1
|
Su J, Huang M, Yan Z, Tang S, Zhang X, Sun J. Aminosulfonylation of Rhodium Carbene via Ylide Formation and 1,4-Sulfonyl Rearrangement. Org Lett 2024; 26:9592-9597. [PMID: 39470634 DOI: 10.1021/acs.orglett.4c03733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
We report here the use of pyridin-2-yl benzenesulfonates as sulfonylation reagents in a difunctionalization reaction based on oxy-pyridinium ylide chemistry, providing an effective protocol for the installation of both a sulfonyl group and a pyridone moiety into one molecule. Density functional theory (DFT) calculations disclose that the reaction process might proceed through sequential metal-bound ylide formation, keto-enol tautomerism, and the migratory rearrangement of the sulfonyl group.
Collapse
Affiliation(s)
- Jiahui Su
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Meirong Huang
- Shenzhen Bay Laboratory, Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Zichun Yan
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Shengbiao Tang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Xinhao Zhang
- Shenzhen Bay Laboratory, Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Jiangtao Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
2
|
Ying CJ, Shao Y, Wan YC, Zheng M, Hua LL, Zhan LW, Li BD, Hou J. Photocatalytic synthesis of β-amino acid derivatives from alkenes with alkyl formates. Chem Commun (Camb) 2024; 60:13071-13074. [PMID: 39436698 DOI: 10.1039/d4cc04131c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The aminocarbonylation of alkenes is an efficient approach to synthesize important β-amino acid motifs. However, simple and convenient methods are still rare. Herein, we present a novel visible-light-mediated controllable three-component radical relay coupling of alkenes, alkyl formates and oxime esters. By the combination of hydrogen atom transfer and energy transfer processes, a series of β-amino esters could be obtained smoothly in one step under mild conditions. We expect that the approach can complement current methodologies for the synthesis of β-amino esters.
Collapse
Affiliation(s)
- Cheng-Jie Ying
- College of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Yu Shao
- College of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Yuan-Cui Wan
- College of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Ming Zheng
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, P. R. China
| | - Li-Li Hua
- College of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Le-Wu Zhan
- College of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Bin-Dong Li
- College of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Jing Hou
- College of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
3
|
Zhang SR, Yue JP, Wang LF, Gui YY, Zhang W, Yu DG, Ye JH. Dearomative hydroamination of heteroarenes catalyzed by the phenolate photocatalyst. Chem Commun (Camb) 2024; 60:13083-13086. [PMID: 39440373 DOI: 10.1039/d4cc03879g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Dearomative functionalization of heteroarenes offers an attractive and sustainable approach for the rapid construction of complex 3D heterocyclic scaffolds from planar structures. Despite progress in this field, dearomative amination of heteroarenes via a radical anion intermediate remains a challenge. Here, we report a photoredox-catalyzed dearomative hydroamination of heteroarenes with hydrazodiformates under mild and transition-metal-free reaction conditions. Various benzofurans and benzothiophenes can efficiently participate in this transformation. A series of mechanistic experiments revealed that heteroaryl radical anions are the crucial intermediates, generated through photo-induced electron transfer between the excited phenolate photocatalyst and heteroarenes.
Collapse
Affiliation(s)
- Shu-Rong Zhang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, P. R. China
| | - Jun-Ping Yue
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Long-Fu Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, P. R. China
| | - Yong-Yuan Gui
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, P. R. China
| | - Wei Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, P. R. China.
| | - Da-Gang Yu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Jian-Heng Ye
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| |
Collapse
|
4
|
Liu D, Tu T, Zhang T, Nie G, Liao T, Ren SC, Zhang X, Chi YR. Photocatalytic Direct Para-Selective C-H Amination of Benzyl Alcohols: Selectivity Independent of Side Substituents. Angew Chem Int Ed Engl 2024; 63:e202407293. [PMID: 39072873 DOI: 10.1002/anie.202407293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/18/2024] [Accepted: 07/26/2024] [Indexed: 07/30/2024]
Abstract
Aminoarenes are important molecules for broad applications in nearly all modern industries that involve chemicals. Direct and site-selective C-H bond amination of arenes provides the most efficient and convenient method to prepare aminoarenes. A main challenge is to selectively install the amino group (or other functional groups) to the distal para-carbon of arenes (especially multi-substituted arenes) during the C-H bond functionalization events. Herein, we address this problem by designing a new strategy via a sequential radical dearomatization/radical amination/rearomatization process for para-selective amination of benzyl alcohols. The para-selectivity of our reaction is completely independent of the electronic and steric properties of the other substituents of the arene substrates. Aminoarenes with many substituents (up to full substitution) and diverse substitution patterns, including those difficult to synthesize previously, could be readily prepared using our protocols. Further exploration of the current strategy shall lead to other challenging C-H functionalization of arenes.
Collapse
Affiliation(s)
- Donghan Liu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Ting Tu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Tinglei Zhang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Guihua Nie
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Tianhui Liao
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Shi-Chao Ren
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Xinglong Zhang
- Institute of High Performance Computing, A*STAR (Agency for Science, Technology and Research), Singapore, 138632, Singapore
| | - Yonggui Robin Chi
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| |
Collapse
|
5
|
Shao Y, Ying CJ, Wan YC, Zhan LW, Li BD, Hou J. Synthesis of β-Silyl Amines via Merging Photoinduced Energy and Hydrogen Atom Transfer in Flow. Org Lett 2024; 26:8486-8491. [PMID: 39347616 DOI: 10.1021/acs.orglett.4c02998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
The development of efficient methods for synthesizing β-silyl amines has long been a significant goal in organic synthesis. Previous methods mainly relied on the use of prefunctionalized substrates or special reagents. Herein, we present a visible-light-promoted synthesis approach for β-silyl amines, utilizing a combination of photoinduced energy and hydrogen atom transfer processes. Using flow chemistry technology, a variety of valuable skeletons, including β-silyl amines and α-amino esters, can be produced from readily available feedstocks such as hydrosilanes and simple alkanes. Moreover, the strategy's full-process fluidized production capability highlights its potential for industrial-scale manufacturing. Mechanistic studies revealed that oxime esters can act as radical precursors as well as hydrogen atom transfer reagents.
Collapse
Affiliation(s)
- Yu Shao
- College of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Cheng-Jie Ying
- College of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yuan-Cui Wan
- College of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Le-Wu Zhan
- College of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Bin-Dong Li
- College of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jing Hou
- College of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
6
|
Chen Z, Yang S, Wu L, Li S, Yang L. Photocatalyzed Imino-Difluoromethylation of Alkenes with Bifunctional Oxime Esters. J Org Chem 2024; 89:13585-13594. [PMID: 39256949 DOI: 10.1021/acs.joc.4c01774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Herein, we report a simple and versatile difluoromethylene-imide reaction in which a series of olefins can undergo a difluoromethylenimine reaction under photocatalytic conditions through an energy transfer (EnT) process. The reaction has mild conditions and a wide range of applicability. We successfully synthesized 27 molecules containing difluoromethylene units, featuring easily accessible starting materials and operational simplicity.
Collapse
Affiliation(s)
- Zhiwei Chen
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Shuhang Yang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Liping Wu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Shuo Li
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Luyao Yang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
7
|
Liu M, Liu B, Chen H, Wang Q, Liu L, Feng K, Wang Z, Li Q. Synthesis of 2 H-imidazoles via copper-catalyzed homo/cross-coupling of oxime acetates. Org Biomol Chem 2024; 22:7316-7320. [PMID: 39171576 DOI: 10.1039/d4ob00977k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
A facile and practical protocol to construct 2H-imidazoles by applying an oxime acetate block as the sole component via oxidative homo/cross-coupling catalyzed by Cu(I) was developed. This strategy provides a straightforward method to produce a series of substituted 2H-imidazoles in moderate to excellent yields. The transformation process is straightforward to operate and is considered as a readily available catalytic system exhibiting good substrate compatibility, eliminating the necessity for pre-functionalization of azides or the use of additives.
Collapse
Affiliation(s)
- Min Liu
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou 516007, China.
| | - Bifu Liu
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou 516007, China.
| | - Hongyan Chen
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou 516007, China.
| | - Qian Wang
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou 516007, China.
| | - Lixin Liu
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou 516007, China.
| | - Kejun Feng
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou 516007, China.
| | - Zijia Wang
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou 516007, China.
| | - Qiang Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, No. 1, Hunan Street, Liaocheng, Shandong 252000, P. R. China
| |
Collapse
|
8
|
Cao Z, Sun Y, Chen Y, Zhu C. Photoinduced Asymmetric Alkene Aminohetarylation with Chiral Sulfoximine Reagents. Angew Chem Int Ed Engl 2024:e202408177. [PMID: 39143840 DOI: 10.1002/anie.202408177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/27/2024] [Accepted: 08/14/2024] [Indexed: 08/16/2024]
Abstract
Given the pivotal role of β-(het)arylethylamine moiety in bioactive molecules, the direct amino(het)arylation of alkenes occupies a privileged position in the construction of (het)arylethylamine derivatives. Herein we devise chiral sulfoximines as novel bifunctional reagents which exhibit remarkable efficiency in the challenging asymmetric alkene aminohetarylation reaction, particularly in terms of reactivity and stereo-control. The chiral reagents can be conveniently accessed in gram scale, and efficiently generate N-centered radicals under mild photochemical conditions. The transformation proceeds through enantioselective 1,4-hetaryl migration, ensuring precise chirality transfer from sulfur- to carbon-centers, rendering wide applicability to both aromatic and aliphatic alkenes. Furthermore, the method is straightforward to operate and does not require transition metals or photosensitizers, making it an attractive and practical option.
Collapse
Affiliation(s)
- Zhu Cao
- Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yuqian Sun
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu, 215123, China
| | - Yasu Chen
- Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Chen Zhu
- Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu, 215123, China
| |
Collapse
|
9
|
Sun Z, Zhang J, Du X, Liu L, Gao S, Qi C, Li X, Xu X. Photoinduced EnT-mediated sulfonamidylimination of alkenes and (hetero)arenes with iminophenylacetic acid oxime esters. Chem Commun (Camb) 2024; 60:7934-7937. [PMID: 38984732 DOI: 10.1039/d4cc02225d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
A photoinduced EnT-mediated generation of sulfonamidyl radicals has been accomplished using rationally designed iminophenylacetic acid oxime ester reagents under metal-free conditions. This approach offers a mild, regio- and diastereoselective synthesis of N-sulfonyl diamines via diamination of alkenes and (hetero)arenes.
Collapse
Affiliation(s)
- Zetian Sun
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Jianting Zhang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Xiaohua Du
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Lulu Liu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Shuo Gao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Chenchen Qi
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Xiaoqing Li
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Xiangsheng Xu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| |
Collapse
|
10
|
Ji P, Duan K, Li M, Wang Z, Meng X, Zhang Y, Wang W. Photochemical dearomative skeletal modifications of heteroaromatics. Chem Soc Rev 2024; 53:6600-6624. [PMID: 38817197 PMCID: PMC11181993 DOI: 10.1039/d4cs00137k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Indexed: 06/01/2024]
Abstract
Dearomatization has emerged as a powerful tool for rapid construction of 3D molecular architectures from simple, abundant, and planar (hetero)arenes. The field has evolved beyond simple dearomatization driven by new synthetic technology development. With the renaissance of photocatalysis and expansion of the activation mode, the last few years have witnessed impressive developments in innovative photochemical dearomatization methodologies, enabling skeletal modifications of dearomatized structures. They offer truly efficient and useful tools for facile construction of highly complex structures, which are viable for natural product synthesis and drug discovery. In this review, we aim to provide a mechanistically insightful overview on these innovations based on the degree of skeletal alteration, categorized into dearomative functionalization and skeletal editing, and to highlight their synthetic utilities.
Collapse
Affiliation(s)
- Peng Ji
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, USA.
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA.
| | - Kuaikuai Duan
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, USA
| | - Menglong Li
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Science, School of Basic Medicinal Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Zhiyuan Wang
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Xiang Meng
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, USA.
| | - Yueteng Zhang
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Science, School of Basic Medicinal Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Wei Wang
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, USA.
| |
Collapse
|
11
|
Xu S, Li M, Zhou B, Duan C, Zou F, Zou S, Long X, Chen G, Yan K. CuCl 2/FeCl 3 Bimetallic Photocatalyst for Sustainable Ethylene Production from Ethanol via Recoverable Redox Cycles. J Phys Chem Lett 2024; 15:4640-4646. [PMID: 38647347 DOI: 10.1021/acs.jpclett.4c00588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Photocatalytic conversions of ethanol to valuable chemicals are significant organic synthesis reactions. Herein, we developed a CuCl2/FeCl3 bimetallic photocatalyst for sustainable dehydration of ethanol to ethylene by recoverable redox cycles. The selectivity of ethylene was 98.3% for CuCl2/FeCl3, which is much higher than that of CuCl2 (34.5%) and FeCl3 (86.5%). Due to the ligand-to-metal charge transfer (LMCT) process involved in generating the liquid products, the CuCl2/FeCl3 catalyst will be reduced to CuCl/FeCl2. Oxygen (O2) is required for the recovery of CuCl2/FeCl3 to avoid exhaustion. The soluble Fe3+/Fe2+ redox species deliver catalyst regeneration properties more efficiently than single metal couples, making a series of redox reactions (Cu2+/Cu+, Fe3+/Fe2+, and O2/ethanol couples) recyclable with synergistic effects. A flow reactor was designed to facilitate the continuous production of ethylene. The understanding of bimetallic synergism and consecutive reactions promotes the industrial application process of photocatalytic organic reactions.
Collapse
Affiliation(s)
- Shuang Xu
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou 510000, China
| | - Mingjie Li
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Biao Zhou
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou 510000, China
| | - Chenghao Duan
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou 510000, China
| | - Feilin Zou
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou 510000, China
| | - Shibing Zou
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou 510000, China
| | - Xia Long
- Low Carbon College, Shanghai Jiaotong University, Shanghai 201306, China
| | - Guangxu Chen
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou 510000, China
| | - Keyou Yan
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou 510000, China
| |
Collapse
|
12
|
Zhong Y, Zhuang Z, Zhang X, Xu B, Yang C. Difunctionalization of gem-difluoroalkenes for amination and heteroarylation via metal-free photocatalysis. Chem Commun (Camb) 2024; 60:4830-4833. [PMID: 38619085 DOI: 10.1039/d4cc00528g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
gem-Difluoroalkenes are widely used building blocks in fluorine chemistry. Herein, a metal-free photocatalytic amination and heteroarylation method of gem-difluoroalkenes with heteroaryl carboxylic acid oxime esters as substrates is reported. This environmentally benign reaction proceeds via radical-radical cross-coupling in energy-transfer-mediated photocatalysis and can be used in the rapid construction of heteroaryl difluoroethylamine scaffolds and late-stage modification of complex pharmaceutical structures.
Collapse
Affiliation(s)
- Yuanchen Zhong
- Department of Chemistry, Shanghai University, Shanghai 200444, China.
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China.
| | - Zhen Zhuang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China.
- School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Xiaofei Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China.
| | - Bin Xu
- Department of Chemistry, Shanghai University, Shanghai 200444, China.
| | - Chunhao Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China.
- School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| |
Collapse
|
13
|
Laskar R, Dutta S, Spies JC, Mukherjee P, Rentería-Gómez Á, Thielemann RE, Daniliuc CG, Gutierrez O, Glorius F. γ-Amino Alcohols via Energy Transfer Enabled Brook Rearrangement. J Am Chem Soc 2024; 146:10899-10907. [PMID: 38569596 PMCID: PMC11027157 DOI: 10.1021/jacs.4c01667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 04/05/2024]
Abstract
In the long-standing quest to synthesize fundamental building blocks with key functional group motifs, photochemistry in the recent past has comprehensively established its attractiveness. Amino alcohols are not only functionally diverse but are ubiquitous in the biologically active realm of compounds. We developed bench-stable bifunctional reagents that could then access the sparsely reported γ-amino alcohols directly from feedstock alkenes through energy transfer (EnT) photocatalysis. A designed 1,3-linkage across alkenes is made possible by the intervention of a radical Brook rearrangement that takes place downstream to the EnT-mediated homolysis of our reagent(s). A combination of experimental mechanistic investigations and detailed computational studies (DFT) indicates a radical chain propagated reaction pathway.
Collapse
Affiliation(s)
- Ranjini Laskar
- Organisch-Chemisches
Institut, University of Münster, Corrensstrasse 36, 48149 Münster, Germany
| | - Subhabrata Dutta
- Organisch-Chemisches
Institut, University of Münster, Corrensstrasse 36, 48149 Münster, Germany
| | - Jan C. Spies
- Organisch-Chemisches
Institut, University of Münster, Corrensstrasse 36, 48149 Münster, Germany
| | - Poulami Mukherjee
- Department
of Chemistry, Texas A&M University, 77843 College Station, Texas, United States
| | - Ángel Rentería-Gómez
- Department
of Chemistry, Texas A&M University, 77843 College Station, Texas, United States
| | - Rebecca E. Thielemann
- Organisch-Chemisches
Institut, University of Münster, Corrensstrasse 36, 48149 Münster, Germany
| | - Constantin G. Daniliuc
- Organisch-Chemisches
Institut, University of Münster, Corrensstrasse 36, 48149 Münster, Germany
| | - Osvaldo Gutierrez
- Department
of Chemistry, Texas A&M University, 77843 College Station, Texas, United States
| | - Frank Glorius
- Organisch-Chemisches
Institut, University of Münster, Corrensstrasse 36, 48149 Münster, Germany
| |
Collapse
|
14
|
Xiao ZL, Xie ZZ, Yuan CP, Deng KY, Chen K, Chen HB, Xiang HY, Yang H. Photosensitized 1,2-Difunctionalization of Alkenes to Access β-Amino Sulfonamides. Org Lett 2024; 26:2108-2113. [PMID: 38440974 DOI: 10.1021/acs.orglett.4c00432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
A metal-free photosensitized 1,2-imino-sulfamoylation of olefins by employing a tailor-made sulfamoyl carbamate as the difunctionalization reagent has been established. This protocol exhibits versatility across a broad substrate scope, including aryl and aliphatic alkenes, leading to the synthesis of diverse β-imino sulfonamides in moderate to good yields. This method is characterized by its metal-free reaction system, mild reaction conditions, excellent regioselectivity, and high atom economy, serving as a promising platform for the preparation of β-amino sulfonamide-containing molecules, particularly in the context of drug discovery.
Collapse
Affiliation(s)
- Ze-Long Xiao
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Zhen-Zhen Xie
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Chu-Ping Yuan
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Ke-Yi Deng
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Kai Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
- Xiangjiang Laboratory, Changsha 410205, China
| | - Hong-Bin Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
- Jiangxi Time Chemical Company, Ltd., C Park of Jinxi Xiangliao Industry, Fuzhou 344800, P. R. China
| | - Hao-Yue Xiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
- Xiangjiang Laboratory, Changsha 410205, China
| |
Collapse
|
15
|
Zhuang Z, Sun Y, Zhong Y, He Q, Zhang X, Yang C. Visible-Light-Induced Decarboxylative Aminosulfonylation of (Hetero)aryl Carboxylic Oxime Esters. Org Lett 2024; 26:713-718. [PMID: 38214493 DOI: 10.1021/acs.orglett.3c04142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Sulfonamides are important structures in pharmaceuticals, agrochemicals, and organocatalysts, yet the rapid and benign synthesis of these compounds is still a great challenge. Herein we report a photoinduced method for synthesizing sulfonamides from (hetero)aryl carboxylic acid oxime esters. This reaction proceeds via one-pot cascade radical-radical cross-coupling by energy-transfer-mediated photocatalysis. A wide substrate scope including (hetero)aryl substrates and late-stage modification of pharmaceutical molecular entities reveal its generality.
Collapse
Affiliation(s)
- Zhen Zhuang
- State Key Laboratory of Drug Research, Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Yuting Sun
- State Key Laboratory of Drug Research, Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Yuanchen Zhong
- State Key Laboratory of Drug Research, Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Qian He
- State Key Laboratory of Drug Research, Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Xiaofei Zhang
- State Key Laboratory of Drug Research, Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Chunhao Yang
- State Key Laboratory of Drug Research, Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
16
|
Geniller L, Taillefer M, Jaroschik F, Prieto A. Photocatalyzed Amination of Alkyl Halides to Access Primary Amines. J Org Chem 2024; 89:656-664. [PMID: 38061988 DOI: 10.1021/acs.joc.3c02431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
We demonstrate that oxime ester derivatives can be used as both a halogen atom transfer (XAT) agent and an imine source under photocatalytic conditions, allowing the radical amination of alkyl halides, resulting in the formation of a broad scope of imines. Hydrolysis of the latter gives direct access to the corresponding primary amines. Mechanistically, the reaction is believed to proceed through the formation of aryl radical intermediates, which are responsible for the activation of alkyl halides via XAT.
Collapse
Affiliation(s)
- Lilian Geniller
- ICGM, Univ Montpellier, CNRS, ENSCM, 34000 Montpellier, France
| | - Marc Taillefer
- ICGM, Univ Montpellier, CNRS, ENSCM, 34000 Montpellier, France
| | | | - Alexis Prieto
- ICGM, Univ Montpellier, CNRS, ENSCM, 34000 Montpellier, France
| |
Collapse
|
17
|
Niu K, Jiao H, Zhou P, Wang Q. Photoinduced Direct Electron Transfer between Quinoxalin-2(1 H)-ones and Alkyl Carboxylic Acids for C-H Alkylation. Org Lett 2023; 25:8970-8974. [PMID: 38085538 DOI: 10.1021/acs.orglett.3c03449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
The progress of efficient and sustainable approaches for decarboxylative coupling reactions is synthetically appealing due to the structural diversity, lack of toxicity, and widespread commercial accessibility of carboxylic acids. However, the decarboxylation reaction still encounters challenges related to the utilization of oxidants, catalysts, and prefunctionalization conditions. We report herein a mild method that facilitates direct electron transfer between alkyl carboxylic acids and excited-state substrates for C-H alkylation of quinoxalin-2(1H)-ones without the involvement of any catalyst or additive.
Collapse
Affiliation(s)
- Kaikai Niu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255000, People's Republic of China
| | - Haoran Jiao
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Pan Zhou
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| |
Collapse
|
18
|
Xu Y, Wang B, Wang J, Zhou X, Chen J, Guo X, Deng GJ, Shao W. Regioselective Synthesis of Unsymmetrical Vicinal Diamines via Azidoimination of Alkenes with TMSN 3 and Ketimines. Org Lett 2023. [PMID: 37991479 DOI: 10.1021/acs.orglett.3c03642] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
2-Azidoimines are versatile precursors to value-added vicinal unsymmetrical diamines, which are among the most common motifs in biologically active compounds. Herein, we report their operationally simple synthesis through a highly regioselective intermolecular azidoamination of olefins under metal-free conditions. The approach proceeded through azide and iminyl, two differentiated N-centered radicals. The synthetic potential of the protocols was further established via the condensation/amination sequential cascade and chemoselective, orthogonal transformations to access vicinal primary diamines.
Collapse
Affiliation(s)
- Yongzhuo Xu
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R, China
| | - Boqiang Wang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R, China
| | - Jiajia Wang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R, China
| | - Xuan Zhou
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R, China
| | - Jiaxing Chen
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R, China
| | - Xinjia Guo
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R, China
| | - Guo-Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, P. R, China
| | - Wen Shao
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R, China
| |
Collapse
|
19
|
Paulus F, Stein C, Heusel C, Stoffels TJ, Daniliuc CG, Glorius F. Three-Component Photochemical 1,2,5-Trifunctionalizations of Alkenes toward Densely Functionalized Lynchpins. J Am Chem Soc 2023; 145:23814-23823. [PMID: 37852246 DOI: 10.1021/jacs.3c08898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Radical remote 1,n-difunctionalization reactions (n > 2) of alkenes are powerful tools to efficiently introduce functional groups with selected distances into target molecules. Among these reactions, 1,5-difunctionalizations are an important subclass, leading to sought-after scaffolds, but typically suffer from tailored starting materials and strict limitations for the formed functional group in 2-position. Seeking to address these issues and to make radical 1,5-difunctionalizations of alkenes more applicable, we report a novel three-component 1,2,5-trifunctionalization reaction between imine-based bifunctional reagents and two distinct alkenes, driven by visible light energy transfer-catalysis. Key to achieving this selective one-step installation of three different functional groups via the choreographed formation of four bonds was the utilization of a 1,2-boron shift and the rigorous capitalization of radical polarities and stabilities. Thorough mechanistic studies were carried out, and the synthetic utility of the obtained products was demonstrated by various downstream modifications. Notably, in addition to the functionalization of individual functional groups, their interplay gave rise to a unique array of cyclic products.
Collapse
Affiliation(s)
- Fritz Paulus
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Colin Stein
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Corinna Heusel
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Tobias J Stoffels
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Constantin G Daniliuc
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Frank Glorius
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| |
Collapse
|
20
|
Shi C, Guo L, Gao H, Luo M, Zhou X, Yang C, Xia W. Three-Component Aminoheteroarylation of Alkenes via Photoinduced EDA Complex Activation. Org Lett 2023; 25:7661-7666. [PMID: 37844134 DOI: 10.1021/acs.orglett.3c02988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
A catalyst-free approach for the multicomponent aminoheteroarylation reaction of alkenes with N-aminopyridinium salts and heteroarenes is herein described. The reaction shows good functional group tolerance and allows the generation of valuable β-heteroarylethylamines in satisfying yields. In this transformation, N-aminopyridinium salts and heteroarenes are utilized to generate electron donor-acceptor complexes, which undergo a single-electron transfer process upon light irradiation to form key amidyl radicals and heteroaryl radical cations. The amidyl radical is subsequently captured by alkenes, followed by a Minisci-type reaction to yield the desired β-heteroarylamines as products.
Collapse
Affiliation(s)
- Chengcheng Shi
- State Key Laboratory of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Lin Guo
- State Key Laboratory of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Han Gao
- State Key Laboratory of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Mengqi Luo
- State Key Laboratory of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Xiao Zhou
- State Key Laboratory of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Chao Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Wujiong Xia
- State Key Laboratory of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
21
|
Li SS, Jiang YS, Chen LN, Chen DN, Luo XL, Pan CX, Xia PJ. The Merger of Halogen Atom Transfer (XAT) and Energy Transfer Catalysis (EnT) for the Modular 1,2-Iminylalkylation of Diazenes. Org Lett 2023; 25:7009-7013. [PMID: 37708359 DOI: 10.1021/acs.orglett.3c02584] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
The 1,2-iminylalkylation of diazenes using alkyl iodides in combination with an O-benzoyl oxime is reported. In this transformation, O-benzoyl oxime acted as a radical precursor and XAT mediator. In addition to common alkyl iodides, other alkyl iodides such as iodomethane, iodomethane-d3, trifluoroiodomethane, ethyl difluoroiodoacetate, and iodoalkanes containing unprotected hydroxyl and amide groups can also serve as C-radical precursors in the 1,2-iminylalkylation with electrophilic diazenes as radical acceptors.
Collapse
Affiliation(s)
- Shan-Shan Li
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Yu-Shi Jiang
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Li-Ning Chen
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Dan-Na Chen
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Xue-Ling Luo
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Cheng-Xue Pan
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Peng-Ju Xia
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| |
Collapse
|
22
|
Jiang YS, Li SS, Luo XL, Chen LN, Chen DN, Xia PJ. Photoinduced Difunctionalization of Diazenes Enabled by N-N Radical Coupling. Org Lett 2023; 25:6671-6676. [PMID: 37642680 DOI: 10.1021/acs.orglett.3c02533] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
In this study, a metal-free difunctionalization strategy for diazenes was developed using a range of bifunctionalization reagents. This strategy involves a unique N(sp3)-N(sp2) radical coupling between the hydrazine radical and the imine radical. More than 30 triazane core motifs were constructed by installing imines and various functional groups, including alkyl, phenyl, cyanoalkyl, and sulfonyl groups, on both ends of the nitrogen-nitrogen bond of diazenes in an efficient manner.
Collapse
Affiliation(s)
- Yu-Shi Jiang
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, People's Republic of China
| | - Shan-Shan Li
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, People's Republic of China
| | - Xue-Ling Luo
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, People's Republic of China
| | - Li-Ning Chen
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, People's Republic of China
| | - Dan-Na Chen
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, People's Republic of China
| | - Peng-Ju Xia
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, People's Republic of China
| |
Collapse
|