID: PMC11747115 DOI: 10.1038/s41467-025-55930-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 01/02/2025] [Indexed: 01/22/2025] Open
Abstract
Photocatalytic conversion has emerged as a promising strategy for harnessing renewable solar energy in the valorization of plastic waste. However, research on the photocatalytic transformation of plastics into valuable nitrogen-containing chemicals remains limited. In this study, we present a visible-light-driven pathway for the conversion of polylactic acid (PLA) into alanine under mild conditions. This process is catalyzed by defect-engineered CdS nanocrystals synthesized at room temperature. We observe a distinctive volcano-shaped relationship between sulfur vacancy content in CdS and the corresponding alanine production rate reaching up to 4.95 mmol/g catalyst/h at 70 oC. Ultraviolet-visible, photocurrent, electrochemical impedance, transient absorption, photoluminescence, and Fourier-transform infrared spectroscopy collectively highlight the crucial role of sulfur vacancies. The surface vacancies serve as adsorption sites for lactic acid; however, an excessive number of vacancies can hinder charge transfer efficiency. Sulfur vacancy-rich CdS exhibits high stability with maintained performance and morphology over several runs, effectively converts real-life PLA products and shows potential in the amination of other polyesters. This work not only highlights a facile approach for fabricating defect-engineered catalysts but also presents a sustainable method for upcycling plastic waste into valuable chemicals.
Collapse
Affiliation(s)
- Yue Wu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore, Singapore
- Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300354, People's Republic of China
| | - Phuc T T Nguyen
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore, Singapore
- Joint School of National University of Singapore and Tianjin University, Fuzhou, 350207, Fujian, China
| | - Sie Shing Wong
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore, Singapore
| | - Minjun Feng
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Peijie Han
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore, Singapore
| | - Bingqing Yao
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117575, Singapore
| | - Qian He
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117575, Singapore
- Centre for Hydrogen Innovations, National University of Singapore, Singapore, 117580, Singapore
| | - Tze Chien Sum
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Tianyong Zhang
- Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300354, People's Republic of China
| | - Ning Yan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore, Singapore.
- Joint School of National University of Singapore and Tianjin University, Fuzhou, 350207, Fujian, China.
- Centre for Hydrogen Innovations, National University of Singapore, Singapore, 117580, Singapore.
| |
Collapse
|
4
|
Gong X, Wang P, Yang S, Li W, Lv M, Li B, Zhang X, Wang Z, Liu Y, Wang P, Cheng H, Dai Y, Huang B, Zheng Z. Reinforcing the Efficiency of Plastic Upgrading through Full-Spectrum Photothermal Effect Integration of Heat Isolator. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2410260. [PMID: 39467108 DOI: 10.1002/advs.202410260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/26/2024] [Indexed: 10/30/2024]
Abstract
Photoreforming of polyethylene terephthalate (PET) to H2 is practically attractive strategy for upgrading waste plastics. The major challenge is to utilize the infrared energy in the solar spectrum to improve the efficiency for photoreforming of PET to H2. Herein, through the ingenious integration of tungsten phosphide nanoparticles and tungsten single atoms (WP/W SAs) with carbon nitride (g-C3N4), the constructed hybrid inherits both the desirable properties and structural merits of the respective building blocks. Specifically, the photothermal effect of WP/W SAs couples with the "heat isolator" role of g-C3N4 due to its low thermal conductivity, thereby forming localized high-temperature regions, reducing the activation energy and improving the kinetics in the photoreforming of PET to H2. Additionally, the green pretreatment of PET using alkali-free hydrothermal strategy is reported, achieving direct separation of the ethylene glycol and terephthalic acid. This work not only provides an alkali-free hydrothermal pretreatment for PET, but also integrates the photothermal effect with the thermal insulation and opens a new avenue for harnessing solar energy into to convert plastics into H2.
Collapse
Affiliation(s)
- Xueqin Gong
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Peng Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Shuo Yang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Wenbo Li
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Min Lv
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Bei Li
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Xiangxiang Zhang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Zeyan Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Yuanyuan Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Peng Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Hefeng Cheng
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Ying Dai
- School of Physics, Shandong University, Jinan, 250100, China
| | - Baibiao Huang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Zhaoke Zheng
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| |
Collapse
|
5
|
Yin Z, Chen H, Wang Q, Wang Z, Yu G, Tang B, Zhang M, Li K, Zhang Z, Luo Q, Hu T, Lv B. Construction of an interface interaction in a g-C 3N 4/CdS/NiS for photoreforming of plastic and clean hydrogen regeneration. J Colloid Interface Sci 2024; 675:218-225. [PMID: 38968638 DOI: 10.1016/j.jcis.2024.06.214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/23/2024] [Accepted: 06/26/2024] [Indexed: 07/07/2024]
Abstract
Converting plastics into organic matter by photoreforming is an emerging way to deal with plastic pollution and produce valuable organic matter. Water shortage can be alleviated by using seawater resources. To solve these problems, we synthesize a ternary heterostructure composite g-C3N4/CdS/NiS. Heterojunctions are formed between graphitized carbon nitride (g-C3N4), cadmium sulfide (CdS) and nickel sulfide (NiS), which effectively improve the problem of fast charge recombination of pure g-C3N4 and CdS. The results of the g-C3N4/CdS/NiS photocatalytic tests show that the hydrogen production rates in seawater and pure water for 5 h are 30.44 and 25.79 mmol/g/h, respectively. In stability test, the hydrogen production rate of the g-C3N4/CdS/NiS in seawater and pure water is similar. This suggests that seawater can replace pure water as a source of hydrogen. While H2 is generated, the lactate obtained by polylactic acid (PLA) hydrolysis is oxidized to form small organic compounds such as formate, acetate and pyruvate. Our study shows that g-C3N4/CdS/NiS can not only use seawater as a hydrogen source to produce H2, but also photoreformate plastics dissolved in seawater into valuable small organic molecules. This has a positive impact on the production and use of clean energy, as well as on plastic pollution and water scarcity.
Collapse
Affiliation(s)
- Zhe Yin
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Huanyu Chen
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Qiuyu Wang
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Ziwen Wang
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Guoping Yu
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Binglin Tang
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Man Zhang
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Kangzheng Li
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Zhichao Zhang
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Qingcheng Luo
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Tianding Hu
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Bo Lv
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
6
|
Hu J, Fan Y, Li S, Kang J, Chen S, Yin H, Zhao H. Ultrathin Porous Carbon Nitride Anchored with Pt Nanoclusters for Synergistic Enhancement of Hydrogen Production in Alkaline Photocatalytic Polyester Reforming. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403573. [PMID: 39258373 PMCID: PMC11618726 DOI: 10.1002/smll.202403573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/16/2024] [Indexed: 09/12/2024]
Abstract
Photocatalytic reforming (PR) of polyester waste, fueled by renewable sources like solar energy, offers a sustainable method for producing clean H2 and valuable by-products under mild conditions. The design of high-performance photocatalyst plays a pivotal role in determining the efficacy of an alkaline polyester PR system, influencing H2 generation activity and selectivity. Here, ultrathin porous carbon nitride nanosheets (UP-CN) loaded with Pt nanoclusters (Pt NCs, average diameter of 1.7 nm) with uniform Pt NCs distribution are introduced. The resulting Pt NCs/UP-CN catalyst can accelerate charge and mass transfer while providing additional active sites, achieving superior H2 generation rates of 11.69 mmol gcat -1 h-1 and 2923 mmol gPt -1 h-1 under AM 1.5 light, which nine times higher than that of Pt nanoparticles-bulk graphitic carbon nitride composite (1.29 mmol gcat -1 h-1 and 258 mmol gPt -1 h-1) as counterpart. This performance also surpasses that of previously reported carbon nitride-based and TiO2-based photocatalysts. Moreover, the density functional theory calculations reveal a significant reduction in the energy barrier for the water dissociation step (H2O + * → *H + OH) at the interface between UP-CN and anchored Pt NCs, showcasing the synergistic effect between Pt NCs and UP-CN. This catalytic system also exhibits universality across various polyester plastics.
Collapse
Affiliation(s)
- Jingmiao Hu
- University of Science and Technology of ChinaHefeiAnhui230026China
- Key Laboratory of Materials PhysicsCentre for Environmental and Energy nanomaterialsAnhui Key Laboratory of Nanomaterials and NanotechnologyCAS Center for Excellence in NanoscienceInstitute of Solid State PhysicsHefei Institutes of Physical ScienceChinese Academy of SciencesHefei230031China
| | - Yunjian Fan
- Institutes of Physical Science and Information TechnologyAnhui UniversityHefei230039China
| | - Shijian Li
- Institutes of Physical Science and Information TechnologyAnhui UniversityHefei230039China
| | - Jian Kang
- Key Laboratory of Materials PhysicsCentre for Environmental and Energy nanomaterialsAnhui Key Laboratory of Nanomaterials and NanotechnologyCAS Center for Excellence in NanoscienceInstitute of Solid State PhysicsHefei Institutes of Physical ScienceChinese Academy of SciencesHefei230031China
- Centre for Catalysis and Clean EnergySchool of Environment and ScienceGriffith University Gold Coast CampusQueensland4222Australia
| | - Shan Chen
- Institutes of Physical Science and Information TechnologyAnhui UniversityHefei230039China
| | - Huajie Yin
- University of Science and Technology of ChinaHefeiAnhui230026China
- Key Laboratory of Materials PhysicsCentre for Environmental and Energy nanomaterialsAnhui Key Laboratory of Nanomaterials and NanotechnologyCAS Center for Excellence in NanoscienceInstitute of Solid State PhysicsHefei Institutes of Physical ScienceChinese Academy of SciencesHefei230031China
| | - Huijun Zhao
- Centre for Catalysis and Clean EnergySchool of Environment and ScienceGriffith University Gold Coast CampusQueensland4222Australia
| |
Collapse
|
7
|
Zhao H, Ye Y, Zhang Y, Yang L, Du W, Wang S, Hou Z. Upcycling of waste polyesters for the development of a circular economy. Chem Commun (Camb) 2024; 60:13832-13857. [PMID: 39504002 DOI: 10.1039/d4cc04780j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
The rapidly increasing production and widespread application of plastics have brought convenience to our lives, but they have consumed a huge amount of nonrenewable fossil energy, leading to additional CO2 emissions and generation of an enormous amount of plastic waste (also called white pollution). Chemical recycling and upcycling of waste plastic products (also called waste plastic refineries) into recycled monomers and/or valuable chemicals can decrease the dependence on fossil energy and/or reduce the emission of CO2, enabling the full utilization of carbon resources for the development of a circular economy. Polyesters, a vital class of plastics, are ideal feedstocks for chemical recycling due to the easily depolymerizable ester bonds compared to polyolefins. Among them, polyethylene terephthalate (PET) is the most widely used product, making its chemical recycling to a circular carbon resource a hot topic with significant concerns. In this feature article, recent progress in depolymerization of waste polyesters (PET and/or PET-containing materials) and the subsequent upgrading of depolymerized monomers (or intermediates) to valuable chemicals was reviewed and prospected. Newly reported technologies, such as thermal catalysis, photocatalysis, electrocatalysis, and biocatalysis, were discussed. The achievements, challenges, and potential of industrial applications of chemical recycling of polyesters were addressed.
Collapse
Affiliation(s)
- Huaiyuan Zhao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Department of Chemistry, Zhejiang University, Hangzhou 310028, China.
- Zhejiang Hengyi Petrochemical Research Institute Co., Ltd, Hangzhou 311200, China
| | - Yingdan Ye
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Department of Chemistry, Zhejiang University, Hangzhou 310028, China.
| | - Yibin Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Department of Chemistry, Zhejiang University, Hangzhou 310028, China.
| | - Lei Yang
- Zhejiang Hengyi Petrochemical Research Institute Co., Ltd, Hangzhou 311200, China
| | - Weichen Du
- Zhejiang Hengyi Petrochemical Research Institute Co., Ltd, Hangzhou 311200, China
| | - Songlin Wang
- Zhejiang Hengyi Petrochemical Research Institute Co., Ltd, Hangzhou 311200, China
| | - Zhaoyin Hou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Department of Chemistry, Zhejiang University, Hangzhou 310028, China.
- Zhejiang Hengyi Petrochemical Research Institute Co., Ltd, Hangzhou 311200, China
| |
Collapse
|
8
|
Zhang S, Johannessen B, Xia B, Gao X, Davey K, Ran J, Qiao SZ. Selective Oxidation of Polyesters via PdCu-TiO 2 Photocatalysts in Flow. J Am Chem Soc 2024; 146:32003-32012. [PMID: 39501436 DOI: 10.1021/jacs.4c11973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Catalytic upcycling of plastic wastes offers a sustainable circular economy. Selective conversion of the most widely used polyester, polyethylene terephthalate (PET), under ambient conditions is practically attractive because of low energy consumption and carbon footprint. Here, we report selective, aerobic conversion of PET in a flow reactor using TiO2 photocatalyst modified with atomic Pd and metallic PdCu (Pd1Cu0.4-TiO2) under ambient conditions. We demonstrate that atomically synergistic Pd1Cu0.4-TiO2 exhibits a formate evolution of 4707 μmol g-1 h-1 with a selectivity of 92.3% together with trace COx released. Importantly, we show that this corresponds to 10-103 times greater activity than reported photocatalytic systems. We confirm that synergy between atomic Pd and metallic PdCu boosts directional charge transfer and oxygen-induced C-C cleavage and inhibits product decomposition. We conclude that photocatalytic waste plastic-to-chemical conversion is sustainable via targeted engineering of atomically synergistic catalysts and reaction systems.
Collapse
Affiliation(s)
- Shuai Zhang
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | | | - Bingquan Xia
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, Hubei 430074, China
| | - Xintong Gao
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Kenneth Davey
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Jingrun Ran
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Shi-Zhang Qiao
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
9
|
Cao J, Qiu X, Zhang F, Fu S. Circular Economy and Chemical Conversion for Polyester Wastes. CHEMSUSCHEM 2024:e202402100. [PMID: 39508254 DOI: 10.1002/cssc.202402100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 11/08/2024]
Abstract
Polyester waste in the environment threatens public health and environmental ecosystems. Chemical recycling of polyester waste offers a dual solution to ensure resource sustainability and ecological restoration. This minireview highlights the traditional recycling methods and novel recycling strategies of polyester plastics. The conventional strategy includes pyrolysis, carbonation, and solvolysis of polyesters for degradation and recycling. Furthermore, the review delves into exploring emerging technologies including hydrogenolysis, electrocatalysis, photothermal, photoreforming, and enzymatic for upcycling polyesters. It emphasizes the selectivity of products during the polyester conversion process and elucidates conversion pathways. More importantly, the separation and purification of the products, the life cycle assessment, and the economic analysis of the overall recycling process are essential for evaluating the environmental and economic viability of chemical recycling of waste polyester plastics. Finally, the review offers perspective into the future challenges and developments of chemical recycling in the polyester economy.
Collapse
Affiliation(s)
- Jingjing Cao
- Jiangsu Engineering Research Center for Digital Textile Inkjet Printing, College of Textile Science and Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Xin Qiu
- National Engineering Laboratory of Eco-Friendly Polymeric Materials, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Fan Zhang
- National Engineering Laboratory of Eco-Friendly Polymeric Materials, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Shaohai Fu
- Jiangsu Engineering Research Center for Digital Textile Inkjet Printing, College of Textile Science and Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| |
Collapse
|
10
|
Hu J, Li J, Liu X, Xiao W, Yu H, Abdelsalam H, Liu C, Zou Z, Zhang Q. Photothermal-assisted S-scheme heterojunction of NiPS 3 nanosheets modified ZnIn 2S 4 microspheres for promoting photocatalytic hydrogen evolution. J Colloid Interface Sci 2024; 680:506-515. [PMID: 39522245 DOI: 10.1016/j.jcis.2024.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/31/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
Exploring high-efficiency photocatalysts for solar hydrogen (H2) generation through water splitting is of great significance for addressing both energy shortage and environmental contamination. In this work, a facile self-assembly strategy was developed to couple NiPS3 nanosheets (NPS NSs) with ZnIn2S4 (ZIS) microspheres to synthesize NPS NSs/ZIS (NPS/ZIS) composites, featuring a characteristic of S-scheme charge transfer mechanism. The NPS/ZIS composites possess broad-spectrum light absorption property, improved photothermal effect and efficient charge transfer, showcasing exceptional solar-to-chemical energy conversion capability for visible-light-driven photocatalytic hydrogen evolution (PHE). The photothermal effect derived from NPS NSs loading can facilitate charge carrier transfer across the interfaces and surface reaction kinetics. By carefully adjusting the mass ratio of NPS NSs, the optimized 4-NPS/ZIS exhibits excellent stability and significantly improved PHE activity (1827.6 μmol⋅g-1⋅h-1) in water, which is 18.4 times higher than that of bare ZIS (99.4 μmol⋅g-1⋅h-1). Furthermore, the 4-NPS/ZIS also shows the high PHE efficiency of 312.2 μmol⋅g-1⋅h-1 in seawater. Diverse characterization results reveal that the remarkably enhanced PHE performance primarily arises from the synergistic effect of S-scheme heterostructure, heightened light harvesting capacity, and enhanced photothermal effect. On the basis of density functional theory (DFT) simulations and experimental verifications, a possible PHE mechanism via the S-scheme heterojunction with photothermal assistance in NPS/ZIS is proposed. This study serves as inspiration for the development of novel photothermal-assisted S-scheme photocatalysts, paving the way for efficient and sustainable green energy production.
Collapse
Affiliation(s)
- Jiawei Hu
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Jiaming Li
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Xingyu Liu
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Wen Xiao
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Huan Yu
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Hazem Abdelsalam
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China; Theoretical Physics Department, National Research Centre, El-Buhouth Str., 12622 Dokki, Giza, Egypt
| | - Chao Liu
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China.
| | - Zhigang Zou
- Eco-Materials and Renewable Energy Research Centre (ERERC), Nanjing University, Nanjing 210093, China
| | - Qinfang Zhang
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China.
| |
Collapse
|
11
|
Zhang X, Jun M, Zu W, Kim M, Lee K, Lee LYS. Photoreforming of Microplastics: Challenges and Opportunities for Sustainable Environmental Remediation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403347. [PMID: 39118562 DOI: 10.1002/smll.202403347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/18/2024] [Indexed: 08/10/2024]
Abstract
Plastics are widely used in daily lives, but unfortunately, their inadequate recycling practices have led to the accumulation of microplastics in the environment, posing a threat to public health. The existing methods for treating microplastics are energy-intensive and environmentally damaging. In this context, photoreforming has emerged as a sustainable solution to address the microplastic crisis by simultaneously recycling them into value-added chemicals. This review presents a comprehensive overview of the application of photoreforming for upcycling microplastic. The underlying mechanisms of photoreforming reaction are discussed, followed by the exploration of recent advancements and innovative strategies in photoreforming techniques with particular emphasis on their real-world applications and potential for large-scale implementation. Also, critical factors influencing the efficiency of microplastic photoreforming are identified, providing guidance for further research and optimization.
Collapse
Affiliation(s)
- Xiandi Zhang
- BGI Research, Shenzhen, 518083, China
- Department of Applied Biology and Chemical Technology and The Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
- BGI Research, Changzhou, 213299, China
| | - Minki Jun
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Wenhan Zu
- Department of Applied Biology and Chemical Technology and The Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Minah Kim
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Kwangyeol Lee
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Lawrence Yoon Suk Lee
- Department of Applied Biology and Chemical Technology and The Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| |
Collapse
|
12
|
Zhou X, Liu J, Ali S, Shen B, Zhai J, Hedin N, Yuan J. Efficient Catalytic Production of Reactive Oxygen Species through Piezoelectricity in Bismuth Sulfide Rich in Sulfur Vacancies. NANO LETTERS 2024; 24:13153-13161. [PMID: 39401399 DOI: 10.1021/acs.nanolett.4c02795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Sulfur (S) vacancies in metal sulfides are of interest in electrocatalysis and photoelectronics, but their effect on the generation of reactive oxygen species (ROS) during mechanical catalysis is unclear. This study investigates the impact of S-vacancies in defective bismuth sulfide (Bi2S3-x) on ROS production under ultrasonic irradiation and organic contaminant decomposition. S-vacancies disrupt the centrosymmetric structure of intrinsic Bi2S3, inducing piezoelectric effects and enhancing the electrical energy in Bi2S3-x. The positively charged S-vacancies in Bi2S3-x promote the separation of ultrasound-activated electron-hole pairs by capturing electrons. As a result, the optimal rate of H2O2 formation and the reaction rate constant for degrading Rhodamine B dye on Bi2S3-x are found to be 1.9 and 37 times higher, respectively, than those on Bi2S3 under ultrasonic irradiation. The nonzero catalytic efficiency in centrosymmetric Bi2S3 is due to the flexoelectric catalytic effect from nonuniform strain. These results guide the piezocatalyst design and elucidate mechanical catalysis mechanisms.
Collapse
Affiliation(s)
- Xiaofeng Zhou
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm SE-106 91, Sweden
| | - Jinzhou Liu
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Shahzad Ali
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm SE-106 91, Sweden
| | - Bo Shen
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Jiwei Zhai
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Niklas Hedin
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm SE-106 91, Sweden
| | - Jiayin Yuan
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm SE-106 91, Sweden
| |
Collapse
|
13
|
Lin J, Hu K, Wang Y, Tian W, Hall T, Duan X, Sun H, Zhang H, Cortés E, Wang S. Tandem microplastic degradation and hydrogen production by hierarchical carbon nitride-supported single-atom iron catalysts. Nat Commun 2024; 15:8769. [PMID: 39384850 PMCID: PMC11464750 DOI: 10.1038/s41467-024-53055-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/30/2024] [Indexed: 10/11/2024] Open
Abstract
Microplastic pollution, an emerging environmental issue, poses significant threats to aquatic ecosystems and human health. In tackling microplastic pollution and advancing green hydrogen production, this study reveals a tandem catalytic microplastic degradation-hydrogen evolution reaction (MPD-HER) process using hierarchical porous carbon nitride-supported single-atom iron catalysts (FeSA-hCN). Through hydrothermal-assisted Fenton-like reactions, we accomplish near-total ultrahigh-molecular-weight-polyethylene degradation into C3-C20 organics with 64% selectivity of carboxylic acid under neutral pH, a leap beyond current capabilities in efficiency, selectivity, eco-friendliness, and stability over six cycles. The system demonstrates versatility by degrading various daily-use plastics across different aquatic settings. The mixture of FeSA-hCN and plastic degradation products further achieves a hydrogen evolution of 42 μmol h‒1 under illumination, outperforming most existing plastic photoreforming methods. This tandem MPD-HER process not only provides a scalable and economically feasible strategy to combat plastic pollution but also contributes to the hydrogen economy, with far-reaching implications for global sustainability initiatives.
Collapse
Affiliation(s)
- Jingkai Lin
- School of Chemical Engineering, The University of Adelaide, North Terrace, Adelaide, SA, 5005, Australia
| | - Kunsheng Hu
- School of Chemical Engineering, The University of Adelaide, North Terrace, Adelaide, SA, 5005, Australia
| | - Yantao Wang
- School of Chemical Engineering, The University of Adelaide, North Terrace, Adelaide, SA, 5005, Australia
| | - Wenjie Tian
- School of Chemical Engineering, The University of Adelaide, North Terrace, Adelaide, SA, 5005, Australia.
- Nano-Institute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, Munich, Germany.
| | - Tony Hall
- Mawson Analytical Spectrometry Services, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Xiaoguang Duan
- School of Chemical Engineering, The University of Adelaide, North Terrace, Adelaide, SA, 5005, Australia
| | - Hongqi Sun
- School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Huayang Zhang
- School of Chemical Engineering, The University of Adelaide, North Terrace, Adelaide, SA, 5005, Australia.
- Nano-Institute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, Munich, Germany.
| | - Emiliano Cortés
- Nano-Institute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Shaobin Wang
- School of Chemical Engineering, The University of Adelaide, North Terrace, Adelaide, SA, 5005, Australia.
| |
Collapse
|
14
|
Anh Nguyen TK, Trần-Phú T, Daiyan R, Minh Chau Ta X, Amal R, Tricoli A. From Plastic Waste to Green Hydrogen and Valuable Chemicals Using Sunlight and Water. Angew Chem Int Ed Engl 2024; 63:e202401746. [PMID: 38757221 DOI: 10.1002/anie.202401746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/15/2024] [Accepted: 05/15/2024] [Indexed: 05/18/2024]
Abstract
Over 79 % of 6.3 billion tonnes of plastics produced from 1950 to 2015 have been disposed in landfills or found their way to the oceans, where they will reside for up to hundreds of years before being decomposed bringing upon significant dangers to our health and ecosystems. Plastic photoreforming offers an appealing alternative by using solar energy and water to transform plastic waste into value-added chemical commodities, while simultaneously producing green hydrogen via the hydrogen evolution reaction. This review aims to provide an overview of the underlying principles of emerging plastic photoreforming technologies, highlight the challenges associated with experimental protocols and performance assessments, discuss recent global breakthroughs on the photoreforming of plastics, and propose perspectives for future research. A critical assessment of current plastic photoreforming studies shows a lack of standardised conditions, hindering comparison amongst photocatalyst performance. Guidelines to establish a more accurate evaluation of materials and systems are proposed, with the aim to facilitate the translation of promising fundamental discovery in photocatalysts design.
Collapse
Affiliation(s)
- Thi Kim Anh Nguyen
- Nanotechnology Research Laboratory, Faculty of Engineering, University of Sydney, Sydney, NSW 2006, Australia
| | - Thành Trần-Phú
- Nanotechnology Research Laboratory, Faculty of Engineering, University of Sydney, Sydney, NSW 2006, Australia
- Present address: Chemistry and Nanoscience Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Rahman Daiyan
- Particles and Catalysis Research Laboratory, School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Xuan Minh Chau Ta
- Nanotechnology Research Laboratory, Faculty of Engineering, University of Sydney, Sydney, NSW 2006, Australia
| | - Rose Amal
- Particles and Catalysis Research Laboratory, School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Antonio Tricoli
- Nanotechnology Research Laboratory, Faculty of Engineering, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
15
|
Huang S, Qiu Z, Zhong J, Wu S, Han X, Hu W, Han Z, Cheng WN, Luo Y, Meng Y, Hu Z, Zhou X, Guo S, Zhu J, Zhao X, Li CC. High-Entropy Transition Metal Phosphorus Trichalcogenides for Rapid Sodium Ion Diffusion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405170. [PMID: 38838950 DOI: 10.1002/adma.202405170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/03/2024] [Indexed: 06/07/2024]
Abstract
High-entropy strategies are regarded as a powerful means to enhance performance in energy storage fields. The improved properties are invariably ascribed to entropy stabilization or synergistic cocktail effect. Therefore, the manifested properties in such multicomponent materials are usually unpredictable. Elucidating the precise correlations between atomic structures and properties remains a challenge in high-entropy materials (HEMs). Herein, atomic-resolution scanning transmission electron microscopy annular dark field (STEM-ADF) imaging and four dimensions (4D)-STEM are combined to directly visualize atomic-scale structural and electric information in high-entropy FeMnNiVZnPS3. Aperiodic stacking is found in FeMnNiVZnPS3 accompanied by high-density strain soliton boundaries (SSBs). Theoretical calculation suggests that the formation of such structures is attributed to the imbalanced stress of distinct metal-sulfur bonds in FeMnNiVZnPS3. Interestingly, the electric field concentrates along the two sides of SSBs and gradually diminishes toward the two-dimensional (2D) plane to generate a unique electric field gradient, strongly promoting the ion-diffusion rate. Accordingly, high-entropy FeMnNiVZnPS3 demonstrates superior ion-diffusion coefficients of 10-9.7-10-8.3 cm2 s-1 and high-rate performance (311.5 mAh g-1 at 30 A g-1). This work provides an alternative way for the atomic-scale understanding and design of sophisticated HEMs, paving the way for property engineering in multi-component materials.
Collapse
Affiliation(s)
- Song Huang
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zanlin Qiu
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Jiang Zhong
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Key Laboratory of Two-Dimensional Materials, Hunan University, Changsha, 410082, China
| | - Shengqiang Wu
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Xiaocang Han
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Wenchao Hu
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Ziyi Han
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Wing Ni Cheng
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Yan Luo
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Yuan Meng
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Zuyang Hu
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xuan Zhou
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Shaojun Guo
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Jian Zhu
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Key Laboratory of Two-Dimensional Materials, Hunan University, Changsha, 410082, China
| | - Xiaoxu Zhao
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Cheng Chao Li
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
16
|
Jiang Y, Sun H, Guo J, Liang Y, Qin P, Yang Y, Luo L, Leng L, Gong X, Wu Z. Vacancy Engineering in 2D Transition Metal Chalcogenide Photocatalyst: Structure Modulation, Function and Synergy Application. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310396. [PMID: 38607299 DOI: 10.1002/smll.202310396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/08/2024] [Indexed: 04/13/2024]
Abstract
Transition metal chalcogenides (TMCs) are widely used in photocatalytic fields such as hydrogen evolution, nitrogen fixation, and pollutant degradation due to their suitable bandgaps, tunable electronic and optical properties, and strong reducing ability. The unique 2D malleability structure provides a pre-designed platform for customizable structures. The introduction of vacancy engineering makes up for the shortcomings of photocorrosion and limited light response and provides the greatest support for TMCs in terms of kinetics and thermodynamics in photocatalysis. This work reviews the effect of vacancy engineering on photocatalytic performance based on 2D semiconductor TMCs. The characteristics of vacancy introduction strategies are summarized, and the development of photocatalysis of vacancy engineering TMCs materials in energy conversion, degradation, and biological applications is reviewed. The contribution of vacancies in the optical range and charge transfer kinetics is also discussed from the perspective of structure manipulation. Vacancy engineering not only controls and optimizes the structure of the TMCs, but also improves the optical properties, charge transfer, and surface properties. The synergies between TMCs vacancy engineering and atomic doping, other vacancies, and heterojunction composite techniques are discussed in detail, followed by a summary of current trends and potential for expansion.
Collapse
Affiliation(s)
- Yi Jiang
- Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, P. R. China
| | - Haibo Sun
- Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, P. R. China
| | - Jiayin Guo
- School of Resources and Environment, Hunan University of Technology and Business, Changsha, 410205, P. R. China
| | - Yunshan Liang
- Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, P. R. China
| | - Pufeng Qin
- Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, P. R. China
| | - Yuan Yang
- Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, P. R. China
| | - Lin Luo
- Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, P. R. China
| | - Lijian Leng
- School of Energy Science and Engineering, Central South University, Changsha, 410083, P. R. China
| | - Xiaomin Gong
- Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, P. R. China
| | - Zhibin Wu
- Key Laboratory for Rural Ecosystem Health in the Dongting Lake Area of Hunan Province, College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, P. R. China
| |
Collapse
|
17
|
Chen R, Ni C, Zhu J, Fan F, Li C. Surface photovoltage microscopy for mapping charge separation on photocatalyst particles. Nat Protoc 2024; 19:2250-2282. [PMID: 38654135 DOI: 10.1038/s41596-024-00992-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 02/22/2024] [Indexed: 04/25/2024]
Abstract
Solar-driven photocatalytic reactions offer a promising route to clean and sustainable energy, and the spatial separation of photogenerated charges on the photocatalyst surface is the key to determining photocatalytic efficiency. However, probing the charge-separation properties of photocatalysts is a formidable challenge because of the spatially heterogeneous microstructures, complicated charge-separation mechanisms and lack of sensitivity for detecting the low density of separated photogenerated charges. Recently, we developed surface photovoltage microscopy (SPVM) with high spatial and energy resolution that enables the direct mapping of surface-charge distributions and quantitative assessment of the charge-separation properties of photocatalysts at the nanoscale, potentially providing unprecedented insights into photocatalytic charge-separation processes. Here, this protocol presents detailed procedures that enable researchers to construct the SPVM instruments by integrating Kelvin probe force microscopy with an illumination system and the modulated surface photovoltage (SPV) approach. It then describes in detail how to perform SPVM measurements on actual photocatalyst particles, including sample preparation, tuning of the microscope, adjustment of the illuminated light path, acquisition of SPVM images and measurements of spatially resolved modulated SPV signals. Moreover, the protocol also includes sophisticated data analysis that can guide non-experts in understanding the microscopic charge-separation mechanisms. The measurements are ordinarily performed on photocatalysts with a conducting substrate in gases or vacuum and can be completed in 15 h.
Collapse
Affiliation(s)
- Ruotian Chen
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
| | - Chenwei Ni
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jian Zhu
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Fengtao Fan
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
| | - Can Li
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
18
|
Yue S, Zhao Z, Zhang T, Li F, Liu K, Zhan S. Selective Photoreforming of Waste Plastics into Diesel Olefins via Single Reactive Oxygen Species. Angew Chem Int Ed Engl 2024; 63:e202406795. [PMID: 38708785 DOI: 10.1002/anie.202406795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/07/2024]
Abstract
The accumulation of plastic waste poses a pressing environmental challenge. Catalytic conversion stands out as an ideal approach for plastics upcycling, particularly through solar-driven plastics photoreforming. However, due to the common effects of multiple reactive oxygen species (ROS), selectively generating high-value chemicals becomes challenging. In this study, we developed a universal strategy to achieve >85 % selective production of diesel olefins (C15-C28) from polyolefin waste plastics via single ROS. Using tetrakis (4-carboxyphenyl) porphyrin supramolecular (TCPP) with different central metals as an example to regulate single ROS generation, results show Ni-TCPP facilitates triplet exciton production, yielding 1O2, while Zn-TCPP generates ⋅O2 - due to its strong built-in electric field (IEF). 1O2 directly dechlorinates polyvinyl chloride (PVC) due to the electro-negativity of chlorine atoms and the low dissociation energy of C-Cl bonds, while ⋅O2 - promotes direct dehydrogenation of polyethylene (PE) due to the electro-positivity of hydrogen atoms and the high dissociation energy of C-H bonds. This method is universally applicable to various single ROS systems. Installation experiments further affirm the application potential, achieving the highest diesel olefin production of 76.1 μmol h-1. Such a universally adaptive approach holds promise for addressing the global plastic pollution problem.
Collapse
Affiliation(s)
- Shuai Yue
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
| | - Zhiyong Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
| | - Tao Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
| | - Fei Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
| | - Kewang Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
| | - Sihui Zhan
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
| |
Collapse
|
19
|
Ding J, He D, Du P, Wu J, Hu Q, Chen Q, Jiao X. Design Photocatalysts to Boost Carrier Dynamics in Plastics Photoconversion into Fuels. ACS APPLIED MATERIALS & INTERFACES 2024; 16:35865-35873. [PMID: 38970473 DOI: 10.1021/acsami.4c07664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
Abstract
Solar-driven plastics conversion into valuable fuels has attracted broad attention in recent years, which has enormous potential for plastics recycling in the future. However, it usually encounters low conversion efficiency, where one of the reasons is attributed to the poor carrier dynamics in the photocatalytic process. In this Perspective, we critically review the developed strategies, involving defect engineering, doping engineering, heterojunction engineering, and composite construction, for boosted carrier separation efficiency. In addition, we provide an outlook for more potential strategies to engineer catalysts for promoted carrier dynamics. Finally, we also propose prospects for the future research direction of plastics photoconversion into fuels.
Collapse
Affiliation(s)
- Jinyu Ding
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Dongpo He
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Peijin Du
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Jiacong Wu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Qinyuan Hu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Qingxia Chen
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Xingchen Jiao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
20
|
Li J, Ma HP, Zhao G, Huang G, Sun W, Peng C. Plastic Waste Conversion by Leveraging Renewable Photo/Electro-Catalytic Technologies. CHEMSUSCHEM 2024; 17:e202301352. [PMID: 38226954 DOI: 10.1002/cssc.202301352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/26/2023] [Accepted: 01/15/2024] [Indexed: 01/17/2024]
Abstract
Plastics have revolutionized our lives; however, the exponential growth of their usage has led to a global crisis. More sustainable strategies are needed to address this dilemma and transform the plastics economy from a linearity to a circular model. Herein, we systematically summarize the recent progress in renewable energy-driven plastic conversion strategies, including photocatalysis, electrocatalysis, and their integration. By introducing the significant works, the design principles, mechanisms, and system regulations, we decipher and compare the various aspects of plastic conversion. These approaches show high reactivity and selectivity under environmentally benign conditions and provide alternative reaction pathways for plastic conversion. Plastic upcycling as a chemical feedstock can yield value-added chemicals and fuels, contributing to the establishment of a sustainable and circular economy. Additionally, several innovations in reaction engineering and system designs are presented. Finally, the challenges and perspectives of sustainable energy-driven plastic conversion technologies are comprehensively discussed.
Collapse
Affiliation(s)
- Jianan Li
- School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
- Zhejiang Tiandi Environmental Protection Technology Co., Ltd., Hangzhou, 311121, P. R. China
| | - Hong-Peng Ma
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Shaan Xi, 710072, P. R. China
| | - Guoping Zhao
- Zhejiang Tiandi Environmental Protection Technology Co., Ltd., Hangzhou, 311121, P. R. China
| | - Guangfa Huang
- Zhejiang Tiandi Environmental Protection Technology Co., Ltd., Hangzhou, 311121, P. R. China
| | - Wenbo Sun
- School of Resources and Environmental Engineering, Shandong University of Technology, Zibo, 255000, P. R. China
| | - Chong Peng
- School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| |
Collapse
|
21
|
Liu CX, Liu K, Xu Y, Wang Z, Weng Y, Liu F, Chen Y. Photocatalytic Upgrading of Polylactic Acid Waste into Alanine under Mild Conditions. Angew Chem Int Ed Engl 2024; 63:e202401255. [PMID: 38298118 DOI: 10.1002/anie.202401255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 02/02/2024]
Abstract
Polylactic acid (PLA) has attracted increasing interest as a sustainable plastic because it can be degraded into CO2 and H2O in nature. However, this process is sluggish, and even worse, it is a CO2-emitting and carbon resource waste process. Therefore, it is highly urgent to develop a novel strategy for recycling post-consumer PLA to achieve a circular plastic economy. Herein, we report a one-pot photoreforming route for the efficient and selective amination of PLA waste into value-added alanine using CoP/CdS catalysts under mild conditions. Results show the alanine production rate can reach up to 2.4 mmol gcat -1 h-1, with a high selectivity (>75 %) and excellent stability. Time-resolved transient absorption spectra (TAS) reveal that CoP can rapidly extract photogenerated electrons from CdS to accelerate proton reduction, favoring hole-dominated PLA oxidation to coproduce alanine. This study offers an appealing way for upcycling PLA waste and creates new opportunities for green synthesis of amino acids.
Collapse
Affiliation(s)
- Chu-Xuan Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials & CAS-HKU Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Kesheng Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials & CAS-HKU Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yanjun Xu
- Beijing National Laboratory for Condensed Matter Physics & CAS, Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhuan Wang
- Beijing National Laboratory for Condensed Matter Physics & CAS, Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yuxiang Weng
- Beijing National Laboratory for Condensed Matter Physics & CAS, Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Fulai Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials & CAS-HKU Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yong Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials & CAS-HKU Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
22
|
Lee CW, Lee BH, Park S, Jung Y, Han J, Heo J, Lee K, Ko W, Yoo S, Bootharaju MS, Ryu J, Nam KT, Kim M, Hyeon T. Photochemical tuning of dynamic defects for high-performance atomically dispersed catalysts. NATURE MATERIALS 2024; 23:552-559. [PMID: 38316979 DOI: 10.1038/s41563-024-01799-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 01/06/2024] [Indexed: 02/07/2024]
Abstract
Developing active and stable atomically dispersed catalysts is challenging because of weak non-specific interactions between catalytically active metal atoms and supports. Here we demonstrate a general method for synthesizing atomically dispersed catalysts via photochemical defect tuning for controlling oxygen-vacancy dynamics, which can induce specific metal-support interactions. The developed synthesis method offers metal-dynamically stabilized atomic catalysts, and it can be applied to reducible metal oxides, including TiO2, ZnO and CeO2, containing various catalytically active transition metals, including Pt, Ir and Cu. The optimized Pt-DSA/TiO2 shows unprecedentedly high photocatalytic hydrogen evolution activity, producing 164 mmol g-1 h-1 with a turnover frequency of 1.27 s-1. Furthermore, it generates 42.2 mmol gsub-1 of hydrogen via a non-recyclable-plastic-photoreforming process, achieving a total conversion of 98%; this offers a promising solution for mitigating plastic waste and simultaneously producing valuable energy sources.
Collapse
Affiliation(s)
- Chan Woo Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
| | - Byoung-Hoon Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea.
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea.
| | - Sunghak Park
- Department of Materials Science and Engineering, Seoul National University, Seoul, Republic of Korea
| | - Yoon Jung
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
| | - Jaebeom Han
- Department of Applied Chemistry, Kyung Hee University, Yongin, Republic of Korea
| | - Junhyeok Heo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
| | - Kangjae Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
| | - Wonjae Ko
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
| | - Seungwoo Yoo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
| | - Megalamane S Bootharaju
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
| | - Jaeyune Ryu
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
| | - Ki Tae Nam
- Department of Materials Science and Engineering, Seoul National University, Seoul, Republic of Korea
| | - Minho Kim
- Department of Applied Chemistry, Kyung Hee University, Yongin, Republic of Korea.
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea.
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
23
|
Yuan H, Hong M, Huang X, Qiu W, Dong F, Zhou Y, Chen Y, Gao J, Yang S. Graphene Chainmail Shelled Dilute Ni─Cu Alloy for Selective and Robust Aqueous Phase Catalytic Hydrogenation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304349. [PMID: 38243637 PMCID: PMC10987116 DOI: 10.1002/advs.202304349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 11/19/2023] [Indexed: 01/21/2024]
Abstract
Cost-effective non-noble metal-based catalysts for selective hydrogenation with excellent activity, selectivity, and durability are still the holy grail. Herein, an oxygen-doped carbon (OC) chainmail encapsulated dilute Cu-Ni alloy is developed by simple pyrolysis of Cu/Ni-metal-organic framework. The CuNi0.05@OC catalyst displays superior performance for atmospheric pressure transfer hydrogenation of p-chloronitrobenzene and p-nitrophenol, and for hydrogenation of furfural, all in water and with exceptional durability. Comprehensive characterizations confirm the close interactions between the diluted Ni sites, the base Cu, and optimized three-layered graphene chainmail. Theoretical calculations demonstrate that the properly tuned lattice strain and Schottky junction can adjust electron density to facilitate specific adsorption on the active centers, thus enhancing the catalytic activity and selectivity, while the OC shell also offers robust protection. This work provides a simple and environmentally friendly strategy for developing practical heterogeneous catalysts that bring the synergistic effect into play between dilute alloy and functional carbon wrapping.
Collapse
Affiliation(s)
- Haifeng Yuan
- Guangdong Provincial Key Lab of Nano‐Micro Materials Research, School of Advanced Materials, Shenzhen Graduate SchoolPeking University ShenzhenShenzhenGuangdong518055China
| | - Mei Hong
- Guangdong Provincial Key Lab of Nano‐Micro Materials Research, School of Advanced Materials, Shenzhen Graduate SchoolPeking University ShenzhenShenzhenGuangdong518055China
| | - Xianzhen Huang
- Guangdong Provincial Key Lab of Nano‐Micro Materials Research, School of Advanced Materials, Shenzhen Graduate SchoolPeking University ShenzhenShenzhenGuangdong518055China
| | - Weitao Qiu
- Guangdong Provincial Key Lab of Nano‐Micro Materials Research, School of Advanced Materials, Shenzhen Graduate SchoolPeking University ShenzhenShenzhenGuangdong518055China
| | - Feng Dong
- Guangdong Provincial Key Lab of Nano‐Micro Materials Research, School of Advanced Materials, Shenzhen Graduate SchoolPeking University ShenzhenShenzhenGuangdong518055China
| | - Yu Zhou
- Guangdong Provincial Key Lab of Nano‐Micro Materials Research, School of Advanced Materials, Shenzhen Graduate SchoolPeking University ShenzhenShenzhenGuangdong518055China
| | - Yanpeng Chen
- Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Environmental Science and Engineering Research CenterHarbin Institute of Technology (Shenzhen)ShenzhenGuangdong518055China
| | - Jinqiang Gao
- Guangdong Provincial Key Lab of Nano‐Micro Materials Research, School of Advanced Materials, Shenzhen Graduate SchoolPeking University ShenzhenShenzhenGuangdong518055China
| | - Shihe Yang
- Guangdong Provincial Key Lab of Nano‐Micro Materials Research, School of Advanced Materials, Shenzhen Graduate SchoolPeking University ShenzhenShenzhenGuangdong518055China
- Insitute of Biomedical EngineeringShenzhen Bay LaboratoryShenzhenGuangdong518055China
| |
Collapse
|
24
|
Lou X, Liu F, Li Q, Chu M, Wang G, Chen J, Cao M. Advances in solar-driven, electro/photoelectrochemical, and microwave-assisted upcycling of waste polyesters. Chem Commun (Camb) 2024; 60:2828-2838. [PMID: 38362916 DOI: 10.1039/d3cc05930h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Plastic waste in the environment causes significant environmental pollution. The potential of using chemical methods for upcycling plastic waste offers a dual solution to ensure resource sustainability and environmental restoration. This article provides a comprehensive overview of the latest technologies driven by solar-driven, electro/photoelectrochemical-catalytic, and microwave-assisted methods for the conversion of plastics into various valuable chemicals. It emphasizes selective conversion during the plastic transformation process, elucidates reaction pathways, and optimizes product selectivity. Finally, the article offers insights into the future developments of chemical upcycling of polyesters.
Collapse
Affiliation(s)
- Xiangxi Lou
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China.
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, Jiangsu, China.
| | - Fangyue Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, Jiangsu, China.
| | - Qingye Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, Jiangsu, China.
| | - Mingyu Chu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, Jiangsu, China.
| | - Guiling Wang
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China.
| | - Jinxing Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, Jiangsu, China.
| | - Muhan Cao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, Jiangsu, China.
| |
Collapse
|
25
|
Miao Y, Zhao Y, Gao J, Wang J, Zhang T. Direct Photoreforming of Real-World Polylactic Acid Plastics into Highly Selective Value-Added Pyruvic Acid under Visible Light. J Am Chem Soc 2024; 146:4842-4850. [PMID: 38295276 DOI: 10.1021/jacs.3c13000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Although polylactic acid (PLA) represents a pivotal biodegradable polymer, its biodegradability has inadvertently overshadowed the development of effective recycling techniques, leading to the potential wastage of carbon resources. The photoreforming-recycling approach for PLA exhibits significant potential in terms of concepts and methods. However, the reaction faces enormous challenges due to the limited selectivity of organic oxidation products as well as the increased costs and challenging separation of organic products associated with alkali-solution-assisted prehydrolysis. Herein, we report an alkali-free direct-photoreforming pathway for real-world PLA plastics utilizing the Pd-CdS photocatalyst under visible-light illumination, obviating the need for chemical pretreatment of PLA. The devised pathway successfully produces H2 at a rate of 49.8 μmol gcat.-1 h-1, sustained over 100 h, and exhibits remarkable selectivity toward pyruvic acid (95.9% in liquid products). Additionally, experimental findings elucidate that Pd sites not only function as a typical cocatalyst for enhancing the photocatalytic evolution of H2 but also suppress competitive side reactions (e.g., lactic acid coupling or decarboxylation), consequently augmenting the yield and selectivity of pyruvic acid and H2. This investigation provides a straightforward and sustainable direct-photoreforming route capable of simultaneously mitigating and repurposing plastic waste into valuable chemicals, thus offering a promising solution to the current environmental challenges.
Collapse
Affiliation(s)
- Yingxuan Miao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yunxuan Zhao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Junyu Gao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jinhu Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Tierui Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
26
|
Ran J, Talebian-Kiakalaieh A, Zhang S, Hashem EM, Guo M, Qiao SZ. Recent advancement on photocatalytic plastic upcycling. Chem Sci 2024; 15:1611-1637. [PMID: 38303948 PMCID: PMC10829029 DOI: 10.1039/d3sc05555h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/22/2023] [Indexed: 02/03/2024] Open
Abstract
More than 8 billion tons of plastics have been generated since 1950. About 80% of these plastics have been dumped in landfills or went into natural environments, resulting in ever-worsening contamination. Among various strategies for waste plastics processing (e.g., incineration, mechanical recycling, thermochemical conversion and electrocatalytic/photocatalytic techniques), photocatalysis stands out as a cost-effective, environmentally benign and clean technique to upcycle plastic waste at ambient temperature and pressure using solar light. The mild reaction conditions for photocatalysis enable the highly selective conversion of plastic waste into targeted value-added chemicals/fuels. Here, we for the first time summarize the recent development of photocatalytic plastic upcycling based on the chemical composition of photocatalysts (e.g., metal oxides, metal sulfides, non-metals and composites). The pros and cons of various photocatalysts have been critically discussed and summarized. At last, the future challenges and opportunities in this area are presented in this review.
Collapse
Affiliation(s)
- Jingrun Ran
- School of Chemical Engineering, University of Adelaide Adelaide SA 5005 Australia
| | | | - Shuai Zhang
- School of Chemical Engineering, University of Adelaide Adelaide SA 5005 Australia
| | - Elhussein M Hashem
- School of Chemical Engineering, University of Adelaide Adelaide SA 5005 Australia
| | - Meijun Guo
- School of Chemical Engineering, University of Adelaide Adelaide SA 5005 Australia
| | - Shi-Zhang Qiao
- School of Chemical Engineering, University of Adelaide Adelaide SA 5005 Australia
| |
Collapse
|
27
|
Yang R, Fan Y, Hu J, Chen Z, Shin HS, Voiry D, Wang Q, Lu Q, Yu JC, Zeng Z. Photocatalysis with atomically thin sheets. Chem Soc Rev 2023; 52:7687-7706. [PMID: 37877319 DOI: 10.1039/d2cs00205a] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Atomically thin sheets (e.g., graphene and monolayer molybdenum disulfide) are ideal optical and reaction platforms. They provide opportunities for deciphering some important and often elusive photocatalytic phenomena related to electronic band structures and photo-charges. In parallel, in such thin sheets, fine tuning of photocatalytic properties can be achieved. These include atomic-level regulation of electronic band structures and atomic-level steering of charge separation and transfer. Herein, we review the physics and chemistry of electronic band structures and photo-charges, as well as their state-of-the-art characterization techniques, before delving into their atomic-level deciphering and mastery on the platform of atomically thin sheets.
Collapse
Affiliation(s)
- Ruijie Yang
- Department of Materials Science and Engineering, and State Key Laboratory of Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, P. R. China.
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, T2N 1N4, Canada.
| | - Yingying Fan
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, T2N 1N4, Canada.
| | - Jinguang Hu
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, T2N 1N4, Canada.
| | - Zhangxin Chen
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, T2N 1N4, Canada.
- Eastern Institute for Advanced Study, Ningbo, China
| | - Hyeon Suk Shin
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 612022, South Korea
| | - Damien Voiry
- Institut Européen des Membranes, IEM, UMR 5635, Université Montpellier, ENSCM, CNRS, Montpellier, France
| | - Qian Wang
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Institute for Advanced Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Qingye Lu
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, T2N 1N4, Canada.
| | - Jimmy C Yu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, China.
| | - Zhiyuan Zeng
- Department of Materials Science and Engineering, and State Key Laboratory of Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, P. R. China.
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
28
|
Feng E, Zheng T, He X, Chen J, Gu Q, He X, Hu F, Li J, Tian Y. Plasmon-Induced Charge Transfer-Enhanced Raman Scattering on a Semiconductor: Toward Amplification-Free Quantification of SARS-CoV-2. Angew Chem Int Ed Engl 2023; 62:e202309249. [PMID: 37555368 DOI: 10.1002/anie.202309249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/26/2023] [Accepted: 08/08/2023] [Indexed: 08/10/2023]
Abstract
Semiconductors demonstrate great potentials as chemical mechanism-based surface-enhanced Raman scattering (SERS) substrates in determination of biological species in complex living systems with high selectivity. However, low sensitivity is the bottleneck for their practical applications, compared with that of noble metal-based Raman enhancement ascribed to electromagnetic mechanism. Herein, a novel Cu2 O nanoarray with free carrier density of 1.78×1021 cm-3 comparable to that of noble metals was self-assembled, creating a record in enhancement factor (EF) of 3.19×1010 among semiconductor substrates. The significant EF was mainly attributed to plasmon-induced hot electron transfer (PIHET) in semiconductor which was never reported before. This Cu2 O nanoarray was subsequently developed as a highly sensitive and selective SERS chip for non-enzyme and amplification-free SARS-CoV-2 RNA quantification with a detection limit down to 60 copies/mL within 5 min. This unique Cu2 O nanoarray demonstrated the significant Raman enhancement through PIHET process, enabling rapid and sensitive point-of-care testing of emerging virus variants.
Collapse
Affiliation(s)
- Enduo Feng
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, 200241, Shanghai, China
| | - Tingting Zheng
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, 200241, Shanghai, China
| | - Xiaoxiao He
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Dongchuan Road 500, 200241, Shanghai, China
| | - Jinquan Chen
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Dongchuan Road 500, 200241, Shanghai, China
| | - Qingyi Gu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, 200241, Shanghai, China
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, North Zhongshan Road 3663, 200062, Shanghai, China
| | - Xiao He
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, 200241, Shanghai, China
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, North Zhongshan Road 3663, 200062, Shanghai, China
| | - Fanghao Hu
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, 100084, Beijing, China
| | - Jinghong Li
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, 100084, Beijing, China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, 200241, Shanghai, China
| |
Collapse
|
29
|
Kim JY, Youn DH. Nanomaterials for Advanced Photocatalytic Plastic Conversion. Molecules 2023; 28:6502. [PMID: 37764278 PMCID: PMC10536819 DOI: 10.3390/molecules28186502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/23/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
As the disposal of waste plastic emerges as a societal problem, photocatalytic waste plastic conversion is attracting significant attention. Ultimately, for a sustainable future, the development of an eco-friendly plastic conversion technology is essential for breaking away from the current plastic use environment. Compared to conventional methods, photocatalysis can be a more environmentally friendly option for waste plastic reprocessing because it uses sunlight as an energy source under ambient temperature and pressure. In addition to this, waste plastics can be upcycled (i.e., converted into useful chemicals or fuels) to enhance their original value via photocatalytic methods. Among various strategies for improving the efficiency of the photocatalytic method, nanomaterials have played a pivotal role in suppressing charge recombination. Hence, in recent years, attempts have been made to introduce nanomaterials/nanostructures into photocatalytic plastic conversion on the basis of advances in material-based studies using simple photocatalysts. In line with this trend, the present review examines the nanomaterials/nanostructures that have been recently developed for photocatalytic plastic conversion and discusses the direction of future development.
Collapse
Affiliation(s)
- Jae Young Kim
- Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Duck Hyun Youn
- Department of Chemical Engineering, Department of Integrative Engineering for Hydrogen Safety, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
30
|
Samal A, Das N. Mini-review on remediation of plastic pollution through photoreforming: progress, possibilities, and challenges. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:83138-83152. [PMID: 37351752 DOI: 10.1007/s11356-023-28253-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 06/10/2023] [Indexed: 06/24/2023]
Abstract
The increasing plastic pollution has raised significant concerns about the environment and the destruction of its precious resources. Making value-added products out of plastic waste is an effective way to reduce plastic pollution and use it as a valuable resource. Plastic reforming driven by sunlight offers a quick and low-energy way to produce hydrogen from waste. Photoreforming of plastic waste is an emerging technology that cannot only break down plastic polymer waste into value-added chemicals but also produce solar fuel cell quality H2. Technologies, such as pyrolysis, combustion, and advanced oxidation, are right now being studied for converting plastic pollution into energy. A thorough summary and comparison of different technologies have not yet been published. Open dumping and combustion are two main steps to deal with waste plastics, but these processes experience inefficiencies and cannot adequately address the challenges. In this mini-review, we aimed to provide a short overview of the recently reported conventional and novel plastic waste treatment methods. The current research on the photoreforming of plastics conducted by various groups and some advantages and disadvantages of this practice has been discussed thoroughly. Also, some notes were made on the prospective future scope present in this particular research area to achieve a carbon-free fuel system. The purpose of this review is to encourage the utilisation of plastic garbage as an alternative source of energy.
Collapse
Affiliation(s)
- Alaka Samal
- Department of Chemistry, Utkal University, Bhubaneswar, Odisha, 751 004, India
| | - Nigamananda Das
- Department of Chemistry, Utkal University, Bhubaneswar, Odisha, 751 004, India.
| |
Collapse
|