1
|
Abdellah AM, Salem KE, DiCecco LA, Ismail F, Rakhsha A, Grandfield K, Higgins D. In Situ Transmission Electron Microscopy of Electrocatalyst Materials: Proposed Workflows, Technical Advances, Challenges, and Lessons Learned. SMALL METHODS 2024:e2400851. [PMID: 39707656 DOI: 10.1002/smtd.202400851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 11/19/2024] [Indexed: 12/23/2024]
Abstract
In situ electrochemical liquid phase transmission electron microscopy (LP-TEM) measurements utilize micro-chip three-electrode cells with electron transparent silicon nitride windows that confine the liquid electrolyte. By imaging electrocatalysts deposited on micro-patterned electrodes, LP-TEM provides insight into morphological, phase structure, and compositional changes within electrocatalyst materials under electrochemical reaction conditions, which have practical implications on activity, selectivity, and durability. Despite LP-TEM capabilities becoming more accessible, in situ measurements under electrochemical reaction conditions remain non-trivial, with challenges including electron beam interactions with the electrolyte and electrode, the lack of well-defined experimental workflows, and difficulty interpreting particle behavior within a liquid. Herein a summary of the current state of LP-TEM technique capabilities alongside a discussion of the relevant experimental challenges researchers typically face, with a focus on in situ studies of electrochemical CO2 conversion catalysts is provided. A methodological approach for in situ LP-TEM measurements on CO2R catalysts prepared by electro-deposition, sputtering, or drop-casting is presented and include case studies where challenges and proposed workflows for each are highlighted. By providing a summary of LP-TEM technique capabilities and guidance for the measurements, the goal is for this paper to reduce barriers for researchers who are interested in utilizing LP-TEM characterization to answer their scientific questions.
Collapse
Affiliation(s)
- Ahmed M Abdellah
- Department of Chemical Engineering, McMaster University, Hamilton, ON, L8S 4L7, Canada
- Canadian Centre for Electron Microscopy, McMaster University, Hamilton, ON, L8S 4M1, Canada
| | - Kholoud E Salem
- Department of Chemical Engineering, McMaster University, Hamilton, ON, L8S 4L7, Canada
| | - Liza-Anastasia DiCecco
- Department of Materials Science and Engineering, McMaster University, Hamilton, ON, L8S 4L8, Canada
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Fatma Ismail
- Department of Chemical Engineering, McMaster University, Hamilton, ON, L8S 4L7, Canada
| | - Amirhossein Rakhsha
- Department of Chemical Engineering, McMaster University, Hamilton, ON, L8S 4L7, Canada
| | - Kathryn Grandfield
- Department of Materials Science and Engineering, McMaster University, Hamilton, ON, L8S 4L8, Canada
- School of Biomedical Engineering, McMaster University, Hamilton, ON, L8S 4L7, Canada
| | - Drew Higgins
- Department of Chemical Engineering, McMaster University, Hamilton, ON, L8S 4L7, Canada
- Canadian Centre for Electron Microscopy, McMaster University, Hamilton, ON, L8S 4M1, Canada
| |
Collapse
|
2
|
Zheng Q, Ren A, Zagalskaya A, Mao H, Lee D, Yang C, Bustillo KC, Wan LF, Pham TA, Reimer JA, Zhang J, Liu Y, Zheng H. Multistep Growth Pathway of Covalent Organic Framework Onion Nanostructures. J Am Chem Soc 2024; 146:34167-34175. [PMID: 39575868 DOI: 10.1021/jacs.4c14196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
The growth of complex organic macromolecular materials in solution is a pervasive phenomenon in both natural and synthetic systems, yet the underlying growth mechanisms remain largely unresolved. Using liquid-phase transmission electron microscopy (TEM), we elucidate the real-time growth pathways of covalent organic framework (COF) onion nanostructures, which involve graphitic layer formation, subsequent layer attachment, onion ring closure, and structural relaxation. This process is marked by variations in orientation and curvature, driven by the dynamic formation of the COF structure, which further regulates order-disorder transition and defect generation within the framework. Our in situ TEM characterizations provide valuable insights into how molecular arrangement drives the formation of complex nanostructures. We anticipate that direct imaging of COF nanostructure growth in liquids will open new opportunities for controlling COF crystal morphology, composition, and hierarchical structure development.
Collapse
Affiliation(s)
- Qi Zheng
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Civil and Environmental Engineering, University of California, Berkeley, California 94720, United States
| | - Amy Ren
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Alexandra Zagalskaya
- Quantum Simulations Group and Laboratory for Energy Applications for the Future (LEAF), Materials Science Division, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Haiyan Mao
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Daewon Lee
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States
| | - Chongqing Yang
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Karen C Bustillo
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Liwen F Wan
- Quantum Simulations Group and Laboratory for Energy Applications for the Future (LEAF), Materials Science Division, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Tuan Anh Pham
- Quantum Simulations Group and Laboratory for Energy Applications for the Future (LEAF), Materials Science Division, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Jeffrey A Reimer
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Jian Zhang
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Yi Liu
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Haimei Zheng
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States
| |
Collapse
|
3
|
Banerjee P, Kollmannsberger KL, Fischer RA, Jinschek JR. Mechanism of Electron-Beam-Induced Structural Degradation in ZIF-8 and its Electron Dose Tolerance. J Phys Chem A 2024; 128:10440-10451. [PMID: 39565713 DOI: 10.1021/acs.jpca.4c06391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Zeolitic-imidazolate frameworks (ZIFs) are crystalline microporous materials with promising potential for gas adsorption and catalysis application. Further research advances include studies on integrating ZIFs into nanodevice concepts. In detail for the application, e.g., electron-beam-assisted structural modifications or patterning, there is a need to understand potential structural degradation processes caused by such electron beams. Advanced transmission electron microscopy (TEM) has demonstrated its ability to study structures at the nanoscale. Here, we systematically investigated electron-beam-induced loss in crystallinity in ZIF-8 under various experimental conditions, using as measure the attenuation of the relative intensity and the relative displacement of electron diffraction Bragg planes with increasing cumulative electron dose. The {110} Bragg planes reflect the overall stability of the ZIF-8 unit-cell structure, while the {431} Bragg planes assess the stability of its micropore structure. We considered a relative loss of Bragg plane intensity of 37% as the threshold for determining the critical electron dose, which varied for different Bragg planes, with 35.6 ± 8.4 e-Å-2 for {110} and 11.4 ± 3.0 e-Å-2 for {431}. However, the critical dose per breakage of N-Zn bonds in a ZnN4 tetrahedra per different Bragg plane was found to be ∼3 e-Å-2, which indicates continuous, simultaneous breakage of N-Zn bonds throughout the crystal, confirming radiolysis as the dominant damage mechanism. In addition, we investigated the effects of TEM experiment parameters, including acceleration voltage, electron dose rate, cryogenic sample temperature, in situ sample drying, and change in conductivity of the sample substrate (e.g., graphene). Our results unravel the degradation mechanisms in ZIF-8 and provide threshold parameters for maximizing resolution in electron-beam-assisted experiments and processes.
Collapse
Affiliation(s)
- Pritam Banerjee
- National Centre for Nano Fabrication and Characterization (DTU Nanolab), Technical University of Denmark, Fysikvej 307, DK-2800 Kongens Lyngby, Denmark
| | - Kathrin L Kollmannsberger
- TUM School of Natural Sciences, Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, D- 85748 Garching, Germany
| | - Roland A Fischer
- TUM School of Natural Sciences, Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, D- 85748 Garching, Germany
| | - Joerg R Jinschek
- National Centre for Nano Fabrication and Characterization (DTU Nanolab), Technical University of Denmark, Fysikvej 307, DK-2800 Kongens Lyngby, Denmark
| |
Collapse
|
4
|
Song X, Huang R, Zhang X, Chang Q, Kim S, Jeong D, Hou Q, Kim J, Ang EH, Su X, Feng X, Xiang H. Unveiling the Dynamic Pathways of Metal-Organic Framework Crystallization and Nanoparticle Incorporation for Li-S Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407984. [PMID: 39316295 DOI: 10.1002/advs.202407984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/24/2024] [Indexed: 09/25/2024]
Abstract
Metal-organic frameworks (MOFs) present diverse building blocks for high-performance materials across industries, yet their crystallization mechanisms remain incompletely understood due to gaps in nucleation and growth knowledge. In this study, MOF structural evolution is probed using in situ liquid phase transmission electron microscopy (TEM) and cryo-TEM, unveiling a blend of classical and nonclassical pathways involving liquid-liquid phase separation, particle attachment-coalescence, and surface layer deposition. Additionally, ultrafast high-temperature sintering (UHS) is employed to dope ultrasmall Cobalt nanoparticles (Co NPs) uniformly within nitrogen-doped hard carbon nanocages confirmed by 3D electron tomography. Lithium-sulfur battery tests demonstrate the nanocage-Co NP structure's exceptional capacity and cycling stability, attributed to Co NP catalytic effects due to its small size, uniform dispersion, and nanocage confinement. The findings propose a holistic framework for MOF crystallization understanding and Co NP tunability through ultrafast sintering, promising advancements in materials science and informing future MOF synthesis strategies and applications.
Collapse
Affiliation(s)
- Xiaohui Song
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, Anhui, 230009, P. R. China
- Engineering Research Center of High Performance Copper Alloy Materials and Processing, Ministry of Education, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Rui Huang
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, Anhui, 230009, P. R. China
| | - Xingyu Zhang
- School of Mathematics, Statistics and Mechanics, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Qiang Chang
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, Anhui, 230009, P. R. China
| | - Semi Kim
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, South Korea
- Research Institute of Advanced Chemistry, Gyeongsang National University, Jinju, 52828, South Korea
| | - Daeun Jeong
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, South Korea
- Research Institute of Advanced Chemistry, Gyeongsang National University, Jinju, 52828, South Korea
| | - Qian Hou
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, Anhui, 230009, P. R. China
| | - Juyeong Kim
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, South Korea
- Research Institute of Advanced Chemistry, Gyeongsang National University, Jinju, 52828, South Korea
| | - Edison Huixiang Ang
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore, 637616, Singapore
| | - Xiaowei Su
- Anhui Honghai New Materials Co., Ltd, Anqing, Anhui, 246100, P. R. China
| | - Xuyong Feng
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, Anhui, 230009, P. R. China
| | - Hongfa Xiang
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, Anhui, 230009, P. R. China
- Engineering Research Center of High Performance Copper Alloy Materials and Processing, Ministry of Education, Hefei University of Technology, Hefei, 230009, P. R. China
| |
Collapse
|
5
|
Gnanasekaran K, Rosenmann ND, Dos Reis R, Gianneschi NC. Extent of Radiolytic Damage from Liquid Cell TEM Experiments on Metal-Organic Frameworks via Post-Mortem 4D-STEM. NANO LETTERS 2024; 24:10161-10168. [PMID: 39105722 DOI: 10.1021/acs.nanolett.4c02242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
We report a systematic analysis of electron beam damage of the zeolitic imidazolate framework (ZIF-8) during liquid cell transmission electron microscopy (LCTEM). Our analysis reveals ZIF-8 morphology is strongly affected by solvent used (water vs dimethylformamide), electron flux applied, and imaging mode (i.e., TEM vs STEM), while ZIF-8 crystallinity is primarily affected by accumulated electron fluence. Our observations indicate that the stability of ZIF-8 morphology is higher in dimethylformamide (DMF) than in water. However, in situ electron diffraction indicates that ZIF-8 nanocrystals lose crystallinity at critical fluence of ∼80 e-Å-2 independent of the presence of solvent. Furthermore, 4D-STEM analysis as a post-mortem method reveals the extent of electron beam damage beyond the imaging area and indicates that radiolytic reactions are more pronounced in TEM mode than in STEM mode. These results illustrate the significance of radiolysis occurring while imaging ZIF-8 and present a workflow for assessing damage in LCTEM experiments.
Collapse
Affiliation(s)
- Karthik Gnanasekaran
- Materials and Structural Analysis, Thermo Fisher Scientific Inc., 5350 NE Dawson Creek Drive Hillsboro, Oregon 97124, United States
- Department of Chemistry, International Institute for Nanotechnology, Chemistry of Life Processes Institute, Simpson Querrey Institute, Northwestern University, Evanston, Illinois 60208, United States
| | - Nathan D Rosenmann
- Department of Materials Science and Engineering, International Institute for Nanotechnology, Chemistry of Life Processes Institute, Simpson Querrey Institute, Northwestern University, Evanston, Illinois 60208, United States
| | - Roberto Dos Reis
- Northwestern University Atomic and Nanoscale Characterization Experimental Center, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Nathan C Gianneschi
- Department of Chemistry, International Institute for Nanotechnology, Chemistry of Life Processes Institute, Simpson Querrey Institute, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, International Institute for Nanotechnology, Chemistry of Life Processes Institute, Simpson Querrey Institute, Northwestern University, Evanston, Illinois 60208, United States
- Department of Biomedical Engineering, International Institute for Nanotechnology, Chemistry of Life Processes Institute, Simpson Querrey Institute, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
6
|
Shaw EV, Chester AM, Robertson GP, Castillo-Blas C, Bennett TD. Synthetic and analytical considerations for the preparation of amorphous metal-organic frameworks. Chem Sci 2024; 15:10689-10712. [PMID: 39027308 PMCID: PMC11253190 DOI: 10.1039/d4sc01433b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/18/2024] [Indexed: 07/20/2024] Open
Abstract
Metal-organic frameworks (MOFs) are hybrid porous materials presenting several tuneable properties, allowing them to be utilised for a wide range of applications. To date, focus has been on the preparation of novel crystalline MOFs for specific applications. Recently, interest in amorphous MOFs (aMOFs), defined by their lack of correlated long-range order, is growing. This is due to their potential favourable properties compared to their crystalline equivalents, including increased defect concentration, improved processability and gas separation ability. Direct synthesis of these disordered materials presents an alternative method of preparation to post-synthetic amorphisation of a crystalline framework, potentially allowing for the preparation of aMOFs with varying compositions and structures, and very different properties to crystalline MOFs. This perspective summarises current literature on directly synthesised aMOFs, and proposes methods that could be utilised to modify existing syntheses for crystalline MOFs to form their amorphous counterparts. It outlines parameters that could discourage the ordering of crystalline MOFs, before examining the potential properties that could emerge. Methodologies of structural characterisation are discussed, in addition to the necessary analyses required to define a topologically amorphous structure.
Collapse
Affiliation(s)
- Emily V Shaw
- Department of Materials Science & Metallurgy, University of Cambridge 27 Charles Babbage Road Cambridge UK
| | - Ashleigh M Chester
- Department of Materials Science & Metallurgy, University of Cambridge 27 Charles Babbage Road Cambridge UK
| | - Georgina P Robertson
- Department of Materials Science & Metallurgy, University of Cambridge 27 Charles Babbage Road Cambridge UK
| | - Celia Castillo-Blas
- Department of Materials Science & Metallurgy, University of Cambridge 27 Charles Babbage Road Cambridge UK
| | - Thomas D Bennett
- Department of Materials Science & Metallurgy, University of Cambridge 27 Charles Babbage Road Cambridge UK
| |
Collapse
|
7
|
Li X, Wu XT, Xu Q, Zhu QL. Hierarchically Ordered Pore Engineering of Metal-Organic Framework-Based Materials for Electrocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401926. [PMID: 38631691 DOI: 10.1002/adma.202401926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/01/2024] [Indexed: 04/19/2024]
Abstract
Ordered pore engineering that embeds uniform pores with periodic alignment in electrocatalysts opens up a new avenue for achieving further performance promotion. Hierarchically ordered porous metal-organic frameworks (HOP-MOFs) possessing multilevel pores with ordered distribution are the promising precursors for the exploration of ordered porous electrocatalysts, while the scalable acquisition of HOP-MOFs with editable components and adjustable pore size regimes is critical. This review presents recent progress on hierarchically ordered pore engineering of MOF-based materials for enhanced electrocatalysis. The synthetic strategies of HOP-MOFs with different pore size regimes, including the self-assembly guided by reticular chemistry, surfactant, nanoemulsion, and nanocasting, are first introduced. Then the applications of HOP-MOFs as the precursors for exploring hierarchically ordered porous electrocatalysts are summarized, selecting representatives to highlight the boosted performance. Especially, the intensification of molecule and ion transport integrated with optimized electron transfer and site exposure over the hierarchically ordered porous derivatives are emphasized to clarify the directional transfer and integration effect endowed by ordered pore engineering. Finally, the remaining scientific challenges and an outlook of this field are proposed. It is hoped that this review will guide the hierarchically ordered pore engineering of nanocatalysts for boosting the catalytic performance and promoting the practical applications.
Collapse
Affiliation(s)
- Xiaofang Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS), Fuzhou, 350002, China
| | - Xin-Tao Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS), Fuzhou, 350002, China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiang Xu
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Qi-Long Zhu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS), Fuzhou, 350002, China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| |
Collapse
|
8
|
Zhan Z, Liu Y, Wang W, Du G, Cai S, Wang P. Atomic-level imaging of beam-sensitive COFs and MOFs by low-dose electron microscopy. NANOSCALE HORIZONS 2024; 9:900-933. [PMID: 38512352 DOI: 10.1039/d3nh00494e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Electron microscopy, an important technique that allows for the precise determination of structural information with high spatiotemporal resolution, has become indispensable in unravelling the complex relationships between material structure and properties ranging from mesoscale morphology to atomic arrangement. However, beam-sensitive materials, particularly those comprising organic components such as metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), would suffer catastrophic damage from the high energy electrons, hindering the determination of atomic structures. A low-dose approach has arisen as a possible solution to this problem based on the integration of advancements in several aspects: electron optical system, detector, image processing, and specimen preservation. This article summarizes the transmission electron microscopy characterization of MOFs and COFs, including local structures, host-guest interactions, and interfaces at the atomic level. Revolutions in advanced direct electron detectors, algorithms in image acquisition and processing, and emerging methodology for high quality low-dose imaging are also reviewed. Finally, perspectives on the future development of electron microscopy methodology with the support of computer science are presented.
Collapse
Affiliation(s)
- Zhen Zhan
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon 999077, Hong Kong SAR, China.
| | - Yuxin Liu
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon 999077, Hong Kong SAR, China.
| | - Weizhen Wang
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon 999077, Hong Kong SAR, China.
| | - Guangyu Du
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon 999077, Hong Kong SAR, China.
| | - Songhua Cai
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon 999077, Hong Kong SAR, China.
| | - Peng Wang
- Department of Physics, University of Warwick, CV4 7AL, Coventry, UK.
| |
Collapse
|
9
|
Gibson W, Mulvey JT, Das S, Selmani S, Merham JG, Rakowski AM, Schwartz E, Hochbaum AI, Guan Z, Green JR, Patterson JP. Observing the Dynamics of an Electrochemically Driven Active Material with Liquid Electron Microscopy. ACS NANO 2024; 18:11898-11909. [PMID: 38648551 DOI: 10.1021/acsnano.4c01524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Electrochemical liquid electron microscopy has revolutionized our understanding of nanomaterial dynamics by allowing for direct observation of their electrochemical production. This technique, primarily applied to inorganic materials, is now being used to explore the self-assembly dynamics of active molecular materials. Our study examines these dynamics across various scales, from the nanoscale behavior of individual fibers to the micrometer-scale hierarchical evolution of fiber clusters. To isolate the influences of the electron beam and electrical potential on material behavior, we conducted thorough beam-sample interaction analyses. Our findings reveal that the dynamics of these active materials at the nanoscale are shaped by their proximity to the electrode and the applied electrical current. By integrating electron microscopy observations with reaction-diffusion simulations, we uncover that local structures and their formation history play a crucial role in determining assembly rates. This suggests that the emergence of nonequilibrium structures can locally accelerate further structural development, offering insights into the behavior of active materials under electrochemical conditions.
Collapse
Affiliation(s)
- Wyeth Gibson
- Department of Chemistry, University of California Irvine, Irvine, California 92697, United States
- Center for Complex and Active Materials, University of California Irvine, Irvine, California 92697, United States
| | - Justin T Mulvey
- Center for Complex and Active Materials, University of California Irvine, Irvine, California 92697, United States
- Department of Materials Science and Engineering, University of California Irvine, Irvine, California 92697, United States
| | - Swetamber Das
- Department of Chemistry, University of Massachusetts Boston, Boston, Massachusetts 02125, United States
| | - Serxho Selmani
- Department of Chemistry, University of California Irvine, Irvine, California 92697, United States
- Center for Complex and Active Materials, University of California Irvine, Irvine, California 92697, United States
| | - Jovany G Merham
- Department of Chemistry, University of California Irvine, Irvine, California 92697, United States
| | - Alexander M Rakowski
- Department of Chemistry, University of California Irvine, Irvine, California 92697, United States
| | - Eric Schwartz
- Department of Chemistry, University of California Irvine, Irvine, California 92697, United States
| | - Allon I Hochbaum
- Department of Chemistry, University of California Irvine, Irvine, California 92697, United States
- Center for Complex and Active Materials, University of California Irvine, Irvine, California 92697, United States
- Department of Materials Science and Engineering, University of California Irvine, Irvine, California 92697, United States
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California 92697, United States
- Department of Chemical and Biomolecular Engineering, University of California Irvine, Irvine, California 92697, United States
| | - Zhibin Guan
- Department of Chemistry, University of California Irvine, Irvine, California 92697, United States
- Center for Complex and Active Materials, University of California Irvine, Irvine, California 92697, United States
- Department of Materials Science and Engineering, University of California Irvine, Irvine, California 92697, United States
- Department of Chemical and Biomolecular Engineering, University of California Irvine, Irvine, California 92697, United States
- Department of Biomedical Engineering, University of California Irvine, Irvine, California 92697, United States
| | - Jason R Green
- Department of Chemistry, University of Massachusetts Boston, Boston, Massachusetts 02125, United States
- Department of Physics, University of Massachusetts Boston, Boston, Massachusetts 02125, United States
| | - Joseph P Patterson
- Department of Chemistry, University of California Irvine, Irvine, California 92697, United States
- Center for Complex and Active Materials, University of California Irvine, Irvine, California 92697, United States
- Department of Materials Science and Engineering, University of California Irvine, Irvine, California 92697, United States
| |
Collapse
|
10
|
Castillo-Blas C, Chester AM, Keen DA, Bennett TD. Thermally activated structural phase transitions and processes in metal-organic frameworks. Chem Soc Rev 2024; 53:3606-3629. [PMID: 38426588 DOI: 10.1039/d3cs01105d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The structural knowledge of metal-organic frameworks is crucial to the understanding and development of new efficient materials for industrial implementation. This review classifies and discusses recent advanced literature reports on phase transitions that occur during thermal treatments on metal-organic frameworks and their characterisation. Thermally activated phase transitions and procceses are classified according to the temperaturatures at which they occur: high temperature (reversible and non-reversible) and low temperature. In addition, theoretical calculations and modelling approaches employed to better understand these structural phase transitions are also reviewed.
Collapse
Affiliation(s)
- Celia Castillo-Blas
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB30FS, UK.
| | - Ashleigh M Chester
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB30FS, UK.
| | - David A Keen
- ISIS Facility, Rutherford Appleton Laboratory, Harwell Campus, OX11 0DE, Didcot, Oxfordshire, UK
| | - Thomas D Bennett
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB30FS, UK.
| |
Collapse
|
11
|
Jongert TK, Slowinski IA, Dao B, Cortez VH, Gredig T, Plascencia ND, Tian F. Zeta Potential and Size Analysis of Zeolitic Imidazolate Framework-8 Nanocrystals Prepared by Surfactant-Assisted Synthesis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:6138-6148. [PMID: 38488140 DOI: 10.1021/acs.langmuir.3c03193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
The crystal nucleation and growth mechanism of monodispersed metal-organic framework nanoparticles were studied using time-resolved light dynamic, electrokinetic, and powder X-ray diffraction methods. We confirmed that zeolitic imidazolate framework-8 (ZIF-8) nanocrystals follow a nonclassical crystal growth pathway, where a fast nucleation occurs with dense liquid clusters or nanocrystals forming spontaneously when two precursors are mixed. We also explored the zeta potential and solvodynamic size changes of ZIF-8 prepared by a surfactant-assisted synthesis. Three modulators, including 1-methylimidazole (1-mIm), tris(hydroxymethyl)aminomethane (THAM), and (1-hexadecyl)trimethylammonium bromide (CTAB), were studied. We found that 1-mIm dramatically increases the rate of nucleation of ZIF-8. With an increasing amount of 1-mIm, which functions as a coordination modulator, the size increases, and the zeta potential of ZIF-8 decreases. Whereas THAM, as both a coordination and a deprotonation modulator, increases the size and zeta potential of ZIF-8 simultaneously, CTAB, as a long alkyl cationic surfactant, mainly adsorbs on the surface of ZIF-8, and the zeta potential of the formed ZIF-8 is controlled by the amount of CTAB in solution compared with its critical micelle concentration. Overall, we reveal that the modulator type and concentration can be used to control the size and zeta potential of the dispersed ZIF-8 nanocrystals in a colloid system. The experiments also enable identification of the nucleation and crystal growth processes of ZIF-8. The findings will be applicable to other nanocrystals in colloid systems, which are used for heterogeneous catalysis and guest molecular loadings.
Collapse
Affiliation(s)
- Tristan K Jongert
- Department of Chemistry & Biochemistry, California State University Long Beach, Long Beach, California 90840, United States
| | - Ian A Slowinski
- Department of Chemistry & Biochemistry, California State University Long Beach, Long Beach, California 90840, United States
| | - Benjamin Dao
- Department of Chemistry & Biochemistry, California State University Long Beach, Long Beach, California 90840, United States
| | - Victor H Cortez
- Department of Chemistry & Biochemistry, California State University Long Beach, Long Beach, California 90840, United States
| | - Thomas Gredig
- Department of Physics & Astronomy, California State University Long Beach, Long Beach, California 90840, United States
| | - Nestor D Plascencia
- Department of Physics & Astronomy, California State University Long Beach, Long Beach, California 90840, United States
| | - Fangyuan Tian
- Department of Chemistry & Biochemistry, California State University Long Beach, Long Beach, California 90840, United States
| |
Collapse
|
12
|
Kunnas P, de Jonge N, Patterson JP. The effect of nanochannel length on in situ loading times of diffusion-propelled nanoparticles in liquid cell electron microscopy. Ultramicroscopy 2024; 255:113865. [PMID: 37856919 DOI: 10.1016/j.ultramic.2023.113865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/28/2023] [Accepted: 10/04/2023] [Indexed: 10/21/2023]
Abstract
Liquid cell transmission electron microscopy is a powerful tool for visualizing nanoparticle (NP) assemblies in liquid environments with nanometer resolution. However, it remains a challenge to control the NP concentration in the high aspect ratio liquid enclosure where the diffusion of dispersed NPs is affected by the exposed surface of the liquid cell walls. Here, we introduce a semi-empirical model based on the 1D diffusion equation, to predict the NP loading time as they pass through the nanochannel into the imaging volume of the liquid cell. We show that loading of NPs into the imaging volume of the liquid cell may take several days if NPs are prone to attach to the surface of the mm-long nanochannel when using an industry-standard flat microchip. As a means to facilitate mass transport via diffusion, we tested a liquid cell incorporating a microchannel geometry resulting in a NP loading time in the order minutes that allowed us to observe the formation of a randomly oriented self-assembled monolayer in situ using scanning transmission electron microscopy.
Collapse
Affiliation(s)
- Peter Kunnas
- University of Vienna, Faculty of Physics, VCQ, Vienna A-1090, Austria; University of Vienna, Max Perutz Laboratories, Department of Structural and Computational Biology, Vienna A-1030, Austria
| | - Niels de Jonge
- Leibniz Institute for New Materials, Saarbrücken, Germany; Department of Physics, Saarland University, Saarbrücken, Germany; Bruker AXS, Karlsruhe, Germany
| | - Joseph P Patterson
- Department of Chemistry, University of California Irvine, Irvine, CA 92697-2025, United States.
| |
Collapse
|
13
|
Yamazaki T, Yashima Y, Katsuno H, Miyazaki H, Gondo T, Kimura Y. In Situ Transmission Electron Microscopy Study of Bubble Behavior Near the Surface of Ice Crystals by Using a Liquid Cell With a Peltier Cooling Holder. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:1940-1949. [PMID: 37851094 DOI: 10.1093/micmic/ozad112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/11/2023] [Accepted: 09/22/2023] [Indexed: 10/19/2023]
Abstract
Liquid cell transmission electron microscopy (LC-TEM) is a unique technique that permits in situ observations of various phenomena in liquids with high spatial and temporal resolutions. One difficulty with this technique is the control of the environmental conditions in the observation area. Control of the temperature ranging from room temperature to minus several tens of degrees Celsius, is desirable for controlling the supersaturation in various materials and for observing crystallization more easily. We have developed a cooling transmission electron microscopy specimen holder that uses Peltier devices, and we have combined it with a liquid cell to realize accurate temperature control in LC-TEM. We evaluated this system by using water as a specimen. Motionless bubbles, shown to be voids containing pressurized gas, formed in the specimen sometime after the temperature had reached -12°C. An electron diffraction pattern showed that the specimen turned into ice Ih after the formation of these bubbles, confirming that our system works properly and can induce crystallization. In addition, we analyzed the behavior of bubbles formed in the ice Ih, and we discussed the formation of these bubbles and their internal pressure.
Collapse
Affiliation(s)
- Tomoya Yamazaki
- Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, Sapporo 060-0819, Japan
| | - Yuga Yashima
- Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, Sapporo 060-0819, Japan
| | - Hiroyasu Katsuno
- Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, Sapporo 060-0819, Japan
| | - Hiroya Miyazaki
- Mel-Build Corporation, 2-11-36, Ishimaru, Nishi-ku, Fukuoka 819-0025, Japan
| | - Takashi Gondo
- Mel-Build Corporation, 2-11-36, Ishimaru, Nishi-ku, Fukuoka 819-0025, Japan
| | - Yuki Kimura
- Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, Sapporo 060-0819, Japan
| |
Collapse
|
14
|
Carpenter BP, Talosig AR, Rose B, Di Palma G, Patterson JP. Understanding and controlling the nucleation and growth of metal-organic frameworks. Chem Soc Rev 2023; 52:6918-6937. [PMID: 37796101 DOI: 10.1039/d3cs00312d] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Metal-organic frameworks offer a diverse landscape of building blocks to design high performance materials for implications in almost every major industry. With this diversity stems complex crystallization mechanisms with various pathways and intermediates. Crystallization studies have been key to the advancement of countless biological and synthetic systems, with MOFs being no exception. This review provides an overview of the current theories and fundamental chemistry used to decipher MOF crystallization. We then discuss how intrinsic and extrinsic synthetic parameters can be used as tools to modulate the crystallization pathway to produce MOF crystals with finely tuned physical and chemical properties. Experimental and computational methods are provided to guide the probing of MOF crystal formation on the molecular and bulk scale. Lastly, we summarize the recent major advances in the field and our outlook on the exciting future of MOF crystallization.
Collapse
Affiliation(s)
- Brooke P Carpenter
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697-2025, USA.
| | - A Rain Talosig
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697-2025, USA.
| | - Ben Rose
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697-2025, USA.
| | - Giuseppe Di Palma
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697-2025, USA.
| | - Joseph P Patterson
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697-2025, USA.
| |
Collapse
|
15
|
Korpanty J, Gianneschi NC. Exploration of Organic Nanomaterials with Liquid-Phase Transmission Electron Microscopy. Acc Chem Res 2023; 56:2298-2312. [PMID: 37580021 DOI: 10.1021/acs.accounts.3c00211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
ConspectusOrganic, soft materials with solution-phase nanoscale structures, such as emulsions, hydrogels, and thermally responsive materials, are inherently difficult to directly image via dry state and cryogenic-transmission electron microscopy (TEM). Therefore, we lack a routine microscopy method with sufficient resolution that can, in tandem with scattering techniques, probe the morphology and dynamics of these and many related systems. These challenges motivate liquid cell (LC) TEM method development, aimed at making the technique generally available and routine. To date, the field has been and continues to be dominantly focused on analyzing solution-phase inorganic materials. These mostly metallic nanoparticles have been studied at electron fluxes that can allow for high-resolution imaging, in the range of hundreds to thousands of e- Å-2 s-1. Despite excellent contrast, in these cases, one often contends with knock-on damage, direct radiolysis, and sensitization of the solvent by virtue of enhanced secondary electron production by the impinging electron beam. With an interest in soft materials, we face both related and distinct challenges, especially in achieving a high-enough contrast within solvated liquid cells. Additionally, we must be aware of artifacts associated with high-flux imaging conditions in terms of direct radiolysis of the solvent and the sensitive materials themselves. Regardless, with care, it has become possible to gain real insight into both static and dynamic organic nanomaterials in solution. This is due, in large part, to key advances that have been made, including improved sample preparation protocols, image capture technologies, and image analysis, which have allowed LCTEM to have utility. To enable solvated soft matter characterization by LCTEM, a generalizable multimodal workflow was developed by leveraging both experimental and theoretical precedents from across the LCTEM field and adjacent works concerned with solution radiolysis and nanoparticle tracking analyses. This workflow consists of (1) modeling electron beam-solvent interactions, (2) studying electron beam-sample interactions via LCTEM coupled with post-mortem analysis, (3) the construction of "damage plots" displaying sample integrity under varied imaging and sample conditions, (4) optimized LCTEM imaging, (5) image processing, and (6) correlative analysis via X-ray or light scattering. In this Account, we present this outlook and the challenges we continue to overcome in the direct imaging of dynamic solvated nanoscale soft materials.
Collapse
Affiliation(s)
- Joanna Korpanty
- Department of Chemistry, International Institute for Nanotechnology, Chemistry of Life Processes Institute, Simpson Querrey Institute, Lurie Cancer Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Nathan C Gianneschi
- Department of Chemistry, International Institute for Nanotechnology, Chemistry of Life Processes Institute, Simpson Querrey Institute, Lurie Cancer Center, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science & Engineering, Department of Biomedical Engineering and Department of Pharmacology, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
16
|
Chang Q, Yang D, Zhang X, Ou Z, Kim J, Liang T, Chen J, Cheng S, Cheng L, Ge B, Ang EH, Xiang H, Li M, Song X. Understanding ZIF particle chemical etching dynamics and morphology manipulation: in situ liquid phase electron microscopy and 3D electron tomography application. NANOSCALE 2023; 15:13718-13727. [PMID: 37577754 DOI: 10.1039/d3nr02357e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
In situ liquid phase transmission electron microscopy (TEM) and three-dimensional electron tomography are powerful tools for investigating the growth mechanism of MOFs and understanding the factors that influence their particle morphology. However, their combined application to the study of MOF etching dynamics is limited due to the challenges of the technique such as sample preparation, limited field of view, low electron density, and data analysis complexity. In this research, we present a study employing in situ liquid phase TEM to investigate the etching mechanism of colloidal zeolitic imidazolate framework (ZIF) nanoparticles. The etching process involves two distinct stages, resulting in the development of porous structures as well as partially and fully hollow morphologies. The etching process is induced by exposure to an acid solution, and both in situ and ex situ experiments demonstrate that the outer layer etches faster leading to overall volume shrinking (stage I) while the inner layer etches faster giving a hollow morphology (stage II), although both the outer layer and inner layer have been etched in the whole process. 3D electron tomography was used to quantify the properties of the hollow structures which show that the ZIF-67 crystal etching rate is larger than that of the ZIF-8 crystal at the same pH value. This study provides valuable insights into MOF particle morphology control and can lead to the development of novel MOF-based materials with tailored properties for various applications.
Collapse
Affiliation(s)
- Qiang Chang
- School of Materials Science and Engineering, Hefei University of Technology, Anhui Province, 230009, China.
| | - Dahai Yang
- School of Materials Science and Engineering, Hefei University of Technology, Anhui Province, 230009, China.
| | - Xingyu Zhang
- Department of Engineering & Mechanics, Beijing University of Technology, Beijing, 100124, China.
| | - Zihao Ou
- School of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Juyeong Kim
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, South Korea
| | - Tong Liang
- School of Materials Science and Engineering, Hefei University of Technology, Anhui Province, 230009, China.
| | - Junhao Chen
- School of Materials Science and Engineering, Hefei University of Technology, Anhui Province, 230009, China.
| | - Sheng Cheng
- School of Materials Science and Engineering, Hefei University of Technology, Anhui Province, 230009, China.
| | - Lixun Cheng
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Binghui Ge
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Edison Huixiang Ang
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore 637616, Singapore
| | - Hongfa Xiang
- School of Materials Science and Engineering, Hefei University of Technology, Anhui Province, 230009, China.
| | - Mufan Li
- Institute of Physical Chemistry, the College of Chemistry and Molecular Engineering, Pecking University, Beijing, 100871, China
| | - Xiaohui Song
- School of Materials Science and Engineering, Hefei University of Technology, Anhui Province, 230009, China.
| |
Collapse
|
17
|
Zheng A, Yin K, Pan R, Zhu M, Xiong Y, Sun L. Research Progress on Metal-Organic Frameworks by Advanced Transmission Electron Microscopy. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13111742. [PMID: 37299645 DOI: 10.3390/nano13111742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023]
Abstract
Metal-organic frameworks (MOFs), composed of metal nodes and inorganic linkers, are promising for a wide range of applications due to their unique periodic frameworks. Understanding structure-activity relationships can facilitate the development of new MOFs. Transmission electron microscopy (TEM) is a powerful technique to characterize the microstructures of MOFs at the atomic scale. In addition, it is possible to directly visualize the microstructural evolution of MOFs in real time under working conditions via in situ TEM setups. Although MOFs are sensitive to high-energy electron beams, much progress has been made due to the development of advanced TEM. In this review, we first introduce the main damage mechanisms for MOFs under electron-beam irradiation and two strategies to minimize these damages: low-dose TEM and cryo-TEM. Then we discuss three typical techniques to analyze the microstructure of MOFs, including three-dimensional electron diffraction, imaging using direct-detection electron-counting cameras, and iDPC-STEM. Groundbreaking milestones and research advances of MOFs structures obtained with these techniques are highlighted. In situ TEM studies are reviewed to provide insights into the dynamics of MOFs induced by various stimuli. Additionally, perspectives are analyzed for promising TEM techniques in the research of MOFs' structures.
Collapse
Affiliation(s)
- Anqi Zheng
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing 210096, China
| | - Kuibo Yin
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing 210096, China
| | - Rui Pan
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing 210096, China
| | - Mingyun Zhu
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing 210096, China
| | - Yuwei Xiong
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing 210096, China
| | - Litao Sun
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing 210096, China
| |
Collapse
|
18
|
Han X, Su R, Chen W, Han Q, Tian Y, Han J, Wang X, Song S, Reddy KM, Deng H, Liu P, Chen M. Oriented attachment interfaces of zeolitic imidazolate framework nanocrystals. NANOSCALE 2023; 15:7703-7709. [PMID: 37039237 DOI: 10.1039/d3nr00702b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Understanding the growth and coarsening mechanisms of metal-organic framework (MOF) nanoparticles is crucially important for the design and fabrication of MOF materials with diverse functionalities and controllable stability. Oriented attachment (OA) growth is a common manner of MOF nanocrystal coarsening and agglomeration, but the underlying molecular mechanisms have not been well understood to date. Here we report the molecular-scale characterization of the OA interfaces of zeolitic imidazolate framework (ZIF) crystals by state-of-the-art low-dose aberration-corrected transmission electron microscopy. A series of OA interfaces with different molecular structures are captured, implying that multiple kinetic steps are involved in the OA growth of ZIF crystals from non-directional physical attractions between primary nanocrystals, lattice-aligned attachment of the ligand-capped nanocrystals, to coherent interfaces with perfect lattice alignment or stacking faults. It was found that the surface-capping organic ligands not only play an essential role in crystal lattice alignment by near-field directional interactions, but also dominate the interfacial reaction kinetics by interfacial diffusion-controlled elimination of excess surface-capping ligands. These observations provide molecular-scale insights into the OA growth mechanisms of ZIF crystals, which is important for engineering MOF crystal growth pathways by designing surface-capping ligands.
Collapse
Affiliation(s)
- Xiaocang Han
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Rui Su
- College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China
| | - Wenqian Chen
- Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, People's Republic of China
| | - Qi Han
- Key Laboratory of Biomedical Polymers-Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Yuan Tian
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Jiuhui Han
- Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
| | - Xiaodong Wang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Shuangxi Song
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Kolan Madhav Reddy
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
- Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
| | - Hexiang Deng
- Key Laboratory of Biomedical Polymers-Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Pan Liu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
- Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
| | - Mingwei Chen
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
19
|
Fu J, He Z, Schott E, Fei H, Tu M, Wu YN. Sequential Sol-Gel Self-Assembly and Nonclassical Gel-Crystal Transformation of the Metal-Organic Framework Gel. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206718. [PMID: 36737849 DOI: 10.1002/smll.202206718] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/05/2023] [Indexed: 05/04/2023]
Abstract
Metal-organic framework (MOF) gel, an emerging subtype of MOF structure, is unique in formation and function; however, its evolutionary process remains elusive. Here, the evolution of a model gel-based MOF, UiO-66(Zr) gel, is explored by demonstrating its sequential sol-gel self-assembly and nonclassical gel-crystal transformation. The control of the sol-gel process enables the observation and characterization of structures in each assembly stage (phase-separation, polycondensation, and hindered-crystallization) and facilitates the preparation of hierarchical materials with giant mesopores. The gelation mechanism is tentatively attributed to the formation of zirconium oligomers. By further utilizing the pre-synthesized gel, the nonclassical gel-crystal transformation is achieved by the modulation in an unconventional manner, which sheds light on crystal intermediates and distinct crystallization motions ("growth and splitting" and "aggregation and fusion"). The overall sol-gel and gel-crystal evolutions of UiO-66(Zr) enrich self-assembly and crystallization domains, inspire the design of functional structures, and demand more in-depth research on the intermediates in the future.
Collapse
Affiliation(s)
- Jiarui Fu
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Rd., Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Rd., Shanghai, 200092, China
| | - Ziyan He
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Rd., Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Rd., Shanghai, 200092, China
| | - Eduardo Schott
- Department of Inorganic Chemistry of the Faculty of Chemistry and Pharmacy, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago, 7820436, Chile
| | - Honghan Fei
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Rd., Shanghai, 200092, China
| | - Min Tu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Yi-Nan Wu
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Rd., Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Rd., Shanghai, 200092, China
| |
Collapse
|
20
|
Tatebe CJ, Fromel E, Bellas MK, Zeller M, Genna DT. Mechanistic Investigation of the Synthesis of Dianionic In-Derived Coordination Polymers. Inorg Chem 2023; 62:5881-5885. [PMID: 37001027 DOI: 10.1021/acs.inorgchem.3c00148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
The mechanism of formation of crystalline coordination polymers is as complex as the architectures themselves. In this Communication, we detail a three-tiered approach using density functional theory (DFT) analysis, synthesis, and in situ Raman spectroscopy to study the formation of coordination polymers. Specifically, the previously reported coordination polymers YCM-22 and YCM-51 containing the [In(CO2R)2X3]2- (X = halogen) molecular building unit (MBU) were investigated. DFT revealed two potential pathways of formation, involving the initial formation of either [InCl4]- or [In(CO2R)Cl3]-. A molecular dimeric In species (8a) containing two [In(CO2R)Cl4]2- centers bridged by 2,5-thiophenedicarboxylic acid was isolated. When a suspension of 8a was treated with a solution of 2,5-thiophenedicarboxylic acid, an isomer of the coordination polymer YCM-22 (denoted as YCM-22') was formed. In situ Raman analysis of the formation of YCM-22 confirms that [InCl4]- forms at the onset of the reaction and that the [In(CO2R)2X3]2- MBU forms at its expense. The totality of the data presented support a mechanism of formation of one-dimensional In-derived coordination polymers and present a roadmap for future investigations into the formation of other crystalline coordination polymers.
Collapse
Affiliation(s)
- Caleb J. Tatebe
- Department of Chemistry, Youngstown State University, Youngstown, Ohio 44555, United States
| | - Emily Fromel
- Department of Chemistry, Youngstown State University, Youngstown, Ohio 44555, United States
| | - Michael K. Bellas
- Department of Chemistry, Youngstown State University, Youngstown, Ohio 44555, United States
| | - Matthias Zeller
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Douglas T. Genna
- Department of Chemistry, Youngstown State University, Youngstown, Ohio 44555, United States
| |
Collapse
|
21
|
Vratsanos M, Xue W, Rosenmann ND, Zarzar LD, Gianneschi NC. Ouzo Effect Examined at the Nanoscale via Direct Observation of Droplet Nucleation and Morphology. ACS CENTRAL SCIENCE 2023; 9:457-465. [PMID: 36968532 PMCID: PMC10037490 DOI: 10.1021/acscentsci.2c01194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Indexed: 06/12/2023]
Abstract
Herein, we present the direct observation via liquid-phase transmission electron microscopy (LPTEM) of the nucleation and growth pathways of structures formed by the so-called "ouzo effect", which is a classic example of surfactant-free, spontaneous emulsification. Such liquid-liquid phase separation occurs in ternary systems with an appropriate cosolvent such that the addition of the third component extracts the cosolvent and makes the other component insoluble. Such droplets are homogeneously sized, stable, and require minimal energy to disperse compared to conventional emulsification methods. Thus, ouzo precipitation processes are an attractive, straightforward, and energy-efficient technique for preparing dispersions, especially those made on an industrial scale. While this process and the resulting emulsions have been studied by numerous indirect techniques (e.g., X-ray and light scattering), direct observation of such structures and their formation at the nanoscale has remained elusive. Here, we employed the nascent technique of LPTEM to simultaneously evaluate droplet growth and nanostructure. Observation of such emulsification and its rate dependence is a promising indication that similar LPTEM methodologies may be used to investigate emulsion formation and kinetics.
Collapse
Affiliation(s)
- Maria
A. Vratsanos
- Department
of Materials Science & Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Wangyang Xue
- Department
of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Nathan D. Rosenmann
- Department
of Materials Science & Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Lauren D. Zarzar
- Department
of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department
of Materials Science and Engineering, The
Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Materials
Research Institute, The Pennsylvania State
University, University Park, Pennsylvania 16802, United States
| | - Nathan C. Gianneschi
- Department
of Materials Science & Engineering, Northwestern University, Evanston, Illinois 60208, United States
- International
Institute for Nanotechnology, Simpson Querrey Institute, Chemistry
of Life Processes Institute, Northwestern
University, Evanston, Illinois 60208, United
States
- Department
of Chemistry, Department of Biomedical Engineering, Department of
Pharmacology, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
22
|
Jabbari V, Sawczyk M, Amiri A, Král P, Shahbazian-Yassar R. Unveiling growth and dynamics of liposomes by graphene liquid cell-transmission electron microscopy. NANOSCALE 2023; 15:5011-5022. [PMID: 36790028 DOI: 10.1039/d2nr06147c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Liposome is a model system for biotechnological and biomedical purposes spanning from targeted drug delivery to modern vaccine research. Yet, the growth mechanism of liposomes is largely unknown. In this work, the formation and evolution of phosphatidylcholine-based liposomes are studied in real-time by graphene liquid cell-transmission electron microscopy (GLC-TEM). We reveal important steps in the growth, fusion and denaturation of phosphatidylcholine (PC) liposomes. We show that initially complex lipid aggregates resembling micelles start to form. These aggregates randomly merge while capturing water and forming small proto-liposomes. The nanoscopic containers continue sucking water until their membrane becomes convex and free of redundant phospholipids, giving stabilized PC liposomes of different sizes. In the initial stage, proto-liposomes grow at a rate of 10-15 nm s-1, which is followed by their growth rate of 2-5 nm s-1, limited by the lipid availability in the solution. Molecular dynamics (MD) simulations are used to understand the structure of micellar clusters, their evolution, and merging. The liposomes are also found to fuse through lipid bilayers docking followed by the formation of a hemifusion diaphragm and fusion pore opening. The liposomes denaturation can be described by initial structural destabilization and deformation of the membrane followed by the leakage of the encapsulated liquid. This study offers new insights on the formation and growth of lipid-based molecular assemblies which is applicable to a wide range of amphiphilic molecules.
Collapse
Affiliation(s)
- Vahid Jabbari
- Mechanical and Industrial Engineering Department, University of Illinois at Chicago, Chicago, IL 60607, USA. rsyassar@uic
| | - Michal Sawczyk
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Azadeh Amiri
- Mechanical and Industrial Engineering Department, University of Illinois at Chicago, Chicago, IL 60607, USA. rsyassar@uic
| | - Petr Král
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA
- Department of Physics, Pharmaceutical Sciences, and Chemical Engineering, University of Illinois at Chicago, Chicago, USA
| | - Reza Shahbazian-Yassar
- Mechanical and Industrial Engineering Department, University of Illinois at Chicago, Chicago, IL 60607, USA. rsyassar@uic
| |
Collapse
|
23
|
Direct synthesis of amorphous coordination polymers and metal–organic frameworks. Nat Rev Chem 2023; 7:273-286. [PMID: 37117419 DOI: 10.1038/s41570-023-00474-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2023] [Indexed: 03/08/2023]
Abstract
Coordination polymers (CPs) and their subset, metal-organic frameworks (MOFs), can have porous structures and hybrid physicochemical properties that are useful for diverse applications. Although crystalline CPs and MOFs have received the most attention to date, their amorphous states are of growing interest as they can be directly synthesized under mild conditions. Directly synthesized amorphous CPs (aCPs) can be constructed from a wider range of metals and ligands than their crystalline and crystal-derived counterparts and demonstrate numerous unique material properties, such as higher mechanical robustness, increased stability and greater processability. This Review examines methods for the direct synthesis of aCPs and amorphous MOFs, as well as their properties and characterization routes, and offers a perspective on the opportunities for the widespread adoption of directly synthesized aCPs.
Collapse
|
24
|
Venugopal A, Ruiz-Perez L, Swamynathan K, Kulkarni C, Calò A, Kumar M. Caught in Action: Visualizing Dynamic Nanostructures Within Supramolecular Systems Chemistry. Angew Chem Int Ed Engl 2023; 62:e202208681. [PMID: 36469792 DOI: 10.1002/anie.202208681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Supramolecular systems chemistry has been an area of active research to develop nanomaterials with life-like functions. Progress in systems chemistry relies on our ability to probe the nanostructure formation in solution. Often visualizing the dynamics of nanostructures which transform over time is a formidable challenge. This necessitates a paradigm shift from dry sample imaging towards solution-based techniques. We review the application of state-of-the-art techniques for real-time, in situ visualization of dynamic self-assembly processes. We present how solution-based techniques namely optical super-resolution microscopy, solution-state atomic force microscopy, liquid-phase transmission electron microscopy, molecular dynamics simulations and other emerging techniques are revolutionizing our understanding of active and adaptive nanomaterials with life-like functions. This Review provides the visualization toolbox and futuristic vision to tap the potential of dynamic nanomaterials.
Collapse
Affiliation(s)
- Akhil Venugopal
- Institute for Bioengineering of Catalonia (IBEC), Calle Baldiri Reixac 10-12, 08028, Barcelona, Spain
| | - Lorena Ruiz-Perez
- Institute for Bioengineering of Catalonia (IBEC), Calle Baldiri Reixac 10-12, 08028, Barcelona, Spain
| | - K Swamynathan
- Soft Condensed Matter, Raman Research Institute, C. V. Raman Avenue, Sadashivanagar, Bangalore-560080, India.,Department of Chemistry, NITTE Meenakshi Institute of Technology, Yelahanka, Bengaluru 560064, India
| | - Chidambar Kulkarni
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| | - Annalisa Calò
- Institute for Bioengineering of Catalonia (IBEC), Calle Baldiri Reixac 10-12, 08028, Barcelona, Spain.,Department of Electronic and Biomedical Engineering, University of Barcelona, Calle Marti i Fraquès 1-11, 08028, Barcelona, Spain
| | - Mohit Kumar
- Institute for Bioengineering of Catalonia (IBEC), Calle Baldiri Reixac 10-12, 08028, Barcelona, Spain.,Department of Organic Chemistry, University of Barcelona, Calle Marti i Fraquès 1-11, 08028, Barcelona, Spain
| |
Collapse
|
25
|
Wang X, Hung TF, Chen FR, Wang WX. In Situ Tracking of Crystal-Surface-Dependent Cu 2O Nanoparticle Dissolution in an Aqueous Environment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:1006-1016. [PMID: 36598407 DOI: 10.1021/acs.est.2c07845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Metal-oxide-based nanoparticles (MONPs) such as Cu2O NPs have attracted growing attention, but the potential discharges of MONPs have raised considerable concern of their environmental fate including their dissolution behavior. The impacts of morphology on MONP dissolution are largely uncertain due to the lack of in situ tracking techniques. In this study, we combined a series of in situ technologies including liquid-cell transmission electron microscopy and fluorescence probes to reveal the in situ dissolution process of Cu2O NPs in freshwater. Our results suggest that cubic Cu2O NPs exhibit a higher dissolution quantity compared with spherical NPs of the same surface area. The difference was mainly related to the crystal surface, while other factors such as particle size or aggregation status showed minor effects. Importantly, we demonstrated the simultaneous growth of new small NPs and the dissolution of pristine Cu2O NPs during the dissolution of Cu2O NPs. Cubic Cu2O NPs became much less soluble under O2-limited conditions, suggesting that O2 concentration largely affected the dependence of dissolution on the NP morphology. Our findings highlight the potential application of in situ techniques to track the environmental fates of MONPs, which would provide important information for assessing the ecological risks of engineered NPs.
Collapse
Affiliation(s)
- Xiangrui Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen518057, China
| | - Tak-Fu Hung
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong
| | - Fu-Rong Chen
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen518057, China
| |
Collapse
|
26
|
Balestra SRG, Semino R. Computer simulation of the early stages of self-assembly and thermal decomposition of ZIF-8. J Chem Phys 2022; 157:184502. [DOI: 10.1063/5.0128656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We employ all-atom well-tempered metadynamics simulations to study the mechanistic details of both the early stages of nucleation and crystal decomposition for the benchmark metal–organic framework (MOF) ZIF-8. To do so, we developed and validated a force field that reliably models the modes of coordination bonds via a Morse potential functional form and employs cationic and anionic dummy atoms to capture coordination symmetry. We also explored a set of physically relevant collective variables and carefully selected an appropriate subset for our problem at hand. After a rapid increase of the Zn–N connectivity, we observe the evaporation of small clusters in favor of a few large clusters, which leads to the formation of an amorphous highly connected aggregate. [Formula: see text] and [Formula: see text] complexes are observed with lifetimes in the order of a few picoseconds, while larger structures, such as four-, five-, and six-membered rings, have substantially longer lifetimes of a few nanoseconds. The free ligands act as “templating agents” for the formation of sodalite cages. ZIF-8 crystal decomposition results in the formation of a vitreous phase. Our findings contribute to a fundamental understanding of MOF’s synthesis that paves the way to controlling synthesis products. Furthermore, our developed force field and methodology can be applied to model solution processes that require coordination bond reactivity for other ZIFs besides ZIF-8.
Collapse
Affiliation(s)
- S. R. G. Balestra
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France
- Departamento de Sistemas Físicos, Químicos y Naturales, Universidad Pablo de Olavide, Ctra. Utrera km 1, Seville ES-41013, Spain
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas (ICMM-CSIC), c/ Sor Juana Inés de la Cruz 3, Madrid ES-28049, Spain
| | - R. Semino
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France
- Sorbonne Université, CNRS, Physico-chimie des Electrolytes et Nanosystèmes Interfaciaux, PHENIX, F-75005 Paris, France
| |
Collapse
|
27
|
Bultema LA, Bücker R, Schulz EC, Tellkamp F, Gonschior J, Miller RD, Kassier GH. The effect of secondary electrons on radiolysis as observed by in liquid TEM: The role of window material and electrical bias. Ultramicroscopy 2022; 240:113579. [DOI: 10.1016/j.ultramic.2022.113579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 11/29/2022]
|
28
|
Peng X, Pelz PM, Zhang Q, Chen P, Cao L, Zhang Y, Liao HG, Zheng H, Wang C, Sun SG, Scott MC. Observation of formation and local structures of metal-organic layers via complementary electron microscopy techniques. Nat Commun 2022; 13:5197. [PMID: 36057721 PMCID: PMC9440887 DOI: 10.1038/s41467-022-32330-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 07/26/2022] [Indexed: 11/30/2022] Open
Abstract
Metal-organic layers (MOLs) are highly attractive for application in catalysis, separation, sensing and biomedicine, owing to their tunable framework structure. However, it is challenging to obtain comprehensive information about the formation and local structures of MOLs using standard electron microscopy methods due to serious damage under electron beam irradiation. Here, we investigate the growth processes and local structures of MOLs utilizing a combination of liquid-phase transmission electron microscopy, cryogenic electron microscopy and electron ptychography. Our results show a multistep formation process, where precursor clusters first form in solution, then they are complexed with ligands to form non-crystalline solids, followed by the arrangement of the cluster-ligand complex into crystalline sheets, with additional possible growth by the addition of clusters to surface edges. Moreover, high-resolution imaging allows us to identify missing clusters, dislocations, loop and flat surface terminations and ligand connectors in the MOLs. Our observations provide insights into controllable MOL crystal morphology, defect engineering, and surface modification, thus assisting novel MOL design and synthesis.
Collapse
Affiliation(s)
- Xinxing Peng
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA
| | - Philipp M Pelz
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA
- Department of Materials Science and Engineering, University of California, Berkeley, California, 94720, USA
| | - Qiubo Zhang
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA
| | - Peican Chen
- State Key Lab of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Lingyun Cao
- State Key Lab of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Yaqian Zhang
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA
- Department of Materials Science and Engineering, University of California, Berkeley, California, 94720, USA
| | - Hong-Gang Liao
- State Key Lab of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China.
| | - Haimei Zheng
- Department of Materials Science and Engineering, University of California, Berkeley, California, 94720, USA
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA
| | - Cheng Wang
- State Key Lab of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Shi-Gang Sun
- State Key Lab of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Mary C Scott
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA.
- Department of Materials Science and Engineering, University of California, Berkeley, California, 94720, USA.
| |
Collapse
|
29
|
|
30
|
Kunnas P, Moradi MA, Sommerdijk N, de Jonge N. Strategy for optimizing experimental settings for studying low atomic number colloidal assemblies using liquid phase scanning transmission electron microscopy. Ultramicroscopy 2022; 240:113596. [PMID: 35908325 DOI: 10.1016/j.ultramic.2022.113596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 07/08/2022] [Accepted: 07/21/2022] [Indexed: 10/16/2022]
Abstract
Observing processes of nanoscale materials of low atomic number is possible using liquid phase electron microscopy (LP-EM). However, the achievable spatial resolution (d) is limited by radiation damage. Here, we examine a strategy for optimizing LP-EM experiments based on an analytical model and experimental measurements, and develop a method for quantifying image quality at ultra low electron dose De using scanning transmission electron microscopy (STEM). As experimental test case we study the formation of a colloidal binary system containing 30 nm diameter SiO2 nanoparticles (SiONPs), and 100 nm diameter polystyrene microspheres (PMs). We show that annular dark field (DF) STEM is preferred over bright field (BF) STEM for practical reasons. Precise knowledge of the material's density is crucial for the calculations in order to match experimental data. To calculate the detectability of nano-objects in an image, the Rose criterion for single pixels is expanded to a model of the signal to noise ratio obtained for multiple pixels spanning the image of an object. Using optimized settings, it is possible to visualize the radiation-sensitive, hierarchical low-Z binary structures, and identify both components.
Collapse
Affiliation(s)
- Peter Kunnas
- INM- Leibniz Institute for New Materials, Saarbrücken 66123, Germany; Faculty of Physics, Quantum Imaging and Biophysics, University of Vienna, Vienna 1090, Austria
| | - Mohammad-Amin Moradi
- Department of Chemical Engineering and Chemistry, Laboratory of Physical Chemistry, Eindhoven University of Technology, Eindhoven 5600 MB, the Netherlands
| | - Nico Sommerdijk
- Department of Biochemistry, Radboud University Medical Center, Nijmegen 6525 GA, the Netherlands
| | - Niels de Jonge
- INM- Leibniz Institute for New Materials, Saarbrücken 66123, Germany; Department of Physics, Saarland University, Saarbrücken 66123, Germany.
| |
Collapse
|
31
|
Evolution of MOF single crystals. Chem 2022. [DOI: 10.1016/j.chempr.2022.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
32
|
Vratsanos MA, Gianneschi NC. Direct Observation of Emulsion Morphology, Dynamics, and Demulsification. ACS NANO 2022; 16:7783-7793. [PMID: 35302741 PMCID: PMC9836053 DOI: 10.1021/acsnano.2c00199] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Herein, we present the direct observation and quantification of a water-in-oil (w/o) emulsion, its destabilization, and the effect of additives on such processes at the nanoscale. This is achieved via liquid phase transmission electron microscopy (LPTEM), wherein a small volume of emulsion is encapsulated against vacuum in its liquid state to allow observation of its initial morphology and its evolution over time at excellent spatial and temporal resolution. Emulsions of this class are useful for delivering payloads of materials insoluble in their delivery medium and are currently widely used across food science, pharmaceuticals, and environmental applications. However, their utility is inherently limited by their thermodynamic tendency to demulsify, eventually leading to bulk phase separation. This occurs via several degradation mechanisms, operating at times collectively, and which are difficult to differentiate via traditional ensemble methods (e.g., light scattering), obscuring mechanistic nuances. LPTEM as a characterization technique has the potential to augment our understanding of emulsion behavior and improve performance and formulations. In this work, we also emphasize the importance of the included videographic Supporting Information data in demonstrating the behavior of the studied materials.
Collapse
Affiliation(s)
- Maria A Vratsanos
- Department of Materials Science & Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Nathan C Gianneschi
- Department of Materials Science & Engineering, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Simpson Querrey Institute, Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Department of Biomedical Engineering, Department of Pharmacology, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
33
|
Yamazaki T, Niinomi H, Kimura Y. Feasibility of Control of Particle Assembly by Dielectrophoresis in Liquid-Cell Transmission Electron Microscopy. Microscopy (Oxf) 2022; 71:231-237. [PMID: 35459948 PMCID: PMC9340798 DOI: 10.1093/jmicro/dfac021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/23/2022] [Accepted: 04/20/2022] [Indexed: 11/15/2022] Open
Abstract
Liquid-cell transmission electron microscopy (LC-TEM) is a useful technique for observing phenomena in liquid samples with spatial and temporal resolutions similar to those of conventional transmission electron microscopy (TEM). This method is therefore expected to permit the visualization of phenomena previously inaccessible to conventional optical microscopy. However, dynamic processes such as nucleation are difficult to observe by this method because of difficulties in controlling the condition of the sample liquid in the observation area. To approach this problem, we focused on dielectrophoresis, in which electrodes are used to assemble particles, and we investigated the phenomena that occurred when an alternating-current signal was applied to an electrode in an existing liquid cell by using a phase-contrast optical microscope (PCM) and TEM. In PCM, we observed that colloidal particles in a solution were attracted to the electrodes to form assemblies, that the particles aligned along the electric field to form pearl chains and that the pearl chains accumulated to form colloidal crystals. However, these phenomena were not observed in the TEM study because of differences in the design of the relevant holders. The results of our study imply that the particle assembly by using dielectrophoretic forces in LC-TEM should be possible, but further studies, including electric device development, will be required to realize this in practice.
Collapse
Affiliation(s)
- Tomoya Yamazaki
- Institute of Low Temperature Science, Hokkaido University, Kita 19 Nishi 8, Kita-ku, Sapporo, 060-0819, Japan
| | - Hiromasa Niinomi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
| | - Yuki Kimura
- Institute of Low Temperature Science, Hokkaido University, Kita 19 Nishi 8, Kita-ku, Sapporo, 060-0819, Japan
| |
Collapse
|
34
|
Gan X, Wang Y, Guo X, Wang F, Mao G, Lv X, Wang H. L–Cysteine Modulated ZIF for Deriving Nitrogen‐Doped Porous Carbon: A Highly Efficient and Stable Electrocatalyst for Oxygen Reduction Reactions. ChemistrySelect 2022. [DOI: 10.1002/slct.202104208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xingyu Gan
- School of Chemistry and Chemical Engineering Qufu Normal University, Qufu City Shandong Province 273165 P. R. China
| | - Yun Wang
- School of Chemistry and Chemical Engineering Qufu Normal University, Qufu City Shandong Province 273165 P. R. China
| | - Xinjie Guo
- School of Chemistry and Chemical Engineering Qufu Normal University, Qufu City Shandong Province 273165 P. R. China
| | - Fengxiang Wang
- School of Chemistry and Chemical Engineering Qufu Normal University, Qufu City Shandong Province 273165 P. R. China
| | - Guojiang Mao
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation Key Laboratory of Green Chemical Media and Reactions School of Chemistry and Chemical Engineering Ministry of Education Henan Normal University Xinxiang City Henan Province 453007 P.R. China
| | - Xiaoxia Lv
- School of Chemistry and Chemical Engineering Qufu Normal University, Qufu City Shandong Province 273165 P. R. China
| | - Hua Wang
- School of Chemistry and Chemical Engineering Qufu Normal University, Qufu City Shandong Province 273165 P. R. China
- School of Life Sciences Huzhou University Huzhou City Zhejiang Province 313000 P.R. China
| |
Collapse
|
35
|
|
36
|
Petersen H, Weidenthaler C. A review of recent developments for the in situ/operando characterization of nanoporous materials. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00977c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This is a review on up-to-date in situ/operando methods for a comprehensive characterization of nanoporous materials. The group of nanoporous materials is constantly growing, and with it, the variety of...
Collapse
|
37
|
Rizvi A, Mulvey JT, Patterson JP. Observation of Liquid-Liquid-Phase Separation and Vesicle Spreading during Supported Bilayer Formation via Liquid-Phase Transmission Electron Microscopy. NANO LETTERS 2021; 21:10325-10332. [PMID: 34890211 DOI: 10.1021/acs.nanolett.1c03556] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Liquid-phase transmission electron microscopy (LP-TEM) enables the real-time visualization of nanoscale dynamics in solution. This technique has been used to study the formation and transformation mechanisms of organic and inorganic nanomaterials. Here, we study the formation of block-copolymer-supported bilayers using LP-TEM. We observe two formation pathways that involve either liquid droplets or vesicles as intermediates toward supported bilayers. Quantitative image analysis methods are used to characterize vesicle spread rates and show the origin of defect formation in supported bilayers. Our results suggest that bilayer assembly methods that proceed via liquid droplet intermediates should be beneficial for forming pristine supported bilayers. Furthermore, supported bilayers inside the liquid cells may be used to image membrane interactions with proteins and nanoparticles in the future.
Collapse
Affiliation(s)
- Aoon Rizvi
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Justin T Mulvey
- Department of Materials Science and Engineering, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Joseph P Patterson
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
- Department of Materials Science and Engineering, University of California, Irvine, Irvine, California 92697-2025, United States
| |
Collapse
|
38
|
Polash SA, Khare T, Kumar V, Shukla R. Prospects of Exploring the Metal-Organic Framework for Combating Antimicrobial Resistance. ACS APPLIED BIO MATERIALS 2021; 4:8060-8079. [PMID: 35005933 DOI: 10.1021/acsabm.1c00832] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Infectious diseases are a major public health concern globally. Infections caused by pathogens with resistance against commonly used antimicrobial drugs or antibiotics (known as antimicrobial resistance, AMR) are becoming extremely difficult to control. AMR has thus been declared as one of the top 10 global public health threats, as it has very limited solutions. The drying pipeline of effective antibiotics has further worsened the situation. There is no absolute treatment, and the limitations of existing methods warrant further development in antimicrobials. Recent developments in the nanomaterial field present them as promising therapeutics and effective alternative to conventional antibiotics and synthetic drugs. The metal-organic framework (MOF) is a recent addition to the antimicrobial category with superior properties. The MOF exerts antimicrobial action on a wide range of species and is highly biocompatible. Additionally, their porous structures allow the incorporation of biomolecules and drugs for synergistic antimicrobial action. This review provides an inclusive summary of the molecular events responsible for resistance development and current trends in antimicrobials to combat antibiotic resistance and explores the potential role of the MOF in tackling the drug-resistant microbial species.
Collapse
Affiliation(s)
- Shakil Ahmed Polash
- Ian Potter NanoBiosensing Facility, NanoBiotechnology Research Laboratory (NBRL), School of Science, RMIT University, Melbourne, Victoria 3001, Australia.,Centre for Advance Materials & Industrial Chemistry (CAMIC), RMIT University, Melbourne, Victoria 3001, Australia
| | - Tushar Khare
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune 411016, India.,Department of Environmental Science, Savitribai Phule Pune University, Pune 411007, India
| | - Vinay Kumar
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune 411016, India.,Department of Environmental Science, Savitribai Phule Pune University, Pune 411007, India
| | - Ravi Shukla
- Ian Potter NanoBiosensing Facility, NanoBiotechnology Research Laboratory (NBRL), School of Science, RMIT University, Melbourne, Victoria 3001, Australia.,Centre for Advance Materials & Industrial Chemistry (CAMIC), RMIT University, Melbourne, Victoria 3001, Australia
| |
Collapse
|
39
|
Abstract
Many of the proposed applications of metal-organic framework (MOF) materials may fail to materialize if the community does not fully address the difficult fundamental work needed to map out the 'time gap' in the literature - that is, the lack of investigation into the time-dependent behaviours of MOFs as opposed to equilibrium or steady-state properties. Although there are a range of excellent investigations into MOF dynamics and time-dependent phenomena, these works represent only a tiny fraction of the vast number of MOF studies. This Review provides an overview of current research into the temporal evolution of MOF structures and properties by analysing the time-resolved experimental techniques that can be used to monitor such behaviours. We focus on innovative techniques, while also discussing older methods often used in other chemical systems. Four areas are examined: MOF formation, guest motion, electron motion and framework motion. In each area, we highlight the disparity between the relatively small amount of (published) research on key time-dependent phenomena and the enormous scope for acquiring the wider and deeper understanding that is essential for the future of the field.
Collapse
|
40
|
Abdul Hamid MR, Qian Y, Wei R, Li Z, Pan Y, Lai Z, Jeong HK. Polycrystalline metal-organic framework (MOF) membranes for molecular separations: Engineering prospects and challenges. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119802] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
41
|
Dai S, Tissot A, Serre C. Metal-Organic Frameworks: From Ambient Green Synthesis to Applications. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210276] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Shan Dai
- Institut des Matériaux Poreux de Paris, UMR 8004 Ecole Normale Supérieure, ESPCI Paris, CNRS, PSL University, 75005, Paris, France
| | - Antoine Tissot
- Institut des Matériaux Poreux de Paris, UMR 8004 Ecole Normale Supérieure, ESPCI Paris, CNRS, PSL University, 75005, Paris, France
| | - Christian Serre
- Institut des Matériaux Poreux de Paris, UMR 8004 Ecole Normale Supérieure, ESPCI Paris, CNRS, PSL University, 75005, Paris, France
| |
Collapse
|
42
|
Korpanty J, Parent LR, Hampu N, Weigand S, Gianneschi NC. Thermoresponsive polymer assemblies via variable temperature liquid-phase transmission electron microscopy and small angle X-ray scattering. Nat Commun 2021; 12:6568. [PMID: 34772926 PMCID: PMC8589985 DOI: 10.1038/s41467-021-26773-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 10/15/2021] [Indexed: 11/19/2022] Open
Abstract
Herein, phase transitions of a class of thermally-responsive polymers, namely a homopolymer, diblock, and triblock copolymer, were studied to gain mechanistic insight into nanoscale assembly dynamics via variable temperature liquid-cell transmission electron microscopy (VT-LCTEM) correlated with variable temperature small angle X-ray scattering (VT-SAXS). We study thermoresponsive poly(diethylene glycol methyl ether methacrylate) (PDEGMA)-based block copolymers and mitigate sample damage by screening electron flux and solvent conditions during LCTEM and by evaluating polymer survival via post-mortem matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS). Our multimodal approach, utilizing VT-LCTEM with MS validation and VT-SAXS, is generalizable across polymeric systems and can be used to directly image solvated nanoscale structures and thermally-induced transitions. Our strategy of correlating VT-SAXS with VT-LCTEM provided direct insight into transient nanoscale intermediates formed during the thermally-triggered morphological transformation of a PDEGMA-based triblock. Notably, we observed the temperature-triggered formation and slow relaxation of core-shell particles with complex microphase separation in the core by both VT-SAXS and VT-LCTEM.
Collapse
Affiliation(s)
- Joanna Korpanty
- Department of Chemistry, International Institute for Nanotechnology, Chemistry of Life Processes Institute, Simpson Querrey Institute, Northwestern University, Evanston, IL, 60208, USA
| | - Lucas R Parent
- Innovation Partnership Building, University of Connecticut, Storrs, CT, 06269, USA
| | - Nicholas Hampu
- Department of Chemistry, International Institute for Nanotechnology, Chemistry of Life Processes Institute, Simpson Querrey Institute, Northwestern University, Evanston, IL, 60208, USA
| | - Steven Weigand
- DuPont-Northwestern-Dow Collaborative Access Team (DND-CAT) Synchrotron Research Center, Northwestern University, Argonne, IL, 60208, USA
| | - Nathan C Gianneschi
- Department of Chemistry, International Institute for Nanotechnology, Chemistry of Life Processes Institute, Simpson Querrey Institute, Northwestern University, Evanston, IL, 60208, USA.
- Department of Materials Science & Engineering, Northwestern University, Evanston, IL, 60208, USA.
- Department of Biomedical Engineering and Department of Pharmacology, Northwestern University, Evanston, IL, 60208, USA.
| |
Collapse
|
43
|
Sheng T, Guan X, Liu C, Su Y. De Novo Approach to Encapsulating Biocatalysts into Synthetic Matrixes: From Enzymes to Microbial Electrocatalysts. ACS APPLIED MATERIALS & INTERFACES 2021; 13:52234-52249. [PMID: 34352175 DOI: 10.1021/acsami.1c09708] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Biocatalysts hold great promise in chemical and electrochemical reactions. However, biocatalysts are prone to inhospitable physiochemical conditions. Encapsulating biocatalysts into a synthetic host matrix can improve their stability and activity, and broaden their operational conditions. In this Review, we summarize the emerging de novo approaches to encapsulating biocatalysts into synthetic matrixes. Here, de novo means that embedding of biocatalysts and construction of matrixes take place simultaneously. We discuss the advantages and limitations of the de novo approach. On the basis of the nature of the biocatalysts and the synthetic frameworks, we specifically focus on two aspects: (1) encapsulation of enzymes (in vitro) in metal-organic frameworks and (2) encapsulation of microbial electrocatalysts (in vivo) on the electrode. For both cases, we discuss how the encapsulation improves biocatalysts' performance (stability, viability, activity, and etc.). We also highlight the benefit of encapsulation in facilitating the transport of charge carriers in microbial electrocatalysis.
Collapse
Affiliation(s)
- Tianran Sheng
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Xun Guan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Chong Liu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Yude Su
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| |
Collapse
|
44
|
Li H, Fu M, Wang SQ, Zheng X, Zhao M, Yang F, Tang CY, Dong Y. Stable Zr-Based Metal-Organic Framework Nanoporous Membrane for Efficient Desalination of Hypersaline Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:14917-14927. [PMID: 34661395 DOI: 10.1021/acs.est.1c06105] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Treatment of hypersaline waters is a critical environmental challenge. Pervaporation (PV) desalination is a promising technique to address this challenge, but current PV membranes still suffer from challenging issues such as low flux and insufficient stability. Herein, we propose in situ nanoseeding followed by a secondary growth strategy to fabricate a high-quality stable metal-organic framework (MOF) thin membrane (UiO-66) for high-performance pervaporation desalination of hypersaline waters. To address the issue of membrane quality, a TiO2 nano-interlayer was introduced on coarse mullite substrates to favor the growth of a UiO-66 nanoseed layer, on which a well-intergrown UiO-66 selective membrane layer with thickness as low as 1 μm was finally produced via subsequent secondary growth. The PV separation performance for hypersaline waters was systematically investigated at different salt concentrations, feed temperatures, and long-term operation in different extreme chemical environments. Besides having nearly complete rejection (99.9%), the UiO-66 membrane exhibited high flux (37.4 L·m-2·h-1) for hypersaline waters, outperforming current existing zeolite and MOF membranes. The membrane also demonstrated superior long-term operational stability under various harsh environments (hypersaline, hot, and acidic/alkaline feed water) and mild fouling behavior. The rational design proposed in this study is not only applicable for the development of a high-quality UiO-66 membrane enabling harsh hypersaline water treatment but can also be potentially extended to other next-generation nanoporous MOF membranes for more environmental applications.
Collapse
Affiliation(s)
- Haotian Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Mao Fu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Shi-Qiang Wang
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Xiangyong Zheng
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Min Zhao
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Fenglin Yang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Chuyang Y Tang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam 999077, Hong Kong, China
| | - Yingchao Dong
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
45
|
Gnanasekaran K, Korpanty J, Berger O, Hampu N, Halperin-Sternfeld M, Cohen-Gerassi D, Adler-Abramovich L, Gianneschi NC. Dipeptide Nanostructure Assembly and Dynamics via in Situ Liquid-Phase Electron Microscopy. ACS NANO 2021; 15:16542-16551. [PMID: 34623126 PMCID: PMC9836046 DOI: 10.1021/acsnano.1c06130] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In this paper, we report the in situ growth of FF nanotubes examined via liquid-cell transmission electron microscopy (LCTEM). This direct, high spatial, and temporal resolution imaging approach allowed us to observe the growth of peptide-based nanofibrillar structures through directional elongation. Furthermore, the radial growth profile of FF nanotubes through the addition of monomers perpendicular to the tube axis has been observed in real-time with sufficient resolution to directly observe the increase in diameter. Our study demonstrates that the kinetics, dynamics, structure formation, and assembly mechanism of these supramolecular assemblies can be directly monitored using LCTEM. The performance of the peptides and the assemblies they form can be verified and evaluated using post-mortem techniques including time-of-flight secondary ion mass spectrometry (ToF-SIMS).
Collapse
Affiliation(s)
- Karthikeyan Gnanasekaran
- Department of Chemistry, International Institute for Nanotechnology, Simpson Querrey Institute, Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science & Engineering, Department of Biomedical Engineering, Department of Pharmacology, Northwestern University, Evanston, Illinois 60208, United States
| | - Joanna Korpanty
- Department of Chemistry, International Institute for Nanotechnology, Simpson Querrey Institute, Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
| | - Or Berger
- Department of Chemistry, International Institute for Nanotechnology, Simpson Querrey Institute, Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science & Engineering, Department of Biomedical Engineering, Department of Pharmacology, Northwestern University, Evanston, Illinois 60208, United States
| | - Nicholas Hampu
- Department of Chemistry, International Institute for Nanotechnology, Simpson Querrey Institute, Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science & Engineering, Department of Biomedical Engineering, Department of Pharmacology, Northwestern University, Evanston, Illinois 60208, United States
| | - Michal Halperin-Sternfeld
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Dana Cohen-Gerassi
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Lihi Adler-Abramovich
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Nathan C Gianneschi
- Department of Chemistry, International Institute for Nanotechnology, Simpson Querrey Institute, Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science & Engineering, Department of Biomedical Engineering, Department of Pharmacology, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
46
|
Dissanayake TU, Wang M, Woehl TJ. Revealing Reactions between the Electron Beam and Nanoparticle Capping Ligands with Correlative Fluorescence and Liquid-Phase Electron Microscopy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:37553-37562. [PMID: 34338503 DOI: 10.1021/acsami.1c10957] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Liquid-phase transmission electron microscopy (LP-TEM) enables real-time imaging of nanoparticle self-assembly, formation, and etching with single nanometer resolution. Despite the importance of organic nanoparticle capping ligands in these processes, the effect of electron beam irradiation on surface-bound and soluble capping ligands during LP-TEM imaging has not been investigated. Here, we use correlative LP-TEM and fluorescence microscopy (FM) to demonstrate that polymeric nanoparticle ligands undergo competing crosslinking and chain scission reactions that nonmonotonically modify ligand coverage over time. Branched polyethylenimine (BPEI)-coated silver nanoparticles were imaged with dose-controlled LP-TEM followed by labeling their primary amine groups with fluorophores to visualize the local thickness of adsorbed capping ligands. FM images showed that free ligands crosslinked in the LP-TEM image area over imaging times of tens of seconds, enhancing local capping ligand coverage on nanoparticles and silicon nitride membranes. Nanoparticle surface ligands underwent chain scission over irradiation times of minutes to tens of minutes, which depleted surface ligands from the nanoparticle and silicon nitride surface. Conversely, solutions of only soluble capping ligand underwent successive crosslinking reactions with no chain scission, suggesting that nanoparticles enhanced the chain scission reactions by acting as radiolysis hotspots. The addition of a hydroxyl radical scavenger, tert-butanol, eliminated chain scission reactions and slowed the progression of crosslinking reactions. These experiments have important implications for performing controlled and reproducible LP-TEM nanoparticle imaging as they demonstrate that the electron beam can significantly alter ligand coverage on nanoparticles in a nonintuitive manner. They emphasize the need to understand and control the electron beam radiation chemistry of a given sample to avoid significant perturbations to the nanoparticle capping ligand chemistry, which are invisible in electron micrographs.
Collapse
Affiliation(s)
- Thilini U Dissanayake
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, College Park, Maryland 20742, United States
| | - Mei Wang
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, College Park, Maryland 20742, United States
| | - Taylor J Woehl
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, College Park, Maryland 20742, United States
| |
Collapse
|
47
|
Nalesso S, Varlet G, Bussemaker MJ, Sear RP, Hodnett M, Monteagudo-Oliván R, Sebastián V, Coronas J, Lee J. Sonocrystallisation of ZIF-8 in water with high excess of ligand: Effects of frequency, power and sonication time. ULTRASONICS SONOCHEMISTRY 2021; 76:105616. [PMID: 34146976 PMCID: PMC8219993 DOI: 10.1016/j.ultsonch.2021.105616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/25/2021] [Accepted: 05/30/2021] [Indexed: 05/24/2023]
Abstract
A systematic study on the sonocrystallisation of ZIF-8 (zeolitic imidazolate framework-8) in a water-based system was investigated under different mixing speeds, ultrasound frequencies, calorimetric powers and sonication time. Regardless of the synthesis technique, pure crystals of ZIF-8 with high BET (Brunauer, Emmett and Teller) specific surface area (SSA) can be obtained in water after only 5 s. Furthermore, 5 s sonication produced even smaller crystals (~0.08 µm). The type of technique applied for producing the ZIF-8 crystals did not have any significant impact on crystallinity, purity and yield. Crystal morphology and size were affected by the use of ultrasound and mixing, obtaining nanoparticles with a more spherical shape than in silent condition (no ultrasound and mixing). However, no specific trends were observed with varying frequency, calorimetric power and mixing speed. Ultrasound and mixing may have an effect on the nucleation step, causing the fast production of nucleation centres. Furthermore, the BET SSA increased with increasing mixing speed. With ultrasound, the BET SSA is between the values obtained under silent condition and with mixing. A competition between micromixing and shockwaves has been proposed when sonication is used for ZIF-8 production. The former increases the BET SSA, while the latter could be responsible for porosity damage, causing a decrease of the surface area.
Collapse
Affiliation(s)
- Silvia Nalesso
- Department of Chemical and Process Engineering, University of Surrey, Guildford GU2 7XH, United Kingdom.
| | - Gaelle Varlet
- Département Chimie IUT Besançon-Vesoul, Université de Franche-Comté, 30 Avenue de l'Observatoire, 25000 Besançon, France
| | - Madeleine J Bussemaker
- Department of Chemical and Process Engineering, University of Surrey, Guildford GU2 7XH, United Kingdom
| | - Richard P Sear
- Department of Physics, University of Surrey, Guildford GU2 7XH, United Kingdom
| | - Mark Hodnett
- National Physical Laboratory, Teddington, Middlesex TW11 0LW, United Kingdom
| | - Rebeca Monteagudo-Oliván
- Instituto de Nanociencia y Materiales de Aragón (INMA), Universidad de Zaragoza-CSIC, 50018 Zaragoza, Spain; Chemical and Environmental Engineering Department, Universidad de Zaragoza, 50018 Zaragoza, Spain
| | - Victor Sebastián
- Instituto de Nanociencia y Materiales de Aragón (INMA), Universidad de Zaragoza-CSIC, 50018 Zaragoza, Spain; Chemical and Environmental Engineering Department, Universidad de Zaragoza, 50018 Zaragoza, Spain; Networking Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER- BBN), Madrid, Spain
| | - Joaquín Coronas
- Instituto de Nanociencia y Materiales de Aragón (INMA), Universidad de Zaragoza-CSIC, 50018 Zaragoza, Spain; Chemical and Environmental Engineering Department, Universidad de Zaragoza, 50018 Zaragoza, Spain.
| | - Judy Lee
- Department of Chemical and Process Engineering, University of Surrey, Guildford GU2 7XH, United Kingdom.
| |
Collapse
|
48
|
Rizvi A, Mulvey JT, Carpenter BP, Talosig R, Patterson JP. A Close Look at Molecular Self-Assembly with the Transmission Electron Microscope. Chem Rev 2021; 121:14232-14280. [PMID: 34329552 DOI: 10.1021/acs.chemrev.1c00189] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Molecular self-assembly is pervasive in the formation of living and synthetic materials. Knowledge gained from research into the principles of molecular self-assembly drives innovation in the biological, chemical, and materials sciences. Self-assembly processes span a wide range of temporal and spatial domains and are often unintuitive and complex. Studying such complex processes requires an arsenal of analytical and computational tools. Within this arsenal, the transmission electron microscope stands out for its unique ability to visualize and quantify self-assembly structures and processes. This review describes the contribution that the transmission electron microscope has made to the field of molecular self-assembly. An emphasis is placed on which TEM methods are applicable to different structures and processes and how TEM can be used in combination with other experimental or computational methods. Finally, we provide an outlook on the current challenges to, and opportunities for, increasing the impact that the transmission electron microscope can have on molecular self-assembly.
Collapse
Affiliation(s)
- Aoon Rizvi
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Justin T Mulvey
- Department of Materials Science and Engineering, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Brooke P Carpenter
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Rain Talosig
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Joseph P Patterson
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| |
Collapse
|
49
|
Wang W, Chee SW, Yan H, Erofeev I, Mirsaidov U. Growth Dynamics of Vertical and Lateral Layered Double Hydroxide Nanosheets during Electrodeposition. NANO LETTERS 2021; 21:5977-5983. [PMID: 34255526 DOI: 10.1021/acs.nanolett.1c00898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Layered double hydroxides (LDHs) are a class of lamellar materials with a wide range of potential catalytic applications. LDHs form from positively charged 2D atomic layers separated by charge-balancing anions and solvent molecules. Typically, nanoscale LDH sheets can grow vertical or parallel to a substrate, exposing their different active facets. These two growth modes of LDH nanosheets have a significant impact on their electrocatalytic properties, yet the details of their growth remain unknown, hindering our ability to design and synthesize high-performance LDH-based electrocatalysts. Here, we investigate the growth pathways of LDH nanosheets using in situ electrochemical liquid-phase transmission electron microscopy (TEM) and show that the growth modes of LDH nanosheets can be controlled by tuning the precursor concentrations. Moreover, our observations reveal that LDH nanosheets grow via two pathways: (1) monomer addition, where the adatoms are heterogeneously deposited onto the LDH nanosheets, and (2) coalescence, where adjacent nanosheets merge together.
Collapse
Affiliation(s)
- Wenhui Wang
- Department of Physics, National University of Singapore, Singapore 117551, Singapore
- Centre for BioImaging Sciences, Department of Biological Sciences, National University of Singapore, Singapore 117557, Singapore
| | - See Wee Chee
- Department of Physics, National University of Singapore, Singapore 117551, Singapore
- Centre for BioImaging Sciences, Department of Biological Sciences, National University of Singapore, Singapore 117557, Singapore
- Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, Singapore 117546, Singapore
| | - Hongwei Yan
- Department of Physics, National University of Singapore, Singapore 117551, Singapore
- Centre for BioImaging Sciences, Department of Biological Sciences, National University of Singapore, Singapore 117557, Singapore
| | - Ivan Erofeev
- Department of Physics, National University of Singapore, Singapore 117551, Singapore
- Centre for BioImaging Sciences, Department of Biological Sciences, National University of Singapore, Singapore 117557, Singapore
| | - Utkur Mirsaidov
- Department of Physics, National University of Singapore, Singapore 117551, Singapore
- Centre for BioImaging Sciences, Department of Biological Sciences, National University of Singapore, Singapore 117557, Singapore
- Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, Singapore 117546, Singapore
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
| |
Collapse
|
50
|
Subramanian V, Martin DC. Direct Observation of Liquid-to-Solid Phase Transformations during the Electrochemical Deposition of Poly(3,4-ethylenedioxythiophene) (PEDOT) by Liquid-Phase Transmission Electron Microscopy (LPTEM). Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00404] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Vivek Subramanian
- Department of Materials Science and Engineering, The University of Delaware, Newark, Delaware 19716, United States
| | - David C. Martin
- Department of Materials Science and Engineering, The University of Delaware, Newark, Delaware 19716, United States
- Department of Biomedical Engineering, The University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|