1
|
Minematsu N, Nishii Y, Hirano K. Pd-Catalysed synthesis of carborane sulfides from carborane thiols. Chem Commun (Camb) 2024; 60:13594-13597. [PMID: 39479963 DOI: 10.1039/d4cc03934c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Carboranes are an interesting class of aromatic molecules with icosahedral geometry, high stability, and unique electronic effects. We herein report a Pd-catalysed coupling reaction of carborane thiols with aryl halides. This protocol was applicable to the controlled synthesis of di(carboranyl) sulfides, and their catalytic performance for aromatic halogenation was examined.
Collapse
Affiliation(s)
- Natsuki Minematsu
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan.
| | - Yuji Nishii
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan.
- Center for Future Innovation, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| | - Koji Hirano
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan.
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
2
|
Guo JD, Korsaye FA, Schutz D, Ciofini I, Miesch L. Photocatalyst-free, visible-light-induced regio- and stereoselective synthesis of phosphorylated enamines from N-allenamides via [1,3]-sulfonyl shift at room temperature. Chem Sci 2024:d4sc05190d. [PMID: 39397817 PMCID: PMC11467721 DOI: 10.1039/d4sc05190d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/01/2024] [Indexed: 10/15/2024] Open
Abstract
Herein, we report the first visible-light-induced strategy for the rapid synthesis of densely functionalized α- and γ-phosphorylated β-sulfonyl enamines in a regio- and stereoselective manner from N-sulfonyl allenamides and H-phosphine oxides. The transformation displays a broad substrate scope, while operating at room temperature under photocatalyst- and additive-free conditions. In this atom-economical process, either terminal or substituted N-sulfonyl allenamides trigger an unprecedented N-to-C [1,3]-sulfonyl shift, relying on a dual radical allyl resonance and α-heteroatom effect in its triplet excited state. A plausible reaction mechanism is proposed which was supported by the outcomes of theoretical approaches based on Density Functional Theory (DFT) calculations.
Collapse
Affiliation(s)
- Jia-Dong Guo
- Equipe Synthèse Organique et Phytochimie, Institut de Chimie, CNRS-UdS UMR 7177, 4 rue Blaise Pascal, CS 90032 67081 Strasbourg France
| | - Feven-Alemu Korsaye
- Chemical Theory and Modelling Group, Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences F-75005 Paris France
| | - Dorian Schutz
- Equipe Synthèse Organique et Phytochimie, Institut de Chimie, CNRS-UdS UMR 7177, 4 rue Blaise Pascal, CS 90032 67081 Strasbourg France
| | - Ilaria Ciofini
- Chemical Theory and Modelling Group, Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences F-75005 Paris France
| | - Laurence Miesch
- Equipe Synthèse Organique et Phytochimie, Institut de Chimie, CNRS-UdS UMR 7177, 4 rue Blaise Pascal, CS 90032 67081 Strasbourg France
| |
Collapse
|
3
|
Ren H, Zhou N, Ma W, Zhang P, Tu D, Lu CS, Yan H. Dative Bonding Activation Enables Precise Functionalization of the Remote B-H Bond of nido-Carborane Clusters. J Am Chem Soc 2024; 146:26543-26555. [PMID: 39267603 DOI: 10.1021/jacs.4c10728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
The innovation of synthetic strategies for selective B-H functionalization is a pivotal objective in the realm of boron cluster chemistry. However, the precise, efficient, and rapid functionalization of a B-H bond of carboranes that is distant from the existing functional groups remains intractable owing to the limited approaches for site-selective control from the established methods. Herein, we report a dative bonding activation strategy for the selective functionalization of a nonclassical remote B-H site of nido-carboranes. By leveraging the electronic effects brought by the exopolyhedral B(9)-dative bond, a cross-nucleophile B-H/S-H coupling protocol of the distal B(5)-H bond has been established. The dative bond not only amplifies the subtle reactivity difference among B-H bonds but also significantly changes the reactive sites, further infusing nido-carboranes with additional structural diversity. This reaction paradigm features mild conditions, rapid conversion, efficient production, broad scope, and excellent group tolerance, thus enabling the applicability to an array of complex bioactive molecules. The efficient and scalable reaction platform is amenable to the modular construction of photofunctional molecules and boron delivery agents for boron neutron capture therapy. This work not only provides an unprecedented solution for the selective diversification of distal B-H sites in nido-carboranes but also holds the potential for expediting the discovery of novel carborane-based functional molecules.
Collapse
Affiliation(s)
- Hongyuan Ren
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Ningning Zhou
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wenli Ma
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Ping Zhang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Deshuang Tu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Chang-Sheng Lu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hong Yan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
4
|
Zhu M, Wang P, Wu Z, Zhong Y, Su L, Xin Y, Spokoyny AM, Zou C, Mu X. A Pd-catalyzed route to carborane-fused boron heterocycles. Chem Sci 2024; 15:10392-10401. [PMID: 38994428 PMCID: PMC11234826 DOI: 10.1039/d4sc02214a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/28/2024] [Indexed: 07/13/2024] Open
Abstract
Due to the expanding applications of icosahedral carboranes in medicinal and materials chemistry research, their functionalizations have become one of the central themes in boron-rich cluster chemistry. Although several strategies for incorporating nitrogen-containing nucleophiles on a single boron vertex of the icosahedral carboranes (C2B10H12) have been developed, methods for preparing clusters with vicinal B-N moieties are still lacking. The steric bulk of icosahedral carboranes and disparate electronic and steric nature of the N-containing groups have rendered the vicinal diamination challenging. In this article, we show how a developed Pd-catalyzed process is used to incorporate an array of NH-heterocycles, anilines, and heteroanilines with various electronic and steric profiles onto the vicinal boron vertices of a meta-carborane cluster via sequential or one-pot fashion. Importantly, oxidative cyclizations of the cross-coupling products with indoles and pyrroles appended to boron vertices generate a previously unknown class of all-boron-vertex bound carborane-fused six- and seven-membered ring heterocycles. Photophysical studies of the meta-carborane-fused heterocycles show that these structures can exhibit luminescence with high quantum yields and are amenable to further manipulations.
Collapse
Affiliation(s)
- Mengjie Zhu
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology 130 Meilong Road 200237 Shanghai China
| | - Puzhao Wang
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology 130 Meilong Road 200237 Shanghai China
| | - Zhengqiu Wu
- Functional Coordination Material Group-Frontier Research Center, Songshan Lake Materials Laboratory, Dongguan Dongguan 523808 Guangdong China
| | - Yangfa Zhong
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology 130 Meilong Road 200237 Shanghai China
| | - Laiman Su
- School of Biotechnology, East China University of Science and Technology 130 Meilong Road 200237 Shanghai China
| | - Yuquan Xin
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology 130 Meilong Road 200237 Shanghai China
| | - Alexander M Spokoyny
- Department of Chemistry and Biochemistry, University of California, Los Angeles 607 Charles E. Young Drive East Los Angeles California 90095 USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles Los Angeles California 90095 USA
| | - Chao Zou
- Functional Coordination Material Group-Frontier Research Center, Songshan Lake Materials Laboratory, Dongguan Dongguan 523808 Guangdong China
| | - Xin Mu
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology 130 Meilong Road 200237 Shanghai China
| |
Collapse
|
5
|
Liu XR, Cui PF, García-Rodeja Y, Solà M, Jin GX. Formation and reactivity of a unique M⋯C-H interaction stabilized by carborane cages. Chem Sci 2024; 15:9274-9280. [PMID: 38903214 PMCID: PMC11186334 DOI: 10.1039/d4sc01158a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/16/2024] [Indexed: 06/22/2024] Open
Abstract
Broadening carborane applications has consistently been the goal of chemists in this field. Herein, compared to alkyl or aryl groups, a carborane cage demonstrates an advantage in stabilizing a unique bonding interaction: M⋯C-H interaction. Experimental results and theoretical calculations have revealed the characteristic of this two-center, two-electron bonding interaction, in which the carbon atom in the arene ring provides two electrons to the metal center. The reduced aromaticity of the benzene moiety, long distance between the metal and carbon atom in arene, and the upfield shift of the signal of M⋯C-H in the nuclear magnetic resonance spectrum distinguished this interaction from metal⋯C π interaction and metal-C(H) σ bonds. Control experiments demonstrate the unique electronic effects of carborane in stabilizing the M⋯C-H bonding interaction in organometallic chemistry. Furthermore, the M⋯C-H interaction can convert into C-H bond metallization under acidic conditions or via treatment with t-butyl isocyanide. These findings deepen our understanding regarding the interactions between metal centers and carbon atoms and provide new opportunities for the use of carboranes.
Collapse
Affiliation(s)
- Xin-Ran Liu
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University 2005 Songhu Road Shanghai 200433 P. R. China
| | - Peng-Fei Cui
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University 2005 Songhu Road Shanghai 200433 P. R. China
| | - Yago García-Rodeja
- Institut de Química Computacional i Catàlisi, Departament de Química, Universitat de Girona C/Maria Aurèlia Capmany, 69 17003 Girona Spain
| | - Miquel Solà
- Institut de Química Computacional i Catàlisi, Departament de Química, Universitat de Girona C/Maria Aurèlia Capmany, 69 17003 Girona Spain
| | - Guo-Xin Jin
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University 2005 Songhu Road Shanghai 200433 P. R. China
| |
Collapse
|
6
|
Zhu YX, Yuan RZ, Zhang HN, Jin GX. Selective B(3)-H Activation Affording Multinuclear Ir(III) Complexes with (o-Carboranyl)dithioester Ligands. Chemistry 2024; 30:e202401154. [PMID: 38627216 DOI: 10.1002/chem.202401154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Indexed: 06/19/2024]
Abstract
A method was developed to link two or three o-carborane moieties to form a series of carboranyl dithioester bridging ligands via in situ substitution of haloalkanes by tetraphenylphosphonium carboranyldithiocarboxylates. Based on these ligands, direct B-H activation without the assistance of Ag(I) and alkali was successfully achieved with half-sandwich Ir(III) substrate [Cp*IrCl2]2 to yield corresponding bimetallic or trimetallic complexes. Single crystal structure analyses of the B-H activated complexes and corresponding SnCl2-inserted derivatives confirm the selective B(3)-H activation in these complexes.
Collapse
Affiliation(s)
- Yong-Xiao Zhu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai, 200433, P. R. China
| | - Run-Ze Yuan
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai, 200433, P. R. China
| | - Hai-Ning Zhang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai, 200433, P. R. China
| | - Guo-Xin Jin
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
7
|
Xu S, Zhang H, Xu J, Suo W, Lu CS, Tu D, Guo X, Poater J, Solà M, Yan H. Photoinduced Selective B-H Activation of nido-Carboranes. J Am Chem Soc 2024; 146:7791-7802. [PMID: 38461434 DOI: 10.1021/jacs.4c00550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The development of new synthetic methods for B-H bond activation has been an important research area in boron cluster chemistry, which may provide opportunities to broaden the application scope of boron clusters. Herein, we present a new reaction strategy for the direct site-selective B-H functionalization of nido-carboranes initiated by photoinduced cage activation via a noncovalent cage···π interaction. As a result, the nido-carborane cage radical is generated through a single electron transfer from the 3D nido-carborane cage to a 2D photocatalyst upon irradiation with green light. The resulting transient nido-carborane cage radical could be directly probed by an advanced time-resolved EPR technique. In air, the subsequent transformations of the active nido-carborane cage radical have led to efficient and selective B-N, B-S, and B-Se couplings in the presence of N-heterocycles, imines, thioethers, thioamides, and selenium ethers. This protocol also facilitates both the late-stage modification of drugs and the synthesis of nido-carborane-based drug candidates for boron neutron capture therapy (BNCT).
Collapse
Affiliation(s)
- Shengwen Xu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hongjian Zhang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jingkai Xu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Weiqun Suo
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Chang-Sheng Lu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Deshuang Tu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xingwei Guo
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jordi Poater
- Departament de Química Inorgànica i Orgànica & IQTCUB, Universitat de Barcelona, Martí i Franquès 1-11, Barcelona 08028, Spain
- ICREA, Pg. Lluís Companys 23, Barcelona 08010, Spain
| | - Miquel Solà
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, C/Maria Aurèlia Capmany 69, Girona, Catalonia 17003, Spain
| | - Hong Yan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
8
|
Wang Y, Tran PM, Lahm ME, Wei P, Adams ER, Schaefer HF, Robinson GH. From Carbene-Dithiolene Zwitterion Mediated B-H Bond Activation to BH 3·SMe 2-Assisted Boron-Boron Bond Formation. Organometallics 2023; 42:3328-3333. [PMID: 38098647 PMCID: PMC10716900 DOI: 10.1021/acs.organomet.3c00361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Indexed: 12/17/2023]
Abstract
The 1:1 reaction of the carbene-stabilized dithiolene zwitterion 1 with BH3·SMe2 gave the dithiolene-based hydroborane 2 and the doubly hydrogen-capped CAAC species 3 via hydride-coupled reverse electron transfer processes. The mechanism of this transformation was probed computationally using density functional theory. The subsequent 2:1 reaction of 2 with 1 resulted in 4 and 3, suggesting that 1 can mediate the B-H bond activation not only for BH3 but also for monohydroboranes. In the presence of BH3·SMe2, 2 was unexpectedly converted to the corresponding diborane(4) complex 5 through a dehydrocoupling reaction at an elevated temperature.
Collapse
Affiliation(s)
- Yuzhong Wang
- Department of Chemistry and
Center for Computational Chemistry, The
University of Georgia, Athens, Georgia 30602-2556, United States
| | - Phuong M. Tran
- Department of Chemistry and
Center for Computational Chemistry, The
University of Georgia, Athens, Georgia 30602-2556, United States
| | - Mitchell E. Lahm
- Department of Chemistry and
Center for Computational Chemistry, The
University of Georgia, Athens, Georgia 30602-2556, United States
| | - Pingrong Wei
- Department of Chemistry and
Center for Computational Chemistry, The
University of Georgia, Athens, Georgia 30602-2556, United States
| | - Earle R. Adams
- Department of Chemistry and
Center for Computational Chemistry, The
University of Georgia, Athens, Georgia 30602-2556, United States
| | - Henry F. Schaefer
- Department of Chemistry and
Center for Computational Chemistry, The
University of Georgia, Athens, Georgia 30602-2556, United States
| | - Gregory H. Robinson
- Department of Chemistry and
Center for Computational Chemistry, The
University of Georgia, Athens, Georgia 30602-2556, United States
| |
Collapse
|
9
|
Gruzdev DA, Telegina AA, Levit GL, Ezhikova MA, Kodess MI, Krasnov VP. Synthesis of Charge-Compensated nido-Carboranyl Derivatives of Sulfur-Containing Amino Acids and Biotin. J Org Chem 2023; 88:14022-14032. [PMID: 37737724 DOI: 10.1021/acs.joc.3c01569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
A new group of charge-compensated nido-carboranyl derivatives of sulfur-containing amino acids and biotin has been synthesized in which the boron atom in position 9 or 10 of carborane is attached to a positively charged sulfur atom. The possibilities of obtaining symmetrical B(10)-substituted and asymmetric B(9)-substituted nido-carboranes were studied. Using the example of (S)-methionine and D-biotin derivatives, water-soluble S-substituted charge-compensated nido-carboranes with free functional groups were prepared. The results obtained open up prospects for the development of potential boron delivery agents for BNCT as well as new bioactive compounds containing a negatively charged nido-carboranyl fragment bearing a positive charge on the sulfur atom associated with the boron cluster.
Collapse
Affiliation(s)
- Dmitry A Gruzdev
- Postovsky Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences, 22/20, S. Kovalevskoy St., Ekaterinburg 620108, Russia
| | - Angelina A Telegina
- Postovsky Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences, 22/20, S. Kovalevskoy St., Ekaterinburg 620108, Russia
| | - Galina L Levit
- Postovsky Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences, 22/20, S. Kovalevskoy St., Ekaterinburg 620108, Russia
| | - Marina A Ezhikova
- Postovsky Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences, 22/20, S. Kovalevskoy St., Ekaterinburg 620108, Russia
| | - Mikhail I Kodess
- Postovsky Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences, 22/20, S. Kovalevskoy St., Ekaterinburg 620108, Russia
| | - Victor P Krasnov
- Postovsky Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences, 22/20, S. Kovalevskoy St., Ekaterinburg 620108, Russia
| |
Collapse
|
10
|
Meger FS, Murphy JA. Recent Advances in C-H Functionalisation through Indirect Hydrogen Atom Transfer. Molecules 2023; 28:6127. [PMID: 37630379 PMCID: PMC10459052 DOI: 10.3390/molecules28166127] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/09/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
The functionalisation of C-H bonds has been an enormous achievement in synthetic methodology, enabling new retrosynthetic disconnections and affording simple synthetic equivalents for synthons. Hydrogen atom transfer (HAT) is a key method for forming alkyl radicals from C-H substrates. Classic reactions, including the Barton nitrite ester reaction and Hofmann-Löffler-Freytag reaction, among others, provided early examples of HAT. However, recent developments in photoredox catalysis and electrochemistry have made HAT a powerful synthetic tool capable of introducing a wide range of functional groups into C-H bonds. Moreover, greater mechanistic insights into HAT have stimulated the development of increasingly site-selective protocols. Site-selectivity can be achieved through the tuning of electron density at certain C-H bonds using additives, a judicious choice of HAT reagent, and a solvent system. Herein, we describe the latest methods for functionalizing C-H/Si-H/Ge-H bonds using indirect HAT between 2018-2023, as well as a critical discussion of new HAT reagents, mechanistic aspects, substrate scopes, and background contexts of the protocols.
Collapse
Affiliation(s)
- Filip S. Meger
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, 16 Avinguda dels Països Catalans, 43007 Tarragona, Catalonia, Spain
| | - John A. Murphy
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, UK
| |
Collapse
|
11
|
Park K, Han GU, Yoon S, Lee E, Noh HC, Lee K, Maeng C, Kim D, Lee PH. Iridium(III)-Catalyzed Regioselective B(4)-H Amination of o-Carboranes with Sufilimines. Org Lett 2023; 25:5989-5994. [PMID: 37540091 DOI: 10.1021/acs.orglett.3c02114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Iridium(III)-catalyzed regioselective B(4)-H amination is developed from the reaction of o-carborane acids with sulfilimines without any oxidants under mild conditions, which leads to a wide range of B(4)-H aminated o-carboranes in good yields with a broad substrate scope. Moreover, the selective B(3,6)-diamination reaction of the o-carborane acid was achieved. The present reaction is attractive from a practical point of view because dibenzothiophene is quantitatively recovered and reused.
Collapse
Affiliation(s)
- Kyeongna Park
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Gi Uk Han
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sugyeong Yoon
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Eunseo Lee
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hee Chan Noh
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Kyungsup Lee
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Chanyoung Maeng
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Dongwook Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Phil Ho Lee
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
12
|
Mahfouz N, Abi-Ghaida F, Kotob W, Mehdi A, Naoufal D. Selective Functionalization of Carbonyl Closo-Decaborate [2-B 10H 9CO] - with Building Block Properties via Grignard Reagents. Molecules 2023; 28:6076. [PMID: 37630327 PMCID: PMC10458521 DOI: 10.3390/molecules28166076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/11/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
A green, fast and selective approach for the synthesis of mono-substituted closo-decaborate derivatives [2-B10H9COR]2- has been established via a nucleophilic addition reaction between the carbonyl derivative of closo-decaborate [2-B10H9CO]- and the corresponding Grignard reagent RMgX, where R is the ethyl, iso-propyl, pentyl, allyl, vinyl and propynyl groups. This approach is accomplished under mild conditions with 70-80% yields. The significance of these derivative is their ability to constitute building blocks for polymeric integration via the allyl, vinyl and propynyl substituents. All products were characterized by 11B, 1H and 13C NMR, elemental analysis and mass spectrometry.
Collapse
Affiliation(s)
- Nadine Mahfouz
- Inorganic and Organometallic Coordination Chemistry Laboratory LCIO, Faculty of Sciences, Lebanese University, Beirut P.O. Box 6573, Lebanon; (N.M.); (W.K.)
- Institut Charles Gerhardt ICGM, CNRS, ENSCM, Université de Montpellier, 34090 Montpellier, France
| | - Fatima Abi-Ghaida
- Inorganic and Organometallic Coordination Chemistry Laboratory LCIO, Faculty of Sciences, Lebanese University, Beirut P.O. Box 6573, Lebanon; (N.M.); (W.K.)
| | - Wael Kotob
- Inorganic and Organometallic Coordination Chemistry Laboratory LCIO, Faculty of Sciences, Lebanese University, Beirut P.O. Box 6573, Lebanon; (N.M.); (W.K.)
| | - Ahmad Mehdi
- Institut Charles Gerhardt ICGM, CNRS, ENSCM, Université de Montpellier, 34090 Montpellier, France
| | - Daoud Naoufal
- Inorganic and Organometallic Coordination Chemistry Laboratory LCIO, Faculty of Sciences, Lebanese University, Beirut P.O. Box 6573, Lebanon; (N.M.); (W.K.)
| |
Collapse
|
13
|
Zhang QS, He L, Liu Q, Chen XY. Charge Transfer Complex-Enabled Synthesis of (Hetero)arylated m-Carboranes from m-Carborane Phosphonium Salts. Org Lett 2023; 25:5768-5773. [PMID: 37534925 DOI: 10.1021/acs.orglett.3c01989] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
A photoinduced charge transfer complex (CTC)-enabled photoreduction of carborane phosphonium salts for the cage carbon (hetero)arylation of carboranes was developed. It offers a convenient approach for introducing a wide range of aryl and heteroaryl groups, such as pyrroles, thiophenes, indoles, thianaphthenes, benzofurans, pyridines, and benzenes, into carboranes. This strategy offers operational simplicity, mild reaction conditions, and a broad substrate scope, making it highly advantageous.
Collapse
Affiliation(s)
- Qing-Shuang Zhang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, Xinjiang 832000, People's Republic of China
| | - Lin He
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, Xinjiang 832000, People's Republic of China
| | - Qiang Liu
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang-Yu Chen
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
- Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou 256606, China
| |
Collapse
|
14
|
Harmgarth N, Liebing P, Lorenz V, Engelhardt F, Hilfert L, Busse S, Goldhahn R, Edelmann FT. Synthesis and Structural Characterization of p-Carboranylamidine Derivatives. Molecules 2023; 28:molecules28093837. [PMID: 37175246 PMCID: PMC10179778 DOI: 10.3390/molecules28093837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/27/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
In this contribution, the first amidinate and amidine derivatives of p-carborane are described. Double lithiation of p-carborane (1) with n-butyllithium followed by treatment with 1,3-diorganocarbodiimides, R-N=C=N-R (R = iPr, Cy (= cyclohexyl)), in DME or THF afforded the new p-carboranylamidinate salts p-C2H10B10[C(NiPr)2Li(DME)]2 (2) and p-C2H10B10[C(NCy)2Li(THF)2]2 (3). Subsequent treatment of 2 and 3 with 2 equiv. of chlorotrimethylsilane (Me3SiCl) provided the silylated neutral bis(amidine) derivatives p-C2H10B10[C{iPrN(SiMe3)}(=NiPr)]2 (4) and p-C2H10B10[C{CyN(SiMe3)}(=NCy)]2 (5). The new compounds 3 and 4 have been structurally characterized by single-crystal X-ray diffraction. The lithium carboranylamidinate 3 comprises a rare trigonal planar coordination geometry around the lithium ions.
Collapse
Affiliation(s)
- Nicole Harmgarth
- Chemisches Institut, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Phil Liebing
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstr. 8, 07743 Jena, Germany
| | - Volker Lorenz
- Chemisches Institut, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Felix Engelhardt
- Chemisches Institut, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Liane Hilfert
- Chemisches Institut, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Sabine Busse
- Chemisches Institut, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Rüdiger Goldhahn
- Institut für Physik, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Frank T Edelmann
- Institut für Physik, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
| |
Collapse
|