1
|
Oh J, Zheng SL, Carsch KM, Latendresse TP, Casaday CE, Campbell BM, Betley TA. An Open-Shell Fe IV Nitrido. J Am Chem Soc 2025; 147:3174-3184. [PMID: 39829124 DOI: 10.1021/jacs.4c12588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
We report the photogeneration and characterization of an open-shell, terminal iron nitrido (EmL)Fe(N) using a sterically encumbered dipyrrin ligand environment. The Fe-N distance in the solid-state, zero-field 57Fe Mössbauer spectrum, and computational analysis are consistent with a triplet electronic ground state of the iron nitrido. Notably, the attenuation of Fe-N multiple bond character through occupying π*Fe-N enables (i) primary C(sp3)-H amination, (ii) H2 cleavage, (iii) aromatic C-C cleavage, and (iv) photocatalytic N-atom transfer reactivity. These modes of reactivity have not previously been observed in low-spin Fe(N) analogues.
Collapse
Affiliation(s)
- Jeewhan Oh
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Shao-Liang Zheng
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Kurtis M Carsch
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Trevor P Latendresse
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Claire E Casaday
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Brandon M Campbell
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Theodore A Betley
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
2
|
Kunert R, Martelino D, Mahato S, Hein NM, Pulfer J, Philouze C, Jarjayes O, Thomas F, Storr T. Investigating the formation of metal nitride complexes employing a tetradentate bis-carbene bis-phenolate ligand. Dalton Trans 2025; 54:616-630. [PMID: 39560135 DOI: 10.1039/d4dt01765j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
The synthesis of MnV and CrV nitride complexes of a pro-radical tetradentate bis-phenol bis-N-heterocyclic carbene ligand H2LC2O2 was investigated. Employing either azide photolysis of the MnIII precursor complex MnLC2O2(N3) or a nitride exchange reaction between MnLC2O2(Br) and the nitride exchange reagent Mnsalen(N) failed to provide a useful route to the target nitride MnLC2O2(N). Experimental results support initial formation of the target nitride MnLC2O2(N), however, the nitride rapidly inserts into a Mn-CNHC bond. A second insertion reaction results in the isolation of the doubly inserted ligand product [H2LC2O2(N)]+ in good yield. In contrast, the Cr analogue CrLC2O2(N) was readily prepared and characterized by a number of experimental methods, including X-ray crystallography. Theoretical calculations predict a lower transition state energy for nitride insertion into the M-CNHC bond for Mn in comparison to Cr, and in addition the N-inserted product is stabilized for Mn while destabilized for Cr. Natural bond order (NBO) analysis predicts that the major bonding interaction (π MN → σ* M-CNHC) promotes nucleophilic attack of the nitride on the carbene as the major reaction pathway. Finally, one-electron oxidation of CrLC2O2(N) affords a relatively stable cation that is characterized by experimental and theoretical analysis to be a metal-oxidized d0 CrVI species.
Collapse
Affiliation(s)
- Romain Kunert
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada.
- Univ. Grenoble Alpes, CNRS, DCM, F-38000, Grenoble, France.
| | - Diego Martelino
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada.
| | - Samyadeb Mahato
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada.
| | - Nicholas M Hein
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada.
| | - Jason Pulfer
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada.
| | | | | | - Fabrice Thomas
- Univ. Grenoble Alpes, CNRS, DCM, F-38000, Grenoble, France.
| | - Tim Storr
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada.
| |
Collapse
|
3
|
Kramarenko A, Sharapa DI, Pidko EA, Studt F. Ab Initio Kinetics of Electrochemical Reactions Using the Computational Fc 0/Fc + Electrode. J Phys Chem A 2024; 128:9063-9070. [PMID: 39362650 PMCID: PMC11492257 DOI: 10.1021/acs.jpca.4c04923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 10/05/2024]
Abstract
The current state-of-the-art electron-transfer modeling primarily focuses on the kinetics of charge transfer between an electroactive species and an inert electrode. Experimental studies have revealed that the existing Butler-Volmer model fails to satisfactorily replicate experimental voltammetry results for both solution-based and surface-bound redox couples. Consequently, experimentalists lack an accurate tool for predicting electron-transfer kinetics. In response to this challenge, we developed a density functional theory-based approach for accurately predicting current peak potentials by using the Marcus-Hush model. Through extensive cyclic voltammetry simulations, we conducted a thorough exploration that offers valuable insights for conducting well-informed studies in the field of electrochemistry.
Collapse
Affiliation(s)
- Aleksandr
S. Kramarenko
- Institute
of Catalysis Research and Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Dmitry I. Sharapa
- Institute
of Catalysis Research and Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Evgeny A. Pidko
- Inorganic
Systems Engineering Group, Department of Chemical Engineering, Faculty
of Applied Sciences, Delft University of
Technology, Delft 2628 CN, The Netherlands
| | - Felix Studt
- Institute
of Catalysis Research and Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Institute
for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Engesserstrasse 18, 76131 Karlsruhe, Germany
| |
Collapse
|
4
|
Schmidt-Räntsch T, Verplancke H, Kehl A, Sun J, Bennati M, Holthausen MC, Schneider S. C=C Dissociative Imination of Styrenes by a Photogenerated Metallonitrene. JACS AU 2024; 4:3421-3426. [PMID: 39328761 PMCID: PMC11423323 DOI: 10.1021/jacsau.4c00571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 09/28/2024]
Abstract
Photolysis of a platinum(II) azide complex in the presence of styrenes enables C=C double bond cleavage upon dissociative olefin imination to aldimido (PtII-N=CHPh) and formimido (PtII-N=CH2) complexes as the main products. Spectroscopic and quantum chemical examinations support a mechanism that commences with the decay of the metallonitrene photoproduct (PtII-N) via bimolecular coupling and nitrogen loss as N2. The resulting platinum(I) complex initiates a radical chain mechanism via a dinuclear radical-bridged species (PtII-CH2CHPhN•-PtII) as a direct precursor to C-C scission. The preference for the PtI mediated route over styrene aziridination is attributed to the distinct nucleophilicity of the triplet metallonitrene.
Collapse
Affiliation(s)
- Till Schmidt-Räntsch
- Institut für Anorganische Chemie and International Center for Advanced Studies of Energy Conversion, Georg-August-Universität Göttingen, Tammannstraße 4, 37077 Göttingen, Germany
| | - Hendrik Verplancke
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt am Main, Max-von-Laue-Str. 7, 60438 Frankfurt am Main, Germany
| | - Annemarie Kehl
- Research Group EPR spectroscopy, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
- Institut für Physikalische Chemie, Tammannstraße 6, 37077 Göttingen, Germany
| | - Jian Sun
- Institut für Anorganische Chemie and International Center for Advanced Studies of Energy Conversion, Georg-August-Universität Göttingen, Tammannstraße 4, 37077 Göttingen, Germany
| | - Marina Bennati
- Research Group EPR spectroscopy, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
- Institut für Physikalische Chemie, Tammannstraße 6, 37077 Göttingen, Germany
| | - Max C Holthausen
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt am Main, Max-von-Laue-Str. 7, 60438 Frankfurt am Main, Germany
| | - Sven Schneider
- Institut für Anorganische Chemie and International Center for Advanced Studies of Energy Conversion, Georg-August-Universität Göttingen, Tammannstraße 4, 37077 Göttingen, Germany
| |
Collapse
|
5
|
Bhunia M, Sandoval-Pauker C, Fehn D, Grant LN, Senthil S, Gau MR, Ozarowski A, Krzystek J, Telser J, Pinter B, Meyer K, Mindiola DJ. Divalent Titanium via Reductive N-C Coupling of a Ti IV Nitrido with π-Acids. Angew Chem Int Ed Engl 2024; 63:e202404601. [PMID: 38619509 DOI: 10.1002/anie.202404601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
The nitrido-ate complex [(PN)2Ti(N){μ2-K(OEt2)}]2 (1) (PN-=(N-(2-PiPr2-4-methylphenyl)-2,4,6-Me3C6H2) reductively couples CO and isocyanides in the presence of DME or cryptand (Kryptofix222), to form rare, five-coordinate TiII complexes having a linear cumulene motif, [K(L)][(PN)2Ti(NCE)] (E=O, L=Kryptofix222, (2); E=NAd, L=3 DME, (3); E=NtBu, L=3 DME, (4); E=NAd, L=Kryptofix222, (5)). Oxidation of 2-5 with [Fc][OTf] afforded an isostructural TiIII center containing a neutral cumulene, [(PN)2Ti(NCE)] (E=O, (6); E=NAd (7), NtBu (8)) and characterization by CW X-band EPR spectroscopy, revealed unpaired electron to be metal centric. Moreover, 1e- reduction of 6 and 7 in the presence of Kryptofix222cleanly reformed corresponding discrete TiII complexes 2 and 5, which were further characterized by solution magnetization measurements and high-frequency and -field EPR (HFEPR) spectroscopy. Furthermore, oxidation of 7 with [Fc*][B(C6F5)4] resulted in a ligand disproportionated TiIV complex having transoid carbodiimides, [(PN)2Ti(NCNAd)2] (9). Comparison of spectroscopic, structural, and computational data for the divalent, trivalent, and tetravalent systems, including their 15N enriched isotopomers demonstrate these cumulenes to decrease in order of backbonding as TiII→TiIII→TiIV and increasing order of π-donation as TiII→TiIII→TiIV, thus displaying more covalency in TiIII species. Lastly, we show a synthetic cycle whereby complex 1 can deliver an N-atom to CO and CNAd.
Collapse
Affiliation(s)
- Mrinal Bhunia
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Dominik Fehn
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander- Universität Erlangen-Nürnberg (FAU), 91058, Erlangen, Germany
| | - Lauren N Grant
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shuruthi Senthil
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael R Gau
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andrew Ozarowski
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida, 32310, USA
| | - J Krzystek
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida, 32310, USA
| | - Joshua Telser
- Department of Biological, Physical and Health Sciences, Roosevelt University, Chicago, Illinois, 60605, USA
| | - Balazs Pinter
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Karsten Meyer
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander- Universität Erlangen-Nürnberg (FAU), 91058, Erlangen, Germany
| | - Daniel J Mindiola
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
6
|
Almquist CC, Rajeshkumar T, Jayaweera HDAC, Removski N, Zhou W, Gelfand BS, Maron L, Piers WE. Oxidation-induced ambiphilicity triggers N-N bond formation and dinitrogen release in octahedral terminal molybdenum(v) nitrido complexes. Chem Sci 2024; 15:5152-5162. [PMID: 38577349 PMCID: PMC10988598 DOI: 10.1039/d4sc00090k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/16/2024] [Indexed: 04/06/2024] Open
Abstract
Coupling of octahedral, terminal d1 molybdenum(v) nitrido complexes supported by a dianionic pentadentate ligand via N-N bond formation to give μ-dinitrogen complexes was found to be thermodynamically feasible but faces significant kinetic barriers. However, upon oxidation, a kinetically favored nucleophilic/electrophilic N-N bond forming mechanism was enabled to give monocationic μ-dinitrogen dimers. Computational and experimental evidence for this "oxidation-induced ambiphilic nitrido coupling" mechanism is presented. The factors influencing release of dinitrogen from the resulting μ-dinitrogen dimers were also probed and it was found that further oxidation to a dicationic species is required to induce (very rapid) loss of dinitrogen. The mechanistic path discovered for N-N bond formation and dinitrogen release follows an ECECC sequence (E = "electrochemical step"; C = "chemical step"). Experimental evidence for the intermediacy of a highly electrophilic, cationic d0 molybdenum(vi) nitrido in the N-N bond forming mechanism via trapping with an isonitrile reagent is also discussed. Together these results are relevant to the development of molecular catalysts capable of mediating ammonia oxidation to dihydrogen and dinitrogen.
Collapse
Affiliation(s)
- C Christopher Almquist
- Department of Chemistry, University of Calgary 2500 University Drive NW Calgary Alberta T2N 1N4 Canada
| | | | - H D A Chathumal Jayaweera
- Department of Chemistry, University of Calgary 2500 University Drive NW Calgary Alberta T2N 1N4 Canada
| | - Nicole Removski
- Department of Chemistry, University of Calgary 2500 University Drive NW Calgary Alberta T2N 1N4 Canada
| | - Wen Zhou
- Department of Chemistry, University of Calgary 2500 University Drive NW Calgary Alberta T2N 1N4 Canada
| | - Benjamin S Gelfand
- Department of Chemistry, University of Calgary 2500 University Drive NW Calgary Alberta T2N 1N4 Canada
| | - Laurent Maron
- LPCNO, Université de Toulouse, INSA UPS Toulouse France
| | - Warren E Piers
- Department of Chemistry, University of Calgary 2500 University Drive NW Calgary Alberta T2N 1N4 Canada
| |
Collapse
|
7
|
Keilwerth M, Mao W, Malischewski M, Jannuzzi SAV, Breitwieser K, Heinemann FW, Scheurer A, DeBeer S, Munz D, Bill E, Meyer K. The synthesis and characterization of an iron(VII) nitrido complex. Nat Chem 2024; 16:514-520. [PMID: 38291260 PMCID: PMC10997499 DOI: 10.1038/s41557-023-01418-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/08/2023] [Indexed: 02/01/2024]
Abstract
Complexes of iron in high oxidation states are captivating research subjects due to their pivotal role as active intermediates in numerous catalytic processes. Structural and spectroscopic studies of well-defined model complexes often provide evidence of these intermediates. In addition to the fundamental molecular and electronic structure insights gained by these complexes, their reactivity also affects our understanding of catalytic reaction mechanisms for small molecule and bond-activation chemistry. Here, we report the synthesis, structural and spectroscopic characterization of a stable, octahedral Fe(VI) nitrido complex and an authenticated, unique Fe(VII) species, prepared by one-electron oxidation. The super-oxidized Fe(VII) nitride rearranges to an Fe(V) imide through an intramolecular amination mechanism and ligand exchange, which is characterized spectroscopically and computationally. This enables combined reactivity and stability studies on a single molecular system of a rare high-valent complex redox pair. Quantum chemical calculations complement the spectroscopic parameters and provide evidence for a diamagnetic (S = 0) d 2 Fe(VI) and a genuine S = 1/2, d 1 Fe(VII) configuration of these super-oxidized nitrido complexes.
Collapse
Affiliation(s)
- Martin Keilwerth
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Department of Chemistry and Pharmacy, Inorganic Chemistry, Erlangen, Germany
| | - Weiqing Mao
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Department of Chemistry and Pharmacy, Inorganic Chemistry, Erlangen, Germany
| | - Moritz Malischewski
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Inorganic Chemistry, Berlin, Germany
| | - Sergio A V Jannuzzi
- Max Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Germany
| | - Kevin Breitwieser
- Saarland University, Inorganic Chemistry, Coordination Chemistry, Saarbrücken, Germany
| | - Frank W Heinemann
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Department of Chemistry and Pharmacy, Inorganic Chemistry, Erlangen, Germany
| | - Andreas Scheurer
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Department of Chemistry and Pharmacy, Inorganic Chemistry, Erlangen, Germany
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Germany.
| | - Dominik Munz
- Saarland University, Inorganic Chemistry, Coordination Chemistry, Saarbrücken, Germany.
| | - Eckhard Bill
- Max Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Germany
| | - Karsten Meyer
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Department of Chemistry and Pharmacy, Inorganic Chemistry, Erlangen, Germany.
| |
Collapse
|
8
|
Mahato S, VandeVen W, MacNeil GA, Pulfer JM, Storr T. Untangling ancillary ligand donation versus locus of oxidation effects on metal nitride reactivity. Chem Sci 2024; 15:2211-2220. [PMID: 38332824 PMCID: PMC10848731 DOI: 10.1039/d3sc05403a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/01/2024] [Indexed: 02/10/2024] Open
Abstract
We detail the relative role of ancillary ligand electron-donating ability in comparison to the locus of oxidation (either metal or ligand) on the electrophilic reactivity of a series of oxidized Mn salen nitride complexes. The electron-donating ability of the ancillary salen ligand was tuned via the para-phenolate substituent (R = CF3, H, tBu, OiPr, NMe2, NEt2) in order to have minimal effect on the geometry at the metal center. Through a suite of experimental (electrochemistry, electron paramagnetic resonance spectroscopy, UV-vis-NIR spectroscopy) and theoretical (density functional theory) techniques, we have demonstrated that metal-based oxidation to [MnVI(SalR)N]+ occurs for R = CF3, H, tBu, OiPr, while ligand radical formation to [MnV(SalR)N]+˙ occurs with the more electron-donating substituents R = NMe2, NEt2. We next investigated the reactivity of the electrophilic nitride with triarylphosphines to form a MnIV phosphoraneiminato adduct and determined that the rate of reaction decreases as the electron-donating ability of the salen para-phenolate substituent is increased. Using a Hammett plot, we find a break in the Hammett relation between R = OiPr and R = NMe2, without a change in mechanism, consistent with the locus of oxidation exhibiting a dominant effect on nitride reactivity, and not the overall donating ability of the ancillary salen ligand. This work differentiates between the subtle and interconnected effects of ancillary ligand electron-donating ability, and locus of oxidation, on electrophilic nitride reactivity.
Collapse
Affiliation(s)
- Samyadeb Mahato
- Department of Chemistry, Simon Fraser University Burnaby British Columbia V5A 1S6 Canada
| | - Warren VandeVen
- Department of Chemistry, Simon Fraser University Burnaby British Columbia V5A 1S6 Canada
| | - Gregory A MacNeil
- Department of Chemistry, Simon Fraser University Burnaby British Columbia V5A 1S6 Canada
| | - Jason M Pulfer
- Department of Chemistry, Simon Fraser University Burnaby British Columbia V5A 1S6 Canada
| | - Tim Storr
- Department of Chemistry, Simon Fraser University Burnaby British Columbia V5A 1S6 Canada
| |
Collapse
|
9
|
Li P, Du Z, Wu B, Zhao X, You Y. Highly effective and selective FeBr 3-promoted deuterium bromination/cyclization of 1, n-enynes. Org Biomol Chem 2024; 22:959-964. [PMID: 38205648 DOI: 10.1039/d3ob01778h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
A highly effective and selective FeBr3-promoted deuterium bromination/cyclization of 1,n-enynes is reported. On the one hand, the Lewis acid FeBr3 as a catalyst promotes cyclization of 1,n-enynes to afford deuterium heterocyclic frameworks with high efficiency. On the other hand, FeBr3 serves as the bromine source (with D2O as the deuterium source) to promote the formation of the desired deuterated pyrrole derivatives containing alkenyl bromide groups. This protocol provides an effective pathway to afford deuterated alkenyl brominative compounds as (Z)-isomers with high yields and selectivity, offering a new method for introducing 2H into organic compounds.
Collapse
Affiliation(s)
- Ping Li
- Department of Cable Engineering, Henan Institute of Technology, Xinxiang, 453000, China
| | - Zhongjian Du
- School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei 230009, China.
| | - Baofeng Wu
- Research Institute of Exploration and Development, PetroChina, Daqing Oilfield Company, Daqing 163712, China
| | - Xin Zhao
- Research Institute of Exploration and Development, PetroChina, Daqing Oilfield Company, Daqing 163712, China
| | - Yang'en You
- School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei 230009, China.
| |
Collapse
|