1
|
Cieśla M, Dybiec B, Krasowska M, Siwy Z, Strzelewicz A. Numerical Modeling of Anisotropic Particle Diffusion through a Cylindrical Channel. Molecules 2024; 29:3795. [PMID: 39202873 PMCID: PMC11356997 DOI: 10.3390/molecules29163795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 09/03/2024] Open
Abstract
The transport of molecules and particles through single pores is the basis of biological processes, including DNA and protein sequencing. As individual objects pass through a pore, they cause a transient change in the current that can be correlated with the object size, surface charge, and even chemical properties. The majority of experiments and modeling have been performed with spherical objects, while much less is known about the transport characteristics of aspherical particles, which would act as a model system, for example, for proteins and bacteria. The transport kinetics of aspherical objects is an especially important, yet understudied, problem in nanopore analytics. Here, using the Wiener process, we present a simplified model of the diffusion of rod-shaped particles through a cylindrical pore, and apply it to understand the translation and rotation of the particles as they pass through the pore. Specifically, we analyze the influence of the particles' geometrical characteristics on the effective diffusion type, the first passage time distribution, and the particles' orientation in the pore. Our model shows that thicker particles pass through the channel slower than thinner ones, while their lengths do not affect the passage time. We also demonstrate that both spherical and rod-shaped particles undergo normal diffusion, and the first passage time distribution follows an exponential asymptotics. The model provides guidance on how the shape of the particle can be modified to achieve an optimal passage time.
Collapse
Affiliation(s)
- Michał Cieśla
- Institute of Theoretical Physics and Mark Kac Center for Complex Systems Research, Jagiellonian University, ul. St. Łojasiewicza 11, 30-348 Kraków, Poland;
| | - Bartłomiej Dybiec
- Institute of Theoretical Physics and Mark Kac Center for Complex Systems Research, Jagiellonian University, ul. St. Łojasiewicza 11, 30-348 Kraków, Poland;
| | - Monika Krasowska
- Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice, Poland; (M.K.); (A.S.)
| | - Zuzanna Siwy
- Department of Physics and Astronomy, University of California, Irvine, CA 92697, USA;
| | - Anna Strzelewicz
- Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice, Poland; (M.K.); (A.S.)
| |
Collapse
|
2
|
Xu S, Wang G, Feng Y, Zheng J, Huang L, Wang Y, Liu N. Silica Nanowires-Filled Glass Microporous Sensor for the Ultrasensitive Detection of Deoxyribonucleic Acid. ACS Sens 2024; 9:2050-2056. [PMID: 38632929 DOI: 10.1021/acssensors.4c00072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
DNA carries genetic information and can serve as an important biomarker for the early diagnosis and assessment of the disease prognosis. Here, we propose a bottom-up assembly method for a silica nanowire-filled glass microporous (SiNWs@GMP) sensor and develop a universal sensing platform for the ultrasensitive and specific detection of DNA. The three-dimensional network structure formed by SiNWs provides them with highly abundant and accessible binding sites, allowing for the immobilization of a large amount of capture probe DNA, thereby enabling more target DNA to hybridize with the capture probe DNA to improve detection performance. Therefore, the SiNWs@GMP sensor achieves ultrasensitive detection of target DNA. In the detection range of 1 aM to 100 fM, there is a good linear relationship between the decrease rate of current signal and the concentration of target DNA, and the detection limit is as low as 1 aM. The developed SiNWs@GMP sensor can distinguish target DNA sequences that are 1-, 3-, and 5-mismatched, and specifically recognize target DNA from complex mixed solution. Furthermore, based on this excellent selectivity and specificity, we validate the universality of this sensing strategy by detecting DNA (H1N1 and H5N1) sequences associated with the avian influenza virus. By replacing the types of nucleic acid aptamers, it is expected to achieve a wide range and low detection limit sensitive detection of various biological molecules. The results indicate that the developed universal sensing platform has ultrahigh sensitivity, excellent selectivity, stability, and acceptable reproducibility, demonstrating its potential application in DNA bioanalysis.
Collapse
Affiliation(s)
- Shiwei Xu
- Key Lab of Biohealth Materials and Chemistry of Wenzhou, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325027, P. R. China
| | - Guofeng Wang
- Key Lab of Biohealth Materials and Chemistry of Wenzhou, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325027, P. R. China
| | - Yueyue Feng
- Key Lab of Biohealth Materials and Chemistry of Wenzhou, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325027, P. R. China
| | - Juanjuan Zheng
- Key Lab of Biohealth Materials and Chemistry of Wenzhou, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325027, P. R. China
| | - Liying Huang
- Key Lab of Biohealth Materials and Chemistry of Wenzhou, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325027, P. R. China
| | - Yajun Wang
- Key Lab of Biohealth Materials and Chemistry of Wenzhou, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325027, P. R. China
| | - Nannan Liu
- Key Lab of Biohealth Materials and Chemistry of Wenzhou, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325027, P. R. China
| |
Collapse
|
3
|
Stransky F, Kostrz D, Follenfant M, Pomplun S, Meyners C, Strick T, Hausch F, Gosse C. Use of DNA forceps to measure receptor-ligand dissociation equilibrium constants in a single-molecule competition assay. Methods Enzymol 2024; 694:51-82. [PMID: 38492958 DOI: 10.1016/bs.mie.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2024]
Abstract
The ability of biophysicists to decipher the behavior of individual biomolecules has steadily improved over the past thirty years. However, it still remains unclear how an ensemble of data acquired at the single-molecule level compares with the data acquired on an ensemble of the same molecules. We here propose an assay to tackle this question in the context of dissociation equilibrium constant measurements. A sensor is built by engrafting a receptor and a ligand onto a flexible dsDNA scaffold and mounting this assembly on magnetic tweezers. This way, looking at the position of the magnetic bead enables one to determine in real-time if the two molecular partners are associated or not. Next, to quantify the affinity of the scrutinized single-receptor for a given competitor, various amounts of the latter molecule are introduced in solution and the equilibrium response of the sensor is monitored throughout the titration protocol. Proofs of concept are established for the binding of three rapamycin analogs to the FKBP12 cis-trans prolyl isomerase. For each of these drugs the mean affinity constant obtained on a ten of individual receptors agrees with the one previously determined in a bulk assay. Furthermore, experimental contingencies are sufficient to explain the dispersion observed over the single-molecule values.
Collapse
Affiliation(s)
- François Stransky
- Institut de Biologie de l'Ecole Normale Supérieure, ENS, CNRS, INSERM, PSL Research University, Paris, France
| | - Dorota Kostrz
- Institut de Biologie de l'Ecole Normale Supérieure, ENS, CNRS, INSERM, PSL Research University, Paris, France
| | - Maryne Follenfant
- Institut de Biologie de l'Ecole Normale Supérieure, ENS, CNRS, INSERM, PSL Research University, Paris, France
| | - Sebastian Pomplun
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Christian Meyners
- Department of Chemistry and Biochemistry, Technical University Darmstadt, Darmstadt, Germany
| | - Terence Strick
- Institut de Biologie de l'Ecole Normale Supérieure, ENS, CNRS, INSERM, PSL Research University, Paris, France
| | - Felix Hausch
- Department of Chemistry and Biochemistry, Technical University Darmstadt, Darmstadt, Germany; Centre for Synthetic Biology, Technical University Darmstadt, Darmstadt, Germany
| | - Charlie Gosse
- Institut de Biologie de l'Ecole Normale Supérieure, ENS, CNRS, INSERM, PSL Research University, Paris, France.
| |
Collapse
|
4
|
Zheng F, Alawami M, Zhu J, Platnich CM, Sha J, Keyser UF, Chen K. DNA Carrier-Assisted Molecular Ping-Pong in an Asymmetric Nanopore. NANO LETTERS 2023; 23:11145-11151. [PMID: 38033205 PMCID: PMC10722531 DOI: 10.1021/acs.nanolett.3c03605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/28/2023] [Accepted: 11/28/2023] [Indexed: 12/02/2023]
Abstract
Nanopore analysis relies on ensemble averaging of translocation signals obtained from numerous molecules, requiring a relatively high sample concentration and a long turnaround time from the sample to results. The recapture and subsequent re-reading of the same molecule is a promising alternative that enriches the signal information from a single molecule. Here, we describe how an asymmetric nanopore improves molecular ping-pong by promoting the recapture of the molecule in the trans reservoir. We also demonstrate that the molecular recapture could be improved by linking the target molecule to a long DNA carrier to reduce the diffusion, thereby achieving over 100 recapture events. Using this ping-pong methodology, we demonstrate its use in accurately resolving nanostructure motifs along a DNA scaffold through repeated detection. Our method offers novel insights into the control of DNA polymer dynamics within nanopore confinement and opens avenues for the development of a high-fidelity DNA detection platform.
Collapse
Affiliation(s)
- Fei Zheng
- Cavendish Laboratory, University of Cambridge, CB3 0HE Cambridge, United Kingdom
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211100, China
| | - Mohammed Alawami
- Cavendish Laboratory, University of Cambridge, CB3 0HE Cambridge, United Kingdom
| | - Jinbo Zhu
- Cavendish Laboratory, University of Cambridge, CB3 0HE Cambridge, United Kingdom
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian 116024, China
| | - Casey M Platnich
- Cavendish Laboratory, University of Cambridge, CB3 0HE Cambridge, United Kingdom
| | - Jingjie Sha
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211100, China
| | - Ulrich F Keyser
- Cavendish Laboratory, University of Cambridge, CB3 0HE Cambridge, United Kingdom
| | - Kaikai Chen
- Cavendish Laboratory, University of Cambridge, CB3 0HE Cambridge, United Kingdom
- School of Nanoscience and Nanotechnology, University of Chinese Academy of Sciences, Beijing 101408, China
| |
Collapse
|