1
|
Armstrong L, Chang SL, Clements N, Hirani Z, Kimberly LB, Odoi-Adams K, Suating P, Taylor HF, Trauth SA, Urbach AR. Molecular recognition of peptides and proteins by cucurbit[ n]urils: systems and applications. Chem Soc Rev 2024. [PMID: 39415690 PMCID: PMC11484504 DOI: 10.1039/d4cs00569d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Indexed: 10/19/2024]
Abstract
The development of methodology for attaching ligand binding sites to proteins of interest has accelerated biomedical science. Such protein tags have widespread applications as well as properties that significantly limit their utility. This review describes the mechanisms and applications of supramolecular systems comprising the synthetic receptors cucurbit[7]uril (Q7) or cucurbit[8]uril (Q8) and their polypeptide ligands. Molecular recognition of peptides and proteins occurs at sites of 1-3 amino acids with high selectivity and affinity via several distinct mechanisms, which are supported by extensive thermodynamic and structural studies in aqueous media. The commercial availability, low cost, high stability, and biocompatibility of these synthetic receptors has led to the development of myriad applications. This comprehensive review compiles the molecular recognition studies and the resulting applications with the goals of providing a valuable resource to the community and inspiring the next generation of innovation.
Collapse
Affiliation(s)
- Lilyanna Armstrong
- Department of Chemistry, Trinity University, San Antonio, TX, 78212, USA.
| | - Sarah L Chang
- Department of Chemistry, Trinity University, San Antonio, TX, 78212, USA.
| | - Nia Clements
- Department of Chemistry, Trinity University, San Antonio, TX, 78212, USA.
| | - Zoheb Hirani
- Department of Chemistry, Trinity University, San Antonio, TX, 78212, USA.
| | - Lauren B Kimberly
- Department of Chemistry, Trinity University, San Antonio, TX, 78212, USA.
| | - Keturah Odoi-Adams
- Department of Chemistry and Physics, Southwestern Oklahoma State University, Weatherford, OK, 73096, USA
| | - Paolo Suating
- Department of Chemistry, Trinity University, San Antonio, TX, 78212, USA.
| | - Hailey F Taylor
- Department of Chemistry, Trinity University, San Antonio, TX, 78212, USA.
| | - Sara A Trauth
- Department of Chemistry, Trinity University, San Antonio, TX, 78212, USA.
| | - Adam R Urbach
- Department of Chemistry, Trinity University, San Antonio, TX, 78212, USA.
| |
Collapse
|
2
|
Ghosh A, Zhao Y. Site-Selective Functionalization of Molecularly Imprinted Nanoparticles to Recognize Lysine-Rich Peptides. Biomacromolecules 2024; 25:6188-6194. [PMID: 39092916 DOI: 10.1021/acs.biomac.4c00905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Sequence-selective binding of peptides has been a long-standing goal of chemists. As one of the most abundant amino acids in proteins, lysine plays an important role in protein functions as well as in antimicrobial and cell-penetrating peptides. Herein, we report molecularly imprinted nanoparticles (NPs) with high sequence selectivity for lysine-rich peptides. The NPs are prepared from molecular imprinting of cross-linkable surfactant micelles and postmodification of the imprinted pockets by photoaffinity labeling. The method allows carboxylic acids to be installed precisely near the lysine amino side chains, greatly enhancing the binding strengths of lysine-rich peptides. Small variations in the peptide sequence can be distinguished, and the binding affinity correlates positively with the number of lysine groups in model tripeptides. The method applies to complex lysine-rich biological peptides, achieving hundreds of nanomolar binding affinities and excellent binding specificities.
Collapse
Affiliation(s)
- Avijit Ghosh
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States
| | - Yan Zhao
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States
| |
Collapse
|
3
|
Alfonso I. Supramolecular chemical biology: designed receptors and dynamic chemical systems. Chem Commun (Camb) 2024; 60:9692-9703. [PMID: 39129537 DOI: 10.1039/d4cc03163f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Supramolecular chemistry focuses on the study of species joined by non-covalent interactions, and therefore on dynamic and relatively ill-defined structures. Despite being a well-developed field, it has to face important challenges when dealing with the selective recognition of biomolecules in highly competitive biomimetic media. However, supramolecular interactions reside at the core of chemical biology systems, since many processes in nature are governed by weak, non-covalent, strongly dynamic contacts. Therefore, there is a natural connection between these two research fields, which are not frequently related or share interests. In this feature article, I will highlight our most recent results in the molecular recognition of biologically relevant species, following different conceptual approaches from the most conventional design of elaborated receptors to the less popular dynamic combinatorial chemistry methodology. Selected illustrative examples from other groups will be also included. The discussion has been focused mainly on systems with potential biomedical applications.
Collapse
Affiliation(s)
- Ignacio Alfonso
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC), The Spanish National Research Council (CSIC), Jordi Girona 18-26, 08034, Barcelona, Spain.
| |
Collapse
|
4
|
Pramod M, Alnajjar MA, Schöpper SN, Schwarzlose T, Nau WM, Hennig A. Adamantylglycine as a high-affinity peptide label for membrane transport monitoring and regulation. Chem Commun (Camb) 2024; 60:4810-4813. [PMID: 38602391 DOI: 10.1039/d4cc00602j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
The non-canonical amino acid adamantylglycine (Ada) is introduced into peptides to allow high-affinity binding to cucurbit[7]uril (CB7). Introduction of Ada into a cell-penetrating peptide (CPP) sequence had minimal influence on the membrane transport, yet enabled up- and down-regulation of the membrane transport activity.
Collapse
Affiliation(s)
- Malavika Pramod
- Center for Cellular Nanoanalytics (CellNanOs) and Department of Biology and Chemistry, Universität Osnabrück, Barbarastraße 7, Osnabrück 49069, Germany.
| | - Mohammad A Alnajjar
- Center for Cellular Nanoanalytics (CellNanOs) and Department of Biology and Chemistry, Universität Osnabrück, Barbarastraße 7, Osnabrück 49069, Germany.
| | - Sandra N Schöpper
- Center for Cellular Nanoanalytics (CellNanOs) and Department of Biology and Chemistry, Universität Osnabrück, Barbarastraße 7, Osnabrück 49069, Germany.
| | - Thomas Schwarzlose
- School of Science, Constructor University, Campus Ring 1, Bremen 28759, Germany.
| | - Werner M Nau
- School of Science, Constructor University, Campus Ring 1, Bremen 28759, Germany.
| | - Andreas Hennig
- Center for Cellular Nanoanalytics (CellNanOs) and Department of Biology and Chemistry, Universität Osnabrück, Barbarastraße 7, Osnabrück 49069, Germany.
| |
Collapse
|
5
|
Suating P, Ewe MB, Kimberly LB, Arman HD, Wherritt DJ, Urbach AR. Peptide recognition by a synthetic receptor at subnanomolar concentrations. Chem Sci 2024; 15:5133-5142. [PMID: 38577360 PMCID: PMC10988627 DOI: 10.1039/d4sc01122h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 03/07/2024] [Indexed: 04/06/2024] Open
Abstract
This paper describes the discovery and characterization of a dipeptide sequence, Lys-Phe, that binds to the synthetic receptor cucurbit[8]uril (Q8) in neutral aqueous solution with subnanomolar affinity when located at the N-terminus. The thermodynamic and structural basis for the binding of Q8 to a series of four pentapeptides was characterized by isothermal titration calorimetry, NMR spectroscopy, and X-ray crystallography. Submicromolar binding affinity was observed for the peptides Phe-Lys-Gly-Gly-Tyr (FKGGY, 0.3 μM) and Tyr-Leu-Gly-Gly-Gly (YLGGG, 0.2 μM), whereas the corresponding sequence isomers Lys-Phe-Gly-Gly-Tyr (KFGGY, 0.3 nM) and Leu-Tyr-Gly-Gly-Gly (LYGGG, 1.2 nM) bound to Q8 with 1000-fold and 170-fold increases in affinity, respectively. To our knowledge, these are the highest affinities reported between a synthetic receptor and an unmodified peptide. The high-resolution crystal structures of the Q8·Tyr-Leu-Gly-Gly-Gly and Q8·Leu-Tyr-Gly-Gly-Gly complexes have enabled a detailed analysis of the structural determinants for molecular recognition. The high affinity, sequence-selectivity, minimal size of the target binding site, reversibility in the presence of a competitive guest, compatibility with aqueous media, and low toxicity of Q8 should aid in the development of applications involving low concentrations of target polypeptides.
Collapse
Affiliation(s)
- Paolo Suating
- Department of Chemistry, Trinity University 1 Trinity Place San Antonio TX 78212 USA
| | - Marc B Ewe
- Department of Chemistry, Trinity University 1 Trinity Place San Antonio TX 78212 USA
| | - Lauren B Kimberly
- Department of Chemistry, Trinity University 1 Trinity Place San Antonio TX 78212 USA
| | - Hadi D Arman
- Department of Chemistry, University of Texas at San Antonio 1 UTSA Circle San Antonio TX 78249 USA
| | - Daniel J Wherritt
- Department of Chemistry, University of Texas at San Antonio 1 UTSA Circle San Antonio TX 78249 USA
| | - Adam R Urbach
- Department of Chemistry, Trinity University 1 Trinity Place San Antonio TX 78212 USA
| |
Collapse
|
6
|
Suating P, Kimberly LB, Ewe MB, Chang SL, Fontenot JM, Sultane PR, Bielawski CW, Decato DA, Berryman OB, Taylor AB, Urbach AR. Cucurbit[8]uril Binds Nonterminal Dipeptide Sites with High Affinity and Induces a Type II β-Turn. J Am Chem Soc 2024; 146:7649-7657. [PMID: 38348472 DOI: 10.1021/jacs.3c14045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
In an effort to target polypeptides at nonterminal sites, we screened the binding of the synthetic receptor cucurbit[8]uril (Q8) to a small library of tetrapeptides, each containing a nonterminal dipeptide binding site. The resulting leads were characterized in detail using a combination of isothermal titration calorimetry, 1H NMR spectroscopy, electrospray ionization time-of-flight mass spectrometry (ESI-TOF-MS), and X-ray crystallography. The equilibrium dissociation constant values determined for the binding of Q8 to nonterminal dipeptide sites Lys-Phe (KF) and Phe-Lys (FK) were 60 and 86 nm, respectively. These are to the best of our knowledge the highest affinities reported to date for any synthetic receptor targeting a nonterminal site on an unmodified peptide. A 0.79 Å resolution crystal structure was obtained for the complex of Q8 with the peptide Gly-Gly-Leu-Tyr-Gly-Gly-Gly (GGLYGGG) and reveals structural details of the pair-inclusion motif. The molecular basis for recognition is established to be the inclusion of the side chains of Leu and Tyr residues, as well as an extensive network of hydrogen bonds between the peptide backbone, the carbonyl oxygens of Q8, and proximal water molecules. In addition, the crystal structure reveals that Q8 induces a type II β-turn. The sequence-selectivity, high affinity, reversibility, and detailed structural characterization of this system should facilitate the development of applications involving ligand-induced polypeptide folding.
Collapse
Affiliation(s)
- Paolo Suating
- Department of Chemistry, Trinity University, 1 Trinity Place, San Antonio, Texas 78212, United States
| | - Lauren B Kimberly
- Department of Chemistry, Trinity University, 1 Trinity Place, San Antonio, Texas 78212, United States
| | - Marc B Ewe
- Department of Chemistry, Trinity University, 1 Trinity Place, San Antonio, Texas 78212, United States
| | - Sarah L Chang
- Department of Chemistry, Trinity University, 1 Trinity Place, San Antonio, Texas 78212, United States
| | - John M Fontenot
- Department of Chemistry, Trinity University, 1 Trinity Place, San Antonio, Texas 78212, United States
| | - Prakash R Sultane
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS) and Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Christopher W Bielawski
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS) and Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Daniel A Decato
- Department of Chemistry and Biochemistry, University of Montana, Missoula, Montana 59812, United States
| | - Orion B Berryman
- Department of Chemistry and Biochemistry, University of Montana, Missoula, Montana 59812, United States
| | - Alexander B Taylor
- Department of Biochemistry & Structural Biology and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, 8300 Floyd Curl Drive, San Antonio, Texas 78229, United States
| | - Adam R Urbach
- Department of Chemistry, Trinity University, 1 Trinity Place, San Antonio, Texas 78212, United States
| |
Collapse
|
7
|
Yan C, Li Q, Wang K, Yang W, Han J, Li Y, Dong Y, Chu D, Cheng L, Cao L. "Gear-driven"-type chirality transfer of tetraphenylethene-based supramolecular organic frameworks for peptides in water. Chem Sci 2024; 15:3758-3766. [PMID: 38455015 PMCID: PMC10915834 DOI: 10.1039/d3sc06349f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/01/2024] [Indexed: 03/09/2024] Open
Abstract
Chirality transfer for natural chiral biomolecules can reveal the indispensable role of chiral structures in life and can be used to develop the chirality-sensing biomolecular recognition. Here, we report the synthesis and characterization of a series of achiral supramolecular organic frameworks (SOF-1, SOF-2, and SOF-3), constructed from cucurbit[8]uril (CB[8]) and tetraphenylethene (TPE) derivatives (1, 2, and 3), respectively, as chirality-sensing platforms to explore their chirality transfer mechanism for peptides in water. Given the right-handed (P) and left-handed (M) rotational conformation of TPE units and the selective binding of CB[8] to aromatic amino acids, these achiral SOFs can be selectively triggered in water by peptides containing N-terminal tryptophan (W) and phenylalanine (F) residues into their P- or M-rotational conformation, exhibiting significantly different circular dichroism (CD) spectra. Although various peptides have the same l-type chiral configuration, they can induce positive CD signals of SOF-1 and negative CD signals of SOF-2 and SOF-3, respectively. Based on the structural analysis of the linkage units between CB[8] and TPE units in these SOFs, a "gear-driven"-type chirality transfer mechanism has been proposed to visually illustrate the multiple-step chirality transfer process from the recognition site in the CB[8]'s cavity to TPE units. Furthermore, by utilizing the characteristic CD signals generated through the "gear-driven"-type chirality transfer, these SOFs can serve as chiroptical sensor arrays to effectively recognize and distinguish various peptides based on their distinctive CD spectra.
Collapse
Affiliation(s)
- Chaochao Yan
- College of Chemistry and Materials Science, Northwest University Xi'an 710069 China
| | - Qingfang Li
- College of Chemistry and Materials Science, Northwest University Xi'an 710069 China
| | - Kaige Wang
- College of Chemistry and Materials Science, Northwest University Xi'an 710069 China
| | - Wanni Yang
- College of Chemistry and Materials Science, Northwest University Xi'an 710069 China
| | - Jingyu Han
- College of Chemistry and Materials Science, Northwest University Xi'an 710069 China
| | - Yawen Li
- College of Chemistry and Materials Science, Northwest University Xi'an 710069 China
| | - Yunhong Dong
- College of Chemistry and Materials Science, Northwest University Xi'an 710069 China
| | - Dake Chu
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University Xi'an 710061 China
| | - Lin Cheng
- College of Chemistry and Materials Science, Northwest University Xi'an 710069 China
| | - Liping Cao
- College of Chemistry and Materials Science, Northwest University Xi'an 710069 China
| |
Collapse
|
8
|
Zaorska E, Malinska M. Cucurbit[7]uril-mediated Histidine Dimerization: Exploring the Structure and Binding Mechanism. Chemistry 2024; 30:e202302250. [PMID: 38055216 DOI: 10.1002/chem.202302250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 12/01/2023] [Accepted: 12/03/2023] [Indexed: 12/07/2023]
Abstract
Cucurbit[7,8]urils are known to form inclusion complexes with hydrophobic amino acids such as Trp, Tyr, Phe, and Met, as well as peptides containing these residues at the N-terminus. Despite their widespread use in protein purification, the affinity of histidine (His) for cucurbit[7,8]urils has not been extensively explored. In this study, X-ray diffraction experiments were conducted to investigate the binding of two histidine moieties to the cucurbit[7]uril (CB7) cavity, resulting in a network of π-π and hydrogen bonds. This assembly was found to induce a His pKa shift of ΔpKa=-4. Histidine weakly bound to CB7 or CB8; however, isothermal titration calorimetry revealed micromolar equilibrium dissociation constant values for CB7 and CB8 when bound to dipeptides containing His at the C-terminus. Conversely, dipeptides with His at the N-terminus exhibited millimolar values. Additionally, the His-Gly-Gly tripeptide formed a 2 : 1 complex with CB7. These findings suggest the potential use of histidine and histidine-containing tags in conjunction with CB7 for various biological applications.
Collapse
Affiliation(s)
- Ewelina Zaorska
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
| | - Maura Malinska
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
| |
Collapse
|
9
|
Yin H, Rosas R, Viel S, Giorgi M, Monnier V, Charles L, Siri D, Gigmes D, Nassar Y, Chevallier F, Bucher C, Wang R, Kermagoret A, Bardelang D. Internal Dynamics and Modular Peripheral Binding in Stimuli-Responsive 3 : 2 Host:Guest Complexes. Angew Chem Int Ed Engl 2024; 63:e202315985. [PMID: 38009627 DOI: 10.1002/anie.202315985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023]
Abstract
Now that the chemistry of 1 : 1 host:guest complexes is well-established, it is surprising to note that higher stoichiometry (oligomeric) complexes, especially those with excess host, remain largely unexplored. Yet, proteins tend to oligomerize, affording new functions for cell machinery. Here, we show that cucurbit[n]uril (CB[n]) macrocycles combined with symmetric, linear di-viologens form unusual 3 : 2 host:guest complexes exhibiting remarkable dynamic properties, host self-sorting, and external ring-translocation. These results highlight the structural tunability of cucurbit[8]uril (CB[8]) based 3 : 2 host:guest complexes in water and their responsiveness toward several stimuli (chemicals, pH, redox).
Collapse
Affiliation(s)
- Hang Yin
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China
| | - Roselyne Rosas
- Aix Marseille Univ, CNRS, Centrale Marseille, FSCM, Spectropole, Marseille, France
| | - Stéphane Viel
- Aix Marseille Univ, CNRS, ICR, AMUtech, Marseille, France
- Institut Universitaire de France, 75005, Paris, France
| | - Michel Giorgi
- Aix Marseille Univ, CNRS, Centrale Marseille, FSCM, Spectropole, Marseille, France
| | - Valerie Monnier
- Aix Marseille Univ, CNRS, Centrale Marseille, FSCM, Spectropole, Marseille, France
| | | | - Didier Siri
- Aix Marseille Univ, CNRS, ICR, AMUtech, Marseille, France
| | - Didier Gigmes
- Aix Marseille Univ, CNRS, ICR, AMUtech, Marseille, France
| | - Youssef Nassar
- Univ Lyon, Ens de Lyon, CNRS UMR 5182, Laboratoire de Chimie, 69342, Lyon, France
| | - Floris Chevallier
- Univ Lyon, Ens de Lyon, CNRS UMR 5182, Laboratoire de Chimie, 69342, Lyon, France
| | - Christophe Bucher
- Univ Lyon, Ens de Lyon, CNRS UMR 5182, Laboratoire de Chimie, 69342, Lyon, France
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China
| | | | | |
Collapse
|
10
|
Shuto M, Sumida R, Yuasa M, Sawada T, Yoshizawa M. A Closed Cavity Strategy for Selective Dipeptide Binding by a Polyaromatic Receptor in Water. JACS AU 2023; 3:2905-2911. [PMID: 37885581 PMCID: PMC10598568 DOI: 10.1021/jacsau.3c00484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 10/28/2023]
Abstract
Precise recognition of peptides is a daunting task owing to the substantial number of available amino acids and their combination into various oligo/polymeric structures in addition to the high hydration of their flexible frameworks. Here, we report the selective recognition of a dipeptide through a closed cavity strategy, in contrast to previous synthetic receptors with open cavities. A polyaromatic receptor with a virtually isolated, hydrophobic cavity exclusively binds one molecule of phenylalanine dipeptide from a mixture with its amino acid and tripeptide in water via multiple CH-π and hydrogen-bonding interactions in the complementary cavity. The binding selectivity persists even in the presence of other dipeptides, such as leucine-leucine, leucine-phenylalanine, tyrosine-phenylalanine, tryptophan-tryptophan, and aspartame, revealed by NMR/MS-based competitive binding experiments. ITC studies reveal that the selective binding of the phenylalanine dipeptide is relatively strong (Ka = 1.1 × 105 M-1) and an enthalpically and entropically favorable process (ΔH = -11.7 kJ mol-1 and TΔS = 17.0 kJ mol-1). In addition, the present receptor can be used for the emission detection of the dipeptide through a combination with a fluorescent dye in water.
Collapse
Affiliation(s)
- Mayu Shuto
- Laboratory for Chemistry
and Life Science, Institute of Innovative
Research, Tokyo Institute of Technology, 4259 Nagatsuta, Yokohama 226-8503, Japan
| | - Ryuki Sumida
- Laboratory for Chemistry
and Life Science, Institute of Innovative
Research, Tokyo Institute of Technology, 4259 Nagatsuta, Yokohama 226-8503, Japan
| | - Mana Yuasa
- Laboratory for Chemistry
and Life Science, Institute of Innovative
Research, Tokyo Institute of Technology, 4259 Nagatsuta, Yokohama 226-8503, Japan
| | - Tomohisa Sawada
- Laboratory for Chemistry
and Life Science, Institute of Innovative
Research, Tokyo Institute of Technology, 4259 Nagatsuta, Yokohama 226-8503, Japan
| | - Michito Yoshizawa
- Laboratory for Chemistry
and Life Science, Institute of Innovative
Research, Tokyo Institute of Technology, 4259 Nagatsuta, Yokohama 226-8503, Japan
| |
Collapse
|
11
|
Yan C, Li Q, Miao X, Zhao Y, Li Y, Wang P, Wang K, Duan H, Zhang L, Cao L. Chiral Adaptive Induction of an Achiral Cucurbit[8]uril-Based Supramolecular Organic Framework by Dipeptides in Water. Angew Chem Int Ed Engl 2023; 62:e202308029. [PMID: 37469108 DOI: 10.1002/anie.202308029] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/21/2023]
Abstract
Chiral induction by natural biomolecules can reveal the indispensable role of chiral structures in life and can be used to develop the chirality-sensing biomolecular recognition. Here, we present the synthesis and characterization of an achiral supramolecular organic framework (SOF-1) constructed from cucurbit[8]uril (CB[8]) and hexaphenylbenzene (HPB) derivative (1) in water. Due to the propeller-like rotational chiral conformation of HPB units and the specific recognition properties of CB[8], SOF-1 demonstrates chiral adaptive induction in water when interacting with the N-terminal Trp-/Phe-containing dipeptides including L-TrpX and L-PheX (X is an amino acid residue), respectively, exhibiting contrasting circular dichroism (CD) and circularly polarized luminescence (CPL) spectra. Consequently, SOF-1 has been developed as a supramolecular host and chiroptical sensor capable of recognizing and distinguishing the sequence-opposite Trp-/Phe-containing dipeptide pairs including L-TrpX/L-XTrp and L-PheX/L-XPhe based on the sequence-selective CD responses.
Collapse
Affiliation(s)
- Chaochao Yan
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, P. R. China
| | - Qingfang Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, P. R. China
| | - Xiaran Miao
- Shanghai Synchrotron Radiation Facility of Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, P. R. China
| | - Yimin Zhao
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yawen Li
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi An Shi, Xi'an, 710054, P. R. China
| | - Pingxia Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, P. R. China
| | - Kaige Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, P. R. China
| | - Honghong Duan
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, P. R. China
| | - Lei Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Liping Cao
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, P. R. China
| |
Collapse
|
12
|
Abuhasan OM, El-Barghouthi MI, Bodoor K, Rawashdeh AMM, Assaf KI. Molecular recognition of tripeptides containing tryptophan by cucurbit[8]uril: A computational study. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
|
13
|
Zhao Y, Li F, Ma F, Zhi J, Wu G, Zheng X. Theoretical prediction of nanomolar and sequence-selective binding of synthetic supramolecular cucurbit[7]uril to N-terminal Leu-containing tripeptides. Phys Chem Chem Phys 2023; 25:7893-7900. [PMID: 36857719 DOI: 10.1039/d2cp03818h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Molecular recognition towards peptides and proteins with high affinity by synthetic supramolecular hosts is important but challenging. In this work, we investigate the molecular recognition of the synthetic cucurbit[7]uril (CB[7]) to 17 designed N-terminal Leu-containing tripeptides in aqueous medium by molecular dynamics (MD) simulation and screen out tripeptides with high binding affinity. It is found that, compared to LGG, only the third residue is Arg (R), the binding affinity of CB[7] to LGR reaches nanomolar level with binding equilibrium constant (Ka) of 1.1 × 109 M-1. The CB[7] recognition to the N-terminal Leu-containing tripeptides is highly sequence dependent; whether changing the sequence order (from LGR to LRG) or increasing the sequence length (from LGR to LGGR), Ka decreases by about three orders of magnitude. Interestingly, substituting N-terminal Leu for its isomer Ile, the binding of CB[7] to tripeptides weakens significantly with Ka decreasing by 3-8 orders of magnitude. Thus CB[7] can effectively distinguish N-terminal Leu-containing tripeptides from N-terminal Ile-containing tripeptides. Importantly, we predict that when R is as C-terminus, regardless of N-terminal residue being of aromatic type or Leu, the binding strength is always close to the nanomolar level. Therefore, R can be introduced to rationally design novel peptides with high binding affinity to CB[7] in practical applications.
Collapse
Affiliation(s)
- Ying Zhao
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China.
| | - Fei Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China.
| | - Fenfen Ma
- GuSu Laboratory of Materials, Suzhou 215123, Jiangsu, China
| | - Junge Zhi
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China.
| | - Guanglu Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China.
| | - Xiaoyan Zheng
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China. .,Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates (South China University of Technology), Guangzhou 510640, China
| |
Collapse
|
14
|
Emissive‐Dye/Cucurbit[n]uril‐Based Fluorescence Probes for Sensing Applications. ChemistrySelect 2023. [DOI: 10.1002/slct.202204833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
15
|
Cheng L, Tian P, Duan H, Li Q, Song X, Li A, Cao L. Chiral adaptive recognition with sequence specificity of aromatic dipeptides in aqueous solution by an achiral cage. Chem Sci 2023; 14:833-842. [PMID: 36755713 PMCID: PMC9890615 DOI: 10.1039/d2sc05854e] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Sequence-specific recognition of peptides and proteins by synthetic compounds or systems remains a huge challenge in biocompatible media. Here, we report the chiral adaptive recognition (CAR) with sequence specificity of aromatic dipeptides in a purely aqueous solution using an achiral tetraphenylethene-based octacationic cage (1) as both a molecular receptor and chiroptical sensor. 1 can selectively bind and dimerize aromatic dipeptides to form 1 : 2 host-guest complexes with high binding affinity (>1010 M-2), especially up to ∼1014 M-2 for TrpTrp. Given the dynamic rotational conformation of TPE units, achiral 1 can exhibit chiral adaptive responses with mirror-symmetrical circular dichroism (CD) and circularly polarized luminescence (CPL) spectra to enantiomeric dipeptides via supramolecular chirality transfer in the host-guest complexes. Furthermore, this CAR with sequence specificity of 1 can be applied for molecular recognition of TrpTrp- or PhePhe-containing tetrapeptides, polypeptides (e.g., amyloid β-peptide1-20 and somatostatin), and proteins (e.g., human insulin) with characteristic CD responses.
Collapse
Affiliation(s)
- Lin Cheng
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Materials Science, Northwest University Xi'an 710069 China
| | - Ping Tian
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Materials Science, Northwest University Xi'an 710069 China
| | - Honghong Duan
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Materials Science, Northwest University Xi'an 710069 China
| | - Qingfang Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Materials Science, Northwest University Xi'an 710069 China
| | - Xiaowen Song
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Materials Science, Northwest University Xi'an 710069 China
| | - Anyang Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Materials Science, Northwest University Xi'an 710069 China
| | - Liping Cao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Materials Science, Northwest University Xi'an 710069 China
| |
Collapse
|
16
|
Gao ZZ, Shen L, Hu YL, Sun JF, Wei G, Zhao H. Supramolecular Crystal Networks Constructed from Cucurbit[8]uril with Two Naphthyl Groups. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010063. [PMID: 36615258 PMCID: PMC9822147 DOI: 10.3390/molecules28010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
Naphthyl groups are widely used as building blocks for the self-assembly of supramolecular crystal networks. Host-guest complexation of cucurbit[8]uril (Q[8]) with two guests NapA and Nap1 in both aqueous solution and solid state has been fully investigated. Experimental data indicated that double guests resided within the cavity of Q[8], generating highly stable homoternary complexes NapA2@Q[8] and Nap12@Q[8]. Meanwhile, the strong hydrogen-bonding and π···π interaction play critical roles in the formation of 1D supramolecular chain, as well as 2D and 3D networks in solid state.
Collapse
Affiliation(s)
- Zhong-Zheng Gao
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, 579 Qianwangang Road, Qingdao 266590, China
- Correspondence: (Z.-Z.G.); (J.-F.S.); (H.Z.)
| | - Lei Shen
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, 579 Qianwangang Road, Qingdao 266590, China
| | - Yu-Lu Hu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, 579 Qianwangang Road, Qingdao 266590, China
| | - Ji-Fu Sun
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, 579 Qianwangang Road, Qingdao 266590, China
- Correspondence: (Z.-Z.G.); (J.-F.S.); (H.Z.)
| | - Gang Wei
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Mineral Resources, P.O. Box 218, Lindfield, NSW 2070, Australia
| | - Hui Zhao
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, 579 Qianwangang Road, Qingdao 266590, China
- Correspondence: (Z.-Z.G.); (J.-F.S.); (H.Z.)
| |
Collapse
|
17
|
Molecular Dynamics and TD‐DFT Study of the Ternary Complexes of Cucurbit[8]uril with Aromatic Amino Acids and Auxiliary Ligands. ChemistrySelect 2022. [DOI: 10.1002/slct.202201988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
18
|
Carpentier R, Lambert S, Brunetti E, Jabin I, Bartik K. Specific Binding of Primary Ammoniums in Aqueous Media by Homooxacalixarenes Incorporated into Micelles. J Org Chem 2022; 87:12749-12758. [PMID: 36149399 DOI: 10.1021/acs.joc.2c01318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The development of artificial receptors for efficient recognition of analytes in water is a challenging task. Homooxacalix[3]arene-based receptor 1, which is selective toward primary ammoniums in organic solvents, was transferred into water following two different strategies: direct solubilization and micellar incorporation. Extensive 1H NMR studies showed that recognition of ammoniums is only observed in the case of micellar incorporation, highlighting the beneficial effect of the microenvironment of the micellar core. The selectivity of the system for primary ammoniums over secondary and tertiary ones was also maintained. The hydrophobic effect plays an important role in the recognition properties, which are counterion-dependent due to the energy penalty for the dissociation of certain ammonium salts in the apolar micellar core. This study shows that the straightforward self-assembly process used for the encapsulation of artificial receptors in micelles is an efficient strategy for developing water-soluble nanosized supramolecular recognition systems.
Collapse
Affiliation(s)
- Romain Carpentier
- Université libre de Bruxelles (ULB), Ecole polytechnique de Bruxelles, Engineering of Molecular NanoSystems, Avenue F.D. Roosevelt 50, CP165/64, B-1050 Brussels, Belgium.,Université libre de Bruxelles (ULB), Laboratoire de Chimie Organique, Avenue F.D. Roosevelt 50, CP160/06, B-1050 Brussels, Belgium
| | - Simon Lambert
- Université libre de Bruxelles (ULB), Ecole polytechnique de Bruxelles, Engineering of Molecular NanoSystems, Avenue F.D. Roosevelt 50, CP165/64, B-1050 Brussels, Belgium.,Université libre de Bruxelles (ULB), Laboratoire de Chimie Organique, Avenue F.D. Roosevelt 50, CP160/06, B-1050 Brussels, Belgium
| | - Emilio Brunetti
- Université libre de Bruxelles (ULB), Ecole polytechnique de Bruxelles, Engineering of Molecular NanoSystems, Avenue F.D. Roosevelt 50, CP165/64, B-1050 Brussels, Belgium.,Université libre de Bruxelles (ULB), Laboratoire de Chimie Organique, Avenue F.D. Roosevelt 50, CP160/06, B-1050 Brussels, Belgium
| | - Ivan Jabin
- Université libre de Bruxelles (ULB), Laboratoire de Chimie Organique, Avenue F.D. Roosevelt 50, CP160/06, B-1050 Brussels, Belgium
| | - Kristin Bartik
- Université libre de Bruxelles (ULB), Ecole polytechnique de Bruxelles, Engineering of Molecular NanoSystems, Avenue F.D. Roosevelt 50, CP165/64, B-1050 Brussels, Belgium
| |
Collapse
|
19
|
Wu G, Li F, Tang B, Zhang X. Molecular Engineering of Noncovalent Dimerization. J Am Chem Soc 2022; 144:14962-14975. [PMID: 35969112 DOI: 10.1021/jacs.2c02434] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Dimers are probably the simplest model to facilitate the understanding of fundamental physical and chemical processes that take place in much-expanded systems like aggregates, crystals, and other solid states. The molecular interplay within a dimer differentiates it from the corresponding monomeric state and determines its features. Molecular engineering of noncovalent dimerization through applied supramolecular restrictions enables additional control over molecular interplay, particularly over its dynamic aspect. This Perspective introduces the recent effort that has been made in the molecular engineering of noncovalent dimerization, including supramolecular dimers, folda-dimers, and macrocyclic dimers. It showcases how the variation in supramolecular restrictions endows molecular-based materials with improved performance and/or functions like enhanced emission, room-temperature phosphorescence, and effective catalysis. We particularly discuss pseudostatic dimers that can sustain molecular interplay for a long period of time, yet are still flexible enough to adapt to variations. The pseudostatic feature allows for active species to decay along an alternate pathway, thereby spinning off emerging features that are not readily accessible from conventional dynamic systems.
Collapse
Affiliation(s)
- Guanglu Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Fei Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Bohan Tang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xi Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.,Key Laboratory of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
20
|
Das Saha N, Pradhan S, Sasmal R, Sarkar A, Berač CM, Kölsch JC, Pahwa M, Show S, Rozenholc Y, Topçu Z, Alessandrini V, Guibourdenche J, Tsatsaris V, Gagey-Eilstein N, Agasti SS. Cucurbit[7]uril Macrocyclic Sensors for Optical Fingerprinting: Predicting Protein Structural Changes to Identifying Disease-Specific Amyloid Assemblies. J Am Chem Soc 2022; 144:14363-14379. [PMID: 35913703 DOI: 10.1021/jacs.2c05969] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In a three-dimensional (3D) representation, each protein molecule displays a specific pattern of chemical and topological features, which are altered during its misfolding and aggregation pathway. Generating a recognizable fingerprint from such features could provide an enticing approach not only to identify these biomolecules but also to gain clues regarding their folding state and the occurrence of pathologically lethal misfolded aggregates. We report here a universal strategy to generate a fluorescent fingerprint from biomolecules by employing the pan-selective molecular recognition feature of a cucurbit[7]uril (CB[7]) macrocyclic receptor. We implemented a direct sensing strategy by covalently tethering CB[7] with a library of fluorescent reporters. When CB[7] recognizes the chemical and geometrical features of a biomolecule, it brings the tethered fluorophore into the vicinity, concomitantly reporting the nature of its binding microenvironment through a change in their optical signature. The photophysical properties of the fluorophores allow a multitude of probing modes, while their structural features provide additional binding diversity, generating a distinct fluorescence fingerprint from the biomolecule. We first used this strategy to rapidly discriminate a diverse range of protein analytes. The macrocyclic sensor was then applied to probe conformational changes in the protein structure and identify the formation of oligomeric and fibrillar species from misfolded proteins. Notably, the sensor system allowed us to differentiate between different self-assembled forms of the disease-specific amyloid-β (Aβ) aggregates and segregated them from other generic amyloid structures with a 100% identification accuracy. Ultimately, this sensor system predicted clinically relevant changes by fingerprinting serum samples from a cohort of pregnant women.
Collapse
Affiliation(s)
- Nilanjana Das Saha
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka 560064, India.,Chemistry & Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka 560064, India
| | - Soumen Pradhan
- Chemistry & Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka 560064, India
| | - Ranjan Sasmal
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka 560064, India
| | - Aritra Sarkar
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka 560064, India
| | - Christian M Berač
- Department of Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany.,Graduate School of Materials Science in Mainz, Staudingerweg 9, 55128 Mainz, Germany
| | - Jonas C Kölsch
- Department of Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Meenakshi Pahwa
- Chemistry & Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka 560064, India
| | - Sushanta Show
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka 560064, India
| | - Yves Rozenholc
- UR 7537 BioSTM, Université Paris Cité, 4 avenue de l'Observatoire, 75006 Paris, France
| | - Zeki Topçu
- UR 7537 BioSTM, Université Paris Cité, 4 avenue de l'Observatoire, 75006 Paris, France
| | - Vivien Alessandrini
- INSERM UMR-S 1139, Université Paris Cité, 4 avenue de l'Observatoire, 75006 Paris, France.,Department of Obstetrics, Cochin Hospital, AP-HP, Université Paris Cité, FHU PREMA, 123 Bd Port-Royal, 75014 Paris, France
| | - Jean Guibourdenche
- INSERM UMR-S 1139, Université Paris Cité, 4 avenue de l'Observatoire, 75006 Paris, France.,Department of Obstetrics, Cochin Hospital, AP-HP, Université Paris Cité, FHU PREMA, 123 Bd Port-Royal, 75014 Paris, France
| | - Vassilis Tsatsaris
- INSERM UMR-S 1139, Université Paris Cité, 4 avenue de l'Observatoire, 75006 Paris, France.,Department of Obstetrics, Cochin Hospital, AP-HP, Université Paris Cité, FHU PREMA, 123 Bd Port-Royal, 75014 Paris, France
| | | | - Sarit S Agasti
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka 560064, India.,Chemistry & Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka 560064, India
| |
Collapse
|
21
|
Assaf KI. Host-guest complexation between cucurbit[7]uril and doxepin induced supramolecular assembly. Org Biomol Chem 2022; 20:5796-5802. [PMID: 35833381 DOI: 10.1039/d2ob01065h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The supramolecular complexation of doxepin (DOX) with cucurbit[7]uril (CB7) was investigated in aqueous solution. The results indicated the formation of a host-guest complex, as verified by complexation-induced chemical shifts in the NMR experiments and supported by quantum-chemical calculations, in which the alkylammonium tail of DOX was found to be encapsulated inside the CB7 cavity, while the tricyclic moiety remained exposed to bulk water. Isothermal titration calorimetry and dye-displacement experiments provided a moderate binding affinity (104 M-1). Interestingly, the partial encapsulation of DOX by the CB7 macrocycle led to the development of a supramolecular assembly at a low millimolar concentration, as verified by NMR and dynamic light scattering (DLS) measurements, which showed homogeneous size distributions with an average diameter of 1700 nm.
Collapse
Affiliation(s)
- Khaleel I Assaf
- Department of Chemistry, Faculty of Science, Al-Balqa Applied University, Al-Salt 19117, Jordan.
| |
Collapse
|
22
|
Al-Sayed E, Rompel A. Lanthanides Singing the Blues: Their Fascinating Role in the Assembly of Gigantic Molybdenum Blue Wheels. ACS NANOSCIENCE AU 2022; 2:179-197. [PMID: 35726275 PMCID: PMC9204829 DOI: 10.1021/acsnanoscienceau.1c00036] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/12/2022] [Accepted: 01/12/2022] [Indexed: 01/16/2023]
Abstract
![]()
Molybdenum blues
(MBs) are a distinct class of polyoxometalates,
exhibiting versatile/impressive architectures and high structural
flexibility. In acidified and reduced aqueous environments, isopolymolybdates
generate precisely organizable building blocks, which enable unique
nanoscopic molecular systems (MBs) to be constructed and further fine-tuned
by hetero elements such as lanthanide (Ln) ions. This Review discusses
wheel-shaped MB-based structure types with strong emphasis on the
∼30 Ln-containing MBs as of August 2021, which include both
organically hybridized and nonhybridized structures synthesized to
date. The spotlight is thereby put on the lanthanide ions and ligand
types, which are crucial for the resulting Ln-patterns and alterations
in the gigantic structures. Several critical steps and reaction conditions
in their synthesis are highlighted, as well as appropriate methods
to investigate them both in solid state and in solution. The final
section addresses the homogeneous/heterogeneous catalytic, molecular
recognition and separation properties of wheel-shaped Ln-MBs, emphasizing
their inimitable behavior and encouraging their application in these
areas.
Collapse
Affiliation(s)
- Emir Al-Sayed
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Althanstraße 14, 1090 Wien, Austria
| | - Annette Rompel
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Althanstraße 14, 1090 Wien, Austria
| |
Collapse
|
23
|
Host-guest liquid gating mechanism with specific recognition interface behavior for universal quantitative chemical detection. Nat Commun 2022; 13:1906. [PMID: 35393415 PMCID: PMC8991241 DOI: 10.1038/s41467-022-29549-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 03/16/2022] [Indexed: 12/26/2022] Open
Abstract
Universal visual quantitative chemical detection technology has emerged as an increasingly crucial tool for convenient testing with immediate results in the fields of environmental assessment, homeland security, clinical drug testing and health care, particularly in resource-limited settings. Here, we show a host-guest liquid gating mechanism to translate molecular interface recognition behavior into visually quantifiable detection signals. Quantitative chemical detection is achieved, which has obvious advantages for constructing a portable, affordable, on-site sensing platform to enable the visual quantitative testing of target molecules without optical/electrical equipment. Experiments and theoretical calculations confirm the specificity and scalability of the system. This mechanism can also be tailored by the rational design of host-guest complexes to quantitatively and visually detect various molecules. With the advantages of versatility and freedom from additional equipment, this detection mechanism has the potential to revolutionize environmental monitoring, food safety analysis, clinical drug testing, and more. In field, visual, chemical detection is of use for a wide range of possible applications. Here, the authors report on the creation of a host-guest liquid gating mechanism where detection of the target host triggers gate opening allowing for gas through the liquid gate, which can be used for visual detection.
Collapse
|
24
|
Bhosle AA, Banerjee M, Barooah N, Bhasikuttan AC, Kadu K, Ramanan SR, Chatterjee A. ESIPT-active hydroxybenzothiazole-picolinium@CB[7]-HAp NPs based supramolecular sensing assembly for spermine, spermidine and cadaverine: Application in monitoring cancer biomarkers and food spoilage. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113770] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
25
|
Nilam M, Hennig A. Enzyme assays with supramolecular chemosensors - the label-free approach. RSC Adv 2022; 12:10725-10748. [PMID: 35425010 PMCID: PMC8984408 DOI: 10.1039/d1ra08617k] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/30/2022] [Indexed: 12/20/2022] Open
Abstract
Enzyme activity measurements are essential for many research areas, e.g., for the identification of inhibitors in drug discovery, in bioengineering of enzyme mutants for biotechnological applications, or in bioanalytical chemistry as parts of biosensors. In particular in high-throughput screening (HTS), sensitive optical detection is most preferred and numerous absorption and fluorescence spectroscopy-based enzyme assays have been developed, which most frequently require time-consuming fluorescent labelling that may interfere with biological recognition. The use of supramolecular chemosensors, which can specifically signal analytes with fluorescence-based read-out methods, affords an attractive and label-free alternative to more established enzyme assays. We provide herein a comprehensive review that summarizes the current state-of-the-art of supramolecular enzyme assays ranging from early examples with covalent chemosensors to the most recent applications of supramolecular tandem enzyme assays, which utilize common and often commercially available combinations of macrocyclic host molecules (e.g. cyclodextrins, calixarenes, and cucurbiturils) and fluorescent dyes as self-assembled reporter pairs for assaying enzyme activity.
Collapse
Affiliation(s)
- Mohamed Nilam
- Department of Biology/Chemistry, Center for Cellular Nanoanalytics (CellNanOs), Universität Osnabrück Barbarastr. 7 D-49076 Osnabrück Germany
| | - Andreas Hennig
- Department of Biology/Chemistry, Center for Cellular Nanoanalytics (CellNanOs), Universität Osnabrück Barbarastr. 7 D-49076 Osnabrück Germany
| |
Collapse
|
26
|
Supramolecular Fluorescent Probes for the Detection of Reactive Oxygen Species Discovered via High-Throughput Screening. Anal Chem 2022; 94:5634-5641. [PMID: 35357142 DOI: 10.1021/acs.analchem.1c05647] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Supramolecular fluorescent probes for the detection of reactive oxygen species (ROSs) are designed based on a pro-guest strategy. Nine commercially available fluorescent dyes, six host molecules, and a pro-guest are used to rapidly generate a library of 54 potential supramolecular probes. These potential supramolecular probes are screened in a high-throughput fashion using a plate reader to discover seven "hits" or workable probes. The mechanism is confirmed to be ROS-induced conversion from a low-binding-affinity pro-guest to a high-binding-affinity guest and the competitive displacement of the encapsulated fluorescent dye. The response to H2O2 of four supramolecular probes is found to be concentration-dependent and may be used for quantitative analysis of H2O2. The supramolecular probe is selectively responsive toward other oxidative agents, such as NaClO and Na2SO3. The cell study shows that supramolecular probes are capable of detecting H2O2 in human cancer cells (MCF-7 or HeLa).
Collapse
|
27
|
Zhu G, You A, Song H, Li Z. A combined crystallography and DFT study on ring-shaped Cucurbit[ n]urils: structures, surface character, and host-guest recognition. RSC Adv 2022; 12:10014-10019. [PMID: 35424911 PMCID: PMC8965660 DOI: 10.1039/d2ra00797e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/24/2022] [Indexed: 12/12/2022] Open
Abstract
A combined crystallography and DFT study of cucurbit[n]urils (n = 5-8, 10) was carried out, and PBE0 was certified to be the most rational density functional method for optimization task. Steric hindrance and electronic effect of the hindered lone pair electrons in cucurbit[n]urils were qualitatively measured by bond order analysis, lone pair electron (LP) visualization and electrostatic potential (ESP) study. Together with energy decomposition analysis of some selected host-guest systems, we quantitatively verified the effect of size/cavity and noncovalent interaction in host-guest recognition. This solid study revealed that lone pairs electrons affect not only on host-guest identification mode but also on geometry stability, which pave the avenue for further sophisticated applications.
Collapse
Affiliation(s)
- Guoxun Zhu
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou) Guangzhou 510070 P. R. China
| | - Ao You
- School of Eco-Environmental Technology, Guangdong Industry Polytechnic Guangzhou 510300 P. R. China
| | - Huacan Song
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou) Guangzhou 510070 P. R. China
- School of Chemical Engineering and Technology, Sun Yat-sen University Tangjia Zhuhai City 519082 P. R. China
| | - Zhengquan Li
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou) Guangzhou 510070 P. R. China
| |
Collapse
|
28
|
Zheng Z, Ren S, Geng WC, Cui X, Wu B, Wang H. Monitoring Methionine Decarboxylase by Supramolecular Tandem Assay. Chem Asian J 2022; 17:e202200106. [PMID: 35333438 DOI: 10.1002/asia.202200106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/24/2022] [Indexed: 11/12/2022]
Abstract
Methionine is an essential amino acid involved in many physiological and pathological processes. Methionine starvation caused by methionine decarboxylase ( MetDC) degradation becomes a promising strategy for cancer treatment. Multistep colorimetric method, the present approach to monitor the MetDC activity, possesses drawbacks of the complicated process, low accuracy, and poor anti-interference due to indirect detecting. Herein, we report a facile and easy-to-use supramolecular tandem assay (STA) with cucurbit[7]uril and acridine orange reporter pair for the direct and real-time monitoring of MetDC activity. The applicability of this strategy for measuring enzyme-kinetic parameters and screening of inhibitors are also demonstrated. The STA for MetDC activity detection not only provides a feasible method for methionine-related disease diagnosing but also opens a perspective for cancer therapy.
Collapse
Affiliation(s)
- Zhe Zheng
- China University of Mining and Technology - Xuzhou Campus: China University of Mining and Technology, School of Chemical Engineering & Technology, No. 1, Daxue Road, 221116, XuZhou, CHINA
| | - Siying Ren
- China University of Mining and Technology - Xuzhou Campus: China University of Mining and Technology, School of Chemical Engineering & Technology, CHINA
| | - Wen-Chao Geng
- Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences, Key Laboratory of Systems Microbial Biotechnology, CHINA
| | - Xuexian Cui
- Institute of Microbiology Chinese Academy of Sciences, CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, CHINA
| | - Bian Wu
- Institute of Microbiology Chinese Academy of Sciences, CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, CHINA
| | - Hong Wang
- China University of Mining and Technology, School of Chemical Engineering & Technology, No1,Daxue Road, 221116, Xuzhou, CHINA
| |
Collapse
|
29
|
Chen L, Meng Z, Tian L, Zhang Y, Zhao L, Du X, Ma M, Zhang H, Chen J, Meng Q. Complexation of specific residues by carboxylatopillar[6]arene for improving the zymolytic stability of arginine-containing peptides. Org Biomol Chem 2022; 20:2222-2226. [PMID: 35234795 DOI: 10.1039/d2ob00017b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
A general strategy for improving the zymolytic stability against proteases is reported. Carboxylatopillar[6]arene (CP6A) could effectively bind arginine and arginine-containing peptides, thereby improving the stability of angiotensin peptides in the presence of trypsin by the complexation of the side chain of the arginine residue.
Collapse
Affiliation(s)
- Longming Chen
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, PR China.
| | - Zhao Meng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, PR China.
| | - Long Tian
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, PR China.
| | - Yahan Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, PR China.
| | - Liang Zhao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, PR China.
| | - Xinbei Du
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, PR China.
| | - Mengke Ma
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, PR China.
| | - Han Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, PR China.
| | - Junyi Chen
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, PR China.
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, PR China.
| | - Qingbin Meng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, PR China.
| |
Collapse
|
30
|
Krämer J, Kang R, Grimm LM, De Cola L, Picchetti P, Biedermann F. Molecular Probes, Chemosensors, and Nanosensors for Optical Detection of Biorelevant Molecules and Ions in Aqueous Media and Biofluids. Chem Rev 2022; 122:3459-3636. [PMID: 34995461 PMCID: PMC8832467 DOI: 10.1021/acs.chemrev.1c00746] [Citation(s) in RCA: 131] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Indexed: 02/08/2023]
Abstract
Synthetic molecular probes, chemosensors, and nanosensors used in combination with innovative assay protocols hold great potential for the development of robust, low-cost, and fast-responding sensors that are applicable in biofluids (urine, blood, and saliva). Particularly, the development of sensors for metabolites, neurotransmitters, drugs, and inorganic ions is highly desirable due to a lack of suitable biosensors. In addition, the monitoring and analysis of metabolic and signaling networks in cells and organisms by optical probes and chemosensors is becoming increasingly important in molecular biology and medicine. Thus, new perspectives for personalized diagnostics, theranostics, and biochemical/medical research will be unlocked when standing limitations of artificial binders and receptors are overcome. In this review, we survey synthetic sensing systems that have promising (future) application potential for the detection of small molecules, cations, and anions in aqueous media and biofluids. Special attention was given to sensing systems that provide a readily measurable optical signal through dynamic covalent chemistry, supramolecular host-guest interactions, or nanoparticles featuring plasmonic effects. This review shall also enable the reader to evaluate the current performance of molecular probes, chemosensors, and nanosensors in terms of sensitivity and selectivity with respect to practical requirement, and thereby inspiring new ideas for the development of further advanced systems.
Collapse
Affiliation(s)
- Joana Krämer
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Rui Kang
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Laura M. Grimm
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Luisa De Cola
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Dipartimento
DISFARM, University of Milano, via Camillo Golgi 19, 20133 Milano, Italy
- Department
of Molecular Biochemistry and Pharmacology, Instituto di Ricerche Farmacologiche Mario Negri, IRCCS, 20156 Milano, Italy
| | - Pierre Picchetti
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Frank Biedermann
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
31
|
Wang H, Zheng X. Theoretical Study of Macrocyclic Host Molecules: From Supramolecular Recognition to Self-Assembly. Phys Chem Chem Phys 2022; 24:19011-19028. [DOI: 10.1039/d2cp02152h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Supramolecular chemistry focuses on molecular recognition and self-assembly of various building blocks through weak non-covalent interactions, including anion-π, hydrogen bond (HB), hydrophobic interactions, van der Waals (vdW) interactions, etc, which...
Collapse
|
32
|
Zhang ZH, Lin RL, Yu XY, Chen LX, Tao Z, Xiao X, Wei G, Redshaw C, Liu JX. Encapsulation of l-valine, d-leucine and d-methionine by cucurbit[8]uril. CrystEngComm 2022. [DOI: 10.1039/d1ce01513c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The binding interactions of cucurbit[8]uril (Q[8]) with l-valine, d-leucine, and d-methionine, both in aqueous solution and solid state, have been studied by 1H NMR spectroscopy and X-ray crystallography.
Collapse
Affiliation(s)
- Zeng-Hui Zhang
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, P. R. China
| | - Rui-Lian Lin
- College of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243002, P. R. China
| | - Xiang-Yun Yu
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, P. R. China
| | - Li-Xia Chen
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, P. R. China
| | - Zhu Tao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, P. R. China
| | - Xin Xiao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, P. R. China
| | - Gang Wei
- CSIRO Mineral Resources, PO Box 218, Lindfield, NSW 2070, Australia
| | - Carl Redshaw
- Department of Chemistry, University of Hull, Hull HU6 7RX, UK
| | - Jing-Xin Liu
- College of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243002, P. R. China
| |
Collapse
|
33
|
Yang JF, Tao Z, Redshaw C, Zeng X, Luo H. Color tuning and white light emission based on tetraphenylethylene-functionalized cucurbit[7]uril and FRET triggered by host-guest self-assembly. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
34
|
Zhao Y. Substrate Protection in Controlled Enzymatic Transformation of Peptides and Proteins. Chembiochem 2021; 22:2680-2687. [PMID: 34058051 PMCID: PMC8453913 DOI: 10.1002/cbic.202100217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/28/2021] [Indexed: 11/07/2022]
Abstract
Proteins are involved in practically every single biological process. The many enzymes involved in their synthesis, cleavage, and posttranslational modification (PTM) carry out highly specific tasks with no usage of protecting groups. Yet, the chemists' strategy of protection/deprotection potentially can be highly useful, for example, when a specific biochemical reaction catalyzed by a broad-specificity enzyme needs to be inhibited, during infection of cells by enveloped viruses, in the invasion and spread of cancer cells, and upon mechanistic investigation of signal-transduction pathways. Doing so requires highly specific binding of peptide substrates in aqueous solution with biologically competitive affinities. Recent development of peptide-imprinted cross-linked micelles allows such protection and affords previously impossible ways of manipulating peptides and proteins in enzymatic transformations.
Collapse
Affiliation(s)
- Yan Zhao
- Department of ChemistryIowa State UniversityAmesIA 50011–3111USA
| |
Collapse
|
35
|
Guillory X, Hadrović I, de Vink PJ, Sowislok A, Brunsveld L, Schrader T, Ottmann C. Supramolecular Enhancement of a Natural 14-3-3 Protein Ligand. J Am Chem Soc 2021; 143:13495-13500. [PMID: 34427424 DOI: 10.1021/jacs.1c07095] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Rational design of protein-protein interaction (PPI) inhibitors is challenging. Connecting a general supramolecular protein binder with a specific peptidic ligand provides a novel conceptual approach. Thus, lysine-specific molecular tweezers were conjugated to a peptide-based 14-3-3 ligand and produced a strong PPI inhibitor with 100-fold elevated protein affinity. X-ray crystal structure elucidation of this supramolecular directed assembly provides unique molecular insight into the binding mode and fully aligns with Molecular Dynamics (MD) simulations. This new supramolecular chemical biology concept opens the path to novel chemical tools for studying PPIs.
Collapse
Affiliation(s)
- Xavier Guillory
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular System, Eindhoven University of Technology, (TU/e) Den Dolech 2, 5612 AZ Eindhoven, The Netherlands.,Department of Chemistry, University of Duisburg-Essen, Universitätsstraße 7, 45117 Essen, Germany
| | - Inesa Hadrović
- Department of Chemistry, University of Duisburg-Essen, Universitätsstraße 7, 45117 Essen, Germany
| | - Pim J de Vink
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular System, Eindhoven University of Technology, (TU/e) Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
| | - Andrea Sowislok
- University Clinics Essen, Experimental Orthopedics and Trauma Surgery, 45147 Essen, Germany
| | - Luc Brunsveld
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular System, Eindhoven University of Technology, (TU/e) Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
| | - Thomas Schrader
- Department of Chemistry, University of Duisburg-Essen, Universitätsstraße 7, 45117 Essen, Germany
| | - Christian Ottmann
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular System, Eindhoven University of Technology, (TU/e) Den Dolech 2, 5612 AZ Eindhoven, The Netherlands.,Department of Chemistry, University of Duisburg-Essen, Universitätsstraße 7, 45117 Essen, Germany
| |
Collapse
|
36
|
Tapia L, Solozabal N, Solà J, Pérez Y, Miller WT, Alfonso I. Modulation of Src Kinase Activity by Selective Substrate Recognition with Pseudopeptidic Cages. Chemistry 2021; 27:9542-9549. [PMID: 33904620 PMCID: PMC8362067 DOI: 10.1002/chem.202100990] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Indexed: 12/15/2022]
Abstract
The selective recognition of tyrosine residues in peptides is an appealing approach to inhibiting their tyrosine kinase (TK)-mediated phosphorylation. Herein, we describe pseudopeptidic cages that efficiently protect substrates from the action of the Src TK enzyme, precluding the corresponding Tyr phosphorylation. Fluorescence emission titrations show that the most efficient cage inhibitors strongly bind the peptide substrates with a very good correlation between the binding constant and the inhibitory potency. Structural insights and additional control experiments further support the proposed mechanism of selective supramolecular protection of the substrates. Moreover, the approach also works in a completely different kinase-substrate system. These results illustrate the potential of supramolecular complexes for the efficient and selective modulation of TK signaling.
Collapse
Affiliation(s)
- Lucía Tapia
- Department of Biological ChemistryInstitute for Advanced Chemistry of Catalonia, IQAC-CSICJordi Girona 18–2608034BarcelonaSpain
| | - Naiara Solozabal
- NMR FacilityInstitute for Advanced Chemistry of Catalonia, IQAC-CSICJordi Girona 18–2608034BarcelonaSpain
| | - Jordi Solà
- Department of Biological ChemistryInstitute for Advanced Chemistry of Catalonia, IQAC-CSICJordi Girona 18–2608034BarcelonaSpain
| | - Yolanda Pérez
- NMR FacilityInstitute for Advanced Chemistry of Catalonia, IQAC-CSICJordi Girona 18–2608034BarcelonaSpain
| | - W. Todd Miller
- Department of Physiology and BiophysicsStony Brook University and Department of Veterans Affairs Medical CenterStony BrookNY, 11794USA
| | - Ignacio Alfonso
- Department of Biological ChemistryInstitute for Advanced Chemistry of Catalonia, IQAC-CSICJordi Girona 18–2608034BarcelonaSpain
| |
Collapse
|
37
|
Shan P, Lin R, Liu M, Tao Z, Xiao X, Liu J. Recognition of glycine by cucurbit[5]uril and cucurbit[6]uril: A comparative study of exo- and endo-binding. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.02.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
38
|
Ma F, Zheng X, Li Z. Sequence-selective recognition of cationic amphipathic tripeptides with similar structures in aqueous solutions by cucurbit[7]uril. Phys Chem Chem Phys 2021; 23:13724-13733. [PMID: 34128514 DOI: 10.1039/d1cp01326b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Sequence-selective recognition of cationic amphipathic peptides by synthetic receptors is significant to biological applications, but it is still a great challenging task. Here we first study the binding characteristics of receptor cucurbit[7]uril (CB[7]) to the smallest aromatic tripeptides X1GG (X1 = tryptophan (W), phenylalanine (F), and tyrosine (Y)) and basic tripeptides X2GG (X2 = arginine (R), lysine (K), and histidine (H)) by molecular dynamics simulations. The study indicates that the sidechains of aromatic X1 residues can be encapsulated into the CB[7] cavity, while the sidechains of basic X2 residues prefer to locate at the CB[7] portal. Based on that, we consider hydrophobic aromatic residues as the N-terminus, the smallest glycine (G) as the 2nd-residue and basic residues as the C-terminus, and design nine tripeptides X1GX2 (X1 = F, Y, W and X2 = H, K, R). We found that there is a great influence of the C-terminal basic residue of X1GX2 on binding with CB[7] due to the introduction of a new binding site between CB[7] and the sidechain of the C-terminal residue. Interestingly, CB[7] can differentiate WGR and WGK with similar structures efficiently because of their eight orders of magnitude difference in the association constant (Ka). Besides, for WGR, YGR, and YGK with a nanomolar binding affinity (Ka > 109 M-1), on reversing the sequence order of the 2nd-residue and 3rd-residue, their Ka reduces by about at least 1000-fold, implying the sequence dependence of CB[7] on recognizing these tripeptides. These results predict the potential applications of CB[7] in recognizing cationic amphipathic peptides.
Collapse
Affiliation(s)
- Fenfen Ma
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China.
| | - Xiaoyan Zheng
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China.
| | - Zesheng Li
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
39
|
Fernandes RJ, Remón P, Moro AJ, Seco A, Ferreira ASD, Pischel U, Basílio N. Toward Light-Controlled Supramolecular Peptide Dimerization. J Org Chem 2021; 86:8472-8478. [PMID: 34060851 PMCID: PMC9161448 DOI: 10.1021/acs.joc.1c00464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The selective photodeprotection of the NVoc-modified FGG tripeptide yields the transformation of its 1:1 receptor-ligand complex with cucurbit[8]uril into a homoternary FGG2@CB8 assembly. The resulting light-induced dimerization of the model peptide provides a tool for the implementation of stimuli-responsive supramolecular chemistry in biologically relevant contexts.
Collapse
Affiliation(s)
- Rita J Fernandes
- Laboratorio Associado para a Química Verde (LAQV), Rede de Química e Tecnologia (REQUIMTE), Departamento de Química, Faculdade de Ciências e Tecnología, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Patricia Remón
- CIQSO - Centre for Research in Sustainable Chemistry and Department of Chemistry, University of Huelva, Campus de El Carmen s/n, E-21071 Huelva, Spain
| | - Artur J Moro
- Laboratorio Associado para a Química Verde (LAQV), Rede de Química e Tecnologia (REQUIMTE), Departamento de Química, Faculdade de Ciências e Tecnología, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - André Seco
- Laboratorio Associado para a Química Verde (LAQV), Rede de Química e Tecnologia (REQUIMTE), Departamento de Química, Faculdade de Ciências e Tecnología, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Ana S D Ferreira
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Uwe Pischel
- CIQSO - Centre for Research in Sustainable Chemistry and Department of Chemistry, University of Huelva, Campus de El Carmen s/n, E-21071 Huelva, Spain
| | - Nuno Basílio
- Laboratorio Associado para a Química Verde (LAQV), Rede de Química e Tecnologia (REQUIMTE), Departamento de Química, Faculdade de Ciências e Tecnología, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
40
|
Barbero H, Masson E. Design and recognition of cucurbituril-secured platinum-bound oligopeptides. Chem Sci 2021; 12:9962-9968. [PMID: 34349966 PMCID: PMC8317623 DOI: 10.1039/d1sc02637b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 06/16/2021] [Indexed: 11/21/2022] Open
Abstract
Platinum terpyridyl complexes, stacked on top of one another and secured as dimers with cucurbit[8]uril (CB[8]) in aqueous medium, were functionalized quantitatively and in situ with a pair of pentapeptides Phe-(Gly)3-Cys by grafting their cysteine residues to the Pt centers. The resulting CB[8]·(Pt·peptide)2 assemblies were used to target secondary hosts CB[7] and CB[8] via their pair of phenylalanine residues, again in situ. A series of well-defined architectures, including a supramolecular “pendant necklace” with hybrid head-to-head and head-to-tail arrangements inside CB[8], were obtained during the self-sorting process after combining only 3 or 4 simple building units. A platinum terpyridyl complex, pentapeptide Phe-(Gly)3-Cys and cucurbit[8]uril assemble into a “pendant necklace” with hybrid head-to-head and head-to-tail arrangements in aqueous medium.![]()
Collapse
Affiliation(s)
- Héctor Barbero
- Department of Chemistry and Biochemistry, Ohio University Athens Ohio 45701 USA
| | - Eric Masson
- Department of Chemistry and Biochemistry, Ohio University Athens Ohio 45701 USA
| |
Collapse
|
41
|
Brady KG, Liu B, Li X, Isaacs L. Self Assembled Cages with Mechanically Interlocked Cucurbiturils. Supramol Chem 2021; 33:8-32. [PMID: 34366642 PMCID: PMC8340875 DOI: 10.1080/10610278.2021.1908546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/22/2021] [Indexed: 10/21/2022]
Abstract
We report preparation of (bis)aniline ligand 4 which contains a central viologen binding domain and its subcomponent self-assembly with aldehyde 5 and Fe(OTf)2 in CH3CN to yield tetrahedral assembly 6. Complexation of ligand 4 with CB[7] in the form of CB[7]•4•2PF6 allows the preparation of assembly 7 which contains an average of 1.95 (range 1-3) mechanically interlocked CB[7] units. Assemblies 6 and 7 are hydrolytically unstable in water due to their imine linkages. Redesign of our system with water stable 2,2'-bipyridine end groups was realized in the form of ligands 11 and 16 which also contain a central viologen binding domain. Self-assembly of 11 with Fe(NTf2)2 gave tetrahedral MOP 12 as evidenced by 1H NMR, DOSY, and mass spectrometric analysis. In contrast, isomeric ligand 16 underwent self-assembly with Fe(OTf)2 to give cubic assembly 17. Precomplexation of ligands 11 and 16 with CB[7] gave the acetonitrile soluble CB[7]•11•2PF6 and CB[7]•16•2PF6 complexes. Self-assembly of CB[7]•11•2PF6 with Fe(OTf)2 gave tetrahedron 13 which contains on average 1.8 mechanically interlocked CB[7] units as determined by 1H NMR, DOSY, and ESI-MS analysis. Self-assembly of CB[7]•16•2PF6 with Fe(OTf)2 gave cube 13 which contains 6.59 mechanically interlocked CB[7] units as determined by 1H NMR and DOSY measurements.
Collapse
Affiliation(s)
- Kimberly G. Brady
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Bingqing Liu
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Xiaopeng Li
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Lyle Isaacs
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
42
|
Tashiro S, Nakata K, Hayashi R, Shionoya M. Multipoint Hydrogen Bonding-Based Molecular Recognition of Amino Acids and Peptide Derivatives in a Porous Metal-Macrocycle Framework: Residue-Specificity, Diastereoselectivity, and Conformational Control. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005803. [PMID: 33599118 DOI: 10.1002/smll.202005803] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/16/2020] [Indexed: 06/12/2023]
Abstract
Porous crystals have great potential to exert space-specific functions such as multipoint molecular recognition. In order to rationally enhance the porous function, it is necessary to precisely control molecular recognition event in the pores. Hydrogen bonding is an effective tool for controlling molecular recognition. However, multiple hydrogen bonds, which are essentially the origin of high complementarity and specificity, remain difficult to innovate in porous crystals in an intelligent way. This paper demonstrates molecular recognition of amino acid and peptide derivatives by multipoint hydrogen bonding in a porous metal-macrocycle framework revealed by single-crystal X-ray diffraction analysis. l-Serine residues are site-selectively and residue-specifically adsorbed on the pore surface via multiple hydrogen bonds. A serine derivative is diastereoselectively recognized on the (P)- or (M)-side of the enantiomeric pore surface. Moreover, the conformation of the peptide is highly regulated, incorporating a poly-l-proline type I helix-like structure into the pore. These findings will bring deep scientific knowledge to the design of new porous crystals and functions.
Collapse
Affiliation(s)
- Shohei Tashiro
- Department of Chemistry, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kosuke Nakata
- Department of Chemistry, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Ryunosuke Hayashi
- Department of Chemistry, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Mitsuhiko Shionoya
- Department of Chemistry, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
43
|
Clarke D, Wu G, Wu C, Scherman OA. Host-Guest Induced Peptide Folding with Sequence-Specific Structural Chirality. J Am Chem Soc 2021; 143:6323-6327. [PMID: 33860670 PMCID: PMC8154536 DOI: 10.1021/jacs.1c00342] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Indexed: 12/31/2022]
Abstract
Controlling the spatial and temporal behavior of peptide segments is essential in the fabrication of functional peptide-based materials and nanostructures. To achieve a desired structure, complex sequence design is often required, coupled with the inclusion of unnatural amino acids or synthetic modifications. Herein, we investigate the structural properties of 1:1 inclusion complexes between specific oligopeptides and cucurbit[8]uril (CB[8]), inducing the formation of turns, and by alteration of the peptide sequence, tunable structural chirality. We also explore extended peptide sequence binding with CB[8], demonstrating a simple approach to construct a peptide hairpin.
Collapse
Affiliation(s)
| | | | - Ce Wu
- Melville Laboratory for Polymer
Synthesis, Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Oren A. Scherman
- Melville Laboratory for Polymer
Synthesis, Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
44
|
Ma F, Zheng X, Xie L, Li Z. Sequence-dependent nanomolar binding of tripeptides containing N-terminal phenylalanine by Cucurbit[7]uril: A theoretical study. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115479] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
45
|
Meiners A, Bäcker S, Hadrović I, Heid C, Beuck C, Ruiz-Blanco YB, Mieres-Perez J, Pörschke M, Grad JN, Vallet C, Hoffmann D, Bayer P, Sánchez-García E, Schrader T, Knauer SK. Specific inhibition of the Survivin-CRM1 interaction by peptide-modified molecular tweezers. Nat Commun 2021; 12:1505. [PMID: 33686072 PMCID: PMC7940618 DOI: 10.1038/s41467-021-21753-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 02/02/2021] [Indexed: 01/31/2023] Open
Abstract
Survivin's dual function as apoptosis inhibitor and regulator of cell proliferation is mediated via its interaction with the export receptor CRM1. This protein-protein interaction represents an attractive target in cancer research and therapy. Here, we report a sophisticated strategy addressing Survivin's nuclear export signal (NES), the binding site of CRM1, with advanced supramolecular tweezers for lysine and arginine. These were covalently connected to small peptides resembling the natural, self-complementary dimer interface which largely overlaps with the NES. Several biochemical methods demonstrated sequence-selective NES recognition and interference with the critical receptor interaction. These data were strongly supported by molecular dynamics simulations and multiscale computational studies. Rational design of lysine tweezers equipped with a peptidic recognition element thus allowed to address a previously unapproachable protein surface area. As an experimental proof-of-principle for specific transport signal interference, this concept should be transferable to any protein epitope with a flanking well-accessible lysine.
Collapse
Affiliation(s)
- Annika Meiners
- Department of Molecular Biology II, Centre for Medical Biotechnology (ZMB), University of Duisburg-Essen, Essen, Germany
| | - Sandra Bäcker
- Department of Molecular Biology II, Centre for Medical Biotechnology (ZMB), University of Duisburg-Essen, Essen, Germany
| | - Inesa Hadrović
- Institute of Organic Chemistry I, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Christian Heid
- Institute of Organic Chemistry I, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Christine Beuck
- Department of Structural and Medicinal Biology, Centre for Medical Biotechnology (ZMB), University of Duisburg-Essen, Essen, Germany
| | - Yasser B Ruiz-Blanco
- Department of Computational Biochemistry, Centre for Medical Biotechnology (ZMB), University of Duisburg-Essen, Essen, Germany
| | - Joel Mieres-Perez
- Department of Computational Biochemistry, Centre for Medical Biotechnology (ZMB), University of Duisburg-Essen, Essen, Germany
| | - Marius Pörschke
- Department of Structural and Medicinal Biology, Centre for Medical Biotechnology (ZMB), University of Duisburg-Essen, Essen, Germany
| | - Jean-Noël Grad
- Department of Bioinformatics and Computational Biophysics, Centre for Medical Biotechnology (ZMB), University of Duisburg-Essen, Essen, Germany
| | - Cecilia Vallet
- Department of Molecular Biology II, Centre for Medical Biotechnology (ZMB), University of Duisburg-Essen, Essen, Germany
| | - Daniel Hoffmann
- Department of Bioinformatics and Computational Biophysics, Centre for Medical Biotechnology (ZMB), University of Duisburg-Essen, Essen, Germany
| | - Peter Bayer
- Department of Structural and Medicinal Biology, Centre for Medical Biotechnology (ZMB), University of Duisburg-Essen, Essen, Germany
| | - Elsa Sánchez-García
- Department of Computational Biochemistry, Centre for Medical Biotechnology (ZMB), University of Duisburg-Essen, Essen, Germany.
| | - Thomas Schrader
- Institute of Organic Chemistry I, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany.
| | - Shirley K Knauer
- Department of Molecular Biology II, Centre for Medical Biotechnology (ZMB), University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
46
|
Ramberg KO, Engilberge S, Guagnini F, Crowley PB. Protein recognition by cucurbit[6]uril: high affinity N-terminal complexation. Org Biomol Chem 2021; 19:837-844. [PMID: 33406171 DOI: 10.1039/d0ob02356f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The donut-shaped cucurbit[n]urils (Qn, n = 6-8) are rigid macrocyclic receptors with widespread use in protein recognition. To date, most applications have centred on the encapsulation of N-terminal aromatic residues by Q7 or Q8. Less attention has been placed on Q6, which can recognize lysine side chains due to its high affinity for alkylamines. In this work, we investigated protein-Q6 complexation by using NMR spectroscopy. Attempts to crystallize protein-Q6 complexes were thwarted by the crystallization of Q6. We studied four proteins that vary in size, net charge, and lysine content. In addition to Q6 interactions with specific Lys or dimethylated Lys residues, we report striking evidence for N-terminal recognition. High affinity (micromolar) binding occurred with the N-terminal Met-Lys motif present in one of the four model proteins. Engineering this feature into another model protein yielded a similar high affinity site. We also present evidence for Q8 binding at this N-terminal feature. These data expand the cucurbituril toolkit for protein sensing.
Collapse
Affiliation(s)
- Kiefer O Ramberg
- School of Chemistry, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland.
| | - Sylvain Engilberge
- School of Chemistry, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland.
| | - Francesca Guagnini
- School of Chemistry, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland.
| | - Peter B Crowley
- School of Chemistry, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland.
| |
Collapse
|
47
|
Escobar L, Ballester P. Molecular Recognition in Water Using Macrocyclic Synthetic Receptors. Chem Rev 2021; 121:2445-2514. [PMID: 33472000 DOI: 10.1021/acs.chemrev.0c00522] [Citation(s) in RCA: 123] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Molecular recognition in water using macrocyclic synthetic receptors constitutes a vibrant and timely research area of supramolecular chemistry. Pioneering examples on the topic date back to the 1980s. The investigated model systems and the results derived from them are key for furthering our understanding of the remarkable properties exhibited by proteins: high binding affinity, superior binding selectivity, and extreme catalytic performance. Dissecting the different effects contributing to the proteins' properties is severely limited owing to its complex nature. Molecular recognition in water is also involved in other appreciated areas such as self-assembly, drug discovery, and supramolecular catalysis. The development of all these research areas entails a deep understanding of the molecular recognition events occurring in aqueous media. In this review, we cover the past three decades of molecular recognition studies of neutral and charged, polar and nonpolar organic substrates and ions using selected artificial receptors soluble in water. We briefly discuss the intermolecular forces involved in the reversible binding of the substrates, as well as the hydrophobic and Hofmeister effects operating in aqueous solution. We examine, from an interdisciplinary perspective, the design and development of effective water-soluble synthetic receptors based on cyclic, oligo-cyclic, and concave-shaped architectures. We also include selected examples of self-assembled water-soluble synthetic receptors. The catalytic performance of some of the presented receptors is also described. The latter process also deals with molecular recognition and energetic stabilization, but instead of binding ground-state species, the targets become elusive counterparts: transition states and other high-energy intermediates.
Collapse
Affiliation(s)
- Luis Escobar
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007 Tarragona, Spain.,Departament de Química Analítica i Química Orgánica, Universitat Rovira i Virgili, c/Marcel·lí Domingo 1, 43007 Tarragona, Spain
| | - Pablo Ballester
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007 Tarragona, Spain.,ICREA, Passeig Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
48
|
Selective Recognition of Amino Acids and Peptides by Small Supramolecular Receptors. Molecules 2020; 26:molecules26010106. [PMID: 33379401 PMCID: PMC7796322 DOI: 10.3390/molecules26010106] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/14/2020] [Accepted: 12/22/2020] [Indexed: 12/30/2022] Open
Abstract
To this day, the recognition and high affinity binding of biomolecules in water by synthetic receptors remains challenging, while the necessity for systems for their sensing, transport and modulation persists. This problematic is prevalent for the recognition of peptides, which not only have key roles in many biochemical pathways, as well as having pharmacological and biotechnological applications, but also frequently serve as models for the study of proteins. Taking inspiration in nature and on the interactions that occur between several receptors and peptide sequences, many researchers have developed and applied a variety of different synthetic receptors, as is the case of macrocyclic compounds, molecular imprinted polymers, organometallic cages, among others, to bind amino acids, small peptides and proteins. In this critical review, we present and discuss selected examples of synthetic receptors for amino acids and peptides, with a greater focus on supramolecular receptors, which show great promise for the selective recognition of these biomolecules in physiological conditions. We decided to focus preferentially on small synthetic receptors (leaving out of this review high molecular weight polymeric systems) for which more detailed and accurate molecular level information regarding the main structural and thermodynamic features of the receptor biomolecule assemblies is available.
Collapse
|
49
|
Liu Y, Zhang Y, Yu H, Liu Y. Cucurbituril‐Based Biomacromolecular Assemblies. Angew Chem Int Ed Engl 2020; 60:3870-3880. [DOI: 10.1002/anie.202009797] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Indexed: 12/29/2022]
Affiliation(s)
- Yao‐Hua Liu
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 China
| | - Ying‐Ming Zhang
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 China
| | - Hua‐Jiang Yu
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 China
| | - Yu Liu
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
50
|
Affiliation(s)
- Yao‐Hua Liu
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 China
| | - Ying‐Ming Zhang
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 China
| | - Hua‐Jiang Yu
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 China
| | - Yu Liu
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|