1
|
Batarchuk V, Shepelytskyi Y, Grynko V, Kovacs AH, Hodgson A, Rodriguez K, Aldossary R, Talwar T, Hasselbrink C, Ruset IC, DeBoef B, Albert MS. Hyperpolarized Xenon-129 Chemical Exchange Saturation Transfer (HyperCEST) Molecular Imaging: Achievements and Future Challenges. Int J Mol Sci 2024; 25:1939. [PMID: 38339217 PMCID: PMC10856220 DOI: 10.3390/ijms25031939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/25/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024] Open
Abstract
Molecular magnetic resonance imaging (MRI) is an emerging field that is set to revolutionize our perspective of disease diagnosis, treatment efficacy monitoring, and precision medicine in full concordance with personalized medicine. A wide range of hyperpolarized (HP) 129Xe biosensors have been recently developed, demonstrating their potential applications in molecular settings, and achieving notable success within in vitro studies. The favorable nuclear magnetic resonance properties of 129Xe, coupled with its non-toxic nature, high solubility in biological tissues, and capacity to dissolve in blood and diffuse across membranes, highlight its superior role for applications in molecular MRI settings. The incorporation of reporters that combine signal enhancement from both hyperpolarized 129Xe and chemical exchange saturation transfer holds the potential to address the primary limitation of low sensitivity observed in conventional MRI. This review provides a summary of the various applications of HP 129Xe biosensors developed over the last decade, specifically highlighting their use in MRI. Moreover, this paper addresses the evolution of in vivo applications of HP 129Xe, discussing its potential transition into clinical settings.
Collapse
Affiliation(s)
- Viktoriia Batarchuk
- Chemistry Department, Lakehead University, Thunder Bay, ON P7B 5E1, Canada; (V.B.)
- Thunder Bay Regional Health Research Institute, Thunder Bay, ON P7B 6V4, Canada
| | - Yurii Shepelytskyi
- Chemistry Department, Lakehead University, Thunder Bay, ON P7B 5E1, Canada; (V.B.)
- Thunder Bay Regional Health Research Institute, Thunder Bay, ON P7B 6V4, Canada
| | - Vira Grynko
- Thunder Bay Regional Health Research Institute, Thunder Bay, ON P7B 6V4, Canada
- Chemistry and Materials Science Program, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| | - Antal Halen Kovacs
- Applied Life Science Program, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| | - Aaron Hodgson
- Physics Program, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| | - Karla Rodriguez
- Chemistry Department, Lakehead University, Thunder Bay, ON P7B 5E1, Canada; (V.B.)
| | - Ruba Aldossary
- Thunder Bay Regional Health Research Institute, Thunder Bay, ON P7B 6V4, Canada
| | - Tanu Talwar
- Chemistry Department, Lakehead University, Thunder Bay, ON P7B 5E1, Canada; (V.B.)
| | - Carson Hasselbrink
- Chemistry & Biochemistry Department, California Polytechnic State University, San Luis Obispo, CA 93407-005, USA
| | | | - Brenton DeBoef
- Department of Chemistry, University of Rhode Island, Kingston, RI 02881, USA
| | - Mitchell S. Albert
- Chemistry Department, Lakehead University, Thunder Bay, ON P7B 5E1, Canada; (V.B.)
- Thunder Bay Regional Health Research Institute, Thunder Bay, ON P7B 6V4, Canada
- Faculty of Medical Sciences, Northern Ontario School of Medicine, Thunder Bay, ON P7B 5E1, Canada
| |
Collapse
|
2
|
Angelovski G, Tickner BJ, Wang G. Opportunities and challenges with hyperpolarized bioresponsive probes for functional imaging using magnetic resonance. Nat Chem 2023; 15:755-763. [PMID: 37264100 DOI: 10.1038/s41557-023-01211-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 04/19/2023] [Indexed: 06/03/2023]
Abstract
The development of hyperpolarized bioresponsive probes for magnetic resonance imaging (MRI) applications is an emerging and rapidly growing topic in chemistry. A wide range of hyperpolarized molecular biosensors for functional MRI have been developed in recent years. These probes comprise many different types of small-molecule reporters that can be hyperpolarized using dissolution dynamic nuclear polarization and parahydrogen-induced polarization or xenon-chelated macromolecular conjugates hyperpolarized using spin-exchange optical pumping. In this Perspective, we discuss how the amplified magnetic resonance signals of these agents are responsive to biologically relevant stimuli such as target proteins, reactive oxygen species, pH or metal ions. We examine how functional MRI using these systems allows a great number of biological processes to be monitored rapidly. Consequently, hyperpolarized bioresponsive probes may play a critical role in functional molecular imaging for observing physiology and pathology in real time.
Collapse
Affiliation(s)
- Goran Angelovski
- Laboratory of Molecular and Cellular Neuroimaging, International Center for Primate Brain Research, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, People's Republic of China.
| | - Ben J Tickner
- Centre for Hyperpolarisation in Magnetic Resonance, Department of Chemistry, University of York, York, UK
- Department of Chemical and Biological Physics, Faculty of Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Gaoji Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, People's Republic of China
| |
Collapse
|
3
|
Theillet FX, Luchinat E. In-cell NMR: Why and how? PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2022; 132-133:1-112. [PMID: 36496255 DOI: 10.1016/j.pnmrs.2022.04.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 04/19/2022] [Accepted: 04/27/2022] [Indexed: 06/17/2023]
Abstract
NMR spectroscopy has been applied to cells and tissues analysis since its beginnings, as early as 1950. We have attempted to gather here in a didactic fashion the broad diversity of data and ideas that emerged from NMR investigations on living cells. Covering a large proportion of the periodic table, NMR spectroscopy permits scrutiny of a great variety of atomic nuclei in all living organisms non-invasively. It has thus provided quantitative information on cellular atoms and their chemical environment, dynamics, or interactions. We will show that NMR studies have generated valuable knowledge on a vast array of cellular molecules and events, from water, salts, metabolites, cell walls, proteins, nucleic acids, drugs and drug targets, to pH, redox equilibria and chemical reactions. The characterization of such a multitude of objects at the atomic scale has thus shaped our mental representation of cellular life at multiple levels, together with major techniques like mass-spectrometry or microscopies. NMR studies on cells has accompanied the developments of MRI and metabolomics, and various subfields have flourished, coined with appealing names: fluxomics, foodomics, MRI and MRS (i.e. imaging and localized spectroscopy of living tissues, respectively), whole-cell NMR, on-cell ligand-based NMR, systems NMR, cellular structural biology, in-cell NMR… All these have not grown separately, but rather by reinforcing each other like a braided trunk. Hence, we try here to provide an analytical account of a large ensemble of intricately linked approaches, whose integration has been and will be key to their success. We present extensive overviews, firstly on the various types of information provided by NMR in a cellular environment (the "why", oriented towards a broad readership), and secondly on the employed NMR techniques and setups (the "how", where we discuss the past, current and future methods). Each subsection is constructed as a historical anthology, showing how the intrinsic properties of NMR spectroscopy and its developments structured the accessible knowledge on cellular phenomena. Using this systematic approach, we sought i) to make this review accessible to the broadest audience and ii) to highlight some early techniques that may find renewed interest. Finally, we present a brief discussion on what may be potential and desirable developments in the context of integrative studies in biology.
Collapse
Affiliation(s)
- Francois-Xavier Theillet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| | - Enrico Luchinat
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum - Università di Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; CERM - Magnetic Resonance Center, and Neurofarba Department, Università degli Studi di Firenze, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
4
|
Lin Y, Gau MR, Carroll PJ, Dmochowski IJ. Counteranions at Peripheral Sites Tune Guest Affinity for a Protonated Hemicryptophane. J Org Chem 2022; 87:5158-5165. [PMID: 35333529 PMCID: PMC9017572 DOI: 10.1021/acs.joc.1c03128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Indexed: 11/29/2022]
Abstract
The affinity of small molecules for biomolecular cavities is tuned through a combination of primary and secondary interactions. It has been challenging to mimic these features in organic synthetic host molecules, however, where the cavities tend to be highly symmetric and nonpolar, and less amenable to chemical manipulation. Here, a host molecule composed of a TREN ligand and cyclotriveratrylene moiety was investigated. Size-matched polar guests were encapsulated within the cavity via triple protonation of the TREN moiety with various sulfonic acids. X-ray crystallography confirmed guest encapsulation and identified three methanesulfonates, p-toluenesulfonates, or 2-naphthalenesulfonates hydrogen-bonded with H3TREN at the periphery of the cavity. These structurally diverse counteranions were shown by 1H NMR spectroscopy to differentially regulate guest access at the three portals, and to undergo competitive displacement in solution. This work reveals "counteranion tuning" to be a simple and powerful strategy for modulating host-guest affinity, as applied here in a TREN-hemicryptophane.
Collapse
Affiliation(s)
- Yannan Lin
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Michael R. Gau
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Patrick J. Carroll
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Ivan J. Dmochowski
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
5
|
Zeng Q, Guo Q, Yuan Y, Wang B, Sui M, Lou X, Bouchard LS, Zhou X. Ultrasensitive molecular building block for biothiol NMR detection at picomolar concentrations. iScience 2021; 24:103515. [PMID: 34934931 PMCID: PMC8661548 DOI: 10.1016/j.isci.2021.103515] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/02/2021] [Accepted: 11/22/2021] [Indexed: 10/19/2022] Open
Abstract
Magnetic resonance imaging (MRI) provides structural and functional information, but it did not probe chemistry. Chemical information could help improve specificity of detection. Herein, we introduce a general method based on a modular design to construct a molecular building block Xe probe to help image intracellular biothiols (glutathione (GSH), cysteine (Cys) and homocysteine (Hcy)), the abnormal content of which is related to various diseases. This molecular building block possesses a high signal-to-noise ratio and no background signal effects. Its detection threshold was 100 pM, which enabled detection of intracellular biothiols in live cells. The construction strategy can be easily extended to the detection of any other biomolecule or biomarker. This modular design strategy promotes efficiency of development of low-cost multifunctional probes that can be combined with other readout parameters, such as optical readouts, to complement 129Xe MRI to usher in new capabilities for molecular imaging.
Collapse
Affiliation(s)
- Qingbin Zeng
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Qianni Guo
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yaping Yuan
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Baolong Wang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, P. R. China
| | - Meiju Sui
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xin Lou
- Department of Radiology, Chinese PLA General Hospital, Beijing 100853, P. R. China
| | - Louis-S. Bouchard
- California Nano Systems Institute, Jonsson Comprehensive Cancer Center, The Molecular Biology Institute, Departments of Chemistry and Biochemistry and of Bioengineering, University of California, Los Angeles 90095, USA
| | - Xin Zhou
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
6
|
Ng YM, Coghi P, Ng JPL, Ali F, Wong VKW, Coluccini C. Synthesis and Coordination Properties of a Water-Soluble Material by Cross-Linking Low Molecular Weight Polyethyleneimine with Armed Cyclotriveratrilene. Polymers (Basel) 2021; 13:4133. [PMID: 34883636 PMCID: PMC8659696 DOI: 10.3390/polym13234133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 11/20/2022] Open
Abstract
In this study, a full organic and water-soluble material was synthesized by coupling low molecular weight polyethylenimine (PEI-800) with cyclotriveratrilene (CTV). The water-soluble cross-linked polymer contains hydrophobic holes with a high coordination capability towards different organic drug molecules. The coordinating capability towards hydrophilic drugs (doxorubicin, gatifloxacin and sinomenine) and hydrophobic drugs (camptothecin and celastrol) was analyzed in an aqueous medium by using NMR, UV-Vis and emission spectroscopies. The coordination of drug molecules with the armed CTV unit through hydrophobic interactions was observed. In particular, celastrol exhibited more ionic interactions with the PEI moiety of the hosting system. In the case of doxorubicin, the host-guest detachment was induced by the addition of ammonium chloride, suggesting that the intracellular environment can facilitate the release of the drug molecules.
Collapse
Affiliation(s)
- Yoke Mooi Ng
- Institute of New Drug Development, College of Medicine, China Medical University, No. 91 Hsueh-Shih Road, Taichung 40402, Taiwan;
| | - Paolo Coghi
- School of Pharmacy, Macau University of Science and Technology, Macau 999078, China;
| | - Jerome P. L. Ng
- Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; (J.P.L.N.); (V.K.W.W.)
| | - Fayaz Ali
- Department Chemistry, Abbottabad University of Science and Technology, Abbottabad 22010, Pakistan;
| | - Vincent Kam Wai Wong
- Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; (J.P.L.N.); (V.K.W.W.)
| | - Carmine Coluccini
- Institute of New Drug Development, College of Medicine, China Medical University, No. 91 Hsueh-Shih Road, Taichung 40402, Taiwan;
| |
Collapse
|
7
|
Abstract
The use of magnetic resonance imaging (MRI) and spectroscopy (MRS) in the clinical setting enables the acquisition of valuable anatomical information in a rapid, non-invasive fashion. However, MRI applications for identifying disease-related biomarkers are limited due to low sensitivity at clinical magnetic field strengths. The development of hyperpolarized (hp) 129Xe MRI/MRS techniques as complements to traditional 1H-based imaging has been a burgeoning area of research over the past two decades. Pioneering experiments have shown that hp 129Xe can be encapsulated within host molecules to generate ultrasensitive biosensors. In particular, xenon has high affinity for cryptophanes, which are small organic cages that can be functionalized with affinity tags, fluorophores, solubilizing groups, and other moieties to identify biomedically relevant analytes. Cryptophane sensors designed for proteins, metal ions, nucleic acids, pH, and temperature have achieved nanomolar-to-femtomolar limits of detection via a combination of 129Xe hyperpolarization and chemical exchange saturation transfer (CEST) techniques. This review aims to summarize the development of cryptophane biosensors for 129Xe MRI applications, while highlighting innovative biosensor designs and the consequent enhancements in detection sensitivity, which will be invaluable in expanding the scope of 129Xe MRI. This review aims to summarize the development of cryptophane biosensors for 129Xe MRI applications, while highlighting innovative biosensor designs and the consequent enhancements in detection sensitivity, which will be invaluable in expanding the scope of 129Xe MRI.![]()
Collapse
Affiliation(s)
- Serge D Zemerov
- Department of Chemistry, University of Pennsylvania, 231 South 34 St., Philadelphia, PA 19104-6323, USA
| | - Ivan J Dmochowski
- Department of Chemistry, University of Pennsylvania, 231 South 34 St., Philadelphia, PA 19104-6323, USA
| |
Collapse
|
8
|
Jiang W, Guo Q, Luo Q, Zhang X, Yuan Y, Li H, Zhou X. Molecular Concentration Determination Using Long-Interval Chemical Exchange Inversion Transfer (CEIT) NMR Spectroscopy. J Phys Chem Lett 2021; 12:8652-8657. [PMID: 34472873 DOI: 10.1021/acs.jpclett.1c02239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Functionalized hyperpolarized xenon "cage" molecules have often been used for ultrasensitive detection of biomolecules and microenvironment properties. However, the rapid and accurate measurement of molecule concentration is still a challenge. Here, we report a molecule concentration measurement method using long-interval chemical exchange inversion transfer (CEIT) NMR spectroscopy. The molecule concentration can be quantitatively measured with only 2 scans, which shortens the acquisition time by about 10 times compared to conventional Hyper-CEST (chemical exchange saturation transfer) z-spectrum method. Moreover, we found that the accuracy of concentration determination would be the best when the CEIT effect is 1-1/e or close to it, and a relative deviation of CrA-(COOH)6 less than ±1% has been achieved by only a one-step optimization of the number of cycles. The proposed method enables efficient and accurate determination of molecule concentration, which provides a potential way for rapid quantitative molecular imaging applications.
Collapse
Affiliation(s)
- Weiping Jiang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Qianni Guo
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Qing Luo
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, People's Republic of China
| | - Xiaoxiao Zhang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, People's Republic of China
| | - Yaping Yuan
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Haidong Li
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xin Zhou
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
9
|
Cohen Y, Slovak S, Avram L. Solution NMR of synthetic cavity containing supramolecular systems: what have we learned on and from? Chem Commun (Camb) 2021; 57:8856-8884. [PMID: 34486595 DOI: 10.1039/d1cc02906a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
NMR has been instrumental in studies of both the structure and dynamics of molecular systems for decades, so it is not surprising that NMR has played a pivotal role in the study of host-guest complexes and supramolecular systems. In this mini-review, selected examples will be used to demonstrate the added value of using (multiparametric) NMR for studying macrocycle-based host-guest and supramolecular systems. We will restrict the discussion to synthetic host systems having a cavity that can engulf their guests thus restricting them into confined spaces. So discussion of selected examples of cavitands, cages, capsules and their complexes, aggregates and polymers as well as organic cages and porous liquids and other porous materials will be used to demonstrate the insights that have been gathered from the extracted NMR parameters when studying such systems emphasizing the information obtained from somewhat less routine NMR methods such as diffusion NMR, diffusion ordered spectroscopy (DOSY) and chemical exchange saturation transfer (CEST) and their variants. These selected examples demonstrate the impact that the results and findings from these NMR studies have had on our understanding of such systems and on the developments in various research fields.
Collapse
Affiliation(s)
- Yoram Cohen
- School of Chemistry, The Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, 699781, Tel Aviv, Israel.
| | - Sarit Slovak
- School of Chemistry, The Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, 699781, Tel Aviv, Israel.
| | - Liat Avram
- Faculty of Chemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
10
|
Pomorski A, Krężel A. Biarsenical fluorescent probes for multifunctional site-specific modification of proteins applicable in life sciences: an overview and future outlook. Metallomics 2021; 12:1179-1207. [PMID: 32658234 DOI: 10.1039/d0mt00093k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Fluorescent modification of proteins of interest (POI) in living cells is desired to study their behaviour and functions in their natural environment. In a perfect setting it should be easy to perform, inexpensive, efficient and site-selective. Although multiple chemical and biological methods have been developed, only a few of them are applicable for cellular studies thanks to their appropriate physical, chemical and biological characteristics. One such successful system is a tetracysteine tag/motif and its selective biarsenical binders (e.g. FlAsH and ReAsH). Since its discovery in 1998 by Tsien and co-workers, this method has been enhanced and revolutionized in terms of its efficiency, formed complex stability and breadth of application. Here, we overview the whole field of knowledge, while placing most emphasis on recent reports. We showcase the improvements of classical biarsenical probes with various optical properties as well as multifunctional molecules that add new characteristics to proteins. We also present the evolution of affinity tags and motifs of biarsenical probes demonstrating much more possibilities in cellular applications. We summarize protocols and reported observations so both beginners and advanced users of biarsenical probes can troubleshoot their experiments. We address the concerns regarding the safety of biarsenical probe application. We showcase examples in virology, studies on receptors or amyloid aggregation, where application of biarsenical probes allowed observations that previously were not possible. We provide a summary of current applications ranging from bioanalytical sciences to allosteric control of selected proteins. Finally, we present an outlook to encourage more researchers to use these magnificent probes.
Collapse
Affiliation(s)
- Adam Pomorski
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland.
| | | |
Collapse
|
11
|
Tirukoti ND, Avram L, Haris T, Lerner B, Diskin-Posner Y, Allouche-Arnon H, Bar-Shir A. Fast Ion-Chelate Dissociation Rate for In Vivo MRI of Labile Zinc with Frequency-Specific Encodability. J Am Chem Soc 2021; 143:11751-11758. [PMID: 34297566 PMCID: PMC8397314 DOI: 10.1021/jacs.1c05376] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
![]()
Fast ion-chelate
dissociation rates and weak ion-chelate affinities
are desired kinetic and thermodynamic features for imaging probes
to allow reversible binding and to prevent deviation from basal ionic
levels. Nevertheless, such properties often result in poor readouts
upon ion binding, frequently result in low ion specificity, and do
not allow the detection of a wide range of concentrations. Herein,
we show the design, synthesis, characterization, and implementation
of a Zn2+-probe developed for MRI that possesses reversible
Zn2+-binding properties with a rapid dissociation rate
(koff = 845 ± 35 s–1) for the detection of a wide range of biologically relevant concentrations.
Benefiting from the implementation of chemical exchange saturation
transfer (CEST), which is here applied in the 19F-MRI framework
in an approach termed ion CEST (iCEST), we demonstrate the ability
to map labile Zn2+ with spectrally resolved specificity
and with no interference from competitive cations. Relying on fast koff rates for enhanced signal amplification,
the use of iCEST allowed the designed fluorinated chelate to experience
weak Zn2+-binding affinity (Kd at the mM range), but without compromising high cationic specificity,
which is demonstrated here for mapping the distribution of labile
Zn2+ in the hippocampal tissue of a live mouse. This strategy
for accelerating ion-chelate koff rates
for the enhancement of MRI signal amplifications without affecting
ion specificity could open new avenues for the design of additional
probes for other metal ions beyond zinc.
Collapse
Affiliation(s)
- Nishanth D Tirukoti
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Liat Avram
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Talia Haris
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Benjamin Lerner
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yael Diskin-Posner
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Hyla Allouche-Arnon
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Amnon Bar-Shir
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
12
|
Shusterman‐Krush R, Tirukoti ND, Bandela AK, Avram L, Allouche‐Arnon H, Cai X, Gibb BC, Bar‐Shir A. Single Fluorinated Agent for Multiplexed
19
F‐MRI with Micromolar Detectability Based on Dynamic Exchange. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ronit Shusterman‐Krush
- Department of Organic Chemistry Faculty of Chemistry Weizmann Institute of Science Rehovot 7610001 Israel
| | - Nishanth D. Tirukoti
- Department of Organic Chemistry Faculty of Chemistry Weizmann Institute of Science Rehovot 7610001 Israel
| | - Anil Kumar Bandela
- Department of Organic Chemistry Faculty of Chemistry Weizmann Institute of Science Rehovot 7610001 Israel
| | - Liat Avram
- Department of Chemical Research Support Faculty of Chemistry Weizmann Institute of Science Rehovot 7610001 Israel
| | - Hyla Allouche‐Arnon
- Department of Organic Chemistry Faculty of Chemistry Weizmann Institute of Science Rehovot 7610001 Israel
| | - Xiaoyang Cai
- Department of Chemistry Tulane University New Orleans LA 70118 USA
| | - Bruce C. Gibb
- Department of Chemistry Tulane University New Orleans LA 70118 USA
| | - Amnon Bar‐Shir
- Department of Organic Chemistry Faculty of Chemistry Weizmann Institute of Science Rehovot 7610001 Israel
| |
Collapse
|
13
|
Shusterman-Krush R, Tirukoti ND, Bandela AK, Avram L, Allouche-Arnon H, Cai X, Gibb BC, Bar-Shir A. Single Fluorinated Agent for Multiplexed 19 F-MRI with Micromolar Detectability Based on Dynamic Exchange. Angew Chem Int Ed Engl 2021; 60:15405-15411. [PMID: 33856080 DOI: 10.1002/anie.202100427] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/30/2021] [Indexed: 12/12/2022]
Abstract
The weak thermal polarization of nuclear spins limits the sensitivity of MRI, even for MR-sensitive nuclei as fluorine-19. Therefore, despite being the source of inspiration for the development of background-free MRI for various applications, including for multiplexed imaging, the inability to map very low concentrations of targets using 19 F-MRI raises the need to further enhance this platform's capabilities. Here, we employ the principles of CEST-MRI in 19 F-MRI to obtain a 900-fold signal amplification of a biocompatible fluorinated agent, which can be presented in a "multicolor" fashion. Capitalizing on the dynamic interactions in host-guest supramolecular assemblies in an approach termed GEST, we demonstrate that an inhalable fluorinated anesthetic can be used as a single 19 F-probe for the concurrent detection of micromolar levels of two targets, with potential in vivo translatability. Further extending GEST with new designs could expand the applicability of 19 F-MRI to the mapping of targets that have so-far remained non-detectable.
Collapse
Affiliation(s)
- Ronit Shusterman-Krush
- Department of Organic Chemistry, Faculty of Chemistry, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Nishanth D Tirukoti
- Department of Organic Chemistry, Faculty of Chemistry, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Anil Kumar Bandela
- Department of Organic Chemistry, Faculty of Chemistry, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Liat Avram
- Department of Chemical Research Support, Faculty of Chemistry, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Hyla Allouche-Arnon
- Department of Organic Chemistry, Faculty of Chemistry, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Xiaoyang Cai
- Department of Chemistry, Tulane University, New Orleans, LA, 70118, USA
| | - Bruce C Gibb
- Department of Chemistry, Tulane University, New Orleans, LA, 70118, USA
| | - Amnon Bar-Shir
- Department of Organic Chemistry, Faculty of Chemistry, Weizmann Institute of Science, Rehovot, 7610001, Israel
| |
Collapse
|
14
|
Goren E, Avram L, Bar-Shir A. Versatile non-luminescent color palette based on guest exchange dynamics in paramagnetic cavitands. Nat Commun 2021; 12:3072. [PMID: 34031377 PMCID: PMC8144181 DOI: 10.1038/s41467-021-23179-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 04/19/2021] [Indexed: 01/05/2023] Open
Abstract
Multicolor luminescent portrayal of complexed arrays is indispensable for many aspects of science and technology. Nevertheless, challenges such as inaccessible readouts from opaque objects, a limited visible-light spectrum and restricted spectral resolution call for alternative approaches for multicolor representation. Here, we present a strategy for spatial COlor Display by Exploiting Host-guest Dynamics (CODE-HD), comprising a paramagnetic cavitand library and various guests. First, a set of lanthanide-cradled α-cyclodextrins (Ln-CDs) is designed to induce pseudo-contact shifts in the 19F-NMR spectrum of Ln-CD-bound guest. Then, capitalizing on reversible host-guest binding dynamics and using magnetization-transfer 19F-MRI, pseudo-colored maps of complexed arrays are acquired and applied in molecular-steganography scenarios, showing CODE-HD’s ability to generate versatile outputs for information encoding. By exploiting the widely shifted resonances induced by Ln-CDs, the guest versatility and supramolecular systems' reversibility, CODE-HD provides a switchable, polychromatic palette, as an advanced strategy for light-free, multicolor-mapping. Host-guest supramolecular chemistry can be used as a tool to develop multicolor displays. Here, the authors present a system based on lanthanide-cradled cyclodextrins that allows to construct MRI-readable and erasable artificial non-luminescent color palettes.
Collapse
Affiliation(s)
- Elad Goren
- Department of Molecular Chemistry and Materials Science, Faculty of Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Liat Avram
- Department of Chemical Research Support, Faculty of Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Amnon Bar-Shir
- Department of Molecular Chemistry and Materials Science, Faculty of Chemistry, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
15
|
Zhao L, Guo Q, Yuan C, Li S, Yuan Y, Zeng Q, Zhang X, Ye C, Zhou X. Photosensitive MRI biosensor for BCRP-Targeted uptake and light-induced inhibition of tumor cells. Talanta 2021; 233:122501. [PMID: 34215118 DOI: 10.1016/j.talanta.2021.122501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 10/21/2022]
Abstract
Riboflavin and its derivatives are the most important coenzymes in vivo metabolism, and are closely related to life activities. In this paper, the first photolysis 129Xe biosensor was developed by combining cryptophane-A with riboflavin moiety, which showed photosensitivity recorded by hyperpolarized 129Xe NMR/MRI technology with an obvious chemical shift change of 5.3 ppm in aqueous solution. Cellular fluorescence imaging confirmed that the biosensor could be enriched in MCF-7 cells, and MTT assays confirmed that the cytotoxicity was enhanced after irradiation. Findings suggested that the biosensor has a potential application in tumor targeting and the inhibition of tumor cell proliferation after photodegradation.
Collapse
Affiliation(s)
- Longhui Zhao
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan, 430071, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Qianni Guo
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan, 430071, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China; Wuhan National Laboratory for Optoelectronics, Wuhan, 430074, PR China
| | - Chenlu Yuan
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan, 430071, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Sha Li
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan, 430071, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yaping Yuan
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan, 430071, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Qingbin Zeng
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan, 430071, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China; Wuhan National Laboratory for Optoelectronics, Wuhan, 430074, PR China
| | - Xu Zhang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan, 430071, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Chaohui Ye
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan, 430071, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China; Wuhan National Laboratory for Optoelectronics, Wuhan, 430074, PR China
| | - Xin Zhou
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan, 430071, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China; Wuhan National Laboratory for Optoelectronics, Wuhan, 430074, PR China.
| |
Collapse
|
16
|
Zemerov SD, Lin Y, Dmochowski IJ. Monomeric Cryptophane with Record-High Xe Affinity Gives Insights into Aggregation-Dependent Sensing. Anal Chem 2021; 93:1507-1514. [PMID: 33356164 DOI: 10.1021/acs.analchem.0c03776] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cryptophane host molecules provide ultrasensitive contrast agents for 129Xe NMR/MRI. To investigate key features of cryptophane-Xe sensing behavior, we designed a novel water-soluble cryptophane with a pendant hydrophobic adamantyl moiety, which has good affinity for a model receptor, beta-cyclodextrin (β-CD). Adamantyl-functionalized cryptophane-A (AFCA) was synthesized and characterized for Xe affinity, 129Xe NMR signal, and aggregation state at varying AFCA and β-CD concentrations. The Xe-AFCA association constant was determined by fluorescence quenching, KA = 114,000 ± 5000 M-1 at 293 K, which is the highest reported affinity for a cryptophane host in phosphate-buffered saline (pH 7.2). No hyperpolarized (hp) 129Xe NMR peak corresponding to AFCA-bound Xe was directly observed at high (100 μM) AFCA concentration, where small cryptophane aggregates were observed, and was only detected at low (15 μM) AFCA concentration, where the sensor remained fully monomeric in solution. Additionally, we observed no change in the chemical shift of AFCA-encapsulated 129Xe after β-CD binding to the adamantyl moiety and a concomitant lack of change in the size distribution of the complex, suggesting that a change in the aggregation state is necessary to elicit a 129Xe NMR chemical shift in cryptophane-based sensing. These results aid in further elucidating the recently discovered aggregation phenomenon, highlight limitations of cryptophane-based Xe sensing, and offer insights into the design of monomeric, high-affinity Xe sensors.
Collapse
Affiliation(s)
- Serge D Zemerov
- Department of Chemistry, University of Pennsylvania, 231 S 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Yannan Lin
- Department of Chemistry, University of Pennsylvania, 231 S 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Ivan J Dmochowski
- Department of Chemistry, University of Pennsylvania, 231 S 34th Street, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
17
|
Kunth M, Witte C, Schröder L. Mapping of Absolute Host Concentration and Exchange Kinetics of Xenon Hyper-CEST MRI Agents. Pharmaceuticals (Basel) 2021; 14:79. [PMID: 33494166 PMCID: PMC7909792 DOI: 10.3390/ph14020079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/11/2021] [Accepted: 01/16/2021] [Indexed: 12/14/2022] Open
Abstract
Xenon magnetic resonance imaging (MRI) provides excellent sensitivity through the combination of spin hyperpolarization and chemical exchange saturation transfer (CEST). To this end, molecular hosts such as cryptophane-A or cucurbit[n]urils provide unique opportunities to design switchable MRI reporters. The concentration determination of such xenon binding sites in samples of unknown dilution remains, however, challenging. Contrary to 1H CEST agents, an internal reference of a certain host (in this case, cryptophane-A) at micromolar concentration is already sufficient to resolve the entire exchange kinetics information, including an unknown host concentration and the xenon spin exchange rate. Fast echo planar imaging (EPI)-based Hyper-CEST MRI in combination with Bloch-McConnell analysis thus allows quantitative insights to compare the performance of different emerging ultra-sensitive MRI reporters.
Collapse
Affiliation(s)
- Martin Kunth
- Molecular Imaging, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Campus Berlin-Buch, Robert-Roessle-Str. 10, 13125 Berlin, Germany;
| | - Christopher Witte
- Molecular Imaging, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Campus Berlin-Buch, Robert-Roessle-Str. 10, 13125 Berlin, Germany;
| | - Leif Schröder
- Molecular Imaging, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Campus Berlin-Buch, Robert-Roessle-Str. 10, 13125 Berlin, Germany;
- Translational Molecular Imaging, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| |
Collapse
|
18
|
Coluccini C, Ng YM, Reyes YIA, Chen HYT, Khung YL. Functionalization of Polyethyleneimine with Hollow Cyclotriveratrylene and Its Subsequent Supramolecular Interaction with Doxorubicin. Molecules 2020; 25:E5455. [PMID: 33233774 PMCID: PMC7699908 DOI: 10.3390/molecules25225455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/09/2020] [Accepted: 11/18/2020] [Indexed: 11/16/2022] Open
Abstract
In this paper, a modified Cyclotriveratrylene was synthesized and linked to a branched Polyethylenimine, and this unique polymeric material was subsequently examined as a potential supramolecular carrier for Doxorubicin. Spectroscopic analysis in different solvents had shown that Doxorubicin was coordinated within the hollow-shaped unit of the armed Cyclotriveratrylene, and the nature of the host-guest complex revealed intrinsic Van der Waals interactions and hydrogen bonding between the host and guest. The strongest interaction was detected in water because of the hydrophobic effect shared between the aromatic groups of the Doxorubicin and Cyclotriveratrylene unit. Density functional theory calculations had also confirmed that in the most stable coordination of Doxorubicin with the cross-linked polymer, the aromatic rings of the Doxorubicin were localized toward the Cyclotriveratrylene core, while its aliphatic chains aligned closer with amino groups, thus forming a compact supramolecular assembly that may confer a shielding effect on Doxorubicin. These observations had emphasized the importance of supramolecular considerations when designing a novel drug delivery platform.
Collapse
Affiliation(s)
- Carmine Coluccini
- Institute of New Drug Development, China Medical University, No. 91 Hsueh-Shih Road, Taichung 40402, Taiwan;
| | - Yoke Mooi Ng
- Institute of New Drug Development, China Medical University, No. 91 Hsueh-Shih Road, Taichung 40402, Taiwan;
| | - Yves Ira A. Reyes
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan; (Y.I.A.R.); (H.-Y.T.C.)
| | - Hsin-Yi Tiffany Chen
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan; (Y.I.A.R.); (H.-Y.T.C.)
| | - Yit Lung Khung
- Department of Biological Science and Technology, No. 100, Jingmao 1st Rd, Beitun District, Taichung City 406, Taiwan
| |
Collapse
|
19
|
Jayapaul J, Schröder L. Molecular Sensing with Host Systems for Hyperpolarized 129Xe. Molecules 2020; 25:E4627. [PMID: 33050669 PMCID: PMC7587211 DOI: 10.3390/molecules25204627] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/27/2020] [Accepted: 09/30/2020] [Indexed: 12/12/2022] Open
Abstract
Hyperpolarized noble gases have been used early on in applications for sensitivity enhanced NMR. 129Xe has been explored for various applications because it can be used beyond the gas-driven examination of void spaces. Its solubility in aqueous solutions and its affinity for hydrophobic binding pockets allows "functionalization" through combination with host structures that bind one or multiple gas atoms. Moreover, the transient nature of gas binding in such hosts allows the combination with another signal enhancement technique, namely chemical exchange saturation transfer (CEST). Different systems have been investigated for implementing various types of so-called Xe biosensors where the gas binds to a targeted host to address molecular markers or to sense biophysical parameters. This review summarizes developments in biosensor design and synthesis for achieving molecular sensing with NMR at unprecedented sensitivity. Aspects regarding Xe exchange kinetics and chemical engineering of various classes of hosts for an efficient build-up of the CEST effect will also be discussed as well as the cavity design of host molecules to identify a pool of bound Xe. The concept is presented in the broader context of reporter design with insights from other modalities that are helpful for advancing the field of Xe biosensors.
Collapse
Affiliation(s)
| | - Leif Schröder
- Molecular Imaging, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany;
| |
Collapse
|
20
|
Zemerov SD, Roose BW, Farenhem KL, Zhao Z, Stringer MA, Goldman AR, Speicher DW, Dmochowski IJ. 129Xe NMR-Protein Sensor Reveals Cellular Ribose Concentration. Anal Chem 2020; 92:12817-12824. [PMID: 32897053 PMCID: PMC7649717 DOI: 10.1021/acs.analchem.0c00967] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Dysregulation of cellular ribose uptake can be indicative of metabolic abnormalities or tumorigenesis. However, analytical methods are currently limited for quantifying ribose concentration in complex biological samples. Here, we utilize the highly specific recognition of ribose by ribose-binding protein (RBP) to develop a single-protein ribose sensor detectable via a sensitive NMR technique known as hyperpolarized 129Xe chemical exchange saturation transfer (hyper-CEST). We demonstrate that RBP, with a tunable ribose-binding site and further engineered to bind xenon, enables the quantitation of ribose over a wide concentration range (nM to mM). Ribose binding induces the RBP "closed" conformation, which slows Xe exchange to a rate detectable by hyper-CEST. Such detection is remarkably specific for ribose, with the minimal background signal from endogenous sugars of similar size and structure, for example, glucose or ribose-6-phosphate. Ribose concentration was measured for mammalian cell lysate and serum, which led to estimates of low-mM ribose in a HeLa cell line. This highlights the potential for using genetically encoded periplasmic binding proteins such as RBP to measure metabolites in different biological fluids, tissues, and physiologic states.
Collapse
Affiliation(s)
- Serge D. Zemerov
- Department of Chemistry, University of Pennsylvania,
Philadelphia, PA 19104, USA
| | - Benjamin W. Roose
- Department of Chemistry, University of Pennsylvania,
Philadelphia, PA 19104, USA
| | - Kelsey L. Farenhem
- Department of Chemistry, University of Pennsylvania,
Philadelphia, PA 19104, USA
| | - Zhuangyu Zhao
- Department of Chemistry, University of Pennsylvania,
Philadelphia, PA 19104, USA
| | - Madison A. Stringer
- Department of Chemistry, University of Pennsylvania,
Philadelphia, PA 19104, USA
| | - Aaron R. Goldman
- Proteomics and Metabolomics Facility, The Wistar Institute,
Philadelphia, PA 19104, USA
| | - David W. Speicher
- Proteomics and Metabolomics Facility, The Wistar Institute,
Philadelphia, PA 19104, USA
- Molecular and Cellular Oncogenesis Program, The Wistar
Institute, Philadelphia, PA 19104, USA
| | - Ivan J. Dmochowski
- Department of Chemistry, University of Pennsylvania,
Philadelphia, PA 19104, USA
| |
Collapse
|
21
|
Du K, Zemerov SD, Hurtado Parra S, Kikkawa JM, Dmochowski IJ. Paramagnetic Organocobalt Capsule Revealing Xenon Host-Guest Chemistry. Inorg Chem 2020; 59:13831-13844. [PMID: 32207611 PMCID: PMC7672707 DOI: 10.1021/acs.inorgchem.9b03634] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We investigated Xe binding in a previously reported paramagnetic metal-organic tetrahedral capsule, [Co4L6]4-, where L2- = 4,4'-bis[(2-pyridinylmethylene)amino][1,1'-biphenyl]-2,2'-disulfonate. The Xe-inclusion complex, [XeCo4L6]4-, was confirmed by 1H NMR spectroscopy to be the dominant species in aqueous solution saturated with Xe gas. The measured Xe dissociation rate in [XeCo4L6]4-, koff = 4.45(5) × 102 s-1, was at least 40 times greater than that in the analogous [XeFe4L6]4- complex, highlighting the capability of metal-ligand interactions to tune the capsule size and guest permeability. The rapid exchange of 129Xe nuclei in [XeCo4L6]4- produced significant hyperpolarized 129Xe chemical exchange saturation transfer (hyper-CEST) NMR signal at 298 K, detected at a concentration of [XeCo4L6]4- as low as 100 pM, with presaturation at -89 ppm, which was referenced to solvated 129Xe in H2O. The saturation offset was highly temperature-dependent with a slope of -0.41(3) ppm/K, which is attributed to hyperfine interactions between the encapsulated 129Xe nucleus and electron spins on the four CoII centers. As such, [XeCo4L6]4- represents the first example of a paramagnetic hyper-CEST (paraHYPERCEST) sensor. Remarkably, the hyper-CEST 129Xe NMR resonance for [XeCo4L6]4- (δ = -89 ppm) was shifted 105 ppm upfield from the diamagnetic analogue [XeFe4L6]4- (δ = +16 ppm). The Xe inclusion complex was further characterized in the crystal structure of (C(NH2)3)4[Xe0.7Co4L6]·75 H2O (1). Hydrogen bonding between capsule-linker sulfonate groups and exogenous guanidinium cations, (C(NH2)3)+, stabilized capsule-capsule interactions in the solid state and also assisted in trapping a Xe atom (∼42 Å3) in the large (135 Å3) cavity of 1. Magnetic susceptibility measurements confirmed the presence of four noninteracting, magnetically anisotropic high-spin CoII centers in 1. Furthermore, [Co4L6]4- was found to be stable toward aggregation and oxidation, and the CEST performance of [XeCo4L6]4- was unaffected by biological macromolecules in H2O. These results recommend metal-organic capsules for fundamental investigations of Xe host-guest chemistry as well as applications with highly sensitive 129Xe-based sensors.
Collapse
|
22
|
Du K, Zemerov SD, Carroll PJ, Dmochowski IJ. Paramagnetic Shifts and Guest Exchange Kinetics in Co nFe 4-n Metal-Organic Capsules. Inorg Chem 2020; 59:12758-12767. [PMID: 32851844 DOI: 10.1021/acs.inorgchem.0c01816] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We investigate the magnetic resonance properties and exchange kinetics of guest molecules in a series of hetero-bimetallic capsules, [ConFe4-nL6]4- (n = 1-3), where L2- = 4,4'-bis[(2-pyridinylmethylene)amino]-[1,1'-biphenyl]-2,2'-disulfonate. H bond networks between capsule sulfonates and guanidinium cations promote the crystallization of [ConFe4-nL6]4-. The following four isostructural crystals are reported: two guest-free forms, (C(NH2)3)4[Co1.8Fe2.2L6]·69H2O (1) and (C(NH2)3)4[Co2.7Fe1.3L6]·73H2O (2), and two Xe- and CFCl3-encapsulated forms, (C(NH2)3)4[(Xe)0.8Co1.8Fe2.2L6]·69H2O (3) and (C(NH2)3)4[(CFCl3)Co2.0Fe2.0L6]·73H2O (4), respectively. Structural analyses reveal that Xe induces negligible structural changes in 3, while the angles between neighboring phenyl groups expand by ca. 3° to accommodate the much larger guest, CFCl3, in 4. These guest-encapsulated [ConFe4-nL6]4- molecules reveal 129Xe and 19F chemical shift changes of ca. -22 and -10 ppm at 298 K, respectively, per substitution of low-spin FeII by high-spin CoII. Likewise, the temperature dependence of the 129Xe and 19F NMR resonances increases by 0.1 and 0.06 ppm/K, respectively, with each additional paramagnetic CoII center. The optimal temperature for hyperpolarized (hp) 129Xe chemical exchange saturation transfer (hyper-CEST) with [ConFe4-nL6]4- capsules was found to be inversely proportional to the number of CoII centers, n, which is consistent with the Xe chemical exchange accelerating as the portals expand. The systematic study was facilitated by the tunability of the [M4L6]4- capsules, further highlighting these metal-organic systems for developing responsive sensors with highly shifted 129Xe resonances.
Collapse
Affiliation(s)
- Kang Du
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Serge D Zemerov
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Patrick J Carroll
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Ivan J Dmochowski
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
23
|
Yuan Y, Guo Q, Zhang X, Jiang W, Ye C, Zhou X. Silica nanoparticle coated perfluorooctyl bromide for ultrasensitive MRI. J Mater Chem B 2020; 8:5014-5018. [PMID: 32301463 DOI: 10.1039/d0tb00484g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
MRI with hyperpolarized 129Xe can achieve low-concentration detection. Herein, nanoparticle-coated perfluorooctyl bromide (PFOB) was developed as a 129Xe MRI contrast agent with a moderate exchange rate, sufficient stability and feasible surface modification. The αvβ3 integrin overexpressed by non-small-cell lung cancer A549 cells was successfully detected by 129Xe MRI with high specificity through adequate surface modifications.
Collapse
Affiliation(s)
- Yaping Yuan
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, P. R. China.
| | | | | | | | | | | |
Collapse
|
24
|
Schnurr M, Volk I, Nikolenko H, Winkler L, Dathe M, Schröder L. Functionalized Lipopeptide Micelles as Highly Efficient NMR Depolarization Seed Points for Targeted Cell Labelling in Xenon MRI. ACTA ACUST UNITED AC 2020; 4:e1900251. [PMID: 32293139 DOI: 10.1002/adbi.201900251] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/28/2019] [Indexed: 01/07/2023]
Abstract
Improving diagnostic imaging and therapy by targeted compound delivery to pathological areas and across biological barriers is of urgent need. A lipopeptide, P-CrA-A2, composed of a highly cationic peptide sequence (A2), an N-terminally attached palmitoyl chain (P) and cryptophane molecule (CrA) for preferred uptake into blood-brain barrier (BBB) capillary endothelial cells, was generated. CrA allows reversible binding of Xe for NMR detection with hyperpolarized nuclei. The lipopeptide forms size-optimized micelles with a diameter of about 11 nm at low micromolar concentration. Their high local CrA payload has a strong and switchable impact on the bulk magnetization through Hyper-CEST detection. Covalent fixation of CrA does not impede micelle formation and does not hamper its host functionality but simplifies Xe access to hosts for inducing saturation transfer. Xe Hyper-CEST magnetic resonance imaging (MRI) allows for distinguishing BBB endothelial cells from control aortic endothelial cells, and the small micelle volume with a sevenfold improved CrA-loading density compared to liposomal carriers allows preferred cell labelling with a minimally invasive volume (≈16 000-fold more efficient than 19 F cell labelling). Thus, these nanoscopic particles combine selectivity for human brain capillary endothelial cells with great sensitivity of Xe Hyper-CEST MRI and might be a potential MRI tool in brain diagnostics.
Collapse
Affiliation(s)
- Matthias Schnurr
- Molecular Imaging, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Ines Volk
- Peptide-Lipid Interaction / Peptide Transport, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Heike Nikolenko
- Peptide-Lipid Interaction / Peptide Transport, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Lars Winkler
- Molecular Imaging, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Margitta Dathe
- Peptide-Lipid Interaction / Peptide Transport, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Leif Schröder
- Molecular Imaging, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125, Berlin, Germany
| |
Collapse
|
25
|
Zeng Q, Guo Q, Yuan Y, Zhang X, Jiang W, Xiao S, Zhang B, Lou X, Ye C, Liu M, Bouchard LS, Zhou X. A Small Molecular Multifunctional Tool for pH Detection, Fluorescence Imaging, and Photodynamic Therapy. ACS APPLIED BIO MATERIALS 2020; 3:1779-1786. [PMID: 35021667 DOI: 10.1021/acsabm.9b01080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A smart multitool platform for theranostics would be useful for monitoring the administration of therapies in vivo. However, the integration of multiple functions into a single small-molecule platform remains a challenge. In this study, we developed a multifunctional probe based on a small-molecule platform. The properties of this probe were investigated via hyperpolarized 129Xe NMR/MRI, fluorescence imaging in cells and in vivo, and photodynamic therapy (PDT) in tumor mouse models. This multifunctional probe shows good pH response across a broad range of pH values. It also exhibits excellent fluorescence in vivo for mapping its biodistribution. Additionally, it produces enough 1O2 radicals for in vivo PDT. The combination of these functionalities into a single small-molecule platform, rather than a bulky nanoconstruct, offers unique possibilities for molecular imaging and therapy.
Collapse
Affiliation(s)
- Qingbin Zeng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, P. R. China
| | - Qianni Guo
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Yaping Yuan
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Xiaoxiao Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, P. R. China
| | - Weiping Jiang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Sa Xiao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Bin Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, P. R. China
| | - Xin Lou
- Department of Radiology, Chinese PLA General Hospital, Beijing, P. R. China
| | - Chaohui Ye
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Maili Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Louis-S Bouchard
- California Nano Systems Institute, Jonsson Comprehensive Cancer Center, The Molecular Biology Institute, Department of Chemistry and of Bioengineering, University of California, Los Angeles, California, United States
| | - Xin Zhou
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| |
Collapse
|
26
|
Skinner JG, Ranta K, Whiting N, Coffey AM, Nikolaou P, Rosen MS, Chekmenev EY, Morris PG, Barlow MJ, Goodson BM. High Xe density, high photon flux, stopped-flow spin-exchange optical pumping: Simulations versus experiments. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2020; 312:106686. [PMID: 32006793 PMCID: PMC7436892 DOI: 10.1016/j.jmr.2020.106686] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 01/07/2020] [Indexed: 05/13/2023]
Abstract
Spin-exchange optical pumping (SEOP) can enhance the NMR sensitivity of noble gases by up to five orders of magnitude at Tesla-strength magnetic fields. SEOP-generated hyperpolarised (HP) 129Xe is a promising contrast agent for lung imaging but an ongoing barrier to widespread clinical usage has been economical production of sufficient quantities with high 129Xe polarisation. Here, the 'standard model' of SEOP, which was previously used in the optimisation of continuous-flow 129Xe polarisers, is modified for validation against two Xe-rich stopped-flow SEOP datasets. We use this model to examine ways to increase HP Xe production efficiency in stopped-flow 129Xe polarisers and provide further insight into the underlying physics of Xe-rich stopped-flow SEOP at high laser fluxes.
Collapse
Affiliation(s)
- Jason G Skinner
- Division of Respiratory Medicine, School of Medicine, Queen's Medical Centre, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Kaili Ranta
- Department of Chemistry and Biochemistry, Southern Illinois University Carbondale, Carbondale, IL, 62901, USA
| | - Nicholas Whiting
- Department of Physics & Astronomy and Department of Molecular & Cellular Biosciences, Rowan University, Glassboro, NJ 08028, USA
| | - Aaron M Coffey
- Vanderbilt University Institute of Imaging Science (VUIIS), Department of Radiology and Radiological Sciences, Vanderbilt-Ingram Cancer Center (VICC), Department of Biomedical Engineering, Department of Physics and Astronomy, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | | | - Matthew S Rosen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, 149 13th Street, Charlestown, MA 02129, USA; Department of Radiology, Harvard Medical School, Boston, MA 02115, USA; Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - Eduard Y Chekmenev
- Russian Academy of Sciences, Leninskiy Prospekt 14, 119991 Moscow, Russia; Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, MI, 48202, United States
| | - Peter G Morris
- Sir Peter Mansfield Imaging Centre, School of Physics & Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Michael J Barlow
- Division of Respiratory Medicine, School of Medicine, Queen's Medical Centre, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Boyd M Goodson
- Department of Chemistry and Biochemistry, Southern Illinois University Carbondale, Carbondale, IL, 62901, USA.
| |
Collapse
|
27
|
Mari E, Bousmah Y, Boutin C, Léonce E, Milanole G, Brotin T, Berthault P, Erard M. Bimodal Detection of Proteins by 129 Xe NMR and Fluorescence Spectroscopy. Chembiochem 2019; 20:1450-1457. [PMID: 30650230 DOI: 10.1002/cbic.201800802] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Indexed: 11/10/2022]
Abstract
A full understanding of biological phenomena involves sensitive and noninvasive detection. Herein, we report the optimization of a probe for intracellular proteins that combines the advantages of fluorescence and hyperpolarized 129 Xe NMR spectroscopy detection. The fluorescence detection part is composed of six residues containing a tetracysteine tag (-CCXXCC-) genetically incorporated into the protein of interest and of a small organic molecule, CrAsH. CrAsH becomes fluorescent if it binds to the tetracysteine tag. The part of the biosensor that enables detection by means of 129 Xe NMR spectroscopy, which is linked to the CrAsH moiety by a spacer, is based on a cryptophane core that is fully suited to reversibly host xenon. Three different peptides, containing the tetracysteine tag and four organic biosensors of different stereochemistry, are benchmarked to propose the best couple that is fully suited for the in vitro detection of proteins.
Collapse
Affiliation(s)
- Emilie Mari
- NIMBE, CEA, CNRS, Université de Paris Saclay, CEA Saclay, 91191, Gif-sur-Yvette, France
- Laboratoire de Chimie Physique, CNRS, Université Paris-Sud, Université Paris-Saclay, Batiment 349, 91405, Orsay, France
| | - Yasmina Bousmah
- Laboratoire de Chimie Physique, CNRS, Université Paris-Sud, Université Paris-Saclay, Batiment 349, 91405, Orsay, France
| | - Céline Boutin
- NIMBE, CEA, CNRS, Université de Paris Saclay, CEA Saclay, 91191, Gif-sur-Yvette, France
| | - Estelle Léonce
- NIMBE, CEA, CNRS, Université de Paris Saclay, CEA Saclay, 91191, Gif-sur-Yvette, France
| | - Gaelle Milanole
- SCBM, Université Paris-Saclay, CEA Saclay, 91191, Gif-sur-Yvette, France
| | - Thierry Brotin
- Université Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5182, Université Lyon 1, Laboratoire de Chimie, 46 allée d'Italie, 69364, Lyon, France
| | - Patrick Berthault
- NIMBE, CEA, CNRS, Université de Paris Saclay, CEA Saclay, 91191, Gif-sur-Yvette, France
| | - Marie Erard
- Laboratoire de Chimie Physique, CNRS, Université Paris-Sud, Université Paris-Saclay, Batiment 349, 91405, Orsay, France
| |
Collapse
|
28
|
Truxal AE, Cao L, Isaacs L, Wemmer DE, Pines A. Directly Functionalized Cucurbit[7]uril as a Biosensor for the Selective Detection of Protein Interactions by 129 Xe hyperCEST NMR. Chemistry 2019; 25:6108-6112. [PMID: 30868660 DOI: 10.1002/chem.201900610] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/07/2019] [Indexed: 12/14/2022]
Abstract
Advancement of hyperpolarized 129 Xe MRI technology toward clinical settings demonstrates the considerable interest in this modality for diagnostic imaging. The number of contrast agents, termed biosensors, for 129 Xe MRI that respond to specific biological targets, has grown and diversified. Directly functionalized xenon-carrying macrocycles, such as the large family of cryptophane-based biosensors, are good for localization-based imaging and provide contrast before and after binding events occur. Noncovalently functionalized constructs, such as cucurbituril- and cyclodextrin-based biosensors, benefit from commercial availability and optimal exchange dynamics for CEST imaging. In this work, we report the first directly functionalized cucurbituril used as a xenon biosensor. Biotinylated cucurbit[7]uril (btCB7) gives rise to a 129 Xe hyperCEST response at the unusual shift of δ=28 ppm when bound to its protein target with substantial CEST contrast. We posit that the observed chemical shift is due to the deformation of btCB7 upon binding to avidin, caused by proximity to the protein surface. Conformational searches and molecular dynamics (MD) simulations support this hypothesis. This construct combines the strengths of both families of biosensors, enables a multitude of biological targets through avidin conjugation, and demonstrates the advantages of functionalized cucurbituril-based biosensors.
Collapse
Affiliation(s)
| | - Liping Cao
- Northwest University, College of Chemistry and Materials Science, Xi'an, China
| | - Lyle Isaacs
- University of Maryland, Department of Chemistry and Biochemistry, College Park, MD, USA
| | | | | |
Collapse
|
29
|
Godart E, Long A, Rosas R, Lemercier G, Jean M, Leclerc S, Bouguet-Bonnet S, Godfrin C, Chapellet LL, Dutasta JP, Martinez A. High-Relaxivity Gd(III)–Hemicryptophane Complex. Org Lett 2019; 21:1999-2003. [DOI: 10.1021/acs.orglett.9b00081] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Estelle Godart
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Augustin Long
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Roselyne Rosas
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Gilles Lemercier
- Université Reims Champagne-Ardenne, Institut Chimie Molećulaire de Reims, UMR 7312 CNRS, BP 1039, 51687 Reims Cedex
2, France
| | - Marion Jean
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France
| | | | | | - Célia Godfrin
- Université de Lorraine, CNRS, CRM2, F-54000 Nancy, France
| | - Laure-Lise Chapellet
- Laboratoire de Chimie, École Normale Supérieure de Lyon, CNRS, UCBL, 46 Allée d’Italie, F-69364 Lyon, France
| | - Jean-Pierre Dutasta
- Laboratoire de Chimie, École Normale Supérieure de Lyon, CNRS, UCBL, 46 Allée d’Italie, F-69364 Lyon, France
| | | |
Collapse
|
30
|
Gurjar J, Bater J, Fokin VV. Sulfuryl Fluoride Mediated Conversion of Aldehydes to Nitriles. Chemistry 2019; 25:1906-1909. [DOI: 10.1002/chem.201805175] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Jitendra Gurjar
- University of Southern California Bridge Institute and Loker Hydrocarbon Research Institute 1002 Childs Way Los Angeles CA 90089-3502 USA
| | - Jorick Bater
- University of Southern California Bridge Institute and Loker Hydrocarbon Research Institute 1002 Childs Way Los Angeles CA 90089-3502 USA
| | - Valery V. Fokin
- University of Southern California Bridge Institute and Loker Hydrocarbon Research Institute 1002 Childs Way Los Angeles CA 90089-3502 USA
| |
Collapse
|
31
|
Zhang B, Guo Q, Luo Q, Zhang X, Zeng Q, Zhao L, Yuan Y, Jiang W, Yang Y, Liu M, Ye C, Zhou X. An intracellular diamine oxidase triggered hyperpolarized 129Xe magnetic resonance biosensor. Chem Commun (Camb) 2018; 54:13654-13657. [PMID: 30398489 DOI: 10.1039/c8cc07822j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Here, a novel method was developed for suppressing 129Xe signals in cucurbit[6]uril (CB6) until the trigger is activated by a specific enzyme. Due to its noncovalent interactions with amino-groups and CB6, putrescine dihydrochloride (Put) was chosen for blocking interactions between 129Xe and CB6. Upon adding diamine oxidase (DAO), Put was released from CB6 and a 129Xe@CB6 Hyper-CEST signal emerged. This proposed 129Xe biosensor was then tested in small intestinal villus epithelial cells.
Collapse
Affiliation(s)
- Bin Zhang
- State Key Laboratory for Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), Wuhan 430071, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Zhang H, Chen S, Yuan Y, Li Y, Jiang Z, Zhou X. 129Xe Hyper-CEST/19F MRI Multimodal Imaging System for Sensitive and Selective Tumor Cells Detection. ACS APPLIED BIO MATERIALS 2018; 2:27-32. [DOI: 10.1021/acsabm.8b00635] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Huaibin Zhang
- State Key Laboratory for Magnetic Resonance and Atomic and Molecular Physics, National Center forMagnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Shizhen Chen
- State Key Laboratory for Magnetic Resonance and Atomic and Molecular Physics, National Center forMagnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yaping Yuan
- State Key Laboratory for Magnetic Resonance and Atomic and Molecular Physics, National Center forMagnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yu Li
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - ZhongXing Jiang
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Xin Zhou
- State Key Laboratory for Magnetic Resonance and Atomic and Molecular Physics, National Center forMagnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| |
Collapse
|
33
|
Long A, Colomban C, Jean M, Albalat M, Vanthuyne N, Giorgi M, Di Bari L, Górecki M, Dutasta JP, Martinez A. Enantiopure C1-Cyclotriveratrylene with a Reversed Spatial Arrangement of the Substituents. Org Lett 2018; 21:160-165. [DOI: 10.1021/acs.orglett.8b03621] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Augustin Long
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Cedric Colomban
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Marion Jean
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Muriel Albalat
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Nicolas Vanthuyne
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Michel Giorgi
- Aix Marseille Université, CNRS, Centrale Marseille, FSCM, Spectropole, Marseille, France
| | - Lorenzo Di Bari
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, via Moruzzi 13, 56124 Pisa, Italy
| | - Marcin Górecki
- Institute of Organic Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Jean-Pierre Dutasta
- Laboratoire de Chimie, École Normale Supérieure de Lyon, CNRS, UCBL, 46 Allée d’Italie, F-69364 Lyon, France
| | | |
Collapse
|
34
|
Li H, Zhang Z, Zhao X, Han Y, Sun X, Ye C, Zhou X. Quantitative evaluation of pulmonary gas-exchange function using hyperpolarized 129 Xe CEST MRS and MRI. NMR IN BIOMEDICINE 2018; 31:e3961. [PMID: 30040165 DOI: 10.1002/nbm.3961] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 05/14/2018] [Accepted: 05/20/2018] [Indexed: 06/08/2023]
Abstract
Hyperpolarized 129 Xe gas MR has been a powerful tool for evaluating pulmonary structure and function due to the extremely high enhancement in spin polarization, the good solubility in the pulmonary parenchyma, and the excellent chemical sensitivity to its surrounding environment. Generally, the quantitative structural and functional information of the lung are evaluated using hyperpolarized 129 Xe by employing the techniques of chemical shift saturation recovery (CSSR) and xenon polarization transfer contrast (XTC). Hyperpolarized 129 Xe chemical exchange saturation transfer (Hyper-CEST) is another method for quantifying the exchange information of hyperpolarized 129 Xe by using the exchange of xenon signals according to its different chemical shifts, and it has been widely used in biosensor studies in vitro. However, the feasibility of using hyperpolarized 129 Xe CEST to quantify the pulmonary gas exchange function in vivo is still unclear. In this study, the technique of CEST was used to quantitatively evaluate the gas exchange in the lung globally and regionally via hyperpolarized 129 Xe MRS and MRI, respectively. A new parameter, the pulmonary apparent gas exchange time constant (Tapp ), was defined, and it increased from 0.63 s to 0.95 s in chronic obstructive pulmonary disease (COPD) rats (induced by cigarette smoke and lipopolysaccharide exposure) versus the controls with a significant difference (P = 0.001). Additionally, the spatial distribution maps of Tapp in COPD rats' pulmonary parenchyma showed a regionally obvious increase compared with healthy rats. These results indicated that hyperpolarized 129 Xe CEST MR was an effective method for globally and regionally quantifying the pulmonary gas exchange function, which would be helpful in diagnosing lung diseases that are related to gas exchange, such as COPD.
Collapse
Affiliation(s)
- Haidong Li
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhiying Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiuchao Zhao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yeqing Han
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xianping Sun
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chaohui Ye
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xin Zhou
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
35
|
Zemerov SD, Roose BW, Greenberg ML, Wang Y, Dmochowski IJ. Cryptophane Nanoscale Assemblies Expand 129Xe NMR Biosensing. Anal Chem 2018; 90:7730-7738. [PMID: 29782149 PMCID: PMC6050516 DOI: 10.1021/acs.analchem.8b01630] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cryptophane-based biosensors are promising agents for the ultrasensitive detection of biomedically relevant targets via 129Xe NMR. Dynamic light scattering revealed that cryptophanes form water-soluble aggregates tens to hundreds of nanometers in size. Acridine orange fluorescence quenching assays allowed quantitation of the aggregation state, with critical concentrations ranging from 200 nM to 600 nM, depending on the cryptophane species in solution. The addition of excess carbonic anhydrase (CA) protein target to a benzenesulfonamide-functionalized cryptophane biosensor (C8B) led to C8B disaggregation and produced the expected 1:1 C8B-CA complex. C8B showed higher affinity at 298 K for the cytoplasmic isozyme CAII than the extracellular CAXII isozyme, which is a biomarker of cancer. Using hyper-CEST NMR, we explored the role of stoichiometry in detecting these two isozymes. Under CA-saturating conditions, we observed that isozyme CAII produces a larger 129Xe NMR chemical shift change (δ = 5.9 ppm, relative to free biosensor) than CAXII (δ = 2.7 ppm), which indicates the strong potential for isozyme-specific detection. However, stoichiometry-dependent chemical shift data indicated that biosensor disaggregation contributes to the observed 129Xe NMR chemical shift change that is normally assigned to biosensor-target binding. Finally, we determined that monomeric cryptophane solutions improve hyper-CEST saturation contrast, which enables ultrasensitive detection of biosensor-protein complexes. These insights into cryptophane-solution behavior support further development of xenon biosensors, but will require reinterpretation of the data previously obtained for many water-soluble cryptophanes.
Collapse
Affiliation(s)
- Serge D. Zemerov
- Department of Chemistry, University of Pennsylvania, 231 S 34 St., Philadelphia, PA 19104
| | - Benjamin W. Roose
- Department of Chemistry, University of Pennsylvania, 231 S 34 St., Philadelphia, PA 19104
| | | | | | - Ivan J. Dmochowski
- Department of Chemistry, University of Pennsylvania, 231 S 34 St., Philadelphia, PA 19104
| |
Collapse
|
36
|
Léonce E, Dognon JP, Pitrat D, Mulatier JC, Brotin T, Berthault P. Accurate pH Sensing using Hyperpolarized 129
Xe NMR Spectroscopy. Chemistry 2018; 24:6534-6537. [DOI: 10.1002/chem.201800900] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Indexed: 01/16/2023]
Affiliation(s)
- Estelle Léonce
- NIMBE, CEA, CNRS; Université Paris Saclay, CEA Saclay; 91191 Gif-sur-Yvette France
| | - Jean-Pierre Dognon
- NIMBE, CEA, CNRS; Université Paris Saclay, CEA Saclay; 91191 Gif-sur-Yvette France
| | - Delphine Pitrat
- Laboratoire de Chimie de L'ENS LYON (UMR 5182); Ecole Normale Supérieure de Lyon; 46, Allée d'Italie 69364 Lyon Cedex 07 France
| | - Jean-Christophe Mulatier
- Laboratoire de Chimie de L'ENS LYON (UMR 5182); Ecole Normale Supérieure de Lyon; 46, Allée d'Italie 69364 Lyon Cedex 07 France
| | - Thierry Brotin
- Laboratoire de Chimie de L'ENS LYON (UMR 5182); Ecole Normale Supérieure de Lyon; 46, Allée d'Italie 69364 Lyon Cedex 07 France
| | - Patrick Berthault
- NIMBE, CEA, CNRS; Université Paris Saclay, CEA Saclay; 91191 Gif-sur-Yvette France
| |
Collapse
|
37
|
Enantioselective Complexation of Chiral Oxirane Derivatives by an Enantiopure Cryptophane in Water. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800142] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
38
|
Hyperpolarized Amino Acid Derivatives as Multivalent Magnetic Resonance pH Sensor Molecules. SENSORS 2018; 18:s18020600. [PMID: 29462891 PMCID: PMC5856118 DOI: 10.3390/s18020600] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/07/2018] [Accepted: 02/08/2018] [Indexed: 11/17/2022]
Abstract
pH is a tightly regulated physiological parameter that is often altered in diseased states like cancer. The development of biosensors that can be used to non-invasively image pH with hyperpolarized (HP) magnetic resonance spectroscopic imaging has therefore recently gained tremendous interest. However, most of the known HP-sensors have only individually and not comprehensively been analyzed for their biocompatibility, their pH sensitivity under physiological conditions, and the effects of chemical derivatization on their logarithmic acid dissociation constant (pKa). Proteinogenic amino acids are biocompatible, can be hyperpolarized and have at least two pH sensitive moieties. However, they do not exhibit a pH sensitivity in the physiologically relevant pH range. Here, we developed a systematic approach to tailor the pKa of molecules using modifications of carbon chain length and derivatization rendering these molecules interesting for pH biosensing. Notably, we identified several derivatives such as [1-13C]serine amide and [1-13C]-2,3-diaminopropionic acid as novel pH sensors. They bear several spin-1/2 nuclei (13C, 15N, 31P) with high sensitivity up to 4.8 ppm/pH and we show that 13C spins can be hyperpolarized with dissolution dynamic polarization (DNP). Our findings elucidate the molecular mechanisms of chemical shift pH sensors that might help to design tailored probes for specific pH in vivo imaging applications.
Collapse
|
39
|
Hane FT, Fernando A, Prete BRJ, Peloquin B, Karas S, Chaudhuri S, Chahal S, Shepelytskyi Y, Wade A, Li T, DeBoef B, Albert MS. Cyclodextrin-Based Pseudorotaxanes: Easily Conjugatable Scaffolds for Synthesizing Hyperpolarized Xenon-129 Magnetic Resonance Imaging Agents. ACS OMEGA 2018; 3:677-681. [PMID: 31457922 PMCID: PMC6641221 DOI: 10.1021/acsomega.7b01744] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 01/04/2018] [Indexed: 05/28/2023]
Abstract
Hyperpolarized (HP) xenon-129 (Xe) magnetic resonance (MR) imaging has the potential to detect biological analytes with high sensitivity and high resolution when coupled with xenon-encapsulating molecular probes. Despite the development of numerous HP Xe probes, one of the challenges that has hampered the translation of these agents from in vitro demonstration to in vivo testing is the difficulty in synthesizing the Xe-encapsulating cage molecule. In this study, we demonstrate that a pseudorotaxane, based on a γ-cyclodextrin macrocycle, is easily synthesized in one step and is detectable using HyperCEST-enhanced 129Xe MR spectroscopy.
Collapse
Affiliation(s)
- Francis T. Hane
- Department
of Chemistry, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada
- Thunder
Bay Regional Research Institute, 980 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada
| | - Ashvin Fernando
- Department
of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| | - Braedan R. J. Prete
- Department
of Chemistry, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada
| | - Brianna Peloquin
- Department
of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| | - Scott Karas
- Department
of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| | - Sauradip Chaudhuri
- Department
of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| | - Simrun Chahal
- Department
of Chemistry, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada
| | - Yurii Shepelytskyi
- Department
of Chemistry, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada
| | - Alanna Wade
- Department
of Chemistry, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada
| | - Tao Li
- Department
of Chemistry, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada
| | - Brenton DeBoef
- Department
of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| | - Mitchell S. Albert
- Department
of Chemistry, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada
- Thunder
Bay Regional Research Institute, 980 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada
| |
Collapse
|
40
|
Collaborative routes to clarifying the murky waters of aqueous supramolecular chemistry. Nat Chem 2017; 10:8-16. [DOI: 10.1038/nchem.2894] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 10/20/2017] [Indexed: 12/19/2022]
|
41
|
Milanole G, Gao B, Mari E, Berthault P, Pieters G, Rousseau B. A Straightforward Access to Cyclotriveratrylene Analogues with C
1
Symmetry: Toward the Synthesis of Monofunctionalizable Cryptophanes. European J Org Chem 2017. [DOI: 10.1002/ejoc.201701353] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Gaëlle Milanole
- SCBM; CEA; Université Paris-Saclay; 91191 Gif-sur-Yvette France
| | - Bo Gao
- SCBM; CEA; Université Paris-Saclay; 91191 Gif-sur-Yvette France
| | - Emilie Mari
- NIMBE; CEA; CNRS; Université Paris-Saclay; 91191 Gif-sur-Yvette France
| | - Patrick Berthault
- NIMBE; CEA; CNRS; Université Paris-Saclay; 91191 Gif-sur-Yvette France
| | - Grégory Pieters
- SCBM; CEA; Université Paris-Saclay; 91191 Gif-sur-Yvette France
| | | |
Collapse
|
42
|
Milanole G, Gao B, Paoletti A, Pieters G, Dugave C, Deutsch E, Rivera S, Law F, Perfettini JL, Mari E, Léonce E, Boutin C, Berthault P, Volland H, Fenaille F, Brotin T, Rousseau B. Bimodal fluorescence/ 129Xe NMR probe for molecular imaging and biological inhibition of EGFR in Non-Small Cell Lung Cancer. Bioorg Med Chem 2017; 25:6653-6660. [PMID: 29150078 DOI: 10.1016/j.bmc.2017.11.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 10/19/2017] [Accepted: 11/02/2017] [Indexed: 01/10/2023]
Abstract
Although Non-Small Cell Lung Cancer (NSCLC) is one of the main causes of cancer death, very little improvement has been made in the last decades regarding diagnosis and outcomes. In this study, a bimodal fluorescence/129Xe NMR probe containing a xenon host, a fluorescent moiety and a therapeutic antibody has been designed to target the Epidermal Growth Factor Receptors (EGFR) overexpressed in cancer cells. This biosensor shows high selectivity for the EGFR, and a biological activity similar to that of the antibody. It is detected with high specificity and high sensitivity (sub-nanomolar range) through hyperpolarized 129Xe NMR. This promising system should find important applications for theranostic use.
Collapse
Affiliation(s)
- Gaëlle Milanole
- SCBM, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
| | - Bo Gao
- SCBM, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
| | | | - Grégory Pieters
- SCBM, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
| | | | - Eric Deutsch
- INSERM 1030 Molecular Radiotherapy, Villejuif, France; Department of Radiation Oncology, Gustave-Roussy Cancer Campus, Villejuif, France; Faculté de Médecine, Université Paris-Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Sofia Rivera
- INSERM 1030 Molecular Radiotherapy, Villejuif, France; Department of Radiation Oncology, Gustave-Roussy Cancer Campus, Villejuif, France; Faculté de Médecine, Université Paris-Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France.
| | - Frédéric Law
- Department of Radiation Oncology, Gustave-Roussy Cancer Campus, Villejuif, France
| | - Jean-Luc Perfettini
- Department of Radiation Oncology, Gustave-Roussy Cancer Campus, Villejuif, France
| | - Emilie Mari
- NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay, F-91191 Gif-sur-Yvette, France
| | - Estelle Léonce
- NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay, F-91191 Gif-sur-Yvette, France
| | - Céline Boutin
- NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay, F-91191 Gif-sur-Yvette, France
| | - Patrick Berthault
- NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay, F-91191 Gif-sur-Yvette, France.
| | - Hervé Volland
- SPI, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
| | | | - Thierry Brotin
- Ecole Normale Supérieure de Lyon, 46, Allée D'Italie, 69364 Lyon cedex 07, France
| | - Bernard Rousseau
- SCBM, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France.
| |
Collapse
|
43
|
Riggle BA, Greenberg ML, Wang Y, Wissner RF, Zemerov SD, Petersson EJ, Dmochowski IJ. A cryptophane-based "turn-on" 129Xe NMR biosensor for monitoring calmodulin. Org Biomol Chem 2017; 15:8883-8887. [PMID: 29058007 PMCID: PMC5681859 DOI: 10.1039/c7ob02391j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We present the first cryptophane-based "turn-on" 129Xe NMR biosensor, employing a peptide-functionalized cryptophane to monitor the activation of calmodulin (CaM) protein in solution. In the absence of CaM binding, interaction between the peptide and cryptophane completely suppresses the hyperpolarized 129Xe-cryptophane NMR signal. Biosensor binding to Ca2+-activated CaM produces the expected 129Xe-cryptophane NMR signal.
Collapse
Affiliation(s)
- Brittany A Riggle
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, USA.
| | | | | | | | | | | | | |
Collapse
|
44
|
Avram L, Wishard AD, Gibb BC, Bar‐Shir A. Quantifying Guest Exchange in Supramolecular Systems. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201708726] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Liat Avram
- Department of Chemical Research Support The Weizmann Institute of Science 7610001 Rehovot Israel
| | | | - Bruce C. Gibb
- Department of Chemistry Tulane University New Orleans LA 70118 USA
| | - Amnon Bar‐Shir
- Department of Organic Chemistry The Weizmann Institute of Science 7610001 Rehovot Israel
| |
Collapse
|
45
|
Avram L, Wishard AD, Gibb BC, Bar-Shir A. Quantifying Guest Exchange in Supramolecular Systems. Angew Chem Int Ed Engl 2017; 56:15314-15318. [PMID: 28972281 DOI: 10.1002/anie.201708726] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Indexed: 11/08/2022]
Abstract
The ability to accurately determine and quantitatively evaluate kinetic phenomena associated with supramolecular assemblies, in real time, is key to a better understanding of their defined architectures and diverse functionalities. Therefore, analytical tools that can precisely assess a wide range of exchange rates within such systems are of considerable importance. This study demonstrates the ability to use an NMR approach based on saturation transfer for the determination of rates of guest exchange from molecular capsules. By using cavitands that assemble into distinct dimeric assemblies, we show that this approach, which we term guest exchange saturation transfer (GEST), allows the use of a conventional NMR setup to study and quantitatively assess a wide range of exchange rates, from 35 to more than 5000 s-1 .
Collapse
Affiliation(s)
- Liat Avram
- Department of Chemical Research Support, The Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Anthony D Wishard
- Department of Chemistry, Tulane University, New Orleans, LA, 70118, USA
| | - Bruce C Gibb
- Department of Chemistry, Tulane University, New Orleans, LA, 70118, USA
| | - Amnon Bar-Shir
- Department of Organic Chemistry, The Weizmann Institute of Science, 7610001, Rehovot, Israel
| |
Collapse
|
46
|
Roose BW, Zemerov SD, Dmochowski IJ. Nanomolar small-molecule detection using a genetically encoded 129Xe NMR contrast agent. Chem Sci 2017; 8:7631-7636. [PMID: 29568427 PMCID: PMC5849143 DOI: 10.1039/c7sc03601a] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 09/20/2017] [Indexed: 01/05/2023] Open
Abstract
Genetically encoded magnetic resonance imaging (MRI) contrast agents enable non-invasive detection of specific biomarkers in vivo.
Genetically encoded magnetic resonance imaging (MRI) contrast agents enable non-invasive detection of specific biomarkers in vivo. Here, we employed the hyper-CEST 129Xe NMR technique to quantify maltose (32 nM to 1 mM) through its modulation of conformational change and xenon exchange in maltose binding protein (MBP). Remarkably, no hyper-CEST signal was observed for MBP in the absence of maltose, making MBP an ultrasensitive “smart” contrast agent. The resonance frequency of 129Xe bound to MBP was greatly downfield-shifted (Δδ = 95 ppm) from the 129Xe(aq) peak, which facilitated detection in E. coli as well as multiplexing with TEM-1 β-lactamase. Finally, a Val to Ala mutation at the MBP–Xe binding site yielded 34% more contrast than WT, with 129Xe resonance frequency shifted 59 ppm upfield from WT. We conclude that engineered MBPs constitute a new class of genetically encoded, analyte-sensitive molecular imaging agents detectable by 129Xe NMR/MRI.
Collapse
Affiliation(s)
- B W Roose
- Department of Chemistry , University of Pennsylvania , 231 South 34th St. , Philadelphia , PA 19104-6323 , USA .
| | - S D Zemerov
- Department of Chemistry , University of Pennsylvania , 231 South 34th St. , Philadelphia , PA 19104-6323 , USA .
| | - I J Dmochowski
- Department of Chemistry , University of Pennsylvania , 231 South 34th St. , Philadelphia , PA 19104-6323 , USA .
| |
Collapse
|
47
|
Hundshammer C, Düwel S, Schilling F. Imaging of Extracellular pH Using Hyperpolarized Molecules. Isr J Chem 2017. [DOI: 10.1002/ijch.201700017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Christian Hundshammer
- Department of Nuclear Medicine, Klinikum rechts der Isar; Technical University of Munich; Ismaninger Str. 22 81675 München Germany
- Department of Chemistry; Technical University of Munich; Lichtenbergstr. 2 85748 Garching Germany
| | - Stephan Düwel
- Department of Nuclear Medicine, Klinikum rechts der Isar; Technical University of Munich; Ismaninger Str. 22 81675 München Germany
- Department of Chemistry; Technical University of Munich; Lichtenbergstr. 2 85748 Garching Germany
- Institute of Medical Engineering; Technical University of Munich; Boltzmannstr. 11 85748 Garching Germany
| | - Franz Schilling
- Department of Nuclear Medicine, Klinikum rechts der Isar; Technical University of Munich; Ismaninger Str. 22 81675 München Germany
| |
Collapse
|
48
|
Yang S, Yuan Y, Jiang W, Ren L, Deng H, Bouchard LS, Zhou X, Liu M. Hyperpolarized 129
Xe Magnetic Resonance Imaging Sensor for H2
S. Chemistry 2017; 23:7648-7652. [DOI: 10.1002/chem.201605768] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 02/21/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Shengjun Yang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics; Chinese Academy of Sciences; Wuhan 430071 China
| | - Yaping Yuan
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics; Chinese Academy of Sciences; Wuhan 430071 China
| | - Weiping Jiang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics; Chinese Academy of Sciences; Wuhan 430071 China
| | - Lili Ren
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics; Chinese Academy of Sciences; Wuhan 430071 China
| | - He Deng
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics; Chinese Academy of Sciences; Wuhan 430071 China
| | - Louis S. Bouchard
- Department of Chemistry and Biochemistry, California NanoSystems Institute, The Molecular Biology Institute; University of California; Los Angeles CA 90095 USA
| | - Xin Zhou
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics; Chinese Academy of Sciences; Wuhan 430071 China
| | - Maili Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics; Chinese Academy of Sciences; Wuhan 430071 China
| |
Collapse
|
49
|
Zeng Q, Guo Q, Yuan Y, Yang Y, Zhang B, Ren L, Zhang X, Luo Q, Liu M, Bouchard LS, Zhou X. Mitochondria Targeted and Intracellular Biothiol Triggered Hyperpolarized 129Xe Magnetofluorescent Biosensor. Anal Chem 2017; 89:2288-2295. [PMID: 28192930 DOI: 10.1021/acs.analchem.6b03742] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Biothiols such as gluthathione (GSH), cysteine (Cys), homocysteine (Hcy), and thioredoxin (Trx) play vital roles in cellular metabolism. Various diseases are associated with abnormal cellular biothiol levels. Thus, the intracellular detection of biothiol levels could be a useful diagnostic tool. A number of methods have been developed to detect intracellular thiols, but sensitivity and specificity problems have limited their applications. To address these limitations, we have designed a new biosensor based on hyperpolarized xenon magnetic resonance detection, which can be used to detect biothiol levels noninvasively. The biosensor is a multimodal probe that incorporates a cryptophane-A cage as 129Xe NMR reporter, a naphthalimide moiety as fluorescence reporter, a disulfide bond as thiol-specific cleavable group, and a triphenylphosphonium moiety as mitochondria targeting unit. When the biosensor interacts with biothiols, disulfide bond cleavage leads to enhancements in the fluorescence intensity and changes in the 129Xe chemical shift. Using Hyper-CEST (chemical exchange saturation transfer) NMR, our biosensor shows a low detection limit at picomolar (10-10 M) concentration, which makes a promise to detect thiols in cells. The biosensor can detect biothiol effectively in live cells and shows good targeting ability to the mitochondria. This new approach not only offers a practical technique to detect thiols in live cells, but may also present an excellent in vivo test platform for xenon biosensors.
Collapse
Affiliation(s)
- Qingbin Zeng
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Collaborative Innovation Center of Chemistry for Life Sciences, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences , Wuhan 430071, People's Republic of China.,University of Chinese Academy of Sciences , Beijing 100049, People's Republic of China
| | - Qianni Guo
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Collaborative Innovation Center of Chemistry for Life Sciences, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences , Wuhan 430071, People's Republic of China.,University of Chinese Academy of Sciences , Beijing 100049, People's Republic of China
| | - Yaping Yuan
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Collaborative Innovation Center of Chemistry for Life Sciences, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences , Wuhan 430071, People's Republic of China.,University of Chinese Academy of Sciences , Beijing 100049, People's Republic of China
| | - Yuqi Yang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Collaborative Innovation Center of Chemistry for Life Sciences, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences , Wuhan 430071, People's Republic of China
| | - Bin Zhang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Collaborative Innovation Center of Chemistry for Life Sciences, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences , Wuhan 430071, People's Republic of China
| | - Lili Ren
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Collaborative Innovation Center of Chemistry for Life Sciences, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences , Wuhan 430071, People's Republic of China
| | - Xiaoxiao Zhang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Collaborative Innovation Center of Chemistry for Life Sciences, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences , Wuhan 430071, People's Republic of China
| | - Qing Luo
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Collaborative Innovation Center of Chemistry for Life Sciences, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences , Wuhan 430071, People's Republic of China.,University of Chinese Academy of Sciences , Beijing 100049, People's Republic of China
| | - Maili Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Collaborative Innovation Center of Chemistry for Life Sciences, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences , Wuhan 430071, People's Republic of China.,University of Chinese Academy of Sciences , Beijing 100049, People's Republic of China
| | - Louis-S Bouchard
- California Nano Systems Institute, Jonsson Comprehensive Cancer Center, The Molecular Biology Institute, Departments of Chemistry and Biochemistry and of Bioengineering, University of California , Los Angeles California 90095, United States
| | - Xin Zhou
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Collaborative Innovation Center of Chemistry for Life Sciences, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences , Wuhan 430071, People's Republic of China.,University of Chinese Academy of Sciences , Beijing 100049, People's Republic of China
| |
Collapse
|
50
|
Barskiy DA, Coffey AM, Nikolaou P, Mikhaylov DM, Goodson BM, Branca RT, Lu GJ, Shapiro MG, Telkki VV, Zhivonitko VV, Koptyug IV, Salnikov OG, Kovtunov KV, Bukhtiyarov VI, Rosen MS, Barlow MJ, Safavi S, Hall IP, Schröder L, Chekmenev EY. NMR Hyperpolarization Techniques of Gases. Chemistry 2017; 23:725-751. [PMID: 27711999 PMCID: PMC5462469 DOI: 10.1002/chem.201603884] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Indexed: 01/09/2023]
Abstract
Nuclear spin polarization can be significantly increased through the process of hyperpolarization, leading to an increase in the sensitivity of nuclear magnetic resonance (NMR) experiments by 4-8 orders of magnitude. Hyperpolarized gases, unlike liquids and solids, can often be readily separated and purified from the compounds used to mediate the hyperpolarization processes. These pure hyperpolarized gases enabled many novel MRI applications including the visualization of void spaces, imaging of lung function, and remote detection. Additionally, hyperpolarized gases can be dissolved in liquids and can be used as sensitive molecular probes and reporters. This Minireview covers the fundamentals of the preparation of hyperpolarized gases and focuses on selected applications of interest to biomedicine and materials science.
Collapse
Affiliation(s)
- Danila A Barskiy
- Department of Radiology, Department of Biomedical Engineering, Department of Physics, Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University, Nashville, TN, 37232, USA
| | - Aaron M Coffey
- Department of Radiology, Department of Biomedical Engineering, Department of Physics, Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University, Nashville, TN, 37232, USA
| | - Panayiotis Nikolaou
- Department of Radiology, Department of Biomedical Engineering, Department of Physics, Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University, Nashville, TN, 37232, USA
| | | | - Boyd M Goodson
- Southern Illinois University, Department of Chemistry and Biochemistry, Materials Technology Center, Carbondale, IL, 62901, USA
| | - Rosa T Branca
- Department of Physics and Astronomy, Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - George J Lu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Mikhail G Shapiro
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | | | - Vladimir V Zhivonitko
- International Tomography Center SB RAS, 630090, Novosibirsk, Russia
- Novosibirsk State University, Pirogova St. 2, 630090, Novosibirsk, Russia
| | - Igor V Koptyug
- International Tomography Center SB RAS, 630090, Novosibirsk, Russia
- Novosibirsk State University, Pirogova St. 2, 630090, Novosibirsk, Russia
| | - Oleg G Salnikov
- International Tomography Center SB RAS, 630090, Novosibirsk, Russia
- Novosibirsk State University, Pirogova St. 2, 630090, Novosibirsk, Russia
| | - Kirill V Kovtunov
- International Tomography Center SB RAS, 630090, Novosibirsk, Russia
- Novosibirsk State University, Pirogova St. 2, 630090, Novosibirsk, Russia
| | - Valerii I Bukhtiyarov
- Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Pr., 630090, Novosibirsk, Russia
| | - Matthew S Rosen
- MGH/A.A. Martinos Center for Biomedical Imaging, Boston, MA, 02129, USA
| | - Michael J Barlow
- Respiratory Medicine Department, Queen's Medical Centre, University of Nottingham Medical School, Nottingham, NG7 2UH, UK
| | - Shahideh Safavi
- Respiratory Medicine Department, Queen's Medical Centre, University of Nottingham Medical School, Nottingham, NG7 2UH, UK
| | - Ian P Hall
- Respiratory Medicine Department, Queen's Medical Centre, University of Nottingham Medical School, Nottingham, NG7 2UH, UK
| | - Leif Schröder
- Molecular Imaging, Department of Structural Biology, Leibniz-Institut für Molekulare Pharmakologie (FMP), 13125, Berlin, Germany
| | - Eduard Y Chekmenev
- Department of Radiology, Department of Biomedical Engineering, Department of Physics, Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University, Nashville, TN, 37232, USA
- Russian Academy of Sciences, 119991, Moscow, Russia
| |
Collapse
|