1
|
Langa F, de la Cruz P, Sharma GD. Organic Solar Cells Based on Non-Fullerene Low Molecular Weight Organic Semiconductor Molecules. CHEMSUSCHEM 2025; 18:e202400361. [PMID: 39240557 DOI: 10.1002/cssc.202400361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/28/2024] [Indexed: 09/07/2024]
Abstract
The development of narrow bandgap A-D-A- and ADA'DA-type non-fullerene small molecule acceptors (NFSMAs) along with small molecule donors (SMDs) have led to significant progress in all-small molecule organic solar cells. Remarkable power conversion efficiencies, nearing the range of 17-18 %, have been realized. These efficiency values are on par with those achieved in OSCs based on polymeric donors. The commercial application of organic photovoltaic technology requires the design of more efficient organic conjugated small molecule donors and acceptors. In recent years the precise tuning of optoelectronic properties in small molecule donors and acceptors has attracted considerable attention and has contributed greatly to the advancement of all-SM-OSCs. Several reviews have been published in this field, but the focus of this review concerns the advances in research on OSCs using SMDs and NFSMAs from 2018 to the present. The review covers the progress made in binary and ternary OSCs, the effects of solid additives on the performance of all-SM-OSCs, and the recently developed layer-by-layer deposition method for these OSCs. Finally, we present our perspectives and a concise outlook on further advances in all-SM-OSCs for their commercial application.
Collapse
Affiliation(s)
- Fernando Langa
- Universidad de Castilla-La Mancha, Instituto de Nanociencia, Nanotecnología y Materiales Moleculares (INAMOL), Campus de la Fábrica de Armas, 45071, Toledo, Spain
| | - Pilar de la Cruz
- Universidad de Castilla-La Mancha, Instituto de Nanociencia, Nanotecnología y Materiales Moleculares (INAMOL), Campus de la Fábrica de Armas, 45071, Toledo, Spain
| | - Ganesh D Sharma
- Department of Physics, The LNM Institute of Information Technology, Jamdoli, Jaipur (Rai), 302031, India
- Department of Electronics and Communication Engineering, The LNM Institute of Information Technology, Jamdoli, Jaipur (Rai), 302031, India
| |
Collapse
|
2
|
Wang Y, Sun K, Li C, Zhao C, Gao C, Zhu L, Bai Q, Xie C, You P, Lv J, Sun X, Hu H, Wang Z, Hu H, Tang Z, He B, Qiu M, Li S, Zhang G. A Novel Upside-Down Thermal Annealing Method Toward High-Quality Active Layers Enables Organic Solar Cells with Efficiency Approaching 20. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2411957. [PMID: 39380380 DOI: 10.1002/adma.202411957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/23/2024] [Indexed: 10/10/2024]
Abstract
The emerging non-fullerene acceptors with low voltage losses have pushed the power conversion efficiency of organic solar cells (OSCs) to ≈20% with auxiliary morphology optimization. Thermal annealing (TA), as the most widely adopted post-treatment method, has been playing an essential role in realizing the potential of various material systems. However, the procedure of TA, i.e., the way that TA is performed, is almost identical among thousands of OSC papers since ≈30 years ago other than changes in temperature and annealing time. Herein, a reverse thermal annealing (RTA) technique is developed, which can enhance the dielectric constant of active layer film, thereby producing a smaller Coulomb capture radius (14.93 nm), meanwhile, forming a moderate nano-scale phase aggregation and a more favorable face-on molecular stacking orientation. Thus, this method can reduce the decline in open circuit voltage of the conventional TA method by achieving decreased radiative (0.334 eV) and non-radiative (0.215 eV) recombination loss. The power conversion efficiency of the RTA PM6:L8-BO-X device increases to 19.91% (certified 19.42%) compared to the TA device (18.98%). It is shown that this method exhibits a superb universality in 4 other material systems, revealing its dramatic potential to be employed in a wide range of OSCs.
Collapse
Affiliation(s)
- Yufei Wang
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, China
| | - Kangbo Sun
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, China
| | - Chao Li
- Department of Chemistry, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Energy Institute and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Chaoyue Zhao
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, China
| | - Chuanlin Gao
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, China
| | - Liangxiang Zhu
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, China
| | - Qing Bai
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, China
| | - Chen Xie
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, China
| | - Peng You
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, China
| | - Jie Lv
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, Shenzhen, 518055, China
| | - Xiaokang Sun
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, Shenzhen, 518055, China
| | - Hanlin Hu
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, Shenzhen, 518055, China
| | - Zhibo Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Huawei Hu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Zeguo Tang
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, China
| | - Bin He
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, China
| | - Mingxia Qiu
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, China
| | - Shunpu Li
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, China
| | - Guangye Zhang
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, China
| |
Collapse
|
3
|
Kornman CT, Das P, Li L, Weldeab AO, Ghiviriga I, Castellano RK. 2-(1,1-Dicyanomethylene)rhodanine-Functionalized Oligothiophenes: A Structure-Property Investigation of Z/ E Photoisomerization Behavior. J Org Chem 2024; 89:13853-13867. [PMID: 39291809 DOI: 10.1021/acs.joc.4c00823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
A series of oligothiophenes singly and doubly functionalized with dicyanorhodanine (RCN) units have been investigated to understand their Z/E photoisomerization behavior upon structural modulation. Monotopic RCN target molecules (1-Z-9-Z) were designed to observe the consequences of π-conjugation, solubilizing group substitution, and formylation of the thiophene units. In all cases, the Z isomer is obtained from synthesis as the thermodynamically stable isomer, whereas the E isomer is achieved through selective irradiation (including red light, λirr = 628 nm) as a Z/E mixture in solution. For the quarterthiophene entries, photoisomerization is inhibited, with photoirradiation resulting only in degradation. The result comports with concentration-dependent studies, which show that increasing π-conjugation results in greater aggregation and muted Z/E photoisomerization. Ditopic RCN targets (10-ZZ-12-ZZ), mimicking acceptor-donor-acceptor (A-D-A) oligomers relevant to OPV materials, also show evidence of photoisomerization in solution, with formation of Z,Z/Z,E mixtures at the photostationary state (PSS). Complementary ground- and excited-state DFT calculations show excellent agreement with the experimental findings. This comprehensive structure-property analysis is expected to both guide and caution the functional materials community with respect to the usage of photoisomerizable RCN-oligothiophenes for optoelectronic applications.
Collapse
Affiliation(s)
- Cory T Kornman
- Department of Chemistry, University of Florida, PO Box 117200, Gainesville, Florida 32611, United States
| | - Parag Das
- Department of Chemistry, University of Florida, PO Box 117200, Gainesville, Florida 32611, United States
| | - Lei Li
- Department of Chemistry, University of Florida, PO Box 117200, Gainesville, Florida 32611, United States
| | - Asmerom O Weldeab
- Department of Chemistry, University of Florida, PO Box 117200, Gainesville, Florida 32611, United States
| | - Ion Ghiviriga
- Department of Chemistry, University of Florida, PO Box 117200, Gainesville, Florida 32611, United States
| | - Ronald K Castellano
- Department of Chemistry, University of Florida, PO Box 117200, Gainesville, Florida 32611, United States
| |
Collapse
|
4
|
Han J, Xu H, Paleti SHK, Sharma A, Baran D. Understanding photochemical degradation mechanisms in photoactive layer materials for organic solar cells. Chem Soc Rev 2024; 53:7426-7454. [PMID: 38869459 DOI: 10.1039/d4cs00132j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Over the past decades, the field of organic solar cells (OSCs) has witnessed a significant evolution in materials chemistry, which has resulted in a remarkable enhancement of device performance, achieving efficiencies of over 19%. The photoactive layer materials in OSCs play a crucial role in light absorption, charge generation, transport and stability. To facilitate the scale-up of OSCs, it is imperative to address the photostability of these electron acceptor and donor materials, as their photochemical degradation process remains a challenge during the photo-to-electric conversion. In this review, we present an overview of the development of electron acceptor and donor materials, emphasizing the crucial aspects of their chemical stability behavior that are linked to the photostability of OSCs. Throughout each section, we highlight the photochemical degradation pathways for electron acceptor and donor materials, and their link to device degradation. We also discuss the existing interdisciplinary challenges and obstacles that impede the development of photostable materials. Finally, we offer insights into strategies aimed at enhancing photochemical stability and discuss future directions for developing photostable photo-active layers, facilitating the commercialization of OSCs.
Collapse
Affiliation(s)
- Jianhua Han
- Materials Science and Engineering Program (MSE), Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | - Han Xu
- Materials Science and Engineering Program (MSE), Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.
| | - Sri Harish Kumar Paleti
- Materials Science and Engineering Program (MSE), Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Göteborg, Sweden
| | - Anirudh Sharma
- Materials Science and Engineering Program (MSE), Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.
| | - Derya Baran
- Materials Science and Engineering Program (MSE), Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.
| |
Collapse
|
5
|
Xie Q, Deng X, Zhao C, Fang J, Xia D, Zhang Y, Ding F, Wang J, Li M, Zhang Z, Xiao C, Liao X, Jiang L, Huang B, Dai R, Li W. Ethylenedioxythiophene-Based Small Molecular Donor with Multiple Conformation Locks for Organic Solar Cells with Efficiency of 19.3 . Angew Chem Int Ed Engl 2024; 63:e202403015. [PMID: 38623043 DOI: 10.1002/anie.202403015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 03/31/2024] [Accepted: 04/15/2024] [Indexed: 04/17/2024]
Abstract
Ternary organic solar cells (T-OSCs) represent an efficient strategy for enhancing the performance of OSCs. Presently, the majority of high-performance T-OSCs incorporates well-established Y-acceptors or donor polymers as the third component. In this study, a novel class of conjugated small molecules has been introduced as the third component, demonstrating exceptional photovoltaic performance in T-OSCs. This innovative molecule comprises ethylenedioxythiophene (EDOT) bridge and 3-ethylrhodanine as the end group, with the EDOT unit facilitating the creation of multiple conformation locks. Consequently, the EDOT-based molecule exhibits two-dimensional charge transport, distinguishing it from the thiophene-bridged small molecule, which displays fewer conformation locks and provides one-dimensional charge transport. Furthermore, the robust electron-donating nature of EDOT imparts the small molecule with cascade energy levels relative to the electron donor and acceptor. As a result, OSCs incorporating the EDOT-based small molecule as the third component demonstrate enhanced mobilities, yielding a remarkable efficiency of 19.3 %, surpassing the efficiency of 18.7 % observed for OSCs incorporating thiophene-based small molecule as the third component. The investigations in this study underscore the excellence of EDOT as a building block for constructing conjugated materials with multiple conformation locks and high charge carrier mobilities, thereby contributing to elevated photovoltaic performance in OSCs.
Collapse
Affiliation(s)
- Qian Xie
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang, 330096, P. R. China
| | - Xiangmeng Deng
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China
| | - Chaowei Zhao
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang, 330096, P. R. China
| | - Jie Fang
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang, 330096, P. R. China
| | - Dongdong Xia
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang, 330096, P. R. China
| | - Yuefeng Zhang
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang, 330096, P. R. China
| | - Feng Ding
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang, 330022, P. R. China
| | - Jiali Wang
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang, 330096, P. R. China
| | - Mengdi Li
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang, 330096, P. R. China
| | - Zhou Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Chengyi Xiao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xunfan Liao
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang, 330022, P. R. China
| | - Lang Jiang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Bin Huang
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China
| | - Runying Dai
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang, 330022, P. R. China
| | - Weiwei Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
6
|
Pashaei B. Improving the performance of perovskite solar cells by extending π-conjugation system. RSC Adv 2024; 14:19083-19089. [PMID: 38895525 PMCID: PMC11184581 DOI: 10.1039/d4ra03173c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024] Open
Abstract
In perovskite solar cells (PSCs), hole transporting materials (HTMs) play a critical role in determining the stability and efficiency of the devices. However, the high cost and complex synthesis processes associated with conventional HTMs can hinder their widespread applications. This work presents a low-cost and efficient HTM, namely N,N'-(naphthalene-1,5-diyl)bis(1-(dibenzo[a,c]phenazin-11-yl)-1-phenylmethanimine) (PEDN), based on a naphthalene core with an extended π-conjugation system for improving the performance of PSCs. The PEDN was synthesized via a facile two-step condensation method, eliminating the need for expensive catalysts such as BINAP. The newly developed HTM with an extended π-conjugation length was compared with BEDN and spiro-OMeTAD as the benchmark HTM, in terms of their optical, electrochemical, hole mobility properties, and efficiency in PSCs. The PEDN showed suitable highest occupied molecular orbital levels (HOMOs), good hole mobilities, as well as strong hydrophobicities. The extended π-conjugation system in PEDN contributes to the stability of the solar cells. The PSCs fabricated with PEDN achieved a high efficiency of 18.61%, comparable to the efficiency obtained using the commonly used HTM spiro-OMeTAD (19.68%). Furthermore, the cost-effectiveness of PEDN makes it a suitable alternative to spiro-OMeTAD for PSC applications.
Collapse
Affiliation(s)
- Babak Pashaei
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Mazandaran Babolsar Iran
| |
Collapse
|
7
|
Zhang L, Deng D, Lu K, Wei Z. Optimization of Charge Management and Energy Loss in All-Small-Molecule Organic Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2302915. [PMID: 37399575 DOI: 10.1002/adma.202302915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/22/2023] [Accepted: 06/29/2023] [Indexed: 07/05/2023]
Abstract
All-small-molecule organic solar cells (ASM-OSCs) have received tremendous attention in recent decades because of their advantages over their polymer counterparts. These advantages include well-defined chemical structures, easy purification, and negligible batch-to-batch variation. Remarkable progress with a power conversion efficiency (PCE) of over 17% has recently been achieved with improved charge management (FF × JSC) and reduced energy loss (Eloss). Morphology control is the key factor in the progress of ASM-OSCs, which remains a significant challenge because of the similarities in the molecular structures of the donors and acceptors. In this review, the effective strategies for charge management and/or Eloss reduction from the perspective of effective morphology control are summarized. The aim is to provide practical insights and guidance for material design and device optimization to promote further development of ASM-OSCs to a level where they can compete with or even surpass the efficiency of polymer solar cells.
Collapse
Affiliation(s)
- Lili Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- Sino-Danish Center for Education and Research, Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dan Deng
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Kun Lu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Zhixiang Wei
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| |
Collapse
|
8
|
Das P, Grinalds NJ, Ghiviriga I, Abboud KA, Dobrzycki Ł, Xue J, Castellano RK. Dicyanorhodanine-Pyrrole Conjugates for Visible Light-Driven Quantitative Photoswitching in Solution and the Solid State. J Am Chem Soc 2024; 146:11932-11943. [PMID: 38629510 DOI: 10.1021/jacs.4c00983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Small molecule photoswitches capable of toggling between two distinct molecular states in response to light are versatile tools to monitor biological processes, control photochemistry, and design smart materials. In this work, six novel dicyanorhodanine-based pyrrole-containing photoswitches are reported. The molecular design avails both the Z and E isomers from synthesis, where each can be isolated using chromatographic techniques. Inter- and intramolecular hydrogen bonding (H-bonding) interactions available to the E and Z isomers, respectively, uniquely impart thermal stability to each isomer over long time periods. Photoisomerization could be assessed by solution NMR and UV-vis spectroscopic techniques along with complementary ground- and excited-state computational studies, which show good agreement. Quantitative E → Z isomerization occurs upon 523 nm irradiation of the parent compound (where R = H) in solution, whereas Z → E isomerization using 404 nm irradiation offers a photostationary state (PSS) ratio of 84/16 (E/Z). Extending the π-conjugation of the pyrrole unit (where R = p-C6H4-OMe) pushes the maximum absorption to the yellow-orange region of the visible spectrum and allows bidirectional quantitative isomerization with 404 and 595 nm excitation. Comparator molecules have been prepared to report how the presence or absence of H-bonding affects the photoswitching behavior. Finally, studies of the photoswitches in neat films and photoinactive polymer matrices reveal distinctive structural and optical properties of the Z and E isomers and ultimately afford reversible photoswitching to spectrally unique PSSs using visible light sources including the Sun.
Collapse
Affiliation(s)
- Parag Das
- Department of Chemistry, University of Florida, P. O. Box 117200, Gainesville, Florida 32611, United States
| | - Nathan J Grinalds
- Department of Materials Science and Engineering, University of Florida, P. O. Box 116400, Gainesville, Florida 32611, United States
| | - Ion Ghiviriga
- Department of Chemistry, University of Florida, P. O. Box 117200, Gainesville, Florida 32611, United States
| | - Khalil A Abboud
- Department of Chemistry, University of Florida, P. O. Box 117200, Gainesville, Florida 32611, United States
| | - Łukasz Dobrzycki
- Department of Chemistry, University of Florida, P. O. Box 117200, Gainesville, Florida 32611, United States
| | - Jiangeng Xue
- Department of Materials Science and Engineering, University of Florida, P. O. Box 116400, Gainesville, Florida 32611, United States
| | - Ronald K Castellano
- Department of Chemistry, University of Florida, P. O. Box 117200, Gainesville, Florida 32611, United States
| |
Collapse
|
9
|
Shoaee S, Luong HM, Song J, Zou Y, Nguyen TQ, Neher D. What We have Learnt from PM6:Y6. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2302005. [PMID: 37623325 DOI: 10.1002/adma.202302005] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/10/2023] [Indexed: 08/26/2023]
Abstract
Over the past three years, remarkable advancements in organic solar cells (OSCs) have emerged, propelled by the introduction of Y6-an innovative A-DA'D-A type small molecule non-fullerene acceptor (NFA). This review provides a critical discussion of the current knowledge about the structural and physical properties of the PM6:Y6 material combination in relation to its photovoltaic performance. The design principles of PM6 and Y6 are discussed, covering charge transfer, transport, and recombination mechanisms. Then, the authors delve into blend morphology and degradation mechanisms before considering commercialization. The current state of the art is presented, while also discussing unresolved contentious issues, such as the blend energetics, the pathways of free charge generation, and the role of triplet states in recombination. As such, this review aims to provide a comprehensive understanding of the PM6:Y6 material combination and its potential for further development in the field of organic solar cells. By addressing both the successes and challenges associated with this system, this review contributes to the ongoing research efforts toward achieving more efficient and stable organic solar cells.
Collapse
Affiliation(s)
- Safa Shoaee
- Optoelectronics of Disordered Semiconductors, Institute of Physics and Astronomy, University of Potsdam, D-14476, Potsdam-Golm, Germany
- Paul-Drude-Institut für Festkörperelektronik, Leibniz-Institut im Forschungsverbund Berlin e.V., 10117, Berlin, Germany
| | - Hoang M Luong
- Centre for Polymers and Organic Solids, University of California, Santa Barbara, CA, 93106, USA
| | - Jiage Song
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| | - Yingping Zou
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| | - Thuc-Quyen Nguyen
- Centre for Polymers and Organic Solids, University of California, Santa Barbara, CA, 93106, USA
| | - Dieter Neher
- Soft Matter Physics and Optoelectronics, Institute of Physics and Astronomy, University of Potsdam, D-14476, Potsdam-Golm, Germany
| |
Collapse
|
10
|
Iftikhar R, Khan FZ, Naeem N. Recent synthetic strategies of small heterocyclic organic molecules with optoelectronic applications: a review. Mol Divers 2024; 28:271-307. [PMID: 36609738 DOI: 10.1007/s11030-022-10597-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 12/31/2022] [Indexed: 01/09/2023]
Abstract
Over the past few years, there have been tremendous developments in the design and synthesis of organic optoelectronic materials with appealing applications in device fabrication of organic light-emitting diodes, superconductors, organic lasers, organic field-effect transistors, clean energy-producing organic solar cells, etc. There is an increasing demand for the synthesis of green, highly efficient organic optoelectronic materials to cope with the issue of efficiency roll-off in organic semiconductor-based devices. This review systematically summarized the recent progress in the design and synthesis of small organic molecules having promising optoelectronic properties for their potential applications in optoelectronic devices during the last 10-year range (2010-early 2021).
Collapse
Affiliation(s)
- Ramsha Iftikhar
- School of Chemistry, University of New South Wales, Sydney, 2055, Australia.
| | - Faiza Zahid Khan
- Faculty of Mathematics and Natural Sciences, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Naila Naeem
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan
| |
Collapse
|
11
|
Zhou L, Feng RR, Zhang W, Gai F. Triple-Bond Vibrations: Emerging Applications in Energy and Biological Sciences. J Phys Chem Lett 2024; 15:187-200. [PMID: 38156972 DOI: 10.1021/acs.jpclett.3c02619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Triple bonds, such as that formed between two carbon atoms (i.e., C≡C) or that formed between one carbon atom and one nitrogen atom (i.e., C≡N), afford unique chemical bonding and hence vibrational characteristics. As such, they are not only frequently used to construct molecules with tailored chemical and/or physical properties but also employed as vibrational probes to provide site-specific chemical and/or physical information at the molecular level. Herein, we offer our perspective on the emerging applications of various triple-bond vibrations in energy and biological sciences with a focus on C≡C and C≡N triple bonds.
Collapse
Affiliation(s)
- Liang Zhou
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875, China
| | - Ran-Ran Feng
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Wenkai Zhang
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875, China
| | - Feng Gai
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
12
|
Aftab S, Liu H, Vikraman D, Hussain S, Kang J, Al-Kahtani AA. Metal oxide-embedded carbon-based materials for polymer solar cells and X-ray detectors. NANOSCALE 2024; 16:765-776. [PMID: 38088682 DOI: 10.1039/d3nr05143a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
This study examines the effects of hybrid nanoparticles made of NiO@rGO (reduced graphene oxide) and NiO@CNT (carbon nanotubes) on PCDTBT and PCBM active layers in glass/ITO/HTL/active-layer/LiF/Al structured bulk heterojunction (BHJ) polymer solar cells (PSCs) and X-ray photodetectors. These hybrid nanoparticles were used to create BHJ solar cells and photodetectors, and microscopic research was conducted to determine how they affect the structure of the devices. The findings show that compared to conventional matrices, the active layers with NiO@rGO and NiO@CNT incorporation have increased the charge carrier capacities and exciton dissociation properties. In order to assess their impact on the characteristics of charge transport, various weight ratios of these hybrid nanoparticles dispersed in polymer junctions are being investigated. Notably, compared to the pure PCDTBT:PCBM active layer (power conversion efficiency (PCE) = 4.35%), the NiO@CNT device has the highest PCE = 6.42% which, among the tested configurations, demonstrates its superior performance in converting sunlight into electricity. Among the tested X-ray detector materials, "NiO@CNT" achieves the best performance with a sensitivity of 1.92 mA Gy-1 cm-2. Through improved interfacial behaviors and effective charge transport, this work highlights the potential of these cutting-edge hybrid nanoparticles to enhance the performance of organic electronic devices.
Collapse
Affiliation(s)
- Sikandar Aftab
- Department of Intelligent Mechatronics Engineering, Sejong University, Seoul 05006, South Korea.
| | - Hailiang Liu
- Department of Electronics and Electrical Engineering, Dankook University, Yongin 16890, Korea
| | - Dhanasekaran Vikraman
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul 04620, Korea
| | - Sajjad Hussain
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul, South Korea
| | - Jungwon Kang
- Department of Electronics and Electrical Engineering, Dankook University, Yongin 16890, Korea
| | - Abdullah A Al-Kahtani
- Chemistry Department, Collage of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
13
|
Zaier R, Martel A, Antosiewicz TJ. Effect of Benzothiadiazole-Based π-Spacers on Fine-Tuning of Optoelectronic Properties of Oligothiophene-Core Donor Materials for Efficient Organic Solar Cells: A DFT Study. J Phys Chem A 2023; 127:10555-10569. [PMID: 38086177 PMCID: PMC10749456 DOI: 10.1021/acs.jpca.3c04866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 12/22/2023]
Abstract
In this work, five novel A-π-D-π-A type molecules D1-D5 were designed by adding unusual benzothiadiazole derivatives as π-spacer blocks to the efficient reference molecule DRCN5T for application as donor materials in organic solar cells (OSCs). Based on a density functional theory approach, a comprehensive theoretical study was performed with different functionals (B3LYP, B3LYP-GD3, B3LYP-GD3BJ, CAM-B3LYP, M06, M062X, and wB97XD) and with different solvent types (PCM and SMD) at the extended basis set 6-311+g(d,p) to evaluate the structural, optoelectronic, and intramolecular charge transfer properties of these molecules. The B3LYP-GD3BJ hybrid functional was used to optimize the studied molecules in CHCl3 solution with the SMD model solvent as it provided the best results compared to experimental data. Transition density matrix maps were simulated to examine the hole-electron localization and the electronic excitation processes in the excited state, and photovoltaic parameters including open-circuit photovoltage and fill factor were investigated to predict the efficiency of these materials. All the designed materials showed promising optoelectronic and photovoltaic characteristics, and for most of them, a red shift. Out of the proposed molecules, [1,2,5]thiadiazolo[3,4-d]pyridazine was selected as a promising π-spacer block to evaluate its interaction with PC61BM in a composite to understand the charge transfer between the donor and acceptor subparts. Overall, this study showed that adding π-spacer building blocks to the molecular structure is undoubtedly a potential strategy to further enhance the performance of donor materials for OSC applications.
Collapse
Affiliation(s)
- Rania Zaier
- Faculty
of Physics, University of Warsaw, Pasteura 5, PL-02-093 Warsaw, Poland
| | - Arnaud Martel
- Institut
des Molécules et Matériaux du Mans, UMR 6283 CNRS-Université du Maine, Avenue Olivier Messiaen, 72085 Cedex Le Mans, France
| | | |
Collapse
|
14
|
El Ghazali A, Aboulouard A, Gultekin B, Tounsi A, El Idrissi M. Theoretical investigation of novel electron donors for bulk heterojunction solar cells with potential photovoltaic characteristics. J Mol Graph Model 2023; 125:108622. [PMID: 37690428 DOI: 10.1016/j.jmgm.2023.108622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/22/2023] [Accepted: 08/31/2023] [Indexed: 09/12/2023]
Abstract
Engineering electronic organic donor materials are one of the most critical steps in producing bulk-heterojunction solar cells (BHJ) with good photovoltaic properties. Compared to standard donor materials, electron donors derived from thiophene have made significant progress as they can be better suited for optoelectronics and are cheaper and more stable. Therefore, the use of new thiophene derivatives (M1-M4) as donor molecules in BHJs has been the subject of this extensive theoretical analysis. Density functional theory (DFT) and time-dependent DFT (TD-DFT) computations have been used to investigate the boundary molecular orbital (FMO) analysis, the density of states analysis, electron and hole reorganization energy, molecular electrostatic potential, global reactivity parameters, and photovoltaic properties. The effects of end-donor modifications on the photovoltaic and electronic characteristics of the new molecules (M1-M4) are investigated. According to the results, the molecules have good optical properties, a small band gap, a perfect open-circuit voltage, and a good alignment energy level between the designated donor molecules and the acceptor phenyl-C61-butyric acid methyl ester (PCBM). These results suggest that further research in this area could enhance the efficacy of organic solar cells.
Collapse
Affiliation(s)
- Ahlam El Ghazali
- ERCAM, Polydisciplinary Faculty, Sultan Moulay Slimane University, Beni-Mellal, Morocco
| | - Abdelkhalk Aboulouard
- Department of Physics, Sultan Moulay Slimane University, Beni-Mellal, Morocco; Department of Engineering Sciences, Izmir Katip Celebi University, Izmir, Turkey; Solar Energy Institute, Ege University, TR-35100, Izmir, Turkey; Graphene Application and Research Center, Izmir Katip Celebi University, Izmir, Turkey.
| | - Burak Gultekin
- Solar Energy Institute, Ege University, TR-35100, Izmir, Turkey
| | - Abdessamad Tounsi
- ERCAM, Polydisciplinary Faculty, Sultan Moulay Slimane University, Beni-Mellal, Morocco
| | - Mohammed El Idrissi
- TCPAM, Polydisciplinary Faculty, Sultan Moulay Slimane University, Beni-Mellal, Morocco.
| |
Collapse
|
15
|
Ji X, Wang T, Fu Q, Liu D, Wu Z, Zhang M, Woo HY, Liu Y. Deciphering the Effects of Molecular Dipole Moments on the Photovoltaic Performance of Organic Solar Cells. Macromol Rapid Commun 2023; 44:e2300213. [PMID: 37230735 DOI: 10.1002/marc.202300213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/11/2023] [Indexed: 05/27/2023]
Abstract
The dielectronic constant of organic semiconductor materials is directly related to its molecule dipole moment, which can be used to guide the design of high-performance organic photovoltaic materials. Herein, two isomeric small molecule acceptors, ANDT-2F and CNDT-2F, are designed and synthesized by using the electron localization effect of alkoxy in different positions of naphthalene. It is found that the axisymmetric ANDT-2F exhibits a larger dipole moment, which can improve exciton dissociation and charge generation efficiencies due to the strong intramolecular charge transfer effect, resulting in the higher photovoltaic performance of devices. Moreover, PBDB-T:ANDT-2F blend film exhibits larger and more balanced hole and electron mobility as well as nanoscale phase separation due to the favorable miscibility. As a result, the optimized device based on axisymmetric ANDT-2F shows a JSC of 21.30 mA cm-2 , an FF of 66.21%, and a power conversion energy of 12.13%, higher than that of centrosymmetric CNDT-2F-based device. This work provides important implications for designing and synthesizing efficient organic photovoltaic materials by tuning their dipole moment.
Collapse
Affiliation(s)
- Xiaofei Ji
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry and Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
- The Interdisciplinary Research Center Shanghai Advanced Research Institute Chinese Academy of Sciences 99 Haike Road, Zhangjiang Hi-Tech Park Pudong, Shanghai, 201210, China
| | - Ting Wang
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry and Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
- Shaanxi Coal Chemical Industry Technology Research Institute Co. LTD, Xi'an, 710076, China
| | - Qiang Fu
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry and Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Dongxue Liu
- Institute of Science and Technology, China Three Gorges Corporation, Beijing, 100038, China
| | - Ziang Wu
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Mingtao Zhang
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry and Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
| | - Han Young Woo
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Yongsheng Liu
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry and Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| |
Collapse
|
16
|
Kuznetsov IE, Piryazev AA, Akhkiamova AF, Sideltsev ME, Anokhin DV, Lolaeva AV, Gapanovich MV, Zamoretskov DS, Sagdullina DK, Klyuev MV, Ivanov DA, Akkuratov AV. Remarkable Enhancement of Hole Mobility of Novel DA-D'-AD Small Molecules by Thermal Annealing: Effect of the D'-Bridge Block. Chemphyschem 2023; 24:e202300310. [PMID: 37560983 DOI: 10.1002/cphc.202300310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/11/2023]
Abstract
Conjugated small molecules are advanced semiconductor materials with attractive physicochemical and optoelectronic properties enabling the development of next-generation electronic devices. The charge carrier mobility of small molecules strongly influences the efficiency of organic and hybrid electronics based on them. Herein, we report the synthesis of four novel small molecules and their investigation with regard to the impact of molecular structure and thermal treatment of films on charge carriers' mobility. The benzodithiophene-containing compounds (BDT) were shown to be more promising in terms of tuning the morphology upon thermal treatment. Impressive enhancement of hole mobilities by more than 50 times was found for annealed films based on a compound M4 comprising triisopropylsilyl-functionalized BDT core. The results provide a favorable experience and strategy for the rational design of state-of-the-art organic semiconductor materials (OSMs) and for improving their charge-transport characteristics.
Collapse
Affiliation(s)
- Ilya E Kuznetsov
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences (FRC PCPMC RAS), Academician Semenov Avenue 1, Chernogolovka, 142432, Russian Federation
| | - Alexey A Piryazev
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences (FRC PCPMC RAS), Academician Semenov Avenue 1, Chernogolovka, 142432, Russian Federation
- Moscow State University, GSP-1, 1 Leninskiye Gory, Moscow, 119991, Russian Federation
- Sirius University of Science and Technology, 1 Olympic Ave, 354340, Sochi, Russian Federation
| | - Azaliia F Akhkiamova
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences (FRC PCPMC RAS), Academician Semenov Avenue 1, Chernogolovka, 142432, Russian Federation
- Moscow State University, GSP-1, 1 Leninskiye Gory, Moscow, 119991, Russian Federation
| | - Maxim E Sideltsev
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences (FRC PCPMC RAS), Academician Semenov Avenue 1, Chernogolovka, 142432, Russian Federation
| | - Denis V Anokhin
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences (FRC PCPMC RAS), Academician Semenov Avenue 1, Chernogolovka, 142432, Russian Federation
- Moscow State University, GSP-1, 1 Leninskiye Gory, Moscow, 119991, Russian Federation
- Sirius University of Science and Technology, 1 Olympic Ave, 354340, Sochi, Russian Federation
| | - Alina V Lolaeva
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences (FRC PCPMC RAS), Academician Semenov Avenue 1, Chernogolovka, 142432, Russian Federation
| | - Mikhail V Gapanovich
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences (FRC PCPMC RAS), Academician Semenov Avenue 1, Chernogolovka, 142432, Russian Federation
- Moscow State University, GSP-1, 1 Leninskiye Gory, Moscow, 119991, Russian Federation
| | - Davlad S Zamoretskov
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences (FRC PCPMC RAS), Academician Semenov Avenue 1, Chernogolovka, 142432, Russian Federation
- Ivanovo State University, Ermaka 39, Ivanovo, 153025, Russian Federation
| | - Diana K Sagdullina
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences (FRC PCPMC RAS), Academician Semenov Avenue 1, Chernogolovka, 142432, Russian Federation
| | - Mikhail V Klyuev
- Ivanovo State University, Ermaka 39, Ivanovo, 153025, Russian Federation
| | - Dimitri A Ivanov
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences (FRC PCPMC RAS), Academician Semenov Avenue 1, Chernogolovka, 142432, Russian Federation
- Moscow State University, GSP-1, 1 Leninskiye Gory, Moscow, 119991, Russian Federation
- Sirius University of Science and Technology, 1 Olympic Ave, 354340, Sochi, Russian Federation
- Institut de Sciences des Matériaux de Mulhouse-IS2M CNRS UMR 7361, 15, rue Jean Starcky, F-68057, Mulhouse, France
| | - Alexander V Akkuratov
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences (FRC PCPMC RAS), Academician Semenov Avenue 1, Chernogolovka, 142432, Russian Federation
| |
Collapse
|
17
|
Huang YC, Cha HC, Huang SH, Li CF, Santiago SRM, Tsao CS. Highly Efficient Flexible Roll-to-Roll Organic Photovoltaics Based on Non-Fullerene Acceptors. Polymers (Basel) 2023; 15:4005. [PMID: 37836054 PMCID: PMC10575468 DOI: 10.3390/polym15194005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
The ability of organic photovoltaics (OPVs) to be deposited on flexible substrates by roll-to-roll (R2R) processes is highly attractive for rapid mass production. Many research teams have demonstrated the great potential of flexible OPVs. However, the fabrication of R2R-coated OPVs is quite limited. There is still a performance gap between the R2R flexible OPVs and the rigid OPVs. In this study, we demonstrate the promising photovoltaic characteristics of flexible OPVs fabricated from blends of low bandgap polymer poly[(2,6-(4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)-benzo[1,2-b:4,5-b']dithiophene))-alt-(5,5-(1',3'-di-2-thienyl-5',7'-bis(2-ethylhexyl)benzo[1',2'-c:4',5'-c']dithiophene-4,8-dione)] (PBDB-T) and non-fullerene 3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:2',3'-d']-s-indaceno[1,2-b:5,6-b']dithiophene (ITIC). We successfully R2R slot-die coated the flexible OPVs with high power conversion efficiency (PCE) of over 8.9% under irradiation of simulated sunlight. Our results indicate that the processing parameters significantly affect the PCE of R2R flexible OPVs. By adjusting the amount of solvent additive and processing temperature, as well as optimizing thermal annealing conditions, the high PCE of R2R slot-die coated OPVs can be obtained. These results provide significant insights into the fundamentals of highly efficient OPVs for the R2R slot-die coating process.
Collapse
Affiliation(s)
- Yu-Ching Huang
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan
- Organic Electronics Research Center, Ming Chi University of Technology, New Taipei City 24301, Taiwan
- Department of Chemical and Materials Engineering, College of Engineering, Chang Gung University, Taoyuan 33302, Taiwan
| | - Hou-Chin Cha
- Institute of Nuclear Energy Research, Taoyuan 32546, Taiwan
| | - Shih-Han Huang
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan
| | - Chia-Feng Li
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan
| | | | - Cheng-Si Tsao
- Institute of Nuclear Energy Research, Taoyuan 32546, Taiwan
- Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
18
|
Hong KI, Kumar A, Garcia AM, Majumder S, Ruiz-Carretero A. Electron spin polarization in supramolecular polymers with complex pathways. J Chem Phys 2023; 159:114903. [PMID: 37712794 DOI: 10.1063/5.0164825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 08/21/2023] [Indexed: 09/16/2023] Open
Abstract
Mastering the manipulation of the electron spin plays a crucial role in comprehending the behavior of organic materials in several applications, such as asymmetric catalysis, chiroptical switches, and electronic devices. A promising avenue for achieving such precise control lies in the Chiral Induced Spin Selectivity (CISS) effect, where electrons with a favored spin exhibit preferential transport through chiral assemblies of specific handedness. Chiral supramolecular polymers emerge as excellent candidates for exploring the CISS effect due to their ability to modulate their helical structure through noncovalent interactions. In this context, systems capable of responding to external stimuli are particularly intriguing, sometimes even displaying chirality inversion. This study unveils spin selectivity in chiral supramolecular polymers, derived from single enantiomers, through scanning tunneling microscopy conducted in scanning tunneling spectroscopy mode. Following two distinct sample preparation protocols for each enantiomer, we generate supramolecular polymers with opposite handedness and specific spin transport characteristics. Our primary focus centers on chiral π-conjugated building blocks, with the aim of advancing novel systems that can inspire the organic spintronics community from a supramolecular chemistry level.
Collapse
Affiliation(s)
- Kyeong-Im Hong
- Institute Charles Sadron, CNRS, UPR22, University of Strasbourg, 23 Rue du Loess, 67034 Strasbourg Cedex 2, France
- Institute for Advanced Study, University of Strasbourg, 5 Allée du Général Rouvillois, F-67083 Strasbourg, France
| | - Abhinandan Kumar
- Department of Physics, National Institute of Technology, Patna 800005, India
| | - Ana M Garcia
- Institute Charles Sadron, CNRS, UPR22, University of Strasbourg, 23 Rue du Loess, 67034 Strasbourg Cedex 2, France
- Institute for Advanced Study, University of Strasbourg, 5 Allée du Général Rouvillois, F-67083 Strasbourg, France
- Instituto Regional de Investigación Científica Aplicada (IRICA), Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain and Faculty of Chemical Science and Technology, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Subrata Majumder
- Department of Physics, National Institute of Technology, Patna 800005, India
| | - Amparo Ruiz-Carretero
- Institute Charles Sadron, CNRS, UPR22, University of Strasbourg, 23 Rue du Loess, 67034 Strasbourg Cedex 2, France
- Institute for Advanced Study, University of Strasbourg, 5 Allée du Général Rouvillois, F-67083 Strasbourg, France
| |
Collapse
|
19
|
Rasool S, Kim JY. Prospects of glove-box versus air-processed organic solar cells. Phys Chem Chem Phys 2023; 25:19337-19357. [PMID: 37462029 DOI: 10.1039/d3cp02591h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
In the search for alternate green energy sources to offset dependence on fossil fuels, solar energy can certainly meet two needs with one deed: fulfil growing global energy demands due to its non-depletable nature and lower greenhouse gas emissions. As such, third generation thin film photovoltaic technology based organic solar cells (OSCs) can certainly play their role in providing electricity at a competing or lower cost than 1st and 2nd generation solar technologies. As OSCs are still at an early stage of research and development, much focus has been placed on improving power conversion efficiencies (PCEs) inside a controlled environment i.e. a glove-box (GB) filled with an inert gas such as N2. This was necessary until now, to control and study the local nanomorphology of the spin-coated blend films. For OSCs to compete with other solar energy technologies, OSCs should produce similar or even better morphologies in an open environment i.e. air, such that air-processed OSCs can result in similar PCEs in comparison to their GB-processed counterparts. In this review, we have compared GB- vs. air-processed OSCs from morphological and device physics aspects and underline the key features of efficient OSCs, processed in either GB or air.
Collapse
Affiliation(s)
- Shafket Rasool
- Graduate School of Carbon Neutrality, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea.
| | - Jin Young Kim
- Graduate School of Carbon Neutrality, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea.
| |
Collapse
|
20
|
Anni M. Investigation of the Origin of High Photoluminescence Quantum Yield in Thienyl-S,S-dioxide AIEgens Oligomers by Temperature Dependent Optical Spectroscopy. Molecules 2023; 28:5161. [PMID: 37446823 DOI: 10.3390/molecules28135161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
The development of organic molecules showing high photoluminescence quantum yield (PLQY) in solid state is a fundamental step for the implementation of efficient light emitting devices. In this work the origin of the high PLQY of two trimers and two pentamers having one central thiophene-S,S-dioxide unit and two and four lateral thiophene or phenyl groups, respectively, is investigated by temperature dependent photoluminescence and time resolved photoluminescence measurements. The experimental results demonstrate that the molecules with lateral phenyl rings show higher PLQY due to a weaker coupling with intramolecular vibrations-related to variations in the radiative and non-radiative decay rates-and indicate different molecular rigidity as the main factors affecting the PLQY of this class of molecules.
Collapse
Affiliation(s)
- Marco Anni
- Dipartimento di Matematica e Fisica "Ennio De Giorgi", Università del Salento, Via per Arnesano, 73100 Lecce, Italy
| |
Collapse
|
21
|
Zeng G, Li H, Tan F, Xin Y, Zhang S. A narrow band gap non-fullerene electron acceptor based on a dithieno-3,2- b:2',3'-dlpyrrole unit for high performance organic solar cells with minimal highest occupied molecular orbital offset. RSC Adv 2023; 13:14703-14711. [PMID: 37197679 PMCID: PMC10183802 DOI: 10.1039/d3ra01021j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/27/2023] [Indexed: 05/19/2023] Open
Abstract
Here, a new narrow band gap non-fullerene small molecular acceptor (NFSMA) based on a dithieno-3,2-b:2',3'-dlpyrrole(DTP) unit, namely SNIC-F, was designed and synthesized. Due to the strong electron-donating ability of the DTP-based fused-ring core, SNIC-F showed a strong intramolecular-charge transfer (ICT) effect and thus gave a narrow band gap of 1.32 eV. Benefiting from the low band gap and efficient charge separation, when pairing with a copolymer PBTIBDTT, the device optimized by 0.5% 1-CN gave a high short circuit current (Jsc) of 19.64 mA cm-2. In addition, a high open-circuit voltage (Voc) of 0.83 V was obtained due to the near 0 eV highest occupied molecular orbital (HOMO) offset between PBTIBDTT and SNIC-F. As a result, a high power conversion efficiency (PCE) of 11.25% was obtained, and the PCE was maintained above 9.2% as the active layer thickness increased from 100 nm to 250 nm. Our work indicated that designing a narrow band gap NFSMA-based DTP unit and blending it with a polymer donor with small HOMO offset is an efficient strategy for achieving high performance OSCs.
Collapse
Affiliation(s)
- Guang Zeng
- School of Electronic and Computer Engineering, Peking University Shenzhen Graduate School Shenzhen 518055 P. R. China
| | - Hanming Li
- School of Electronic and Computer Engineering, Peking University Shenzhen Graduate School Shenzhen 518055 P. R. China
| | - Fang Tan
- Shenzhen China Star Optoelectronics Semiconductor Display Technology Company Ltd Shenzhen 518132 P. R. China
| | - Yue Xin
- School of Applied Physics and Materials, Wuyi University 22 Dongcheng village Jiangmen 529020 P. R. China
| | - Shengdong Zhang
- School of Electronic and Computer Engineering, Peking University Shenzhen Graduate School Shenzhen 518055 P. R. China
| |
Collapse
|
22
|
Ge J, Xie L, Peng R, Ge Z. Organic Photovoltaics Utilizing Small-Molecule Donors and Y-Series Nonfullerene Acceptors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2206566. [PMID: 36482012 DOI: 10.1002/adma.202206566] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/14/2022] [Indexed: 05/19/2023]
Abstract
The emerging Y-series nonfullerene acceptors (Y-NFA) has prompted the rapid progress of power conversion efficiency (PCE) of all-small-molecule organic solar cells (ASM-OSCs) from around 12% to 17%. The excellent PCE improvement benefits from not only the outstanding properties of Y-series acceptors but also the successful development of small-molecule donors. The short-circuit current density, fill factor, and nonradiative recombination are all optimized to the unprecedented values, providing a scenery that is obviously different from the ITIC-series based ASM-OSCs. In this review, OSCs utilizing small-molecule donors and Y-NFA are summarized and classified in order to provide an up-to-date development overview and give an insight on structure-property correlation. Then, the characteristics of bulk-heterojunction (BHJ) formation of ASM-OSCs are discussed and compared with that of polymer-based OSCs. Finally, the challenges and outlook on designing ground-breaking small-molecule donor and forming an ideal BHJ morphology are discussed.
Collapse
Affiliation(s)
- Jinfeng Ge
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Lin Xie
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Ruixiang Peng
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ziyi Ge
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
23
|
Abdullah, Lee SJ, Park JB, Kim YS, Shin HS, Kotta A, Siddiqui QT, Lee YS, Seo HK. Linear-Shaped Low-Bandgap Asymmetric Conjugated Donor Molecule for Fabrication of Bulk Heterojunction Small-Molecule Organic Solar Cells. Molecules 2023; 28:1538. [PMID: 36838527 PMCID: PMC9964613 DOI: 10.3390/molecules28041538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 02/08/2023] Open
Abstract
A linear-shaped small organic molecule (E)-4-(5-(3,5-dimethoxy-styryl)thiophen-2-yl)-7-(5″-hexyl-[2,2':5',2″-terthiophen]-5-yl)benzo[c][1,2,5]thiadiazole (MBTR) comprising a benzothiadiazole (BTD) acceptor linked with the terminal donors bithiophene and dimethoxy vinylbenzene through a π-bridge thiophene was synthesized and analyzed. The MBTR efficiently tuned the thermal, absorption, and emission characteristics to enhance the molecular packing and aggregation behaviors in the solid state. The obtained optical bandgap of 1.86 eV and low-lying highest occupied molecular orbital (HOMO) level of -5.42 eV efficiently lowered the energy losses in the fabricated devices, thereby achieving enhanced photovoltaic performances. The optimized MBTR:PC71BM (1:2.5 w/w%) fullerene-based devices showed a maximum power conversion efficiency (PCE) of 7.05%, with an open-circuit voltage (VOC) of 0.943 V, short-circuit current density (JSC) of 12.63 mA/cm2, and fill factor (FF) of 59.2%. With the addition of 3% 1,8-diiodooctane (DIO), the PCE improved to 8.76% with a high VOC of 1.02 V, JSC of 13.78 mA/cm2, and FF of 62.3%, which are associated with improved charge transport at the donor/acceptor interfaces owing to the fibrous active layer morphology and favorable phase separation. These results demonstrate that the introduction of suitable donor/acceptor groups in molecular design and device engineering is an effective approach to enhancing the photovoltaic performances of organic solar cells.
Collapse
Affiliation(s)
- Abdullah
- Korea Basic Science Institute (KBSI), Jeonju Center, Jeonju 54896, Republic of Korea
| | - Sei-Jin Lee
- Korea Basic Science Institute (KBSI), Jeonju Center, Jeonju 54896, Republic of Korea
| | - Jong Bae Park
- Korea Basic Science Institute (KBSI), Jeonju Center, Jeonju 54896, Republic of Korea
| | - Yang Soo Kim
- Korea Basic Science Institute (KBSI), Jeonju Center, Jeonju 54896, Republic of Korea
| | - Hyung-Shik Shin
- Korea Basic Science Institute (KBSI), Daejeon 34133, Republic of Korea
| | - Ashique Kotta
- School of Chemical Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea
- Future Energy Convergence Core Center, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Qamar Tabrez Siddiqui
- School of Chemical Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Youn-Sik Lee
- School of Chemical Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Hyung-Kee Seo
- School of Chemical Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea
- Future Energy Convergence Core Center, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
24
|
Gao H, Sun Y, Meng L, Han C, Wan X, Chen Y. Recent Progress in All-Small-Molecule Organic Solar Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205594. [PMID: 36449633 DOI: 10.1002/smll.202205594] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 11/09/2022] [Indexed: 06/17/2023]
Abstract
Active layer material plays a critical role in promoting the performance of an organic solar cell (OSC). Small-molecule (SM) materials have the merits of well-defined chemical structures, few batch-to-batch variations, facile synthesis and purification procedures, and easily tuned properties. SM-donor and non-fullerene acceptor (NFA) innovations have recently produced all-small-molecule (ASM) devices with power conversion efficiencies that exceed 17% and approach those of their polymer-based counterparts, thereby demonstrating their great future commercialization potential. In this review, recent progress in both SM donors and NFAs to illustrate structure-property relationships and various morphology-regulation strategies are summarized. Finally, ASM-OSC challenges and outlook are discussed.
Collapse
Affiliation(s)
- Huanhuan Gao
- College of New Energy, Xi'an Shiyou University, Xi'an, 710065, China
| | - Yanna Sun
- Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, China
| | - Lingxian Meng
- School of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application, Henan Innovation Center for Functional Polymer Membrane Materials, Zhengzhou University, Zhengzhou, 450001, China
| | - Chenyang Han
- College of New Energy, Xi'an Shiyou University, Xi'an, 710065, China
| | - Xiangjian Wan
- Key Laboratory of Functional Polymer Materials, State Key Laboratory of Elemento-Organic Chemistry, Centre of Nanoscale Science and Technology, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yongsheng Chen
- Key Laboratory of Functional Polymer Materials, State Key Laboratory of Elemento-Organic Chemistry, Centre of Nanoscale Science and Technology, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
25
|
Patil Y, Butenschön H, Misra R. Tetracyanobutadiene Bridged Push-Pull Chromophores: Development of New Generation Optoelectronic Materials. CHEM REC 2023; 23:e202200208. [PMID: 36202630 DOI: 10.1002/tcr.202200208] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/09/2022] [Indexed: 01/21/2023]
Abstract
This review describes the design strategies used for the synthesis of various tetracyanobutadiene bridged donor-acceptor molecular architectures by a click type [2+2] cycloaddition-retroelectrocyclization (CA-RE) reaction sequence. The photophysical and electrochemical properties of the tetracyanobutadiene bridged molecular architectures based on various moieties including diketopyrrolopyrrole, isoindigo, benzothiadiazole, pyrene, pyrazabole, truxene, boron dipyrromethene (BODIPY), phenothiazine, triphenylamine, thiazole and bisthiazole are summarized. Further, we discuss some important applications of the tetracyanobutadiene bridged derivatives in dye sensitized solar cells, bulk heterojunction solar cells and photothermal cancer therapy.
Collapse
Affiliation(s)
- Yuvraj Patil
- Department of Chemistry, Indian Institute of Technology Indore, Indore, 453552, India.,Present Address: Institut des Sciences Chimiques de Rennes (ISCR) -, Université de Rennes 1, Rennes, 35700, France
| | - Holger Butenschön
- Institut für Organische Chemie, Leibniz Universität Hannover, Schneiderberg 1B, 30167, Hannover, Germany
| | - Rajneesh Misra
- Department of Chemistry, Indian Institute of Technology Indore, Indore, 453552, India
| |
Collapse
|
26
|
Carbazole and Diketopyrrolopyrrole-Based D-A π-Conjugated Oligomers Accessed via Direct C-H Arylation for Opto-Electronic Property and Performance Study. Molecules 2022; 27:molecules27249031. [PMID: 36558164 PMCID: PMC9781591 DOI: 10.3390/molecules27249031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Five carbazole and diketopyrrolopyrrole-based donor-acceptor (D-A) new π-conjugated oligomers (π-COs) with gradually elongated lengths are facilely synthesized via a single pot of direct C-H arylation with merits of atom- and step-economy. The structure-property-performance correlations of these π-COs and their parent polymer are studied in detail by opto-electronic characterizations and bulk heterojunction (BHJ) organic photovoltaic (OPV) devices. It is found that the π-COs having longer lengths enable better performance in OPVs owing to the enhanced intermolecular interaction with the elongation of the conjugations. The above results not only highlight the powerful synthetic strategy here provided, but also reveal that π-COs with unique properties might find promising application in OPVs.
Collapse
|
27
|
Zhong S, Zhu L, Wu S, Li Y, Lin M. Photoactive donor-acceptor conjugated macrocycles: New opportunities for supramolecular chemistry. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
28
|
Song KC, Sung W, Lee DC, Chung S, Lee H, Lee J, Cho S, Cho K. Symmetry-Induced Ordered Assembly of a Naphthobisthiadiazole-Based Nonfused-Ring Electron Acceptor Enables Efficient Organic Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:52233-52243. [PMID: 36355863 DOI: 10.1021/acsami.2c13304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Nonfused-ring electron acceptors (NFREAs) have received increasing attention for use in organic solar cells (OSCs) because of their synthetic simplicity and tunable optical spectra. However, their fundamental molecular interactions and the mechanism by which they govern the property-function relations of OSCs remain elusive. Here, to investigate the effects of the structural symmetry of NFREAs, two acceptor-donor-acceptor'-donor-acceptor (A-D-A'-D-A)-type NFREAs, 2,2'-(((naphtho[1,2-c:5,6-c']bis[1,2,5]thiadiazole-5,10-diylbis(4,4-bis(2-butyloctyl)-4H-cyclopenta[2,1-b:3,4-b']dithiophene-6,2-diyl))bis(methaneylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile (NTz-4F) and 2,2'-(((benzo[c][1,2,5]thiadiazole-4,7-diylbis(4,4-bis(2-ethylhexyl)-4H-cyclopenta[2,1-b:3,4-b']dithiophene-6,2-diyl))bis(methaneylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile (BT-4F), are designed and synthesized. They have different A' cores: NTz-4F has a modified centrosymmetric NTz core, whereas BT-4F has a modified axisymmetric BT core. In pristine films, the NTz-4F, which has a centrosymmetric core, shows substantially enhanced intermolecular interaction and microstructural crystalline ordering compared with BT-4F, which has an axisymmetric core. Even in blends with poly[(2,6-(4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)-benzo[1,2-b:4,5-b']dithiophene))-alt-(5,5-(1',3'-di-2-thienyl-5',7'-bis(2-ethylhexyl)benzo[1',2'-c:4',5'-c']dithiophene-4,8,-dione))] (PBDB-T), NTz-4F retains its highly crystalline structure, whereas BT-4F loses crystalline packing. These changes in NTz-4F result in increased electron transport and suppressed nonradiative voltage loss, resulting in a power conversion efficiency of 9.14% for PBDB-T:NTz-4F vs 7.18% for PBDB-T:BT-4F. This work demonstrates that centrosymmetric-structured cores are promising building blocks for high-performance NFREA-based OSCs.
Collapse
Affiliation(s)
- Kyu Chan Song
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang37673, Korea
| | - Woong Sung
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang37673, Korea
| | - Dong Chan Lee
- Department of Physics and EHSRC, University of Ulsan, Ulsan44610, Korea
| | - Sein Chung
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang37673, Korea
| | - Hansol Lee
- Department of Chemical and Biological Engineering, Gachon University, Seongnam13120, Korea
| | - Jaewon Lee
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon34134, Korea
| | - Shinuk Cho
- Department of Physics and EHSRC, University of Ulsan, Ulsan44610, Korea
| | - Kilwon Cho
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang37673, Korea
| |
Collapse
|
29
|
Oligothiophene-based photovoltaic materials for organic solar cells: rise, plateau, and revival. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
30
|
Ge J, Hong L, Ma H, Ye Q, Chen Y, Xie L, Song W, Li D, Chen Z, Yu K, Zhang J, Wei Z, Huang F, Ge Z. Asymmetric Substitution of End-Groups Triggers 16.34% Efficiency for All-Small-Molecule Organic Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202752. [PMID: 35603901 DOI: 10.1002/adma.202202752] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/27/2022] [Indexed: 06/15/2023]
Abstract
Asymmetric substitution of end-groups is first applied in molecular donors. Three commonly used end-groups of 2-ethylhexyl cyanoacetate (CA), 2-ethylhexyl rhodanine (Reh), and 1H-indene-1,3(2H)-dione (ID) are combined to construct a series of symmetric and asymmetric donors. Correspondingly, the asymmetric donors SM-CA-Reh and SM-CA-ID show largely increased dipole moments (2.14 and 3.39 D, respectively) and enhanced aggregation propensity, as compared to those of symmetric donors of SM-CA, SM-Reh, and SM-ID. Using N3 as acceptor, interestingly, SM-CA-Reh integrates the photovoltaic characteristics of high fill factor (FF) for SM-CA and high short-circuit current density for SM-Reh, and delivers a record power conversion efficiency (PCE) of 16.34% with a high FF of 77.5%, which is much higher than 15.41% for SM-CA and 14.76% for SM-Reh. However, SM-CA-ID and SM-ID give the lower PCE of 8.20% and 2.76%. Characterization results suggest that the π-π interaction mainly dictates the packing morphology of blend films instead of dipole effect or crystallinity. Mono-substitution of Reh facilitates the molecular demixing appropriately but keeps the characteristic of the fine bicontinuous network of SM-CA:N3. SM-CA-Reh:N3 shows more efficient exciton extraction, higher hole transport, and better miscibility. These results well explain the merits integration and improved photovoltaic performance.
Collapse
Affiliation(s)
- Jinfeng Ge
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ling Hong
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Houying Ma
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Qinrui Ye
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yanwei Chen
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Lin Xie
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Wei Song
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Dandan Li
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhenyu Chen
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Kuibao Yu
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Jianqi Zhang
- Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Zhixiang Wei
- Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Fei Huang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Ziyi Ge
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
31
|
Crystallinity and Molecular Packing of Small Molecules in Bulk-Heterojunction Organic Solar Cells. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12115683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Crystallinity has played a major role in organic solar cells (OSCs). In small molecule (SM) bulk-heterojunction (BHJ) OSCs, the crystallinity and crystalline packing of SM donors have been shown to have a dramatic impact on the formation of an optimum microstructure leading to high-power conversion efficiency (PCE). Herein we describe how crystallinity differs from polymers to SMs, and how the packing habits of SMs (particularly donors) in active layers of BHJ devices can be described as following two different main modes: a single crystal-like and a liquid crystal-like packing type. This notion is reviewed from a chronological perspective, emphasising milestone donor structures and studies focusing on the crystallinity in SM-BHJ OSCs. This review intends to demonstrate that a shift towards a liquid crystalline-like packing can be identified throughout the history of SM-BHJ, and that this shift can be associated with an increase in overall PCE.
Collapse
|
32
|
Wagalgave SM, Al Kobaisi M, Bhosale SV, Bhosale SV. Donor-acceptor-donor π-conjugated material derived from merocyanine-diketopyrrolopyrrole: design, synthesis and photovoltaic applications. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
33
|
|
34
|
Peng X, Meng T, Wang L, Cheng L, Zhai W, Deng K, Ma CQ, Zeng Q. Self-assembled nanostructures of a series of linear oligothiophene derivatives adsorbed on surfaces. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.05.082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
35
|
Roles of Interfacial Modifiers in Inorganic Titania/Organic Poly(3-hexylthiophene) Heterojunction Hybrid Solar Cells. NANOMATERIALS 2022; 12:nano12050820. [PMID: 35269308 PMCID: PMC8912453 DOI: 10.3390/nano12050820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 11/17/2022]
Abstract
Hybrid Titanium dioxide/Poly(3-hexylthiophene) heterojunction solar cells have gained research interest as they have the potential to become cost-effective solar technology in the future. Limited power conversion efficiencies of about 5-6% have been reported so far, and an enhancement in efficiency was achieved through the engineering of the interface between Titanium dioxide (TiO2) and Poly(3-hexylthiophene) (P3HT). Evolution of this solar cell technology is relatively slow-moving due to the complex features of the metal oxide-polymer system and the limited understanding of the technology. In this review, we focus on recent developments in interface modified hybrid Titanium dioxide/Poly(3-hexylthiophene) solar cells, provide a short discussion on the working principle, device structure with interface modifiers, and summarize various types of interface modifiers studied to enhance the photovoltaic performance of hybrid TiO2/P3HT heterojunction solar cells. Further, we discuss the key factors influencing the power conversion efficiency and the role of a variety of interface modifiers in this regard. Finally, the challenges and perspectives related to hybrid TiO2/P3HT heterojunction solar cells are also explored.
Collapse
|
36
|
Liu Z, Mao Q, Wang J, Wu F, Zhou D, Cheng Y, Huang S, Huang B, Yang C, Chen L. Exploiting Novel Unfused-Ring Acceptor for Efficient Organic Solar Cells with Record Open-Circuit Voltage and Fill Factor. CHEMSUSCHEM 2022; 15:e202102563. [PMID: 34964305 DOI: 10.1002/cssc.202102563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/26/2021] [Indexed: 06/14/2023]
Abstract
Unfused-ring acceptors (UFAs) show bright application prospects in organic solar cells (OSCs) thanks to their easy synthesis, low cost, and good device performance. The selection of central-core building block and suitable side chain are the key factors to achieve high-performance UFAs. Current tremendous endeavors for the development of UFAs mainly concentrate on obtaining higher short-circuit current density (Jsc ), albeit accompanied by low open-circuit voltage (Voc ) and modest fill factor (FF). Herein, two novel A-D-A'-D-A type UFAs (BTCD-IC and BTCD-2FIC), which have the same new electron-withdrawing central-core dithieno[3',2':3,4;2'',3'':5,6]-benzo[1,2-c][1,2,5]thiadia-zole (DTBT) and cyclopentadithiophene unit (CPDT, substituted by 2-butyl-1-octyl alkyl chain) coupling with different terminals, were designed and synthesized. Two UFAs showed strong and broad light absorption in the wavelength range of 300-850 nm owing to the strong intramolecular charge transfer effect favorable by DTBT core. Compared with BTCD-IC, BTCD-2FIC with F-containing terminal group exhibited higher molar extinction coefficient, lower energy level, higher charge mobility, stronger crystallinity, more ordered molecular stacking, and better film morphology. As a result, when blended with donor polymer PBDB-T (poly[(2,6-(4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b']dithiophene)-co-(1,3-di(5-thiophene-2-yl)-5,7-bis(2-ethylhexyl)benzo[1,2-c:4,5-c']-dithiophene-4,8-dione)]), the BTCD-2FIC-based OSC achieved a superior power conversion efficiency (PCE) of 11.32 %, with a high Voc of 0.85 V, a Jsc of 18.24 mA cm-2 , and a FF of 73 %, than BTCD-IC-based OSC (PCE=8.96 %). Impressively, the simultaneously enhanced Voc and FF values of the PBDB-T:BTCD-2FIC device were the highest values of the A-D-A'-D-A-type UFAs. The results demonstrate the application of electron-withdrawing DTBT central-core unit in efficient UFAs provides meaningful molecular design guidance for high-performance OSCs.
Collapse
Affiliation(s)
- Zuoji Liu
- College of Chemistry/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, Nanchang, 330031, P. R. China
| | - Qilong Mao
- College of Chemistry/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, Nanchang, 330031, P. R. China
| | - Jing Wang
- College of Chemistry/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, Nanchang, 330031, P. R. China
| | - Feiyan Wu
- College of Chemistry/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, Nanchang, 330031, P. R. China
| | - Dan Zhou
- Key Laboratory of Jiangxi Province for Persistent Pollutants, Control and Resources Recycle, Nanchang Hangkong University, 696 Fenghe South Avenue, Nanchang, 330063, P. R. China
| | - Yujun Cheng
- College of Chemistry/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, Nanchang, 330031, P. R. China
| | - Shaorong Huang
- College of Chemistry/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, Nanchang, 330031, P. R. China
| | - Bin Huang
- School of Metallurgical and Chemical Engineering, Jiangxi University of Science and Technology, 156 Ke Jia Road, Ganzhou, 341000, P. R. China
| | - Changduk Yang
- Department of Energy Engineering, School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan, 44919, South Korea
| | - Lie Chen
- College of Chemistry/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, Nanchang, 330031, P. R. China
| |
Collapse
|
37
|
Zhong W, Zhang M, Freychet G, Su GM, Ying L, Huang F, Cao Y, Zhang Y, Wang C, Liu F. Decoupling Complex Multi-Length-Scale Morphology in Non-Fullerene Photovoltaics with Nitrogen K-Edge Resonant Soft X-ray Scattering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107316. [PMID: 34750871 DOI: 10.1002/adma.202107316] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/29/2021] [Indexed: 06/13/2023]
Abstract
Complex morphology in organic photovoltaics (OPVs) and other functional soft materials commonly dictates performance. Such complexity in OPVs originates from the mesoscale kinetically trapped non-equilibrium state, which governs device charge generation and transport. Resonant soft X-ray scattering (RSoXS) has been revolutionary in the exploration of OPV morphology in the past decade due to its chemical and orientation sensitivity. However, for non-fullerene OPVs, RSoXS analysis near the carbon K-edge is challenging, due to the chemical similarity of the materials used in active layers. An innovative approach is provided by nitrogen K-edge RSoXS (NK-RSoXS), utilizing the spatial and orientational contrasts from the cyano groups in the acceptor materials, which allows for determination of phase separation. NK-RSoXS clearly visualizes the combined feature sizes in PM6:Y6 blends from crystallization and liquid-liquid demixing, while PM6:Y6:Y6-BO ternary blends with reduced phase-separation size and enhanced material crystallization can lead to current amplification in devices. Nitrogen is common in organic semiconductors and other soft materials, and the strong and directional N 1s → π* resonances make NK-RSoXS a powerful tool to uncover the mesoscale complexity and open opportunities to understand heterogeneous systems.
Collapse
Affiliation(s)
- Wenkai Zhong
- Frontiers Science Center for Transformative Molecules, Center of Hydrogen Science, and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Ming Zhang
- Frontiers Science Center for Transformative Molecules, Center of Hydrogen Science, and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | | | - Gregory M Su
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Lei Ying
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Fei Huang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Yong Cao
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Yongming Zhang
- Frontiers Science Center for Transformative Molecules, Center of Hydrogen Science, and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Cheng Wang
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Feng Liu
- Frontiers Science Center for Transformative Molecules, Center of Hydrogen Science, and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
38
|
Kuznetsov IE, Anokhin D, Piryazev A, Sideltsev M, Akhkiamova A, Novikov AV, Kurbatov V, Ivanov D, Akkuratov AV. Tailoring the charge transport characteristics in ordered small-molecule organic semiconductors by side-chain engineering and fluorine substitution. Phys Chem Chem Phys 2022; 24:16041-16049. [DOI: 10.1039/d2cp01758j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Crystalline and liquid-crystalline conjugated small molecules represent a promising family of semiconductor materials for organic electronics applications. The control of morphology and optoelectronic properties of small molecules allows tuning their...
Collapse
|
39
|
Miranda-Olvera M, Arcos-Ramos R, Maldonado-Domínguez M, Salmon L, Molnár G, Bousseksou A, del Pilar Carreón-Castro M. Design and synthesis of benzothiadiazole-based molecular systems: self-assembly, optical and electronic properties. NEW J CHEM 2022. [DOI: 10.1039/d1nj04559h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A comprehensive study was conducted to determine the effect of the donor-group on the solid-state organization and electronic properties of stimuli-responsive benzothiadiazole-based D–A–D building blocks.
Collapse
Affiliation(s)
- Montserrat Miranda-Olvera
- Departamento de Química de Radiaciones y Radioquímica, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, 04510, Ciudad de México, México
- Laboratoire de Chimie de Coordination, CNRS UPR 8241, 205 route de Narbonne, Toulouse, F-31077, France
| | - Rafael Arcos-Ramos
- Departamento de Química de Radiaciones y Radioquímica, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, 04510, Ciudad de México, México
| | - Mauricio Maldonado-Domínguez
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Science, Dolejškova 2155/3, 182 23 Prague 8, Czech Republic
| | - Lionel Salmon
- Laboratoire de Chimie de Coordination, CNRS UPR 8241, 205 route de Narbonne, Toulouse, F-31077, France
| | - Gábor Molnár
- Laboratoire de Chimie de Coordination, CNRS UPR 8241, 205 route de Narbonne, Toulouse, F-31077, France
| | - Azzedine Bousseksou
- Laboratoire de Chimie de Coordination, CNRS UPR 8241, 205 route de Narbonne, Toulouse, F-31077, France
| | - María del Pilar Carreón-Castro
- Departamento de Química de Radiaciones y Radioquímica, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, 04510, Ciudad de México, México
| |
Collapse
|
40
|
Hermetic Seal of Organic Light Emitting Diode with Glass Frit. Molecules 2021; 27:molecules27010076. [PMID: 35011311 PMCID: PMC8746511 DOI: 10.3390/molecules27010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/09/2021] [Accepted: 12/22/2021] [Indexed: 11/17/2022] Open
Abstract
The components of OLED encapsulation with hermetic sealing and a 1026-day lifetime were measured by PXI-1033. The optimal characteristics were obtained when the thickness of the TPBi layer was 20 nm. This OLED obtained a maximum luminance (Lmax) of 25,849 cd/m2 at a current density of 1242 mA/cm2, an external quantum efficiency (EQE) of 2.28%, a current efficiency (CE) of 7.20 cd/A, and a power efficiency (PE) of 5.28 lm/W. The efficiency was enhanced by Lmax 17.2%/EQE 0.89%/CE 42.1%/PE 41.9%. The CIE coordinates of 0.32, 0.54 were all green OLED elements with wavelengths of 532 nm. The shear strain and leakage test gave results of 16 kgf and 8.92 × 10−9 mbar/s, respectively. The reliability test showed that the standard of MIL-STD-883 was obtained.
Collapse
|
41
|
Xiang Y, Zhang J, Zheng S. Designing Potential Donor Materials Based on DRCN5T with Halogen Substitutions: A DFT/TDDFT Study. Int J Mol Sci 2021; 22:ijms222413498. [PMID: 34948295 PMCID: PMC8704226 DOI: 10.3390/ijms222413498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/09/2021] [Accepted: 12/14/2021] [Indexed: 11/16/2022] Open
Abstract
Experimental researchers have found that the organic solar cell (OSC) based on DRCN5T (an oligothiophene) possesses excellent power conversion efficiency (PCE) of 10.1%. However, to date, there have been few studies about halogenation of DRCN5T, and its effects on photovoltaic properties of halogenated DRCN5T are still not clear. In the present work, we first perform benchmark calculations and effectively reproduce experimental results. Then, eight halogenated DRCN5T molecules are designed and investigated theoretically by using density functional theory (DFT) and time-dependent DFT. The dipole moments, frontier molecular orbital energies, absorption spectra, exciton binding energy (Eb), singlet–triplet energy gap (ΔEST), and electrostatic potential (ESP) of these molecules, and the estimated open circuit voltages (VOCs) of the OSCs with PC71BM as acceptor are presented. We find that (1) generally, halogen substitutions would increase VOC; (2) Eb rises with more fluorine substitutions, but for Cl and Br substitutions, Eb increases firstly and then drops; (3) ΔEST keeps increasing with more halogen substitutions; (4) except for Br substitutions, the averaged ESP arises along with more halogen substitutions; (5) the absorption strength of UV–Vis spectra of DRCN5T2F, DRCN5T4F, DRCN5T6F, and DRCN5T2Cl in the visible region is enhanced with respect to DRCN5T. Based on these results, overall, DRCN5T2Cl, DRCN5T4F, and DRCN5T6F may be promising donors.
Collapse
Affiliation(s)
- Yunjie Xiang
- School of Materials and Energy, Southwest University, Chongqing 400715, China;
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, Southwest University, Chongqing 400715, China
- Correspondence: (Y.X.); (S.Z.)
| | - Jie Zhang
- School of Materials and Energy, Southwest University, Chongqing 400715, China;
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, Southwest University, Chongqing 400715, China
| | - Shaohui Zheng
- School of Materials and Energy, Southwest University, Chongqing 400715, China;
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, Southwest University, Chongqing 400715, China
- Correspondence: (Y.X.); (S.Z.)
| |
Collapse
|
42
|
Su YJ, Nie H, Chang CF, Huang SC, Huang YH, Chen TW, Hsu KK, Lee TY, Shih HM, Ko CW, Chen JT, Hsu CS. Green-Solvent-Processable Organic Photovoltaics with High Performances Enabled by Asymmetric Non-Fullerene Acceptors. ACS APPLIED MATERIALS & INTERFACES 2021; 13:59043-59050. [PMID: 34865485 DOI: 10.1021/acsami.1c19627] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this work, two asymmetric non-fullerene acceptors (NFAs), BTP-EHBO-4F and BTP-PHD-4F, are designed to be applied in green-solvent-processable organic photovoltaics (OPVs). BTP-EHBO-4F and BTP-PHD-4F show good solubilities in green solvent o-xylene. As a result, PM6:BTP-EHBO-4F-based devices exhibit outstanding photovoltaic performances using o-xylene as a solvent. By comparison, due to the poor solubility of Y6 in o-xylene, PM6:Y6-based devices show poor performances. Owing to the favorable phase separation, molecule packing, and orientation observed from atomic force microscopy (AFM) and grazing-incidence wide-angle X-ray scattering (GIWAXS) measurements, PM6:BTP-PHD-4F-based devices demonstrate a PCE of 15.91% with a VOC of 0.87 V, a JSC of 25.64 mA/cm2, and an FF of 71.34%. Moreover, PM6:BTP-EHBO-4F-based devices exhibit an impressive PCE of 16.82% with a VOC of 0.85 V, a JSC of 26.12 mA/cm2, and an FF of 75.78%, which is outstanding for OPVs using o-xylene as a solvent.
Collapse
Affiliation(s)
- Yi-Jia Su
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
| | - Hebing Nie
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
| | - Chun-Feng Chang
- Ways Technical Corp., 326 Kaoching Road, Yangmei, Taoyuan 326023, Taiwan
| | - Sheng-Ci Huang
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
| | - Yi-Hsuan Huang
- Ways Technical Corp., 326 Kaoching Road, Yangmei, Taoyuan 326023, Taiwan
| | - Tsung-Wei Chen
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
| | - Kuo-Kai Hsu
- Ways Technical Corp., 326 Kaoching Road, Yangmei, Taoyuan 326023, Taiwan
| | - Tzu-Yuan Lee
- Ways Technical Corp., 326 Kaoching Road, Yangmei, Taoyuan 326023, Taiwan
| | - Hung-Min Shih
- Ways Technical Corp., 326 Kaoching Road, Yangmei, Taoyuan 326023, Taiwan
| | - Chung-Wen Ko
- Ways Technical Corp., 326 Kaoching Road, Yangmei, Taoyuan 326023, Taiwan
| | - Jiun-Tai Chen
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
| | - Chain-Shu Hsu
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
| |
Collapse
|
43
|
Garcia AM, Ruiz-Carretero A. Chirality inversion in hydrogen-bonded rhodanine-oligothiophene derivatives by solvent and temperature. Chem Commun (Camb) 2021; 58:529-532. [PMID: 34908045 DOI: 10.1039/d1cc05945a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The self-assembly process of hydrogen-bonded quinquethiophene-rhodanine derivatives has been explored as a function of solvent and temperature. We demonstrate the divergent supramolecular chirality emerging from a single enantiomer by subtle changes in solvent mixtures and sample preparation protocol. Spectroscopic techniques have proved the presence of aggregates where H-bonding interactions play a crucial role.
Collapse
Affiliation(s)
- Ana M Garcia
- University of Strasbourg, CNRS, Institut Charles Sadron, 23 Rue de Loess, BP 84047, Strasbourg 67034, Cedex 2, France.
| | - Amparo Ruiz-Carretero
- University of Strasbourg, CNRS, Institut Charles Sadron, 23 Rue de Loess, BP 84047, Strasbourg 67034, Cedex 2, France.
| |
Collapse
|
44
|
Ouyang G, Feng Y, Wang J, Wang D, Li H. The Syntheses, Characterization and Field Effect Transistor Performance of Thiazole‐Based Dicyanomethylene‐Endcapped Quinoidal Compounds. ChemistrySelect 2021. [DOI: 10.1002/slct.202102657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Guangcheng Ouyang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Shanghai 200032 China
| | - Yan Feng
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Shanghai 200032 China
| | - Jinlong Wang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Shanghai 200032 China
| | - Dewei Wang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Shanghai 200032 China
| | - Hongxiang Li
- Key laboratory for Advanced Materials and Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology No. 130 Meilong Rd. Shanghai 200237 China
| |
Collapse
|
45
|
Khalid M, Khan MU, Ahmed S, Shafiq Z, Alam MM, Imran M, Braga AAC, Akram MS. Exploration of promising optical and electronic properties of (non-polymer) small donor molecules for organic solar cells. Sci Rep 2021; 11:21540. [PMID: 34728752 PMCID: PMC8564538 DOI: 10.1038/s41598-021-01070-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/17/2021] [Indexed: 11/08/2022] Open
Abstract
Non-fullerene based organic compounds are considered promising materials for the fabrication of modern photovoltaic materials. Non-fullerene-based organic solar cells comprise of good photochemical and thermal stability along with longer device lifetimes as compared to fullerene-based compounds. Five new non-fullerene donor molecules were designed keeping in view the excellent donor properties of 3-bis(4-(2-ethylhexyl)-thiophen-2-yl)-5,7-bis(2ethylhexyl) benzo[1,2-:4,5-c']-dithiophene-4,8-dione thiophene-alkoxy benzene-thiophene indenedione (BDD-IN) by end-capped modifications. Photovoltaic and electronic characteristics of studied molecules were determined by employing density functional theory (DFT) and time dependent density functional theory (TD-DFT). Subsequently, obtained results were compared with the reference molecule BDD-IN. The designed molecules presented lower energy difference (ΔΕ) in the range of 2.17-2.39 eV in comparison to BDD-IN (= 2.72 eV). Moreover, insight from the frontier molecular orbital (FMO) analysis disclosed that central acceptors are responsible for the charge transformation. The designed molecules were found with higher λmax values and lower transition energies than BDD-IN molecule due to stronger end-capped acceptors. Open circuit voltage (Voc) was observed in the higher range (1.54-1.78 V) in accordance with HOMOdonor-LUMOPC61BM by designed compounds when compared with BDD-IN (1.28 V). Similarly, lower reorganization energy values were exhibited by the designed compounds in the range of λe(0.00285-0.00370 Eh) and λh(0.00847-0.00802 Eh) than BDD-IN [λe(0.00700 Eh) and λh(0.00889 Eh)]. These measurements show that the designed compounds are promising candidates for incorporation into solar cell devices, which would benefit from better hole and electron mobility.
Collapse
Affiliation(s)
- Muhammad Khalid
- Department of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, 64200, Pakistan
| | | | - Saeed Ahmed
- Department of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, 64200, Pakistan
| | - Zahid Shafiq
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan.
| | - Mohammed Mujahid Alam
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Muhammad Imran
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Ataualpa Albert Carmo Braga
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Avenida Professor LineuPrestes, 748, São Paulo, 05508-000, Brazil
| | - Muhammad Safwan Akram
- School of Health and Life Sciences, Teesside University, Middlesbrough, TS1 3BA, UK.
- National Horizons Centre, Teesside University, Darlington, DL1 1HG, UK.
| |
Collapse
|
46
|
Bi P, Zhang S, Wang J, Ren J, Hou J. Progress in Organic Solar Cells: Materials, Physics and Device Engineering. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000666] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Pengqing Bi
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular, Sciences CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Shaoqing Zhang
- School of Chemistry and Biology Engineering University of Science and Technology Beijing Beijing 100083 China
| | - Jingwen Wang
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular, Sciences CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Junzhen Ren
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular, Sciences CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Jianhui Hou
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular, Sciences CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
47
|
Cantelli A, Malferrari M, Soldà A, Simonetti G, Forni S, Toscanella E, Mattioli EJ, Zerbetto F, Zanelli A, Di Giosia M, Zangoli M, Barbarella G, Rapino S, Di Maria F, Calvaresi M. Human Serum Albumin-Oligothiophene Bioconjugate: A Phototheranostic Platform for Localized Killing of Cancer Cells by Precise Light Activation. JACS AU 2021; 1:925-935. [PMID: 34467339 PMCID: PMC8395684 DOI: 10.1021/jacsau.1c00061] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Indexed: 05/05/2023]
Abstract
The electronic, optical, and redox properties of thiophene-based materials have made them pivotal in nanoscience and nanotechnology. However, the exploitation of oligothiophenes in photodynamic therapy is hindered by their intrinsic hydrophobicity that lowers their biocompatibility and availability in water environments. Here, we developed human serum albumin (HSA)-oligothiophene bioconjugates that afford the use of insoluble oligothiophenes in physiological environments. UV-vis and electrophoresis proved the conjugation of the oligothiophene sensitizers to the protein. The bioconjugate is water-soluble and biocompatible, does not have any "dark toxicity", and preserves HSA in the physiological monomeric form, as confirmed by dynamic light scattering and circular dichroism measurements. In contrast, upon irradiation with ultralow light doses, the bioconjugate efficiently produces reactive oxygen species (ROS) and leads to the complete eradication of cancer cells. Real-time monitoring of the photokilling activity of the HSA-oligothiophene bioconjugate shows that living cells "explode" upon irradiation. Photodependent and dose-dependent apoptosis is one of the primary mechanisms of cell death activated by bioconjugate irradiation. The bioconjugate is a novel theranostic platform able to generate ROS intracellularly and provide imaging through the fluorescence of the oligothiophene. It is also a real-time self-reporting system able to monitor the apoptotic process. The induced phototoxicity is strongly confined to the irradiated region, showing localized killing of cancer cells by precise light activation of the bioconjugate.
Collapse
Affiliation(s)
- Andrea Cantelli
- Dipartimento
di Chimica “Giacomo Ciamician, Alma Mater Studiorum, Università di Bologna, Via Francesco Selmi, 2, 40126 Bologna, Italy
| | - Marco Malferrari
- Dipartimento
di Chimica “Giacomo Ciamician, Alma Mater Studiorum, Università di Bologna, Via Francesco Selmi, 2, 40126 Bologna, Italy
| | - Alice Soldà
- Dipartimento
di Chimica “Giacomo Ciamician, Alma Mater Studiorum, Università di Bologna, Via Francesco Selmi, 2, 40126 Bologna, Italy
| | - Giorgia Simonetti
- IRCCS
Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Via Piero Maroncelli, 40, 47014 Meldola, FC, Italy
| | - Sonny Forni
- Dipartimento
di Chimica “Giacomo Ciamician, Alma Mater Studiorum, Università di Bologna, Via Francesco Selmi, 2, 40126 Bologna, Italy
| | - Edoardo Toscanella
- Dipartimento
di Chimica “Giacomo Ciamician, Alma Mater Studiorum, Università di Bologna, Via Francesco Selmi, 2, 40126 Bologna, Italy
| | - Edoardo J. Mattioli
- Dipartimento
di Chimica “Giacomo Ciamician, Alma Mater Studiorum, Università di Bologna, Via Francesco Selmi, 2, 40126 Bologna, Italy
| | - Francesco Zerbetto
- Dipartimento
di Chimica “Giacomo Ciamician, Alma Mater Studiorum, Università di Bologna, Via Francesco Selmi, 2, 40126 Bologna, Italy
| | - Alberto Zanelli
- Istituto
per la Sintesi Organica e la Fotoreattività (ISOF), Consiglio Nazionale delle Ricerche, Via Piero Gobetti, 101, 40129 Bologna, Italy
| | - Matteo Di Giosia
- Dipartimento
di Chimica “Giacomo Ciamician, Alma Mater Studiorum, Università di Bologna, Via Francesco Selmi, 2, 40126 Bologna, Italy
| | - Mattia Zangoli
- Istituto
per la Sintesi Organica e la Fotoreattività (ISOF), Consiglio Nazionale delle Ricerche, Via Piero Gobetti, 101, 40129 Bologna, Italy
- Mediteknology
srl, Via Piero Gobetti,
101, 40129 Bologna, Italy
| | - Giovanna Barbarella
- Istituto
per la Sintesi Organica e la Fotoreattività (ISOF), Consiglio Nazionale delle Ricerche, Via Piero Gobetti, 101, 40129 Bologna, Italy
- Mediteknology
srl, Via Piero Gobetti,
101, 40129 Bologna, Italy
| | - Stefania Rapino
- Dipartimento
di Chimica “Giacomo Ciamician, Alma Mater Studiorum, Università di Bologna, Via Francesco Selmi, 2, 40126 Bologna, Italy
| | - Francesca Di Maria
- Istituto
per la Sintesi Organica e la Fotoreattività (ISOF), Consiglio Nazionale delle Ricerche, Via Piero Gobetti, 101, 40129 Bologna, Italy
- Mediteknology
srl, Via Piero Gobetti,
101, 40129 Bologna, Italy
| | - Matteo Calvaresi
- Dipartimento
di Chimica “Giacomo Ciamician, Alma Mater Studiorum, Università di Bologna, Via Francesco Selmi, 2, 40126 Bologna, Italy
| |
Collapse
|
48
|
Shavez M, Ray AK, Panda AN. Halogenation of the Side Chains in Donor‐Acceptor Based Small Molecules for Photovoltaic Applications: Energetics and Charge‐Transfer Properties from DFT/TDDFT Studies. ChemistrySelect 2021. [DOI: 10.1002/slct.202100921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mohd Shavez
- Department of Chemistry Indian Institute of Technology Guwahati Guwahati 781039 India
| | - Anuj Kumar Ray
- Department of Chemistry Indian Institute of Technology Guwahati Guwahati 781039 India
| | - Aditya N. Panda
- Department of Chemistry Indian Institute of Technology Guwahati Guwahati 781039 India
| |
Collapse
|
49
|
Guo X, Liu L, Xiao Y, Qi Y, Duan C, Zhang F. Band gap engineering of metal-organic frameworks for solar fuel productions. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213785] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
50
|
Feng J, Wang H, Ji Y, Li Y. Molecular design and performance improvement in organic solar cells guided by high‐throughput screening and machine learning. NANO SELECT 2021. [DOI: 10.1002/nano.202100006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Jie Feng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon‐Based Functional Materials & Devices Soochow University Suzhou Jiangsu China
| | - Hongshuai Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon‐Based Functional Materials & Devices Soochow University Suzhou Jiangsu China
| | - Yujin Ji
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon‐Based Functional Materials & Devices Soochow University Suzhou Jiangsu China
| | - Youyong Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon‐Based Functional Materials & Devices Soochow University Suzhou Jiangsu China
- Macao Institute of Materials Science and Engineering Macau University of Science and Technology, Taipa, Macau SAR Macau China
| |
Collapse
|