1
|
Birara S, Majumder M, Metre RK. Bis(formazanate) iron(II) complexes as cathode materials for one-compartment H 2O 2 fuel cells. Dalton Trans 2025. [PMID: 39902804 DOI: 10.1039/d4dt03253e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
In this paper, we describe the synthesis of two six-coordinate, pseudo(octahedral) bis(formazanate) Fe(II) complexes based on newly developed redox-active benzothiazole-substituted formazanate ligands. Complexes [FeII(L1)2], 1, and [FeII(L2)2], 2, were synthesized by reacting 1-(benzothiazol-2-yl)-5-phenyl-3-(pyren-1-yl)formazan (L1H) and 1-(benzothiazol-2-yl)-5-(2-benzoyl-4-chlorophenyl)-3-phenylformazan (L2H), respectively, with appropriate Fe(II) precursors at room temperature. The molecular structures of both bis(formazanate) iron complexes were established using single-crystal XRD, and other characterization methods were utilized to further characterize these complexes, as well as the newly synthesized ligands. Furthermore, the cyclic voltammetry studies of these compounds are documented, revealing that both complexes can undergo electrochemical reductions to create anionic and dianionic species. These complexes were further employed as cathodes in one-compartment membrane-less H2O2 fuel cells, operating in 0.5 M H2O2, with nickel foam serving as the anode. The maximum power densities achieved by the designed H2O2 fuel cells for complexes 1 and 2 were 1.88 mW cm-2 and 3.08 mW cm-2, respectively. This study demonstrates the significant potential of formazanate-based compounds in the development of cathode materials for H2O2 fuel cells.
Collapse
Affiliation(s)
- Sunita Birara
- Department of Chemistry, Indian Institute of Technology Jodhpur, Rajasthan-342030, India.
| | - Moumita Majumder
- Department of Chemistry, School of Science and Environmental Studies, Dr. Vishwanath Karad MIT World Peace University, Pune 411038, Maharashtra, India
| | - Ramesh K Metre
- Department of Chemistry, Indian Institute of Technology Jodhpur, Rajasthan-342030, India.
| |
Collapse
|
2
|
Waghela SR, Adalder A, Bhattacharjee J, Mukherjee N, Paul S, Ghorai UK. Electrocatalytic nitrogen reduction to ammonia at low potential using a phenalenyl-based iron(III) complex. Dalton Trans 2024; 53:16154-16158. [PMID: 39320430 DOI: 10.1039/d4dt01745e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
In recent years, electrochemical nitrogen reduction reaction (ENRR) has emerged as a promising alternative for ammonia production in a clean and energy-efficient manner. We reported the remarkable performance of a transition metal-based electrocatalyst, Fe(III)(PLY)3 (where PLY-H = 9-hydroxyphenalenone), for electrochemical NRR. In an acidic electrolyte, Fe(PLY)3 catalyst demonstrates remarkable performance, achieving a high faradaic efficiency (FE) of 43.4% and an impressive ammonia (NH3) yield rate of 99.7 μg h-1 mgcat-1 at -0.2 V compared to a reversible hydrogen electrode (RHE).
Collapse
Affiliation(s)
- Santosh R Waghela
- Department of Industrial and Applied Chemistry, Swami Vivekananda Research Center, Ramakrishna Mission Vidyamandira, Belur Math, Howrah-711202, West Bengal, India.
- Birla Carbon India Private Limited, Technology Laboratory, Navi-Mumbai-Taloja, 410208, India
| | - Ashadul Adalder
- Department of Industrial and Applied Chemistry, Swami Vivekananda Research Center, Ramakrishna Mission Vidyamandira, Belur Math, Howrah-711202, West Bengal, India.
| | - Jayeeta Bhattacharjee
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, West Bengal, India
| | - Nilmadhab Mukherjee
- Department of Industrial and Applied Chemistry, Swami Vivekananda Research Center, Ramakrishna Mission Vidyamandira, Belur Math, Howrah-711202, West Bengal, India.
| | - Sourav Paul
- Department of Industrial and Applied Chemistry, Swami Vivekananda Research Center, Ramakrishna Mission Vidyamandira, Belur Math, Howrah-711202, West Bengal, India.
| | - Uttam Kumar Ghorai
- Department of Industrial and Applied Chemistry, Swami Vivekananda Research Center, Ramakrishna Mission Vidyamandira, Belur Math, Howrah-711202, West Bengal, India.
| |
Collapse
|
3
|
Devassy AMC, Wankhede KD, Kamalakshan A, Mandal S. A robust single compartment peroxide fuel cell using mesoporous antimony doped tin oxide as the cathode material. NANOSCALE 2024; 16:12060-12070. [PMID: 38813765 DOI: 10.1039/d4nr01375a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
To date, metal oxide catalysts have not been explored as cathode materials for robust and high-performance single-compartment H2O2 fuel cells due to significant non-electrochemical disproportionation losses of H2O2 on many metal oxide surfaces. Here, for the first time, we demonstrate an acidic peroxide fuel cell with antimony doped tin oxide as the cathode and widely used Ni foam as the anode material. Our constructed peroxide fuel cell records a superior open circuit potential of nearly 0.82 V and a maximum power density of 0.32 mW cm-2 with high operational stability. The fuel cell performance is further improved by increasing the ionic strength of the electrolyte with the addition of 1 M NaCl, resulting in an increased maximum power density value of 1.1 mW cm-2.
Collapse
Affiliation(s)
| | - Karuna Dagaji Wankhede
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, Tamil Nadu 620015, India.
| | - Adithya Kamalakshan
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, Tamil Nadu 620015, India.
| | - Sarthak Mandal
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, Tamil Nadu 620015, India.
| |
Collapse
|
4
|
Xiang Q, Ye L, Ma L, Sun Z. The Olympicenyl Radical and Its Derivatives. Chempluschem 2024; 89:e202300571. [PMID: 37916655 DOI: 10.1002/cplu.202300571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/02/2023] [Accepted: 11/02/2023] [Indexed: 11/03/2023]
Abstract
The olympicenyl radical (OR) has long been a fascinating spin doublet hydrocarbon radical that evoked theoretical and experimental research interests, but the chemistry of olympicenyl was limited by its inherent instability. Recently, this field was revived by the advent of stable, multi-substituted ORs and the isolation of them in the crystalline phase. In this minireview, we summarize the early studies on the pristine OR, as well as the recent advances on the substituted OR derivatives, heteroatom-containing OR derivatives, and OR-based diradicals and polyradicals. The synthetic chemistry, stabilization strategies, self-association behaviors, reactivities, and applications in the biological field of the abovementioned compounds were discussed.
Collapse
Affiliation(s)
- Qin Xiang
- Department of Chemistry and Haihe Laboratory of Sustainable Chemical Transformations, Tianjin university, Tianjin, 300072, China
| | - Lei Ye
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Lan Ma
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Zhe Sun
- Department of Chemistry and Haihe Laboratory of Sustainable Chemical Transformations, Tianjin university, Tianjin, 300072, China
| |
Collapse
|
5
|
Kamboj N, Dey A, Birara S, Majumder M, Sengupta S, Metre RK. Designing one-compartment H 2O 2 fuel cell using electroactive phenalenyl-based [Fe 2(hnmh-PLY) 3] complex as the cathode material. Dalton Trans 2024; 53:7152-7162. [PMID: 38572846 DOI: 10.1039/d4dt00134f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
The sustainable chemical energy of H2O2 as a fuel and an oxidant in an advantageous single-compartment fuel cell design can be converted into electric energy, which requires molecular engineering to design suitable cathodes for lowering the high overpotential associated with H2O2 reduction. The present work covers the synthesis and structural characterization of a novel cathode material, [FeIII2(hnmh-PLY)3] complex, 1, designed from a PLY-derived Schiff base ligand (E)-9-(2-((2-hydroxynaphthalen-1-yl)methylene)hydrazineyl)-1H-phenalen-1-one, hnmh-PLYH2. Complex 1, when coated on the surface of a glassy carbon electrode (GC-1) significantly catalyzed the reduction of H2O2 in an acidic medium. Therefore, a complex 1 modified glassy carbon electrode was employed in a one-compartment H2O2 fuel cell operated in 0.1 M HCl with Ni foam as the corresponding anode to produce a high open circuit potential (OCP) of 0.65 V and a peak power density (PPD) of 2.84 mW cm-2. CV studies of complex 1 revealed the crucial participation of two Fe(III) centers for initiating H2O2 reduction, and the role of coordinated redox-active PLY units is also highlighted. In the solid state, the π-conjugated network of coordinating (hnmh-PLY) ligands in complex 1 has manifested interesting face-to-face π-π stacking interactions, which have helped the reduction of the complex and facilitated the overall catalytic performance.
Collapse
Affiliation(s)
- Nisha Kamboj
- Department of Chemistry, Indian Institute of Technology Jodhpur, Rajasthan-342030, India.
| | - Ayan Dey
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Jodhpur, Rajasthan-342030, India.
| | - Sunita Birara
- Department of Chemistry, Indian Institute of Technology Jodhpur, Rajasthan-342030, India.
| | - Moumita Majumder
- Department of Chemistry, School of Science and Environmental Studies, Dr Vishwanath Karad MIT World Peace University, Pune, Maharashtra-411038, India.
| | - Srijan Sengupta
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Jodhpur, Rajasthan-342030, India.
| | - Ramesh K Metre
- Department of Chemistry, Indian Institute of Technology Jodhpur, Rajasthan-342030, India.
| |
Collapse
|
6
|
Hashimoto K, Nakazono T, Yamada Y. High Power Density of a Hydrogen Peroxide Fuel Cell Using Cobalt Chlorin Complex Supported on Carbon Nanotubes as a Noncorrosive Anode. Inorg Chem 2024; 63:1347-1355. [PMID: 38178696 DOI: 10.1021/acs.inorgchem.3c03857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Hydrogen peroxide fuel cells (HPFCs) have attracted much attention due to their simple one-compartment structures and high availability under harsh conditions such as an anaerobic environment; however, catalysis improvement is strongly demanded for both anodes and cathodes in terms of activity and durability. Herein, we report the high catalytic activity of CoII chlorin [CoII(Ch)] for hydrogen peroxide (H2O2) oxidation with a low overpotential (0.21 V) compared to that of the CoII phthalocyanine and CoII porphyrin complexes, which have previously been reported as active anode catalysts. Linear sweep voltammograms and differential pulse voltammograms of the CoII complexes (CoIIL) and the corresponding ligands clearly showed that the CoIIIL species are the active species for H2O2 oxidation. Then, one-compartment HPFCs were constructed with CoII(Ch) supported on multiwalled carbon nanotubes (CNTs) as the anode together with FeII3[CoIII(CN)6]2 supported on CNTs as the cathode. The maximum power density of the HPFCs reached 151 μW cm-2 with an open circuit potential of 0.33 V when the coverage of CNT surfaces with CoII(Ch) exceeded ∼60% at the anode.
Collapse
Affiliation(s)
- Kazuki Hashimoto
- Department of Chemistry and Bioengineering, Graduate School of Engineering, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan
| | - Takashi Nakazono
- Research Center for Artificial Photosynthesis (ReCAP), Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan
| | - Yusuke Yamada
- Department of Chemistry and Bioengineering, Graduate School of Engineering, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan
- Research Center for Artificial Photosynthesis (ReCAP), Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan
| |
Collapse
|
7
|
Kamboj N, Dey A, Lama P, Majumder M, Sengupta S, Metre RK. A closed-shell phenalenyl-based dinuclear iron(III) complex as a robust cathode for a one-compartment H 2O 2 fuel cell. Dalton Trans 2023; 52:17163-17175. [PMID: 37877475 DOI: 10.1039/d3dt02975a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Closed-shell phenalenyl (PLY) systems are increasingly becoming more attractive as building blocks for developing promising catalysts and electroactive cathode materials, as they have tremendous potential to accept electrons and participate in redox reactions. Herein, we report a PLY-based dinuclear [FeIII2(hmbh-PLY)3] complex, 1, and its utility as a cathode material in a H2O2 fuel cell. Complex 1 was synthesized from a new Schiff base ligand, (E)-9-(2-(2-hydroxy-3-methoxybenzylidene)hydrazineyl)-1H-phenalen-1-one, hmbh-PLYH2, designed using a PLY precursor, Hz-PLY. The newly derived ligand and complex 1 were characterized by various analytical techniques, including single-crystal X-ray diffraction (SCXRD). The cyclic voltammetry (CV) study revealed that complex 1 undergoes five electron reductions under an applied electric potential. When the electroactive complex 1 was employed as a cathode in a membrane-less one-compartment H2O2 fuel cell, with Ni foam as the corresponding anode, the designed fuel cell exhibited an exceptionally high peak power density (PPD) of 2.41 mW cm-2, in comparison with those of all the previously reported Fe-based molecular complexes. DFT studies were performed to gain reasonable insights into the two-electron catalytic reduction (pathway I) of H2O2 by the Fe-center of complex 1 and to explore the geometries, energetics of the electrocatalyst, reactive intermediates and transition states.
Collapse
Affiliation(s)
- Nisha Kamboj
- Department of Chemistry, Indian Institute of Technology Jodhpur, Rajasthan 342030, India.
| | - Ayan Dey
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Jodhpur, Rajasthan 342030, India.
| | - Prem Lama
- CSIR-Indian Institute of Petroleum, Haridwar Road, Mokhampur, Dehradun 248005, India
| | - Moumita Majumder
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Jodhpur, Rajasthan 342030, India.
| | - Srijan Sengupta
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Jodhpur, Rajasthan 342030, India.
| | - Ramesh K Metre
- Department of Chemistry, Indian Institute of Technology Jodhpur, Rajasthan 342030, India.
| |
Collapse
|
8
|
Kodama T, Uchida K, Nakasuji C, Kishi R, Kitagawa Y, Tobisu M. Open-Shell Germylene Stabilized by a Phenalenyl-Based Ligand. Inorg Chem 2023; 62:7861-7867. [PMID: 37163696 DOI: 10.1021/acs.inorgchem.3c00583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
An open-shell germylene 1 stabilized by a phenalenyl-based bidentate ligand was synthesized and characterized. Because of the high thermal stability originating from spin delocalization over the phenalenyl moiety, it was possible to isolate compound 1 in crystalline form by sublimation at ca. 300 °C. Electron spin resonance (ESR) spectra, crystallographic analysis, theoretical calculations, and reactivities with carbon radicals suggest that the spin of 1 is distributed on the phenalenyl moiety, while 1 reacted with C2Cl6, PhSSPh, and p-benzoquinone at the germanium center to form Ge-E (E = Cl, S, O) bonds. Furthermore, compound 1 is featured by its reactivity as a "formal germylyne", which allows for the formation of three new σ-bonds or one σ-bond with metal complexation on the germanium center.
Collapse
Affiliation(s)
- Takuya Kodama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 561-0871, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| | - Kenta Uchida
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 561-0871, Japan
| | - Chihiro Nakasuji
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531 Japan
| | - Ryohei Kishi
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531 Japan
- Center for Quantum Information and Quantum Biology (QIQB), Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Yasutaka Kitagawa
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531 Japan
- Center for Quantum Information and Quantum Biology (QIQB), Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Toyonaka, Osaka 560-8531, Japan
- Spintronics Research Network Division, Institute for Open and Transdisciplinary Research Initiatives (SRN-OTRI), Toyonaka, Osaka 560-8531, Japan
| | - Mamoru Tobisu
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 561-0871, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
9
|
Kamboj N, Betal A, Majumder M, Sahu S, Metre RK. Redox Switching Behavior in Resistive Memory Device Designed Using a Solution-Processable Phenalenyl-Based Co(II) Complex: Experimental and DFT Studies. Inorg Chem 2023; 62:4170-4180. [PMID: 36848532 DOI: 10.1021/acs.inorgchem.2c04264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
We herein report a novel square-planar complex [CoIIL], which was synthesized using the electronically interesting phenalenyl-derived ligand LH2 = 9,9'-(ethane-1,2-diylbis(azanediyl))bis(1H-phenalen-1-one). The molecular structure of the complex is confirmed with the help of the single-crystal X-ray diffraction technique. [CoIIL] is a mononuclear complex where the Co(II) ion is present in the square-planar geometry coordinated by the chelating bis-phenalenone ligand. The solid-state packing of [CoIIL] complex in a crystal structure has been explained with the help of supramolecular studies, which revealed that the π···π stacking present in the [CoIIL] complex is analogous to the one present in tetrathiafulvalene/tetracyanoquinodimethane charge transfer salt, well-known materials for their unique charge carrier interfaces. The [CoIIL] complex was employed as the active material to fabricate a resistive switching memory device, indium tin oxide/CoIIL/Al, and characterized using the write-read-erase-read cycle. The device has interestingly shown a stable and reproducible switching between two different resistance states for more than 2000 s. Observed bistable resistive states of the device have been explained by corroborating the electrochemical characterizations and density functional theory studies, where the role of the CoII metal center and π-conjugated phenalenyl backbone in the redox-resistive switching mechanism is proposed.
Collapse
Affiliation(s)
- Nisha Kamboj
- Department of Chemistry, Indian Institute of Technology Jodhpur, Rajasthan 342030, India
| | - Atanu Betal
- Department of Physics, Indian Institute of Technology Jodhpur, Rajasthan 342030, India
| | - Moumita Majumder
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Jodhpur, Rajasthan 342030, India
| | - Satyajit Sahu
- Department of Physics, Indian Institute of Technology Jodhpur, Rajasthan 342030, India
| | - Ramesh K Metre
- Department of Chemistry, Indian Institute of Technology Jodhpur, Rajasthan 342030, India
| |
Collapse
|
10
|
Rasaily S, Baruah K, Sharma D, Lepcha P, Biswas S, Biswas AN, Tamang S, Pariyar A. Rationally Designed Manganese-Based Metal-Organic Frameworks as Altruistic Metal Oxide Precursors for Noble Metal-Free Oxygen Reduction Reaction. Inorg Chem 2023; 62:3026-3035. [PMID: 36755399 DOI: 10.1021/acs.inorgchem.2c03707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
The sluggish oxygen reduction reaction (ORR) at the cathode is challenging and hinders the growth of hydrogen fuel cells. Concerning kinetic values, platinum is the best known catalyst for ORR; however, its less abundance, high cost, and corrosive nature warrant the development of low-cost catalysts. We report the hydrothermal synthesis of two novel Mn-based metal-organic frameworks (MOFs), [Mn2(DOT)(H2O)2]n (Mn-SKU-1) and [Mn2(DOT)2(BPY)2(THF)]n (Mn-SKU-2) (DOT = 2,5-dihydroxyterephthalate; BPY = 4,4'-bipyridine). Mn-SKU-1 contains dimeric Mn(II) centers where the two corner-shared MnO6 octahedra fuse to give rise to an infinite Mn2O10 cluster, whereas the two Mn(II) ions coordinate to DOT and BPY moieties to give rise to a pillared structure in Mn-SKU-2 and form a 3D → 3D homo-interpenetration MOF with a twofold interpenetrated net. The pyrolysis of as-synthesized Mn-MOFs at 600 °C under N2 produced exclusively porous α-Mn2O3 composites (PSKU-1 and PSKU-2), with the BET surface area of 90.8 (for PSKU-1) and 179.3 m2 g-1 (for PSKU-2). These mesoporous MOF-derived α-Mn2O3 composites were modified as cathode materials for the electrocatalytic reduction of oxygen. The onset potential for the oxygen reduction reaction was found to be 0.90 V for PSKU-1 and 0.93 V for PSKU-2 versus RHE in 0.1 M KOH solution, with the current density of 4.8 and 6.0 mA cm-2, respectively, at 1600 rpm. Based on the RDE/RRDE results, the electrocatalytic oxygen reduction occurs majorly via the four-electron process. The electrocatalyst PSKU-2 is cheap, easy to use, retains 90% of its activity after 10 h of continuous use, and offers higher recyclability than Pt/C. The onset potential maximum current density and kinetic values (Jk = 11.68 mA cm-2 and Tafel slope = 85.0 mV dec-1) obtained in this work are higher than the values reported for pure Mn2O3.
Collapse
Affiliation(s)
- Sagarmani Rasaily
- Department of Chemistry, School of Physical Sciences, Sikkim University, Gangtok, East Sikkim 737102, India
| | - Khanindram Baruah
- Department of Chemistry, School of Physical Sciences, Sikkim University, Gangtok, East Sikkim 737102, India
| | - Debesh Sharma
- Department of Chemistry, School of Physical Sciences, Sikkim University, Gangtok, East Sikkim 737102, India
| | - Panjo Lepcha
- Department of Chemistry, National Institute of Technology, Ravangla, South Sikkim 737139, India
| | - Sachidulal Biswas
- Department of Chemistry, National Institute of Technology, Ravangla, South Sikkim 737139, India
| | | | - Sudarsan Tamang
- Department of Chemistry, School of Physical Sciences, Sikkim University, Gangtok, East Sikkim 737102, India
| | - Anand Pariyar
- Department of Chemistry, School of Physical Sciences, Sikkim University, Gangtok, East Sikkim 737102, India
| |
Collapse
|
11
|
Ahmed J, Mandal SK. Phenalenyl Radical: Smallest Polycyclic Odd Alternant Hydrocarbon Present in the Graphene Sheet. Chem Rev 2022; 122:11369-11431. [PMID: 35561295 DOI: 10.1021/acs.chemrev.1c00963] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Phenalenyl, a zigzag-edged odd alternant hydrocarbon unit can be found in the graphene nanosheet. Hückel molecular orbital calculations indicate the presence of a nonbonding molecular orbital (NBMO), which originates from the linear combination of atomic orbitals (LCAO) arising from 13 carbon atoms of the phenalenyl molecule. Three redox states (cationic, neutral radical, and anionic) of the phenalenyl-based molecules were attributed to the presence of this NBMO. The cationic state can undergo two consecutive reductions to result in neutral radical and anionic states, stepwise, respectively. The phenalenyl-based radicals were found as crucial building blocks and attracted the attention of various research fields such as organic synthesis, material science, computation, and device physics. From 2012 onward, a strategy was devised using the cationic state of phenalenyl-based molecules and in situ generated phenalenyl radicals, which created a new domain of catalysis. The in situ generated phenalenyl radicals were utilized for the single electron transfer (SET) process resulting in redox catalysis. This emerging range of applications rejuvenates the more than six decades-old phenalenyl chemistry. This review captures such developments ranging from fundamental understanding to multidirectional applications of phenalenyl-based radicals.
Collapse
Affiliation(s)
- Jasimuddin Ahmed
- Department of Chemical Sciences, Indian Institute of Science Education and Research-Kolkata, Mohanpur 741246, India
| | - Swadhin K Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research-Kolkata, Mohanpur 741246, India
| |
Collapse
|
12
|
Dong X, Sun Q, Feng Z, Ruan H, Tang S, Liu M, Zhao Y, Su Y, Wang X. Room‐Temperature
Reversible
σ‐Dimerization
of a Phenalenyl Radical. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xue Dong
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University Nanjing 210023 China
| | - Quanchun Sun
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University Nanjing 210023 China
| | - Zhongtao Feng
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University Nanjing 210023 China
| | - Huapeng Ruan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University Nanjing 210023 China
| | - Shuxuan Tang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University Nanjing 210023 China
| | - Min Liu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University Nanjing 210023 China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University Nanjing 210023 China
| | - Yuanting Su
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| | - Xinping Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University Nanjing 210023 China
| |
Collapse
|
13
|
Anticancer, Antibacterial, Antioxidant, and DNA-Binding Study of Metal-Phenalenyl Complexes. Bioinorg Chem Appl 2022; 2022:8453159. [PMID: 35464734 PMCID: PMC9023202 DOI: 10.1155/2022/8453159] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 03/12/2022] [Indexed: 11/24/2022] Open
Abstract
Phenalenyl (PLY)-based metal complexes are a new addition to the metal complex family. Various applications of metal-based phenalenyl complexes (metal-PLY) have been reported, such as catalyst, quantum spin simulators, spin electronic devices, and molecular conductors, but the biological significance of metal-PLY (metal = Co(II), Mn(III), Ni(II), Fe(III), and Al(III)) systems has yet to be explored. In this study, the anticancer properties of such complexes were investigated in ovarian cancer cells (SKOV3 and HEY A8), and the cytotoxicity was comparable to that of other platinum-based drugs. Antibacterial activity of the metal-PLY complexes against both gram-negative (E. coli) and gram-positive (S. aureus) bacteria was studied using a disk diffusion test and minimum inhibitory concentration (MIC) methods. All five metal-PLY complexes showed significant antibacterial activity against both bacterial strains. The antioxidant properties of metal-PLY complexes were evaluated following the 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging method and were acceptable. The DNA-binding properties of these metal-PLY complexes were investigated using absorption spectroscopy, fluorescence spectroscopy, viscosity measurements, and thermal denaturation methods. Experimental evidence revealed that the complexes bind to DNA through intercalation, and the molecular docking study supported this conclusion.
Collapse
|
14
|
Banik A, Mandal SK. Tuning Redox States of Phenalenyl-Based Molecules by Consecutive Reduction toward Transition Metal-Free Heck-Type C–C Cross-Coupling. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ananya Banik
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
| | - Swadhin K. Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
| |
Collapse
|
15
|
Li DJ, Gao F, Xu H. Dimerization of the BNB/NBN Bond Embedded Phenalenyls. NEW J CHEM 2022. [DOI: 10.1039/d1nj06166f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two plane-like molecules 1 and 2 were designed and characterized by the introduction of BNB or NBN bonds into the plane phenalenyl. The ocalized molecular orbital (LMO) analysis show three...
Collapse
|
16
|
Gao FW, Li SB, Xu HL, Su ZM. Periodic B- and N-doped phenalenyl π-aggregates: unexpected nonlinear optical properties by tuning pancake π-π bonding. Phys Chem Chem Phys 2021; 23:23998-24003. [PMID: 34664046 DOI: 10.1039/d1cp03540a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Phenalenyl (PLY) and its derivatives could form one-dimensional π-aggregates through pancake π-π bonding, which would lead to exotic optoelectronic properties. We will highlight the key aspects of the PLY derivatives from the design strategies to exploration of the electronic properties. Here, we primarily construct alternating boron (B)- and nitrogen (N)-doped PLY π-aggregates: dimer[12], trimer[12-1], trimer[12-2], tetramer[12]2, pentamer[12]2-1, pentamer[12]2-2, and hexamer[12]3. The geometric and electronic structures show that the short intermolecular distances of the π-aggregates drive the formation of pancake π-π bonding. Significantly, the molecular structures show periodic changes in the π-aggregates, but the first hyperpolarizabilities (βtot) present unexpected changes, which are found to increase sharply with increasing even layer thickness due to intermolecular charge transfer. The βtot value of hexamer[12]3 (5.72 × 104 a.u.) is 6.4 times that of tetramer[12]2 (8.95 × 103 a.u.), and is 22.4 times that of dimer[12] (2.55 × 103 a.u.). Thus, constructing π-aggregates can significantly improve the second-order NLO response, which is mainly due to intermolecular charge transfer through pancake π-π bonding of the interlayers.
Collapse
Affiliation(s)
- Feng-Wei Gao
- School of Chemistry & Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, People's Republic of China. .,Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Changchun, 130022, People's Republic of China
| | - Shi-Bin Li
- School of Chemistry & Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, People's Republic of China.
| | - Hong-Liang Xu
- Institute of Functional Material Chemistry, Department of Chemistry, Northeast Normal University, Changchun, 130024, People's Republic of China.
| | - Zhong-Min Su
- School of Chemistry & Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, People's Republic of China. .,Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Changchun, 130022, People's Republic of China
| |
Collapse
|
17
|
Butsch K, Haseloer A, Schmitz S, Ott I, Schur J, Klein A. Fe III, Cu II and Zn II Complexes of the Rigid 9-Oxido-phenalenone Ligand-Spectroscopy, Electrochemistry, and Cytotoxic Properties. Int J Mol Sci 2021; 22:3976. [PMID: 33921452 PMCID: PMC8070161 DOI: 10.3390/ijms22083976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/07/2021] [Accepted: 04/07/2021] [Indexed: 01/10/2023] Open
Abstract
The three complexes [Fe(opo)3], [Cu(opo)2], and [Zn(opo)2] containing the non-innocent anionic ligand opo- (opo- = 9-oxido-phenalenone, Hopo = 9-hydroxyphenalonone) were synthesised from the corresponding acetylacetonates. [Zn(opo)2] was characterised using 1H nuclear magnetic resonance (NMR) spectroscopy, the paramagnetic [Fe(opo)3] and [Cu(opo)2] by electron paramagnetic resonance (EPR) spectroscopy. While the EPR spectra of [Cu(opo)2] and [Cu(acac)2] in dimethylformamide (DMF) solution are very similar, a rather narrow spectrum was observed for [Fe(opo)3] in tetrahydrofuran (THF) solution in contrast to the very broad spectrum of [Fe(acac)3] in THF (Hacac = acetylacetone, 2,4-pentanedione; acac- = acetylacetonate). The narrow, completely isotropic signal of [Fe(opo)3] disagrees with a metal-centred S = 5/2 spin system that is observed in the solid state. We assume spin-delocalisation to the opo ligand in the sense of an opo- to FeIII electron transfer. All compounds show several electrochemical opo-centred reduction waves in the range of -1 to -3 V vs. the ferrocene/ferrocenium couple. However, for CuII and FeIII the very first one-electron reductions are metal-centred. Electronic absorption in the UV to vis range are due to π-π* transitions in the opo core, giving Hopo and [Zn(opo)2] a yellow to orange colour. The structured bands ranging from 400 to 500 for all compounds are assigned to the lowest energy π-π* transitions. They show markedly higher intensities and slight shifts for the CuII (brown) and FeIII (red) complexes and we assume admixing metal contributions (MLCT for CuII, LMCT for FeIII). For both complexes long-wavelength absorptions assignable to d-d transitions were detected. Detailed spectroelectrochemical experiments confirm both the electrochemical and the optical assignments. Hopo and the complexes [Cu(opo)2], [Zn(opo)2], and [Fe(opo)3] show antiproliferative activities against HT-29 (colon cancer) and MCF-7 (breast cancer) cell lines in the range of a few µM, comparable to cisplatin under the same conditions.
Collapse
Affiliation(s)
- Katharina Butsch
- Department für Chemie, Institut für Anorganische Chemie, Universität zu Köln, Greinstraße 6, D-50939 Köln, Germany; (K.B.); (A.H.); (S.S.)
| | - Alexander Haseloer
- Department für Chemie, Institut für Anorganische Chemie, Universität zu Köln, Greinstraße 6, D-50939 Köln, Germany; (K.B.); (A.H.); (S.S.)
| | - Simon Schmitz
- Department für Chemie, Institut für Anorganische Chemie, Universität zu Köln, Greinstraße 6, D-50939 Köln, Germany; (K.B.); (A.H.); (S.S.)
| | - Ingo Ott
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstrasse 55, D-38106 Braunschweig, Germany; (I.O.); (J.S.)
| | - Julia Schur
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstrasse 55, D-38106 Braunschweig, Germany; (I.O.); (J.S.)
| | - Axel Klein
- Department für Chemie, Institut für Anorganische Chemie, Universität zu Köln, Greinstraße 6, D-50939 Köln, Germany; (K.B.); (A.H.); (S.S.)
| |
Collapse
|
18
|
Dutta P, Kumari S, Paulraj J, Sharma R, Vijaykumar G, Sankar Das H, P S, Sil S, Mandal SK, Sengupta A, Sarkar A. Phenalenyl based platinum anticancer compounds with superior efficacy: design, synthesis, characterization, and interaction with nuclear DNA. NEW J CHEM 2021. [DOI: 10.1039/d0nj06229d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
New and efficacious phenalenyl based Pt(ii) compounds have been used to design an “easy to use tool” for mechanistic understanding.
Collapse
Affiliation(s)
- Pradip Dutta
- India Innovation Research Center
- Delhi 110092
- India
| | - Smita Kumari
- India Innovation Research Center
- Delhi 110092
- India
| | | | | | - Gonela Vijaykumar
- Department of Chemical Sciences
- Indian Institute of Science Education and Research (IISER)-Kolkata
- Mohanpur-741252
- India
| | - Hari Sankar Das
- Department of Chemical Sciences
- Indian Institute of Science Education and Research (IISER)-Kolkata
- Mohanpur-741252
- India
| | - Sreejyothi P
- Department of Chemical Sciences
- Indian Institute of Science Education and Research (IISER)-Kolkata
- Mohanpur-741252
- India
| | - Swagata Sil
- Department of Chemical Sciences
- Indian Institute of Science Education and Research (IISER)-Kolkata
- Mohanpur-741252
- India
| | - Swadhin K. Mandal
- Department of Chemical Sciences
- Indian Institute of Science Education and Research (IISER)-Kolkata
- Mohanpur-741252
- India
| | | | | |
Collapse
|
19
|
Ahmed J, Datta P, Das A, Jomy S, Mandal SK. Switching between mono and doubly reduced odd alternant hydrocarbon: designing a redox catalyst. Chem Sci 2020; 12:3039-3049. [PMID: 34164073 PMCID: PMC8179390 DOI: 10.1039/d0sc05972b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Since the early Hückel molecular orbital (HMO) calculations in 1950, it has been well known that the odd alternant hydrocarbon (OAH), the phenalenyl (PLY) system, can exist in three redox states: closed shell cation (12π e−), mono-reduced open shell neutral radical (13π e−) and doubly reduced closed shell anion (14π e−). Switching from one redox state of PLY to another leads to a slight structural change owing to its low energy of disproportionation making the electron addition or removal process facile. To date, mono-reduced PLY based radicals have been extensively studied. However, the reactivity and application of doubly reduced PLY species have not been explored so far. In this work, we report the synthesis of the doubly reduced PLY species (14π e−) and its application towards the development of redox catalysis via switching with the mono-reduced form (13π e−) for aryl halide activation and functionalization under transition metal free conditions without any external stimuli such as heat, light or cathodic current supply. A doubly reduced redox non-innocent phenalenyl based transition metal free catalyst has been designed and utilized in the development of the C–C cross coupling reaction through the activation of aryl halides at room temperature.![]()
Collapse
Affiliation(s)
- Jasimuddin Ahmed
- Department of Chemical Sciences, Indian Institute of Science Education and Research-Kolkata Mohanpur-741246 India
| | - Paramita Datta
- Department of Chemical Sciences, Indian Institute of Science Education and Research-Kolkata Mohanpur-741246 India
| | - Arpan Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research-Kolkata Mohanpur-741246 India
| | - Stephy Jomy
- Department of Chemical Sciences, Indian Institute of Science Education and Research-Kolkata Mohanpur-741246 India .,Department of Chemistry, Indian Institute of Technology Madras Chennai-600036 India
| | - Swadhin K Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research-Kolkata Mohanpur-741246 India
| |
Collapse
|
20
|
Gruber I, Bensch L, Müller TJJ, Janiak C, Dittrich B. Studying the hydrogen atom position in the strong-short intermolecular hydrogen bond of pure and 5-substituted 9-hydroxyphenalenones by invariom refinement and ONIOM cluster computations. Z KRIST-CRYST MATER 2020. [DOI: 10.1515/zkri-2020-0022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Abstract
The solid-state structures of three H-bonded enol forms of 5-substituted 9-hydroxyphenalenones were investigated to accurately determine the H atom positions of the intramolecular hydrogen bond. For this purpose, single-crystal X-ray diffraction (SC-XRD) data were evaluated by invariom-model refinement. In addition, QM/MM computations of central molecules in their crystal environment show that results of an earlier standard independent atom model refinement, which pointed to the presence of a resonance-assisted hydrogen bond in unsubstituted 9-hydroxyphenalone, are misleading: in all our three and the earlier solid-state structures the lowest energy form is that of an asymmetric hydrogen bond (CS form). Apparent differences of results from SC-XRD and other analytical methods are explained.
Collapse
Affiliation(s)
- Irina Gruber
- Institut für Anorganische Chemie und Strukturchemie , Heinrich-Heine-Universität Düsseldorf , Universitätsstraße 1 , 40225 Düsseldorf , Germany
| | - Lisa Bensch
- Institut für Organische Chemie und Makromolekulare Chemie , Heinrich-Heine-Universität Düsseldorf , Universitätsstraße 1 , 40225 Düsseldorf , Germany
| | - Thomas J. J. Müller
- Institut für Organische Chemie und Makromolekulare Chemie , Heinrich-Heine-Universität Düsseldorf , Universitätsstraße 1 , 40225 Düsseldorf , Germany
| | - Christoph Janiak
- Institut für Anorganische Chemie und Strukturchemie , Heinrich-Heine-Universität Düsseldorf , Universitätsstraße 1 , 40225 Düsseldorf , Germany
| | - Birger Dittrich
- Institut für Anorganische Chemie und Strukturchemie , Heinrich-Heine-Universität Düsseldorf , Universitätsstraße 1 , 40225 Düsseldorf , Germany
| |
Collapse
|
21
|
Xiang Q, Guo J, Xu J, Ding S, Li Z, Li G, Phan H, Gu Y, Dang Y, Xu Z, Gong Z, Hu W, Zeng Z, Wu J, Sun Z. Stable Olympicenyl Radicals and Their π-Dimers. J Am Chem Soc 2020; 142:11022-11031. [PMID: 32456437 DOI: 10.1021/jacs.0c02287] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An olympicenyl radical, a spin 1/2 hydrocarbon radical with C2v symmetry and uneven spin distribution, remains elusive despite the considerable theoretical research interest. Herein, we report syntheses of two air-stable olympicenyl radical derivatives, OR1 and OR2, with half-life times (τ1/2) in air-saturated solution of 7 days and 34 days. The high stability was ascribed to kinetic blocking of reactive sites with high spin densities. X-ray crystallographic analysis revealed unique 20-center-2-electron head-to-tail π-dimer structures with intermolecular distances shorter than the sum of van der Waals radius of carbon. The ground state of the π-dimers was found to be singlet, with singlet-triplet energy gaps estimated to be -2.34 kcal/mol and -3.28 kcal/mol for OR1 and OR2, respectively, by variable-temperature electron spin resonance (ESR) spectroscopy. The monomeric radical species were in equilibrium with the π-dimer in solution, and the optical and electrochemical properties of the monomers and π-dimers in solution were investigated by UV-vis-NIR spectroscopy and cyclic voltammetry, revealing a concentration-dependent nature. Theoretical calculations illustrated that upon formation of a π-dimer the local aromaticity of each monomer was enhanced, and spatial ring current between the monomers was present, which resulted in an increment of aromaticity of the interior of the π-dimer.
Collapse
Affiliation(s)
- Qin Xiang
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Jing Guo
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Center for Aggregation-Induced Emission, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jun Xu
- Health Science Platform, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Shuaishuai Ding
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Zhaoyang Li
- School of Materials Science and Engineering, Nankai University, 38 Tongyan Road, Haihe Educational Park, Tianjin 300350, China
| | - Guangwu Li
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Hoa Phan
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Yanwei Gu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Yanfeng Dang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Zhanqiang Xu
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Zongcheng Gong
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Zebing Zeng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Center for Aggregation-Induced Emission, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jishan Wu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Zhe Sun
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| |
Collapse
|
22
|
Govindarajan R, Ahmed J, Swain AK, Mandal SK. Transition-Metal-Free Catalytic Carboalkoxylation of Styrenes at Room Temperature. J Org Chem 2019; 84:13490-13502. [PMID: 31533421 DOI: 10.1021/acs.joc.9b01744] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Herein, we describe the first transition-metal-free catalytic carboalkoxylation of styrenes with aryl diazonium salts by Meerwein addition in the presence of a phenalenyl ligand at room temperature without requiring any light stimulation. This three-component reaction allows facile difunctionalization of styrene derivatives with various alcohols (such as 1, 2, and 3°) as the source of alkoxy group during this transformation. The key intermediates and the transition states involved in this reaction path were unraveled by a series of control experiments coupled with density functional theory calculations. The full mechanistic investigation provides an understanding of the selectivity toward carboalkoxylation (Meerwein arylation addition elimination) in the presence of various alcohols over the simple arylation to multiple bond (Meerwein arylation-elimination) reaction.
Collapse
Affiliation(s)
- R Govindarajan
- Department of Chemical Sciences , Indian Institute of Science Education and Research-Kolkata , Mohanpur 741246 , India
| | - Jasimuddin Ahmed
- Department of Chemical Sciences , Indian Institute of Science Education and Research-Kolkata , Mohanpur 741246 , India
| | - Asim Kumar Swain
- Department of Chemical Sciences , Indian Institute of Science Education and Research-Kolkata , Mohanpur 741246 , India
| | - Swadhin K Mandal
- Department of Chemical Sciences , Indian Institute of Science Education and Research-Kolkata , Mohanpur 741246 , India
| |
Collapse
|
23
|
Bhunia M, Sahoo SR, Shaw BK, Vaidya S, Pariyar A, Vijaykumar G, Adhikari D, Mandal SK. Storing redox equivalent in the phenalenyl backbone towards catalytic multi-electron reduction. Chem Sci 2019; 10:7433-7441. [PMID: 31489166 PMCID: PMC6713874 DOI: 10.1039/c9sc02057h] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 06/07/2019] [Indexed: 12/26/2022] Open
Abstract
Storing and transferring electrons for multi-electron reduction processes are considered to be the key steps in various important chemical and biological transformations. In this work, we accomplished multi-electron reduction of a carboxylic acid via a hydrosilylation pathway where a redox-active phenalenyl backbone in Co(PLY-O,O)2(THF)2, stores electrons and plays a preponderant role in the entire process. This reduction proceeds by single electron transfer (SET) from the mono-reduced ligand backbone leading to the cleavage of the Si-H bond. Several important intermediates along the catalytic reduction reaction have been isolated and well characterized to prove that the redox equivalent is stored in the form of a C-H bond in the PLY backbone via a ligand dearomatization process. The ligand's extensive participation in storing a hydride equivalent has been conclusively elucidated via a deuterium labelling experiment. This is a rare example where the ligand orchestrates the multielectron reduction process leaving only the metal to maintain the conformational requirements and fine tunes the electronics of the catalyst.
Collapse
Affiliation(s)
- Mrinal Bhunia
- Department of Chemical Sciences , Indian Institute of Science Education and Research-Kolkata , Mohanpur-741246 , India .
| | - Sumeet Ranjan Sahoo
- Department of Chemical Sciences , Indian Institute of Science Education and Research-Kolkata , Mohanpur-741246 , India .
| | - Bikash Kumar Shaw
- Department of Chemical Sciences , Indian Institute of Science Education and Research-Kolkata , Mohanpur-741246 , India .
| | - Shefali Vaidya
- Department of Chemical Sciences , Indian Institute of Science Education and Research-Mohali , SAS Nagar-140306 , India .
| | - Anand Pariyar
- Department of Chemical Sciences , Indian Institute of Science Education and Research-Kolkata , Mohanpur-741246 , India .
| | - Gonela Vijaykumar
- Department of Chemical Sciences , Indian Institute of Science Education and Research-Kolkata , Mohanpur-741246 , India .
| | - Debashis Adhikari
- Department of Chemical Sciences , Indian Institute of Science Education and Research-Mohali , SAS Nagar-140306 , India .
| | - Swadhin K Mandal
- Department of Chemical Sciences , Indian Institute of Science Education and Research-Kolkata , Mohanpur-741246 , India .
| |
Collapse
|
24
|
Das S, Das HS, Singh B, Haridasan RK, Das A, Mandal SK. Catalytic Reduction of Nitriles by Polymethylhydrosiloxane Using a Phenalenyl-Based Iron(III) Complex. Inorg Chem 2019; 58:11274-11278. [DOI: 10.1021/acs.inorgchem.9b01377] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shyamal Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research—Kolkata, Mohanpur 741246, India
| | - Hari Sankar Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research—Kolkata, Mohanpur 741246, India
| | - Bhagat Singh
- Department of Chemical Sciences, Indian Institute of Science Education and Research—Kolkata, Mohanpur 741246, India
| | - Rahul Koottanil Haridasan
- Department of Chemical Sciences, Indian Institute of Science Education and Research—Kolkata, Mohanpur 741246, India
| | - Arpan Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research—Kolkata, Mohanpur 741246, India
| | - Swadhin K. Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research—Kolkata, Mohanpur 741246, India
| |
Collapse
|
25
|
Zhong R, Gao F, Xu H, Su Z. Strong Pancake 2e/12c Bond in π‐Stacking Phenalenyl Derivatives Avoiding Bond Conversion. Chemphyschem 2019; 20:1879-1884. [DOI: 10.1002/cphc.201900280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/22/2019] [Indexed: 01/28/2023]
Affiliation(s)
- Rong‐Lin Zhong
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical ChemistryJilin University Changchun 130023 P. R. China
| | - Feng‐Wei Gao
- Institute of Functional Material Chemistry, National & Local United Engineering Laboratory for Power Batteries, Department of ChemistryNortheast Normal University Changchun 130024 P. R. China
- School of Chemistry & Environmental EngineeringChangchun University of Science and Technology Changchun 130012 P. R. China
| | - Hong‐Liang Xu
- Institute of Functional Material Chemistry, National & Local United Engineering Laboratory for Power Batteries, Department of ChemistryNortheast Normal University Changchun 130024 P. R. China
| | - Zhong‐Min Su
- Institute of Functional Material Chemistry, National & Local United Engineering Laboratory for Power Batteries, Department of ChemistryNortheast Normal University Changchun 130024 P. R. China
- School of Chemistry & Environmental EngineeringChangchun University of Science and Technology Changchun 130012 P. R. China
| |
Collapse
|
26
|
Wahl IM, Westphal E, Leyser da Costa Gouveia T, Santana FS, Hughes DL, Ribeiro RR, Piccoli LHR, Winnischofer H. Methyl Ester Functionalized Phenalenyl Arene- and Bipyridine-Ruthenium-Based Complexes for Electroactive Langmuir-Blodgett Films. Inorg Chem 2019; 58:8408-8418. [PMID: 31247853 DOI: 10.1021/acs.inorgchem.9b00530] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report the synthesis of a new phenalenyl ligand, functionalized with a methyl ester electron withdrawing group, named 9-hydroxy-1-oxo-1 H-phenalen-5-methyl carboxylate (L), and the generated complexes [Ru(bpy)2L]PF6 and [(η6-C6H6)Ru(L)Cl]. Compounds were characterized by spectroscopic and X-ray diffraction methods, and their electrochemical behavior was investigated via cyclic voltammetry and UV-vis spectroelectrochemistry. The one-electron oxidized compounds have an unpaired electron located in the phenalenyl ring, as supported by theoretical calculations (DFT) and EPR results. Langmuir-Blodgett (LB) films deposited by [Ru(bpy)2L]2+/3+ species mixed with stearic acid are electroactive, showing a quasi-reversible wave with E1/2Film1 = 0.74 V and E1/2Film2 = 0.81, which are promising systems that allow access to immobilized open-shell species in the film.
Collapse
Affiliation(s)
- Isis Mani Wahl
- Departamento de Química , Universidade Federal do Paraná , 81530-900 , Curitiba - Paraná , Brazil
| | - Eduard Westphal
- Departamento Acadêmico de Química e Biologia , Universidade Tecnológica Federal do Paraná , 81280-340 , Curitiba - Paraná , Brazil
| | | | - Francielli Sousa Santana
- Departamento de Química , Universidade Federal do Paraná , 81530-900 , Curitiba - Paraná , Brazil
| | - David L Hughes
- School of Chemistry , University of East Anglia , Norwich NR4 7TJ , United Kingdom
| | - Ronny R Ribeiro
- Departamento de Química , Universidade Federal do Paraná , 81530-900 , Curitiba - Paraná , Brazil
| | | | - Herbert Winnischofer
- Departamento de Química , Universidade Federal do Paraná , 81530-900 , Curitiba - Paraná , Brazil
| |
Collapse
|
27
|
Stekovic D, Bag P, Shankhari P, Fokwa BPT, Itkis ME. Effect of Substitution on the Hysteretic Phase Transition in a Bistable Phenalenyl-Based Neutral Radical Molecular Conductor. Chemistry 2019; 25:4166-4174. [PMID: 30588670 DOI: 10.1002/chem.201805816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Indexed: 11/10/2022]
Abstract
The ability to tune the physical properties of bistable organic functional materials by means of chemistry can facilitate their development for molecular electronic switching components. The butylamine-containing biphenalenyl boron neutral radical, [Bu]2 B, crystalline compound has recently attracted significant attention by displaying a hysteretic phase transition accompanied by simultaneous bistability in magnetic, electrical, and optical properties close to room temperature. In this report, substitutional doping was applied to [Bu]2 B by crystallizing solid solutions of bistable [Bu]2 B and its non-radical-containing counterpart [Bu]2 Be. With increasing doping degree, the hysteretic phase transition is gradually suppressed in terms of reducing the height, but conserves the width of the hysteresis loop as observed through magnetic susceptibility and electrical conductivity measurements. At the critical doping level of about 6 %, the abrupt transformation of the crystal structure to that of the pure [Bu]2 Be crystal packing was observed, accompanied by a complete collapse of the hysteresis loop. Further study of the structure-properties relationships of bistable neutral radical conductors based on the [Bu]2 B host can be conducted utilizing a variety of biphenalenyl-based molecular conductors.
Collapse
Affiliation(s)
- Dejan Stekovic
- Department of Chemistry, University of California, Riverside, Riverside, CA, 92521, USA.,Center for Nanoscale Science and Engineering, University of California, Riverside, Riverside, CA, 92521, USA
| | - Pradip Bag
- Department of Chemistry, University of California, Riverside, Riverside, CA, 92521, USA.,Center for Nanoscale Science and Engineering, University of California, Riverside, Riverside, CA, 92521, USA
| | - Pritam Shankhari
- Department of Chemistry, University of California, Riverside, Riverside, CA, 92521, USA
| | - Boniface P T Fokwa
- Department of Chemistry, University of California, Riverside, Riverside, CA, 92521, USA.,Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA, 92521, USA
| | - Mikhail E Itkis
- Department of Chemistry, University of California, Riverside, Riverside, CA, 92521, USA.,Center for Nanoscale Science and Engineering, University of California, Riverside, Riverside, CA, 92521, USA.,Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA, 92521, USA
| |
Collapse
|
28
|
Vijaykumar G, Bhunia M, Mandal SK. A phenalenyl-based nickel catalyst for the hydroboration of olefins under ambient conditions. Dalton Trans 2019; 48:5779-5784. [PMID: 30976767 DOI: 10.1039/c9dt00468h] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In this report, nickel-catalyzed hydroboration of vinylarenes and aliphatic alkenes is investigated. The non-innocent phenalenyl ligand moiety in the nickel complex Ni(PLY)2(THF)2 (1) was utilized as an electron reservoir for the selective hydroboration reaction in the presence of pinacolborane under ambient conditions. The mechanistic investigations revealed that the alkene hydroboration reaction takes place through a single electron transfer (SET) from the phenalenyl ligand backbone leading to the cleavage of the B-H bond.
Collapse
Affiliation(s)
- Gonela Vijaykumar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India.
| | | | | |
Collapse
|
29
|
Vardhanapu PK, Ahmed J, Jose A, Shaw BK, Sen TK, Mathews AA, Mandal SK. Phenalenyl Based Aluminum Compound for Catalytic C-H Arylation of Arene and Heteroarenes at Room Temperature. J Org Chem 2018; 84:289-299. [PMID: 30507198 DOI: 10.1021/acs.joc.8b02699] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Main group metal based catalysis has been considered to be a cost-effective alternative way to the transition metal based catalysis, due to the high abundance of main group metals in the Earth's crust. Among the main group metals, aluminum is the most abundant (7-8%) in the Earth's crust, making the development of aluminum based catalysts very attractive. So far, aluminum based compounds have been popularly used as Lewis acids in a variety of organic reactions, but chemical transformation demanding a redox based process has never utilized an Al(III) complex as a catalyst. Herein, we tuned the redox noninnocence behavior of a phenalenyl ligand by coupling with Al(III) ion, which subsequently can store the electron upon reduction with K to carry out direct C-H arylation of heteroarenes/mesitylene at ambient temperature. A mechanistic investigation revealed that a three-electron reduced phenalenyl based triradical aluminum(III) complex plays the key role in such catalysis. The electronic structure of the catalytically active triradical species has been probed using EPR spectroscopy, magnetic susceptibility measurements, and electronic structure calculations using a DFT method.
Collapse
Affiliation(s)
- Pavan K Vardhanapu
- Department of Chemical Sciences , Indian Institute of Science Education and Research-Kolkata , Mohanpur - 741246 , India
| | - Jasimuddin Ahmed
- Department of Chemical Sciences , Indian Institute of Science Education and Research-Kolkata , Mohanpur - 741246 , India
| | - Anex Jose
- Department of Chemical Sciences , Indian Institute of Science Education and Research-Kolkata , Mohanpur - 741246 , India
| | - Bikash Kumar Shaw
- Department of Chemical Sciences , Indian Institute of Science Education and Research-Kolkata , Mohanpur - 741246 , India
| | - Tamal K Sen
- Department of Chemical Sciences , Indian Institute of Science Education and Research-Kolkata , Mohanpur - 741246 , India
| | - Amita A Mathews
- Department of Chemical Sciences, Loyola College , University of Madras , Nungambakkam, Chennai - 600034 , India
| | - Swadhin K Mandal
- Department of Chemical Sciences , Indian Institute of Science Education and Research-Kolkata , Mohanpur - 741246 , India
| |
Collapse
|
30
|
Singh B, Paira R, Biswas G, Shaw BK, Mandal SK. Graphene oxide-phenalenyl composite: transition metal-free recyclable and catalytic C-H functionalization. Chem Commun (Camb) 2018; 54:13220-13223. [PMID: 30406225 DOI: 10.1039/c8cc05941a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient route towards a heterogeneous transition metal-free catalytic C-H functionalization using a covalently linked graphene oxide-phenalenyl conjugate is described herein (28 examples, which include a core of some biologically relevant biaryl and hetero-biaryls). It is an environmentally benign, economical and heterogeneous platform, whose catalytic activity can easily be regenerated through a simple washing-drying technique and the catalytic activity can be retained even after 10 cycles.
Collapse
Affiliation(s)
- Bhagat Singh
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur-741246, India.
| | | | | | | | | |
Collapse
|
31
|
Chakraborty S, Ahmed J, Shaw BK, Jose A, Mandal SK. An Iron-Based Long-Lived Catalyst for Direct C-H Arylation of Arenes and Heteroarenes. Chemistry 2018; 24:17651-17655. [PMID: 30246421 DOI: 10.1002/chem.201803402] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/06/2018] [Indexed: 11/06/2022]
Abstract
Direct C-H arylation of arenes and heteroarenes to biaryls at ambient temperature has been accomplished using a phenalenyl-supported iron(III) catalyst. The present catalyst requires a chemical reductant such as potassium and functions without any light stimulation. C-H arylation of various heteroarenes including pyridine as well as unactivated arene such as benzene delivered good to excellent yield (28 examples, up to 92 %) at room temperature. A combined effort based on experiments and theoretical calculations established that a phenalenyl-based radical species (generated by chemical reduction of the iron(III) coordinated phenalenyl complex) plays key role during the catalysis. Furthermore, this catalyst displayed remarkable stability during the catalysis, as evident from the fact that it was still usable over ten consecutive catalytic runs without losing its catalytic efficiency.
Collapse
Affiliation(s)
- Soumi Chakraborty
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-, 741246, India
| | - Jasimuddin Ahmed
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-, 741246, India
| | - Bikash Kumar Shaw
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-, 741246, India
| | - Anex Jose
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-, 741246, India
| | - Swadhin K Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-, 741246, India
| |
Collapse
|
32
|
Gao F, Zhong R, Xu H, Su Z. Constructing Stable π‐Dimers: Two Parallel Pancake π–π Bonds. Chemistry 2018; 24:16919-16924. [DOI: 10.1002/chem.201804598] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Feng‐Wei Gao
- Institute of Functional Material Chemistry, National & Local United Engineering Laboratory for Power Batteries Department of Chemistry Northeast Normal University Changchun 130024 P. R. China
| | - Rong‐Lin Zhong
- Institute of Theoretical Chemistry Jilin University Changchun 130023 P. R. China
| | - Hong‐Liang Xu
- Institute of Functional Material Chemistry, National & Local United Engineering Laboratory for Power Batteries Department of Chemistry Northeast Normal University Changchun 130024 P. R. China
| | - Zhong‐Min Su
- Institute of Functional Material Chemistry, National & Local United Engineering Laboratory for Power Batteries Department of Chemistry Northeast Normal University Changchun 130024 P. R. China
- School of Chemistry & Environmental Engineering Changchun University of Science and Technology Changchun 130012 P. R. China
| |
Collapse
|
33
|
Mitra A, Bose S, Biswas S, Bandyopadhyay P, Sarkar A. Design, Synthesis and Photochemical Properties of a Phenalenone-Based pH Sensor: Switchable pH Sensing in Four Detectable Channels. Chempluschem 2018; 83:832-837. [PMID: 31950683 DOI: 10.1002/cplu.201800420] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Indexed: 11/10/2022]
Abstract
The synthesis and pH-sensing property of a novel phenalenone-based compound, 9-(4-hydroxyphenylamino)-1-oxo-phenalenone (HPAP), is reported. The newly synthesized compound is capable of functioning as a pH sensor in the region of pH 7 to 12. The sensor can be used as a colorimetric indicator in the transition from pH 10 to pH 11. The sensor is able to function in four detectable channels. All four channels (UV, emission, colorimetric/visible and photoluminescence) have been shown to be reversible, thus implying the reuse of this single-molecule sensor and indicator for several experiments. Mechanistic investigations have been performed by UV, NMR and DFT studies which indicate that a photoinduced electron transfer (PET) based mechanism could be operative. Straightforward and cost-effective application of the sensor in thin-layer chromatography has also been established.
Collapse
Affiliation(s)
- Amritaa Mitra
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Siliguri 734013, West Bengal, India
| | - Suranjana Bose
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Siliguri 734013, West Bengal, India
| | - Sachidulal Biswas
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Siliguri 734013, West Bengal, India
| | - Pinaki Bandyopadhyay
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Siliguri 734013, West Bengal, India
| | - Arindam Sarkar
- India Innovation Research Centre, 465 Patparganj Industrial Area, Delhi, 110092, India
| |
Collapse
|
34
|
|
35
|
Banik A, Paira R, Shaw BK, Vijaykumar G, Mandal SK. Accessing Heterobiaryls through Transition-Metal-Free C-H Functionalization. J Org Chem 2018; 83:3236-3244. [PMID: 29436824 DOI: 10.1021/acs.joc.8b00140] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Herein we report a transition-metal-free synthetic protocol for heterobiaryls, one of the most important pharmacophores in the modern drug industry, employing a new multidonor phenalenyl (PLY)-based ligand. The current procedure offers a wide substrate scope (24 examples) with a low catalyst loading resulting in an excellent product yield (up to 95%). The reaction mechanism involves a single electron transfer (SET) from a phenalenyl-based radical to generate a reactive heteroaryl radical. To establish the mechanism, we have isolated the catalytically active SET initiator, characterizing by a magnetic study.
Collapse
Affiliation(s)
- Ananya Banik
- Department of Chemical Sciences , Indian Institute of Science Education and Research , Kolkata , Mohanpur 741246 , India
| | - Rupankar Paira
- Department of Chemistry , Maharaja Manindra Chandra College , 20 Ramkanto Bose Street , Kolkata 700003 , India
| | - Bikash Kumar Shaw
- Department of Chemical Sciences , Indian Institute of Science Education and Research , Kolkata , Mohanpur 741246 , India
| | - Gonela Vijaykumar
- Department of Chemical Sciences , Indian Institute of Science Education and Research , Kolkata , Mohanpur 741246 , India
| | - Swadhin K Mandal
- Department of Chemical Sciences , Indian Institute of Science Education and Research , Kolkata , Mohanpur 741246 , India
| |
Collapse
|
36
|
Fukuzumi S, Lee Y, Nam W. Solar‐Driven Production of Hydrogen Peroxide from Water and Dioxygen. Chemistry 2018; 24:5016-5031. [DOI: 10.1002/chem.201704512] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Shunichi Fukuzumi
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 Korea
- Graduate School of Science and Engineering Meijo University, Nagoya Aichi 468-8502 Japan
| | - Yong‐Min Lee
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 Korea
| |
Collapse
|
37
|
Vijaykumar G, Pariyar A, Ahmed J, Shaw BK, Adhikari D, Mandal SK. Tuning the redox non-innocence of a phenalenyl ligand toward efficient nickel-assisted catalytic hydrosilylation. Chem Sci 2018; 9:2817-2825. [PMID: 29732067 PMCID: PMC5914464 DOI: 10.1039/c7sc04687a] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/30/2018] [Indexed: 01/02/2023] Open
Abstract
The hydrosilylation of olefins by a nickel(ii) catalyst assisted by a redox non-innocent phenalenyl (PLY) ligand is reported.
In this report, a ligand-redox assisted catalytic hydrosilylation has been investigated. A phenalenyl ligand coordinated nickel complex has been utilized as an electron reservoir to develop a base metal-assisted catalyst, which very efficiently hydrosilylates a wide variety of olefin substrates under ambient conditions. A mechanistic investigation revealed that a two-electron reduced phenalenyl based biradical nickel complex plays the key role in such catalysis. The electronic structure of the catalytically active biradical species has been interrogated using EPR spectroscopy, magnetic susceptibility measurements, and electronic structure calculations using a DFT method. Inhibition of the reaction by a radical quencher, as well as the mass spectrometric detection of two intermediates along the catalytic loop, suggest that a single electron transfer from the ligand backbone initiates the catalysis. The strategy of utilising the redox reservoir property of the ligand ensures that the nickel is not promoted to an unfavorable oxidation state, and the fine tuning between the ligand and metal redox orbitals elicits smooth catalysis.
Collapse
Affiliation(s)
- Gonela Vijaykumar
- Department of Chemical Sciences , Indian Institute of Science Education and Research-Kolkata , Mohanpur-741246 , India .
| | - Anand Pariyar
- Department of Chemical Sciences , Indian Institute of Science Education and Research-Kolkata , Mohanpur-741246 , India .
| | - Jasimuddin Ahmed
- Department of Chemical Sciences , Indian Institute of Science Education and Research-Kolkata , Mohanpur-741246 , India .
| | - Bikash Kumar Shaw
- Department of Chemical Sciences , Indian Institute of Science Education and Research-Kolkata , Mohanpur-741246 , India .
| | - Debashis Adhikari
- Department of Chemical Sciences , Indian Institute of Science Education and Research Mohali , SAS Nagar 140306 , India .
| | - Swadhin K Mandal
- Department of Chemical Sciences , Indian Institute of Science Education and Research-Kolkata , Mohanpur-741246 , India .
| |
Collapse
|
38
|
Hazari AS, Paretzki A, Fiedler J, Zalis S, Kaim W, Lahiri GK. Different manifestations of enhanced π-acceptor ligation at every redox level of [Os(9-OP)L 2] n, n = 2+, +, 0, - (9-OP - = 9-oxidophenalenone and L = bpy or pap). Dalton Trans 2018; 45:18241-18251. [PMID: 27801461 DOI: 10.1039/c6dt03764j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The title complexes were isolated as structurally characterised compounds [OsII(9-OP)L2]ClO4, L = 2,2'-bipyridine (bpy) or 2-phenylazopyridine (pap), and were compared with ruthenium analogues. A reversible one-electron oxidation and up to three reduction processes were observed by voltammetry (CV, DPV) and spectroelectrochemistry (UV-vis-NIR, partially EPR). Supporting calculations (DFT, TD-DFT) were used to assess the oxidation state combinations of the different redox active ligands and of the metal, revealing the effects of Os versus Ru exchange and of bpy versus pap acceptor ligation. Several unexpected consequences of these variations were observed for members of the new osmium-containing redox series. Remarkably, the EPR results exhibit a clear dichotomy between the complex ion [OsIII(9-OP-)(bpy)2]2+ and the radical species [OsII(9-OP˙)(pap)2]2+, which has not been similarly observed for the analogous [RuIII(9-OP-)L2]2+ systems. This difference, unprecedented for 5dn systems, is attributed to the superior stabilisation of the OsII state by the strongly π-accepting pap ligands. The reduced forms [OsII(9-OP-)(pap˙-)(pap)] and [OsII(9-OP-)(pap˙-)2]- exhibit strong inter-ligand interactions, leading to spin isomers and electron hopping.
Collapse
Affiliation(s)
- Arijit Singha Hazari
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Alexa Paretzki
- Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70550 Stuttgart, Germany.
| | - Jan Fiedler
- J. Heyrovský Institute of Physical Chemistry, v.v.i., Academy of Sciences of the Czech Republic, Dolejskova 3, CZ-18223 Prague, Czech Republic
| | - Stanislav Zalis
- J. Heyrovský Institute of Physical Chemistry, v.v.i., Academy of Sciences of the Czech Republic, Dolejskova 3, CZ-18223 Prague, Czech Republic
| | - Wolfgang Kaim
- Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70550 Stuttgart, Germany.
| | - Goutam Kumar Lahiri
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| |
Collapse
|
39
|
Ahmed J, P S, Vijaykumar G, Jose A, Raj M, Mandal SK. A new face of phenalenyl-based radicals in the transition metal-free C-H arylation of heteroarenes at room temperature: trapping the radical initiator via C-C σ-bond formation. Chem Sci 2017; 8:7798-7806. [PMID: 29163916 PMCID: PMC5674448 DOI: 10.1039/c7sc02661g] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 09/12/2017] [Indexed: 01/02/2023] Open
Abstract
The radical-mediated transition metal-free approach for the direct C-H bond functionalization of arenes is considered as a cost effective alternative to transition metal-based catalysis. An organic ligand-based radical plays a key role by generating an aryl radical which undergoes a subsequent functionalization process. The design principle of the present study takes advantage of a relatively stable odd alternant hydrocarbon-based phenalenyl (PLY) radical. In this study, the first transition metal-free catalyzed direct C-H arylation of a variety of heteroarenes such as azoles, furan, thiophene and pyridine at room temperature has been reported using a phenalenyl-based radical without employing any photoactivation step. This protocol has been successfully applied to the gram scale synthesis of core moieties of bioactive molecules. The phenalenyl-based radical initiator has been characterized crystallographically by trapping it via the formation of a C-C σ-bond between the phenalenyl radical and solvent-based radical species.
Collapse
Affiliation(s)
- Jasimuddin Ahmed
- Department of Chemical Sciences , Indian Institute of Science Education and Research Kolkata , Mohanpur-741246 , Kolkata , India . http://swadhin-mandal.weebly.com/ ;
| | - Sreejyothi P
- Department of Chemical Sciences , Indian Institute of Science Education and Research Kolkata , Mohanpur-741246 , Kolkata , India . http://swadhin-mandal.weebly.com/ ;
| | - Gonela Vijaykumar
- Department of Chemical Sciences , Indian Institute of Science Education and Research Kolkata , Mohanpur-741246 , Kolkata , India . http://swadhin-mandal.weebly.com/ ;
| | - Anex Jose
- Department of Chemical Sciences , Indian Institute of Science Education and Research Kolkata , Mohanpur-741246 , Kolkata , India . http://swadhin-mandal.weebly.com/ ;
| | - Manthan Raj
- Zakir Husain Delhi College , University of Delhi , Delhi-110002 , India
| | - Swadhin K Mandal
- Department of Chemical Sciences , Indian Institute of Science Education and Research Kolkata , Mohanpur-741246 , Kolkata , India . http://swadhin-mandal.weebly.com/ ;
| |
Collapse
|
40
|
Mukherjee A, Sau SC, Mandal SK. Exploring Closed-Shell Cationic Phenalenyl: From Catalysis to Spin Electronics. Acc Chem Res 2017; 50:1679-1691. [PMID: 28665582 DOI: 10.1021/acs.accounts.7b00141] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The odd alternant hydrocarbon phenalenyl (PLY) can exist in three different forms, a closed-shell cation, an open-shell radical, and a closed-shell anion, using its nonbonding molecular orbital (NBMO). The chemistry of PLY-based molecules began more than five decades ago, and so far, the progress has mainly involved the open-shell neutral radical state. Over the last two decades, we have witnessed the evolution of a range of PLY-based radicals generating an array of multifunctional materials. However, it has been admitted that the practical applications of PLY radicals are greatly challenged by the low stability of the open-shell (radical) state. Recently, we took a different route to establish the utility of these PLY molecules using the closed-shell cationic state. In such a design, the closed-shell unit of PLY can readily accept free electrons, stabilizing in its NBMO upon generation of the open-shell state of the molecule. Thus, one can synthetically avoid the unstable open-shell state but still take advantage of this state by in situ generating the radical through external electron transfer or spin injection into the empty NBMO. It is worth noting that such approaches using closed-shell phenalenyl have been missing in the literature. This Account focuses on our recent developments using the closed-shell cationic state of the PLY molecule and its application in broad multidisciplinary areas spanning from catalysis to spin electronics. We describe how this concept has been utilized to develop a variety of homogeneous catalysts. For example, this concept was used in designing an iron(III) PLY-based electrocatalyst for a single-compartment H2O2 fuel cell, which delivered the best electrocatalytic activity among previously reported iron complexes, organometallic catalysts for various homogeneous organic transformations (hydroamination and polymerization), an organic Lewis acid catalyst for the ring opening of epoxides, and transition-metal-free C-H functionalization catalysts. Moreover, this concept of using the empty NBMO present in the closed-shell cationic state of the PLY moiety to capture electron(s) was further extended to an entirely different area of spin electronics to design a PLY-based spin-memory device, which worked by a spin-filtration mechanism using an organozinc compound based on a PLY backbone deposited over a ferromagnetic substrate. In this Account, we summarize our recent efforts to understand how this unexplored closed-shell state of the phenalenyl molecule, which has been known for over five decades, can be utilized in devising an array of materials that not only are important from an organometallic chemistry or organic chemistry point of view but also provide new understanding for device physics.
Collapse
Affiliation(s)
- Arup Mukherjee
- Department
of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts
Avenue, Cambridge, Massachusetts 02139, United States
| | - Samaresh Chandra Sau
- Department
of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
| | - Swadhin K. Mandal
- Department
of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
| |
Collapse
|
41
|
Bensch L, Gruber I, Janiak C, Müller TJJ. 5-(Hetero)aryl-Substituted 9-Hydroxyphenalenones: Synthesis and Electronic Properties of Multifunctional Donor-Acceptor Conjugates. Chemistry 2017; 23:10551-10558. [DOI: 10.1002/chem.201700553] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Indexed: 01/28/2023]
Affiliation(s)
- Lisa Bensch
- Institut für Organische Chemie und Makromolekulare Chemie; Heinrich-Heine-Universität Düsseldorf; Universitätsstraße 1 40225 Düsseldorf Germany
| | - Irina Gruber
- Institut für Anorganische Chemie und Strukturchemie I; Heinrich-Heine-Universität Düsseldorf; Universitätsstraße 1 40225 Düsseldorf Germany
| | - Christoph Janiak
- Institut für Anorganische Chemie und Strukturchemie I; Heinrich-Heine-Universität Düsseldorf; Universitätsstraße 1 40225 Düsseldorf Germany
| | - Thomas J. J. Müller
- Institut für Organische Chemie und Makromolekulare Chemie; Heinrich-Heine-Universität Düsseldorf; Universitätsstraße 1 40225 Düsseldorf Germany
| |
Collapse
|
42
|
Motoyama D, Yoshikawa K, Ozawa H, Tadokoro M, Haga MA. Energy-Storage Applications for a pH Gradient between Two Benzimidazole-Ligated Ruthenium Complexes That Engage in Proton-Coupled Electron-Transfer Reactions in Solution. Inorg Chem 2017; 56:6419-6428. [DOI: 10.1021/acs.inorgchem.7b00518] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Daisuke Motoyama
- Department of Applied
Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27
Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Kai Yoshikawa
- Department of Applied
Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27
Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Hiroaki Ozawa
- Department of Applied
Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27
Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Makoto Tadokoro
- Department of Chemistry,
Faculty of Science, Tokyo University of Science, Kagurazaka 1-3, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Masa-aki Haga
- Department of Applied
Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27
Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| |
Collapse
|
43
|
Fukuzumi S, Yamada Y. Hydrogen Peroxide used as a Solar Fuel in One-Compartment Fuel Cells. ChemElectroChem 2016. [DOI: 10.1002/celc.201600317] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Shunichi Fukuzumi
- Department of Chemistry and Nano Science; Ewha Womans University; Seoul 120-750 Korea
- Faculty of Science and Engineering; Meijo University, ALCA and SENTAN (Japan) Science and Technology Agency (JST); Nagoya Aichi 468-8502 Japan
| | - Yusuke Yamada
- Department of Applied Chemistry and Bioengineering; Graduate, School of Engineering; Osaka City University; 3-3-138 Sugimoto, Sumiyoshi Osaka 558-8585 Japan
| |
Collapse
|
44
|
Paira R, Singh B, Hota PK, Ahmed J, Sau SC, Johnpeter JP, Mandal SK. Open-Shell Phenalenyl in Transition Metal-Free Catalytic C–H Functionalization. J Org Chem 2016; 81:2432-41. [DOI: 10.1021/acs.joc.6b00002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Rupankar Paira
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur-741246, India
| | - Bhagat Singh
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur-741246, India
| | - Pradip Kumar Hota
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur-741246, India
| | - Jasimuddin Ahmed
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur-741246, India
| | - Samaresh Chandra Sau
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur-741246, India
| | - Justin P. Johnpeter
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur-741246, India
| | - Swadhin K. Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur-741246, India
| |
Collapse
|
45
|
Affiliation(s)
| | - Takashi Kubo
- Department of Chemistry, Graduate School of Science, Osaka University
| |
Collapse
|
46
|
Anamimoghadam O, Symes MD, Long DL, Sproules S, Cronin L, Bucher G. Electronically Stabilized Nonplanar Phenalenyl Radical and Its Planar Isomer. J Am Chem Soc 2015; 137:14944-51. [DOI: 10.1021/jacs.5b07959] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Ommid Anamimoghadam
- WestChem, School of Chemistry, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Mark D. Symes
- WestChem, School of Chemistry, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - De-Liang Long
- WestChem, School of Chemistry, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Stephen Sproules
- WestChem, School of Chemistry, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Leroy Cronin
- WestChem, School of Chemistry, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Götz Bucher
- WestChem, School of Chemistry, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| |
Collapse
|
47
|
Bag P, Itkis ME, Stekovic D, Pal SK, Tham FS, Haddon RC. Band Structure Engineering by Substitutional Doping in Solid-State Solutions of [5-Me-PLY(O,O)]2B(1-x)Be(x) Radical Crystals. J Am Chem Soc 2015; 137:10000-8. [PMID: 26235568 DOI: 10.1021/jacs.5b06145] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report the substitutional doping of solid-state spiro-bis(5-methyl-1,9-oxido-phenalenyl)boron radical ([2]2B) by co-crystallization of this radical with the corresponding spiro-bis(5-methyl-1,9-oxido-phenalenyl)beryllium compound ([2]2Be). The pure compounds crystallize in different space groups ([2]2B, P1̅, Z = 2; [2]2Be, P2₁/c, Z = 4) with distinct packing arrangements, yet we are able to isolate crystals of composition [2]2B(1-x)Be(x), where x = 0-0.59. The phase transition from the P1̅ to the P2₁/c space group occurs at x = 0.1, but the conductivities of the solid solutions are enhanced and the activation energies reduced for values of x = 0-0.25. The molecular packing is driven by the relative concentration of the spin-bearing ([2]2B) and spin-free ([2]2Be) molecules in the crystals, and the extended Hückel theory band structures show that the progressive incorporation of spin-free [2]2Be in the lattice of the [2]2B radical (overall bandwidth, W = 1.4 eV, in the pure compound) leads to very strong narrowing of the bandwidth, which reaches a minimum at [2]2Be (W = 0.3 eV). The results provide a graphic picture of the structural transformations undergone by the lattice, and at certain compositions we are able to identify distinct structures for the [2]2B and [2]2Be molecules in a single crystalline phase.
Collapse
|