1
|
Tong KM, Toigo J, Kamal S, Patrick BO, Wolf MO. Luminescent Platinum(II) Complexes with Stimuli-Responsive Flexible Lewis Pair Ligands: Spectroscopic and Computational Studies. Chemistry 2024; 30:e202401657. [PMID: 39005108 DOI: 10.1002/chem.202401657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/16/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024]
Abstract
A series of new luminescent bimetallic platinum(II) complexes with stimuli-responsive flexible Lewis pair (FlexLP) ligands are described. The FlexLP ligands consist of a dimesitylboron Lewis acid and diphenylphosphine oxide Lewis base which are in equilibrium between the unbound open form and the Lewis adduct, controlled by the hydrogen bond donating strength of the solvent. Spectroscopic techniques and density functional theory (DFT) calculations were used to interpret the photophysics of the platinum(II) complexes. All complexes exhibit tunable absorption in the region of 300-500 nm and green to orange photoluminescence, depending on the ratio of weak (THF) to strong (MeOH) hydrogen bond donating solvent employed. Spectroscopic and computational data shows that phosphine and peripheral acetylide ligands on the platinum(II) centers have limited influence on the emission energy, indicating the emission originates from the FlexLP-dominated fluorescence. Using time-resolved transient absorption spectroscopy it is shown that the complexes undergo intersystem crossing (ISC) to the triplet excited state upon photoexcitation, and the ISC efficiency is affected by the peripheral acetylide ligands. The triplet excited state lifetime can also be manipulated by the state of the FlexLP ligand, with the closed form complexes having longer lifetimes than the open form complexes.
Collapse
Affiliation(s)
- Ka-Ming Tong
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, V6T 1Z1, Canada
| | - Jessica Toigo
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, V6T 1Z1, Canada
| | - Saeid Kamal
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, V6T 1Z1, Canada
| | - Brian O Patrick
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, V6T 1Z1, Canada
| | - Michael O Wolf
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, V6T 1Z1, Canada
| |
Collapse
|
2
|
Liu WC, Gabbaï FP. Characterization of a Lewis adduct in its inner and outer forms. Science 2024; 385:1184-1188. [PMID: 39265017 DOI: 10.1126/science.adp7465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/16/2024] [Indexed: 09/14/2024]
Abstract
The entrance channel of bimolecular reactions sometimes involves the formation of outer complexes as weakly bound, fleeting intermediates. Here, we characterize such an outer complex in a system that models the bimolecular, C-O bond-forming reaction of a phosphine oxide Lewis base with a carbenium Lewis acid. Crystallographic studies show that the C-O distance in the outer form exceeds that of the final or inner adduct by 1.1 angstroms. As the system samples the two forms of the complex, which correspond to minima on the corresponding potential energy surface, the C-O linkage switches from a secondary interaction in the outer complex to a dative bond in the inner complex. This phenomenon is harnessed as a functional feature to stabilize xanthylium-based photoredox catalysts.
Collapse
Affiliation(s)
- Wei-Chun Liu
- Department of Chemistry, Texas A&M University, College Station, TX 77843-3255, USA
| | - François P Gabbaï
- Department of Chemistry, Texas A&M University, College Station, TX 77843-3255, USA
| |
Collapse
|
3
|
Schepper J, Orthaber A, Pammer F. Tetrazole-Functionalized Organoboranes Exhibiting Dynamic Intramolecular N→B-Coordination and Cyanide-Selective Anion Binding. Chemistry 2024; 30:e202401466. [PMID: 38708576 DOI: 10.1002/chem.202401466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 05/07/2024]
Abstract
Starting from two different cyano-functionalized organoboranes, we demonstrate that 1,3-dipolar [3+2] azide-nitrile cycloaddition can serve to generate libraries of alkyl-tetrazole-functionalized compounds capable of intramolecular N→B-Lewis adduct formation. Due to the relatively low basicity of tetrazoles, structures can be generated that exhibit weak and labile N→B-coordination. The reaction furnishes 1- and 2-alkylated regio-isomers that exhibit different effective Lewis-acidities at the boron centers, and vary in their optical absorption and fluorescence properties. Indeed, we identified derivatives capable of selectively binding cyanide over fluoride, as confirmed by 11B NMR. This finding demonstrates the potentialities of this synthetic strategy to systematically fine-tune the properties of lead structures that are of interest as chemical sensors.
Collapse
Affiliation(s)
- Jonas Schepper
- Institute of Organic Chemistry II and Advanced Materials, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Andreas Orthaber
- Department of Chemistry - Ångström laboratories, Uppsala University, BOX 523, 75120, Uppsala, Sweden
| | - Frank Pammer
- Helmholtz Institute Ulm, Karlsruhe Institute for Technology, Helmholtzstrasse 11, 89081, Ulm, Germany
| |
Collapse
|
4
|
Huang Y, Ning L, Zhang X, Zhou Q, Gong Q, Zhang Q. Stimuli-fluorochromic smart organic materials. Chem Soc Rev 2024; 53:1090-1166. [PMID: 38193263 DOI: 10.1039/d2cs00976e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Smart materials based on stimuli-fluorochromic π-conjugated solids (SFCSs) have aroused significant interest due to their versatile and exciting properties, leading to advanced applications. In this review, we highlight the recent developments in SFCS-based smart materials, expanding beyond organometallic compounds and light-responsive organic luminescent materials, with a discussion on the design strategies, exciting properties and stimuli-fluorochromic mechanisms along with their potential applications in the exciting fields of encryption, sensors, data storage, display, green printing, etc. The review comprehensively covers single-component and multi-component SFCSs as well as their stimuli-fluorochromic behaviors under external stimuli. We also provide insights into current achievements, limitations, and major challenges as well as future opportunities, aiming to inspire further investigation in this field in the near future. We expect this review to inspire more innovative research on SFCSs and their advanced applications so as to promote further development of smart materials and devices.
Collapse
Affiliation(s)
- Yinjuan Huang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Lijian Ning
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Xiaomin Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Qian Zhou
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Qiuyu Gong
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Qichun Zhang
- Department Materials Science and Engineering, Department of Chemistry & Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China.
| |
Collapse
|
5
|
Frenette BL, Rivard E. Frustrated Lewis Pair Chelation in the p-Block. Chemistry 2023; 29:e202302332. [PMID: 37677126 DOI: 10.1002/chem.202302332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/09/2023]
Abstract
Frustrated Lewis pairs (FLPs) have been the subject of considerable study since the field's inception. While much of the research into FLPs has centered around small molecule activation for diverse stoichiometric and catalytic transformations, intramolecular FLPs also show promise as chelating ligands. The cooperative action of Lewis basic and acidic moieties enables intramolecular FLPs to stabilize low oxidation state centers and (consequently) reactive molecular fragments through a donor-acceptor approach, making them an attractive ligand class in main group element chemistry. This review outlines the state of FLP chelation to date throughout the p-block, encompassing primarily groups 13-16.
Collapse
Affiliation(s)
- Brandon L Frenette
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Edmonton, Alberta, T6G 2G2, Canada
| | - Eric Rivard
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Edmonton, Alberta, T6G 2G2, Canada
| |
Collapse
|
6
|
Vanga M, Diroll BT, Muñoz-Castro ÁR, Dias HVR. Filling the gap with a bulky diaryl boron group: fluorinated and non-fluorinated copper pyrazolates fitted with a dimesityl boron moiety on the backbone. Dalton Trans 2023; 52:16356-16363. [PMID: 37861654 DOI: 10.1039/d3dt03167e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Successful synthesis has been reported of 4-Mes2B-3,5-(CF3)2PzH and 4-Mes2B-3,5-(CF3)2PzH bearing sterically demanding diarylboron moieties at the pyrazole ring 4-position, and their corresponding copper(I) pyrazolate complexes. They show visible blue photoluminescence in solution. The X-ray crystal structures revealed that the fluorinated {[4-BMes2-3,5-(CF3)2Pz]Cu}3 crystallizes as discrete trinuclear molecules whereas as the non-fluorinated {[4-BMes2-3,5-(CH3)2Pz]Cu}3 forms dimers of trimers with two close inter-trimer Cu⋯Cu separations. The solid {[4-BMes2-3,5-(CF3)2Pz]Cu}3 featuring a sterically confined Cu3N6 core displays bright blue phosphorescence while {[4-BMes2-3,5-(CH3)2Pz]Cu}3, which is a dimer of a trimer, is a red phosphor at room temperature. This work illustrates the modulation of photo-physical properties of metal pyrazolates by adjusting the supporting ligand steric features and introducing secondary diarylboron luminophores. Computational analysis of the structures and photophysical properties of copper complexes are also presented.
Collapse
Affiliation(s)
- Mukundam Vanga
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, USA.
| | - Benjamin T Diroll
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439, USA.
| | - Álvaro R Muñoz-Castro
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Bellavista 7, Santiago, 8420524, Chile.
| | - H V Rasika Dias
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, USA.
| |
Collapse
|
7
|
Li X, Liu Z, Li C, Gao R, Qi Y, Ren Y. Synthesis and Photophysical Properties of Carbazole-Functionalized Diazaphosphepines via Sequent P-N Chemistry. J Org Chem 2023; 88:13678-13685. [PMID: 37691267 DOI: 10.1021/acs.joc.3c01351] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Chemical structure tunability of organic π-conjugated molecules (OCMs) is highly appealing for fine-tuning the optoelectronic properties. Herein, we report a new series of carbazole-functionalized diazaphosphepines (DPP-CBZs) via one-pot phosphorus-nitrogen (P-N) chemistry. The one-pot synthesis harnessed the mild and selective P-N chemistry that successively installed carbazole moieties and seven-membered heterocycles at one P-center. Single-crystal structure studies revealed the tweezer-like structures for 1PO, 2PO, and 3PO that maintained the intramolecular donor-acceptor interactions between [d]-aryl moieties and carbazole. DPP-CBZs exhibited a more twisted central-diazaphosphepine ring compared with the reference molecules (1-3MO without carbazole group). DPP-CBZs with strong electron-accepting [d]-Ars generally showed lower photoluminescence quantum yields (PLQYs) than those of the reference molecules, which is probably due to the intramolecular charge transfer (ICT) from electron-donating carbazole to electron-withdrawing [d]-Ars. Upon the oxidation of the P-centers, PLQYs of DPP-CBZs increased. Furthermore, photophysical studies and theoretical studies suggested that the carbazole group had a strong impact on the structures of DPP-CBZs. As a proof of concept, we showed that grinding the mixture of 1PO as the electron-donating tweezer and benzene-1,2,4,5-tetracarbonitrile (BzCN) as the electron acceptor induced the formation of the CT complex.
Collapse
Affiliation(s)
- Xinyu Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zhaoxin Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Can Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Rong Gao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yanpeng Qi
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- ShanghaiTech Laboratory for Topological Physics, ShanghaiTech University, Shanghai 201210, China
- Shanghai Key Laboratory of High-resolution Electron Microscop, ShanghaiTech University, Shanghai 201210, China
| | - Yi Ren
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
8
|
Kawashiro M, Mori T, Ito M, Ando N, Yamaguchi S. Photodissociative Modules that Control Dual-Emission Properties in Donor-π-Acceptor Organoborane Fluorophores. Angew Chem Int Ed Engl 2023; 62:e202303725. [PMID: 37014627 DOI: 10.1002/anie.202303725] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/05/2023]
Abstract
Donor-π-acceptor fluorophores that consist of an electron-donating amino group and an electron-accepting triarylborane moiety generally exhibit substantial solvatochromism in their fluorescence while retaining high fluorescence quantum yields even in polar media. Herein, we report a new family of this compound class, which bears ortho-P(=X)R2 -substituted phenyl groups (X=O or S) as a photodissociative module. The P=X moiety that intramolecularly coordinates to the boron atom undergoes dissociation in the excited state, giving rise to dual emission from the corresponding tetra- and tricoordinate boron species. The susceptibility of the systems to photodissociation depends on the coordination ability of the P=O and P=S moieties, whereby the latter facilitates dissociation. The intensity ratios of the dual emission bands are sensitive to environmental parameters, including temperature, solution polarity, and the viscosity of the medium. Moreover, precise tuning of the P(=X)R2 group and the electron-donating amino moiety led to single-molecule white emission in solution.
Collapse
Affiliation(s)
- Midori Kawashiro
- Department of Chemistry, Graduate School of Science and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo, Chikusa, Nagoya, 464-8602, Japan
| | - Tatsuya Mori
- Department of Chemistry, Graduate School of Science and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo, Chikusa, Nagoya, 464-8602, Japan
| | - Masato Ito
- Department of Chemistry, Graduate School of Science and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo, Chikusa, Nagoya, 464-8602, Japan
| | - Naoki Ando
- Department of Chemistry, Graduate School of Science and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo, Chikusa, Nagoya, 464-8602, Japan
| | - Shigehiro Yamaguchi
- Department of Chemistry, Graduate School of Science and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo, Chikusa, Nagoya, 464-8602, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo, Chikusa, Nagoya, 464-8601, Japan
| |
Collapse
|
9
|
Sun Y, Ding H, Tang M, Wen J, Yue S, Peng Y, Zheng L, Shi Y, Cao Q. Multicolor Adjustable B-N Molecular Switches: Simple, Efficient, Portable, and Visual Identification of Butanol Isomers. Anal Chem 2023; 95:5594-5600. [PMID: 36942711 DOI: 10.1021/acs.analchem.2c05045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
As intelligent probes, dynamic and controllable molecular switches are useful tools for probing and intervening in life processes. However, the types and properties of molecular switches are still relatively single and often can only make two actions: "off" and "on". Therefore, the development of novel molecular switches with multiple colors and multiple instructions is very challenging. Herein, we propose a novel strategy based on the instability of the Lewis acid-base pair (boron (B) and nitrogen (N)), such as introducing the Schiff base (C═N) group into the aminoborane skeleton and preparing the novel molecular switches BN-HDZ and BN-HDZ-N. These two molecules were found to have good multicolor fluorescence switching capability for methanol. Surprisingly, the compound BN-HDZ-N shows unprecedented visual identification for the butanol isomers and could be made into a portable strip for simple and rapid visual identification of the four isomers of butanol, promising an alternative to conventional Lucas reagents. This provides a novel strategy for the design and fabrication of novel multicolor-tunable molecular switches with visual identification of isomers.
Collapse
Affiliation(s)
- Yitong Sun
- School of Chemical Science and Technology, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, Yunnan University, Kunming, Yunnan 650091, P. R. China
| | - Huangting Ding
- School of Chemical Science and Technology, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, Yunnan University, Kunming, Yunnan 650091, P. R. China
| | - Meng Tang
- School of Chemical Science and Technology, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, Yunnan University, Kunming, Yunnan 650091, P. R. China
| | - Jingyi Wen
- School of Chemical Science and Technology, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, Yunnan University, Kunming, Yunnan 650091, P. R. China
| | - Shiwen Yue
- School of Chemical Science and Technology, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, Yunnan University, Kunming, Yunnan 650091, P. R. China
| | - Ye Peng
- School of Chemical Science and Technology, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, Yunnan University, Kunming, Yunnan 650091, P. R. China
| | - Liyan Zheng
- School of Chemical Science and Technology, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, Yunnan University, Kunming, Yunnan 650091, P. R. China
| | - Yonggang Shi
- School of Chemical Science and Technology, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, Yunnan University, Kunming, Yunnan 650091, P. R. China
| | - Qiue Cao
- School of Chemical Science and Technology, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, Yunnan University, Kunming, Yunnan 650091, P. R. China
| |
Collapse
|
10
|
Yang Z, Li X, Yang K, Yu N, Gao R, Ren Y. Synthesis and Unexpected Optical Properties of Ionic Phosphorus Heterocycles with P-Regulated Noncovalent Interactions. J Org Chem 2023. [PMID: 36786509 DOI: 10.1021/acs.joc.2c02424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Optoelectronic properties of organic chromophores (OCPs) are to a large extent dictated by the chemical structures. Herein, we synthesized a new series of ionic phosphorus(P)-heteropines via the methylation of the P(III) center. Our studies revealed that methylation is highly dependent on the P(III) environments (NPN, NPC, and CPC), in which adjacent nitrogen atoms greatly withdraw electron density of the P(III) center. The observation of noncovalent interactions between solvent molecules and the molecular backbones of the related P-heterocycle in the single crystal structure implied tunable molecular conformations. Different from the red-shifted absorption and emission spectra of ionic P-OCPs induced by either decreased lowest unoccupied molecular orbital (LUMO) or intramolecular charge transfer (ICT) state in previous studies, current ionic P-heterocycles exhibit blue-shifted absorption and emission spectra compared to the nonionic counterparts. Our experimental and theoretical studies suggest that the unexpected photophysical characters are probably due to the counter-anion induced structure twisting via intermolecular noncovalent interactions between NH-indole and O(OTf), and/or strong intermolecular O···F bonding between O(MI) and F(OTf). Our studies also revealed that the P-environments (NPN, NPC, and CPC) conjunctly impact the photophysical properties of the ionic P-heteropines. Overall, the fact that the P-environment-regulated noncovalent interactions induce the rich structure dynamics and photophysics offers us with a new and effective strategy to fine-tune the optical properties of OCPs.
Collapse
Affiliation(s)
- Zi Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xinyu Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Kai Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Na Yu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Rong Gao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yi Ren
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
11
|
Shi Y, Zeng Y, Kucheryavy P, Yin X, Zhang K, Meng G, Chen J, Zhu Q, Wang N, Zheng X, Jäkle F, Chen P. Dynamic B/N Lewis Pairs: Insights into the Structural Variations and Photochromism via Light-Induced Fluorescence to Phosphorescence Switching. Angew Chem Int Ed Engl 2022; 61:e202213615. [PMID: 36287039 DOI: 10.1002/anie.202213615] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Indexed: 11/18/2022]
Abstract
Ultralong afterglow emissions due to room-temperature phosphorescence (RTP) are of paramount importance in the advancement of smart sensors, bioimaging and light-emitting devices. We herein present an efficient approach to achieve rarely accessible phosphorescence of heavy atom-free organoboranes via photochemical switching of sterically tunable fluorescent Lewis pairs (LPs). LPs are widely applied in and well-known for their outstanding performance in catalysis and supramolecular soft materials but have not thus far been exploited to develop photo-responsive RTP materials. The intramolecular LP M1BNM not only shows a dynamic response to thermal treatment due to reversible N→B coordination but crystals of M1BNM also undergo rapid photochromic switching. As a result, unusual emission switching from short-lived fluorescence to long-lived phosphorescence (rad-M1BNM, τRTP =232 ms) is observed. The reported discoveries in the field of Lewis pairs chemistry offer important insights into their structural dynamics, while also pointing to new opportunities for photoactive materials with implications for fast responsive detectors.
Collapse
Affiliation(s)
- Yafei Shi
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing, 102488, China
| | - Yi Zeng
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing, 102488, China
| | - Pavel Kucheryavy
- Department of Chemistry, Rutgers University-Newark, 73 Warren Street, Newark, NJ 07102, USA
| | - Xiaodong Yin
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing, 102488, China
| | - Kai Zhang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing, 102488, China
| | - Guoyun Meng
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing, 102488, China
| | - Jinfa Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing, 102488, China
| | - Qian Zhu
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing, 102488, China
| | - Nan Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing, 102488, China
| | - Xiaoyan Zheng
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing, 102488, China
| | - Frieder Jäkle
- Department of Chemistry, Rutgers University-Newark, 73 Warren Street, Newark, NJ 07102, USA
| | - Pangkuan Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing, 102488, China
| |
Collapse
|
12
|
Oshimizu R, Ando N, Yamaguchi S. Olefin–Borane Interactions in Donor–π–Acceptor Fluorophores that Undergo Frustrated‐Lewis‐Pair‐Type Reactions. Angew Chem Int Ed Engl 2022; 61:e202209394. [DOI: 10.1002/anie.202209394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Ryo Oshimizu
- Department of Chemistry Graduate School of Science Research Center of Materials Science (RCMS) Integrated Research Consortium on Chemical Science (IRCCS) Nagoya University Furo Chikusa Nagoya, 464-8602 Japan
| | - Naoki Ando
- Department of Chemistry Graduate School of Science Research Center of Materials Science (RCMS) Integrated Research Consortium on Chemical Science (IRCCS) Nagoya University Furo Chikusa Nagoya, 464-8602 Japan
| | - Shigehiro Yamaguchi
- Department of Chemistry Graduate School of Science Research Center of Materials Science (RCMS) Integrated Research Consortium on Chemical Science (IRCCS) Nagoya University Furo Chikusa Nagoya, 464-8602 Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM) Nagoya University Furo Chikusa Nagoya, 464-8601 Japan
| |
Collapse
|
13
|
Liu K, Jiang Z, Lalancette RA, Tang X, Jäkle F. Near-Infrared-Absorbing B-N Lewis Pair-Functionalized Anthracenes: Electronic Structure Tuning, Conformational Isomerism, and Applications in Photothermal Cancer Therapy. J Am Chem Soc 2022; 144:18908-18917. [PMID: 36194812 DOI: 10.1021/jacs.2c06538] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
B-N-fused dianthracenylpyrazine derivatives are synthesized to generate new low gap chromophores. Photophysical and electrochemical, crystal packing, and theoretical studies have been performed. Two energetically similar conformers are identified by density functional theory calculations, showing that the core unit adopts a curved saddle-like shape (x-isomer) or a zig-zag conformation (z-isomer). In the solid state, the z-isomer is prevalent according to an X-ray crystal structure of a C6F5-substituted derivative (4-Pf), but variable-temperature nuclear magnetic resonance studies suggest a dynamic behavior in solution. B-N fusion results in a large decrease of the HOMO-LUMO gap and dramatically lowers the LUMO energy compared to the all-carbon analogues. 4-Pf in particular shows significant absorbance at greater than 700 nm while being almost transparent throughout the visible region. After encapsulation in the biodegradable polymer DSPE-mPEG2000, 4-Pf nanoparticles (4-Pf-NPs) exhibit good water solubility, high photostability, and an excellent photothermal conversion efficiency of ∼41.8%. 4-Pf-NPs are evaluated both in vitro and in vivo as photothermal therapeutic agents. These results uncover B-N Lewis pair functionalization of PAHs as a promising strategy toward new NIR-absorbing materials for photothermal applications.
Collapse
Affiliation(s)
- Kanglei Liu
- Department of Chemistry, Rutgers University-Newark, 73 Warren Street, Newark, New Jersey 07102, United States.,Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102400, P. R. China
| | - Zhenqi Jiang
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102400, P. R. China.,School of Medical Technology, Beijing Institute of Technology, Beijing 102400, P. R. China
| | - Roger A Lalancette
- Department of Chemistry, Rutgers University-Newark, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Xiaoying Tang
- School of Medical Technology, Beijing Institute of Technology, Beijing 102400, P. R. China
| | - Frieder Jäkle
- Department of Chemistry, Rutgers University-Newark, 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
14
|
Tian G, Chen JF, Zhang K, Shi Y, Li C, Yin X, Liu K, Chen P. Applying the B/N Lewis Pair Approach to Access Fusion-Expanded Binaphthyl-Based Chiral Analogues. Inorg Chem 2022; 61:15315-15319. [PMID: 36135458 DOI: 10.1021/acs.inorgchem.2c02875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We herein describe the synthesis of two axially chiral systems (HBN and BBN) by the incorporation of B centers into binaphthyl derivatives (HPy and BPy). Heteroatom-doped chiral polycyclic aromatic hydrocarbons were thus formed by fusion of the azaboroles to binaphthyls with the formation of B-N dative bonds. The resulting B-N Lewis pairs that serve as attractive fluorophores enabled modulation of the chiroptical properties both in solution and in the solid state.
Collapse
Affiliation(s)
- Guoqing Tian
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, and Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, China
| | - Jin-Fa Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, and Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, China
| | - Kai Zhang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, and Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, China
| | - Yafei Shi
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, and Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, China
| | - Chenglong Li
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, and Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, China
| | - Xiaodong Yin
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, and Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, China
| | - Kanglei Liu
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, and Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, China
| | - Pangkuan Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, and Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, China
| |
Collapse
|
15
|
Oshimizu R, Ando N, Yamaguchi S. Olefin–Borane Interactions in Donor–π–Acceptor Fluorophores that Undergo Frustrated‐Lewis‐Pair‐Type Reactions. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Naoki Ando
- Nagoya Daigaku Graduate School of Science JAPAN
| | - Shigehiro Yamaguchi
- Nagoya University Department of Chemistry Graduate School of Science Furo, Chikusa 464-8602 Nagoya JAPAN
| |
Collapse
|
16
|
Shi Y, Li C, Ma H, Cao Z, Liu K, Yin X, Wang N, Chen P. Two-in-One Approach toward White-Light Emissions of Dimeric B/N Lewis Pairs by Tuning the Ortho-Substitution Effect. Org Lett 2022; 24:5497-5502. [PMID: 35856805 DOI: 10.1021/acs.orglett.2c02344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A new family of dimeric B/N Lewis pairs with sterically tunable substitutions has been accomplished using the Two-in-One design strategy. Their structures are characteristic of doubly B/N-containing cores, and the electronic interactions between B and N centers can be modulated by the steric effects of ortho-substitutions from methyl groups. Interestingly, unique white-light emissions were achieved for 2M'2BNM and 1M2BNM, ascribed to the integration of two triarylborane species (Bsp2- and Bsp3-hybridization) into one single molecule.
Collapse
Affiliation(s)
- Yafei Shi
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, People's Republic of China
| | - Chenglong Li
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, People's Republic of China
| | - Hongwei Ma
- Analysis & Testing Centre, Beijing Institute of Technology of China, Beijing 102488, China
| | - Zhao Cao
- School of Material Science & Engineering, Beijing Institute of Technology of China, Beijing 102488, China
| | - Kanglei Liu
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, People's Republic of China
| | - Xiaodong Yin
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, People's Republic of China
| | - Nan Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, People's Republic of China
| | - Pangkuan Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, People's Republic of China
| |
Collapse
|
17
|
Xu Q, Ye L, Liao R, An Z, Wang C, Miao L, Shi C, Ye H, Zhang Y. H/F Substitution Induced Large Increase of
T
c
in a 3D Hybrid Rare‐Earth Double Perovskite Multifunctional Compound. Chemistry 2022; 28:e202103913. [DOI: 10.1002/chem.202103913] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Indexed: 01/07/2023]
Affiliation(s)
- Qi Xu
- Jiangxi University of Science and Technology Chaotic Matter Science Research Center
| | - Le Ye
- Jiangxi University of Science and Technology Chaotic Matter Science Research Center
| | - Rong‐Meng Liao
- Jiangxi University of Science and Technology Chaotic Matter Science Research Center
| | - Zhen An
- Jiangxi University of Science and Technology Chaotic Matter Science Research Center
| | - Chang‐Feng Wang
- Jiangxi University of Science and Technology Chaotic Matter Science Research Center
| | - Le‐Ping Miao
- Jiangxi University of Science and Technology Chaotic Matter Science Research Center
| | - Chao Shi
- Jiangxi University of Science and Technology Chaotic Matter Science Research Center
| | - Heng‐Yun Ye
- Jiangxi University of Science and Technology Chaotic Matter Science Research Center
| | - Yi Zhang
- Jiangxi University of Science and Technology Chaotic Matter Science Research Center
| |
Collapse
|
18
|
Yang Z, Li X, Yang K, Zhang Z, Wang Y, Yu N, Baumgartner T, Ren Y. Tailored Solvatochromic NIR Phosphorus-Chromophores via Selective P-N and P-C Chemistry in P-Heteropines. Org Lett 2022; 24:2045-2049. [PMID: 35244405 DOI: 10.1021/acs.orglett.2c00570] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein we report selective P-C and P-N chemistry as a new synthetic tool for constructing phosphorus (P)-chromophores with rich chemical structures. Our studies reveal that isomeric structures significantly influence the chemical structure and electronic communication of P-heteropines, which results in efficient tunability of the photophysical properties. In particular, isomeric P-chromophores with a protic N-H (indole) are also capable of participating in intramolecular H bonding, offering a new strategy to access a near-infrared chromophore.
Collapse
Affiliation(s)
- Zi Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xinyu Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Kai Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zhikai Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yankun Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Na Yu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Thomas Baumgartner
- Department of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada
| | - Yi Ren
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
19
|
Arsenault NE, Xu Z, Wolf MO. Lewis Pair-Functionalized Pt(II) Complexes with Tunable Emission Color and Triplet-State Properties. Inorg Chem 2022; 61:2804-2812. [PMID: 35099929 DOI: 10.1021/acs.inorgchem.1c03174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Two emissive Pt(II) complexes containing dynamic "flexible" Lewis pair (FlexLP) ligands are reported. The FlexLP ligand encompasses a diphenylphosphine oxide Lewis base and a dimesitylborane Lewis acid attached to a bithiophene scaffold, which can switch between an open unbound Lewis pair and a bound P-O-B Lewis adduct depending on the hydrogen bond-donating (HBD) strength of the solvent. [Pt(FlexLP)2] contains two FlexLP ligands, and [Pt(FlexLP)(Py)] contains one FlexLP ligand and one pyrene ligand. UV-vis absorption and fluorescence studies demonstrate that the FlexLP ligands switch between the open Lewis pair and the closed Lewis adduct in MeOH, a strong HBD solvent, and acetone, a weak HBD solvent, respectively, and exhibit tunable emission color depending on the acetone/MeOH solvent ratio. Transient absorption spectroscopy reveals a large difference in the triplet-state lifetime depending on the conformation of the FlexLP ligands for both complexes. In the closed form, the triplet-state lifetimes of the two complexes are over an order of magnitude longer compared to that of the complexes in the open conformation. Calculations of optimized geometries suggest that this difference in triplet-state lifetime is due to a difference in the thiophene-thiophene torsion angle between the two conformations.
Collapse
Affiliation(s)
- Nicole E Arsenault
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Zhen Xu
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Michael O Wolf
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
20
|
Wang J, Yan R, Hu Y, Du G, Liao G, Yang H, Luo Y, Zheng X, Chen Y, Wang S, Li X. Density‐Dependent Emission Colors from a Conformation‐Switching Chromophore in Polyurethanes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Junwei Wang
- School of Materials Science and Engineering, Experimental Centre of Advanced Materials Key Laboratory of High Energy Density Materials Ministry of Education, Beijing Institute of Technology Beijing 100081 China
- School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 102488 China
| | - Rui Yan
- School of Materials Science and Engineering, Experimental Centre of Advanced Materials Key Laboratory of High Energy Density Materials Ministry of Education, Beijing Institute of Technology Beijing 100081 China
| | - Yaofang Hu
- School of Materials Science and Engineering, Experimental Centre of Advanced Materials Key Laboratory of High Energy Density Materials Ministry of Education, Beijing Institute of Technology Beijing 100081 China
| | - Guoshuai Du
- School of Aerospace Engineering Advanced Research Institute of Multidisciplinary Science Beijing Institute of Technology Beijing 100081 China
| | - Guanming Liao
- School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 102488 China
| | - Huanzhi Yang
- School of Materials Science and Engineering, Experimental Centre of Advanced Materials Key Laboratory of High Energy Density Materials Ministry of Education, Beijing Institute of Technology Beijing 100081 China
| | - Yunjun Luo
- School of Materials Science and Engineering, Experimental Centre of Advanced Materials Key Laboratory of High Energy Density Materials Ministry of Education, Beijing Institute of Technology Beijing 100081 China
| | - Xiaoyan Zheng
- School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 102488 China
| | - Yabin Chen
- School of Aerospace Engineering Advanced Research Institute of Multidisciplinary Science Beijing Institute of Technology Beijing 100081 China
| | - Suning Wang
- School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 102488 China
| | - Xiaoyu Li
- School of Materials Science and Engineering, Experimental Centre of Advanced Materials Key Laboratory of High Energy Density Materials Ministry of Education, Beijing Institute of Technology Beijing 100081 China
| |
Collapse
|
21
|
Yang Z, Zhang Z, Xue C, Yang K, Gao R, Yu N, Ren Y. Excited-state engineering of oligothiophenes via phosphorus chemistry towards strong fluorescent materials. Phys Chem Chem Phys 2021; 23:24265-24272. [PMID: 34671795 DOI: 10.1039/d1cp03737d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Due to efficient intersystem crossing (ISC), combined with efficient non-radiative processes of the triplet excited state, oligothiophenes generally exhibit very weak photoluminescence. Phosphorus (P)-bridged terthiophenes (P-terThs) and phosphorus (P)-bridged bithiophenes (P-biThs) were synthesized. The diverse and well-defined P-chemistry has been applied to fine tune the photophysical properties of these materials. The asymmetric electronic coupling between the P-center and terThs suppressed the electronic interactions of two terTh and biTh moieties in the ground state S0. Particularly, P-terThs and P-biThs having a positively charged P(+)-center induce pronounced asymmetric electronic environments on the two terThs and two biThs, respectively, which allows relaxation from the initial excited state via symmetry breaking charge transfer (SBCT) to give the charge separated state SSBCT. P-terThs and P-biThs having a positively charged P(+)-center exhibit stronger SBCT than others, which may result in a weaker ISC of oligothiophenes, and consequently lead to the photoluminescence quantum yields (PLQYs) being as high as 71% and 39%, respectively. The current study uncovered detailed insights on the effects of phosphorus chemistry on the SBCT of oligothiophenes and their resulting effects on the photophysical properties of P-bridged oligothiophenes, which have not been previously addressed in oligothiophenes.
Collapse
Affiliation(s)
- Zi Yang
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, People's Republic of China. .,Shanghai Advanced Research Institute, Chinese Academy of Sciences, 201203 Shanghai, People's Republic of China.,University of Chinese Academy of Sciences, 100049 Beijing, People's Republic of China
| | - Zhikai Zhang
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, People's Republic of China.
| | - Cece Xue
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, People's Republic of China.
| | - Kai Yang
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, People's Republic of China.
| | - Rong Gao
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, People's Republic of China.
| | - Na Yu
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, People's Republic of China.
| | - Yi Ren
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, People's Republic of China. .,Shanghai Advanced Research Institute, Chinese Academy of Sciences, 201203 Shanghai, People's Republic of China.,University of Chinese Academy of Sciences, 100049 Beijing, People's Republic of China
| |
Collapse
|
22
|
Wang J, Yan R, Hu Y, Du G, Liao G, Yang H, Luo Y, Zheng X, Chen Y, Wang S, Li X. Density-Dependent Emission Colors from a Conformation-Switching Chromophore in Polyurethanes. Angew Chem Int Ed Engl 2021; 61:e202112290. [PMID: 34734465 DOI: 10.1002/anie.202112290] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/13/2021] [Indexed: 01/11/2023]
Abstract
Achieving full-color emission from a single chromophore is not only highly desirable from practical considerations, but also greatly challenging for fundamental research. Herein, we demonstrated the density-dependent emission colors from a single boron-containing chromophore, from which multi-color fluorescent polyurethanes were prepared as well. Originating from its switchable molecular conformations, the emission color of the chromophore was found to be governed by the packing density and strongly influenced by hydrogen bonding interactions. The chromophore was incorporated into polyurethanes to achieve full-color emitting materials; the emission color was only dependent on the chromophore density and could be tuned via synthetic approach by controlling the compositions. The emission colors could also be modulated by physical approaches, including by swelling/deswelling process, compression under high pressure, and even blending the fluorescent polyurethane with non-emitting ones.
Collapse
Affiliation(s)
- Junwei Wang
- School of Materials Science and Engineering, Experimental Centre of Advanced Materials, Key Laboratory of High Energy Density Materials, Ministry of Education, Beijing Institute of Technology, Beijing, 100081, China.,School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Rui Yan
- School of Materials Science and Engineering, Experimental Centre of Advanced Materials, Key Laboratory of High Energy Density Materials, Ministry of Education, Beijing Institute of Technology, Beijing, 100081, China
| | - Yaofang Hu
- School of Materials Science and Engineering, Experimental Centre of Advanced Materials, Key Laboratory of High Energy Density Materials, Ministry of Education, Beijing Institute of Technology, Beijing, 100081, China
| | - Guoshuai Du
- School of Aerospace Engineering, Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Guanming Liao
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Huanzhi Yang
- School of Materials Science and Engineering, Experimental Centre of Advanced Materials, Key Laboratory of High Energy Density Materials, Ministry of Education, Beijing Institute of Technology, Beijing, 100081, China
| | - Yunjun Luo
- School of Materials Science and Engineering, Experimental Centre of Advanced Materials, Key Laboratory of High Energy Density Materials, Ministry of Education, Beijing Institute of Technology, Beijing, 100081, China
| | - Xiaoyan Zheng
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Yabin Chen
- School of Aerospace Engineering, Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Suning Wang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Xiaoyu Li
- School of Materials Science and Engineering, Experimental Centre of Advanced Materials, Key Laboratory of High Energy Density Materials, Ministry of Education, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
23
|
Otaegui JR, Ruiz-Molina D, Latterini L, Hernando J, Roscini C. Thermoresponsive multicolor-emissive materials based on solid lipid nanoparticles. MATERIALS HORIZONS 2021; 8:3043-3054. [PMID: 34724522 DOI: 10.1039/d1mh01050f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Despite the recent advances in the field of thermofluorochromism, the fabrication of thermoresponsive multicolor-emissive materials in a simple, low-cost and versatile manner still remains a challenge. Herein we accomplish this goal by expanding the concept of matrix-induced thermofluorochromism, where a sudden two-state variation of dyes' emission is promoted by the solid-liquid transition of a surrounding phase change material (e.g., paraffins). We demonstrate that this behavior can be transferred to the nanoscale by the synthesis of dye-loaded solid lipid nanoparticles, different types of which can then be combined into a single platform to obtain multicolor thermofluorochromism using a single type of emitter. Because of the reduced dimensions of these particles, they can be utilized to prepare transparent nanocomposites and inkjet-printed patterns showing complex thermoresponsive luminescence signals and applications ranging from smart displays to thermal sensing and high-security anti-counterfeiting.
Collapse
Affiliation(s)
- Jaume Ramon Otaegui
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, Barcelona 08193, Spain.
- Departament de Química, Universitat Autònoma de Barcelona, Edifici C/n, Campus UAB, Cerdanyola del Vallès 08193, Spain.
| | - Daniel Ruiz-Molina
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, Barcelona 08193, Spain.
| | - Loredana Latterini
- Department of Chemistry, Biology and Biotechnology, Perugia University, Via Elce di sotto, 8, Perugia 06123, Italy
| | - Jordi Hernando
- Departament de Química, Universitat Autònoma de Barcelona, Edifici C/n, Campus UAB, Cerdanyola del Vallès 08193, Spain.
| | - Claudio Roscini
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, Barcelona 08193, Spain.
| |
Collapse
|
24
|
Yang Z, Yang K, Wei X, Liu W, Gao R, Jäkle F, Loo YL, Ren Y. A Multiple Excited-State Engineering of Boron-Functionalized Diazapentacene Via a Tuning of the Molecular Orbital Coupling. J Phys Chem Lett 2021; 12:9308-9314. [PMID: 34543025 DOI: 10.1021/acs.jpclett.1c02668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Harvesting high-energy excited-state energy is still challenging in organic chromophores. An introduction of boron atoms along the short axis of the diazapentacene backbone induces multiple emission characteristics. Our studies reveal that the weak molecular orbital (MO) coupling of the S3-S1 transition is responsible for the slow internal conversion rates. Such MO coupling-regulated anti-Kasha emission is different from the large band gap-induced anti-Kasha emission character of classical azulene derivatives. Theoretical studies reveal that a strong MO coupling of the S3-S0 transition is responsible for the higher photoluminescence quantum yield of the anti-Kasha emission in a more polar solution (tetrahydrofuran: 11%; cyclohexane: 0%). Such an MO coupling factor is generally overlooked in anti-Kasha emitters reported previously. Furthermore, the multiple emission can be regulated by solvent polarity, solvent temperature, and fluoride anion binding. As a proof of concept of harvesting high-energy emission, the multiple emission character has allowed us to design single-molecule white-light-emitting materials.
Collapse
Affiliation(s)
- Zi Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People's Republic of China
- University of Chinese Academy of Science, Beijing100449, People's Republic of China
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | - Kai Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People's Republic of China
| | - Xiaofan Wei
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People's Republic of China
| | - Weimin Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People's Republic of China
| | - Rong Gao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People's Republic of China
| | - Frieder Jäkle
- Department of Chemistry, Rutgers University, Newark, New Jersey 07102, United States
| | - Yueh-Lin Loo
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, 08544United States
| | - Yi Ren
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People's Republic of China
- University of Chinese Academy of Science, Beijing100449, People's Republic of China
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| |
Collapse
|
25
|
Dhiman A, Giribabu L, Trivedi R. π-Conjugated Materials Derived From Boron-Chalcogenophene Combination. A Brief Description of Synthetic Routes and Optoelectronic Applications. CHEM REC 2021; 21:1738-1770. [PMID: 33844422 DOI: 10.1002/tcr.202100039] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/19/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022]
Abstract
Functional materials composed of Boron-chalcogenophene conjugates have emerged as promising ensemble featuring commendable optoelectronic properties. This review describes the categories, synthetic routes and optoelectronic applications of a range of boron-chalcogenophene conjugates. Conjugation and linking of different types of tri- and tetra-coordinated boron moieties with chalcogenophenes have remained an important strategy for constructing a range of functional materials. Synthetic protocols have been devised to efficiently prepare such chemically robust conjugates, often exhibiting a myriad of photophysical properties, redox capabilities and also solid-state behaviors. Tin-boron and silicon-boron exchange protocols have been efficiently adapted to access these boron-chalcogenophenes. Few other commonly used methods namely, hydroboration of alkynes as well as electrophilic borylations are also mentioned. The chemical and electronic properties of such boron-chalcogenophene conjugates are directly influenced by the strong Lewis acid character of trivalent boranes which can further alter the intra- and inter- molecular Lewis acid-base interactions. Apart from the synthetic protocols, recent advances in the application of these boron-chalcogenophene conjugates towards analyte sensing, organic electronics, molecular switches and several other aspects will be discussed in this review.
Collapse
Affiliation(s)
- Ankita Dhiman
- Catalysis and Fine Chemicals Department, CSIR-Indian Institute of Chemical Technology, Hyderabad, Uppal Road, Tarnaka, Hyderabad,, 500007, Telangana, India
| | - Lingamallu Giribabu
- Polymers and Functional Materials Department, CSIR-Indian Institute of Chemical Technology, Hyderabad, Uppal Road, Tarnaka, Hyderabad, 500007, Telangana, India.,Professor (AcSIR), Academy of Scientific and Innovative Research, AcSIR Headquarters, CSIR-HRDC campus Sector 19, Kamala Nehru Nagar, Ghaziabad, U.P., 201 002, India
| | - Rajiv Trivedi
- Catalysis and Fine Chemicals Department, CSIR-Indian Institute of Chemical Technology, Hyderabad, Uppal Road, Tarnaka, Hyderabad,, 500007, Telangana, India.,Professor (AcSIR), Academy of Scientific and Innovative Research, AcSIR Headquarters, CSIR-HRDC campus Sector 19, Kamala Nehru Nagar, Ghaziabad, U.P., 201 002, India
| |
Collapse
|
26
|
Full J, Panchal SP, Götz J, Krause A, Nowak‐Król A. Modular Synthesis of Organoboron Helically Chiral Compounds: Cutouts from Extended Helices. Angew Chem Int Ed Engl 2021; 60:4350-4357. [PMID: 33244880 PMCID: PMC7898935 DOI: 10.1002/anie.202014138] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/25/2020] [Indexed: 11/12/2022]
Abstract
Two types of helically chiral compounds bearing one and two boron atoms were synthesized by a modular approach. Formation of the helical scaffolds was executed by the introduction of boron to flexible biaryl and triaryl derived from small achiral building blocks. All-ortho-fused azabora[7]helicenes feature exceptional configurational stability, blue or green fluorescence with quantum yields (Φfl ) of 18-24 % in solution, green or yellow solid-state emission (Φfl up to 23 %), and strong chiroptical response with large dissymmetry factors of up to 1.12×10-2 . Azabora[9]helicenes consisting of angularly and linearly fused rings are blue emitters exhibiting Φfl of up to 47 % in CH2 Cl2 and 25 % in the solid state. As revealed by the DFT calculations, their P-M interconversion pathway is more complex than that of H1. Single-crystal X-ray analysis shows clear differences in the packing arrangement of methyl and phenyl derivatives. These molecules are proposed as primary structures of extended helices.
Collapse
Affiliation(s)
- Julian Full
- Institut für Anorganische ChemieUniversität WürzburgAm Hubland97074WürzburgGermany
- Institut für Organische Chemie and Center for Nanosystems ChemistryUniversität WürzburgAm Hubland97074WürzburgGermany
| | - Santosh P. Panchal
- Institut für Anorganische ChemieUniversität WürzburgAm Hubland97074WürzburgGermany
- Institut für Organische Chemie and Center for Nanosystems ChemistryUniversität WürzburgAm Hubland97074WürzburgGermany
| | - Julian Götz
- Institut für Organische Chemie and Center for Nanosystems ChemistryUniversität WürzburgAm Hubland97074WürzburgGermany
| | - Ana‐Maria Krause
- Institut für Organische Chemie and Center for Nanosystems ChemistryUniversität WürzburgAm Hubland97074WürzburgGermany
| | - Agnieszka Nowak‐Król
- Institut für Anorganische ChemieUniversität WürzburgAm Hubland97074WürzburgGermany
- Institut für Organische Chemie and Center for Nanosystems ChemistryUniversität WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
27
|
Full J, Panchal SP, Götz J, Krause A, Nowak‐Król A. Modulare Synthese helikal‐chiraler Organobor‐Verbindungen: Ausschnitte verlängerter Helices. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014138] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Julian Full
- Institut für Anorganische Chemie Universität Würzburg Am Hubland 97074 Würzburg Deutschland
- Institut für Organische Chemie and Center for Nanosystems Chemistry Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| | - Santosh P. Panchal
- Institut für Anorganische Chemie Universität Würzburg Am Hubland 97074 Würzburg Deutschland
- Institut für Organische Chemie and Center for Nanosystems Chemistry Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| | - Julian Götz
- Institut für Organische Chemie and Center for Nanosystems Chemistry Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| | - Ana‐Maria Krause
- Institut für Organische Chemie and Center for Nanosystems Chemistry Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| | - Agnieszka Nowak‐Król
- Institut für Anorganische Chemie Universität Würzburg Am Hubland 97074 Würzburg Deutschland
- Institut für Organische Chemie and Center for Nanosystems Chemistry Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| |
Collapse
|
28
|
Arsenault NE, Downey KT, Wolf MO. Stimuli-responsive flexible Lewis pair-modified nanoparticles for fluorescence imaging. Chem Commun (Camb) 2021; 56:5981-5984. [PMID: 32347856 DOI: 10.1039/d0cc01203c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A stimuli-responsive fluorophore, encompassing a Lewis acid-base pair, binds to primary amines on mesoporous silica nanoparticles, which may serve as environment-sensitive drug carriers. The fluorophore switches conformation, exhibiting different emission color and lifetimes, allowing for the detection of the water content of the nanoparticles' surroundings through fluorescence spectroscopy and microscopy.
Collapse
Affiliation(s)
- Nicole E Arsenault
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada.
| | - Kathleen T Downey
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada.
| | - Michael O Wolf
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada.
| |
Collapse
|
29
|
Wang D, Kan L, Ma Y, Liu L. NaO tBu-Catalyzed Hydrophosphonylation of δ-CN- δ-aryl-disubstituted para-Quinone Methides with Phosphine Oxides. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202104003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
30
|
Brahmachari G. Catalyst‐ and Additive‐Free Decarboxylative C‐4 Phosphorylation of Coumarin‐3‐Carboxylic Acids at Ambient Conditions. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202001054] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Goutam Brahmachari
- Laboratory of Natural Products & Organic Synthesis Department of Chemistry Visva-Bharati (A Central University) Santiniketan 731 235 West Bengal India
| |
Collapse
|
31
|
Zhang Z, Wang Y, Wang W, Yamamoto Y, Bao M, Yu X. Convenient synthesis of tetracoordinated organoboron compounds via C H borylation of aryl-N-heteroaromatics with TfOB Bu2. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
32
|
Ji G, Wang N, Yin X, Chen P. Substituent Effect Induces Emission Modulation of Stilbene Photoswitches by Spatial Tuning of the N/B Electronic Constraints. Org Lett 2020; 22:5758-5762. [DOI: 10.1021/acs.orglett.0c01777] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Guangqian Ji
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, People’s Republic of China
| | - Nan Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, People’s Republic of China
| | - Xiaodong Yin
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, People’s Republic of China
| | - Pangkuan Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, People’s Republic of China
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, P. R. China
| |
Collapse
|
33
|
Zhao Z, Yin X, Peng T, Wang N, Wang S. Triarylboron/Triarylamine-Functionalized 2,2′-Bipyridine Ligands and Their Copper(I) Complexes. Inorg Chem 2020; 59:7426-7434. [DOI: 10.1021/acs.inorgchem.0c00102] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Zhenhui Zhao
- Key Laboratory of Cluster Science of the Ministry of Education, Beijing Key Laboratory of Photoelectronic/ Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Xiaodong Yin
- Key Laboratory of Cluster Science of the Ministry of Education, Beijing Key Laboratory of Photoelectronic/ Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Tai Peng
- School of Materials Science & Engineering, Jiamusi University, Jiamusi, Heilongjiang 154007, P. R. China
| | - Nan Wang
- Key Laboratory of Cluster Science of the Ministry of Education, Beijing Key Laboratory of Photoelectronic/ Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Suning Wang
- Department of Chemistry, Queen’s University, Kingston, Ontario K7L 3N6, Canada
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| |
Collapse
|
34
|
Chen J, Yin X, Wang B, Zhang K, Meng G, Zhang S, Shi Y, Wang N, Wang S, Chen P. Planar Chiral Organoboranes with Thermoresponsive Emission and Circularly Polarized Luminescence: Integration of Pillar[5]arenes with Boron Chemistry. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001145] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jin‐Fa Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Key Laboratory of Cluster Science of the Ministry of Education School of Chemistry and Chemical Engineering Beijing Institute of Technology of China Beijing 102488 China
| | - Xiaodong Yin
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Key Laboratory of Cluster Science of the Ministry of Education School of Chemistry and Chemical Engineering Beijing Institute of Technology of China Beijing 102488 China
| | - Bowen Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Key Laboratory of Cluster Science of the Ministry of Education School of Chemistry and Chemical Engineering Beijing Institute of Technology of China Beijing 102488 China
| | - Kai Zhang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Key Laboratory of Cluster Science of the Ministry of Education School of Chemistry and Chemical Engineering Beijing Institute of Technology of China Beijing 102488 China
| | - Guoyun Meng
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Key Laboratory of Cluster Science of the Ministry of Education School of Chemistry and Chemical Engineering Beijing Institute of Technology of China Beijing 102488 China
| | - Songhe Zhang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Key Laboratory of Cluster Science of the Ministry of Education School of Chemistry and Chemical Engineering Beijing Institute of Technology of China Beijing 102488 China
| | - Yafei Shi
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Key Laboratory of Cluster Science of the Ministry of Education School of Chemistry and Chemical Engineering Beijing Institute of Technology of China Beijing 102488 China
| | - Nan Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Key Laboratory of Cluster Science of the Ministry of Education School of Chemistry and Chemical Engineering Beijing Institute of Technology of China Beijing 102488 China
| | - Suning Wang
- Department of Chemistry Queen's University Kingston Ontario K7L 3N6 Canada
| | - Pangkuan Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Key Laboratory of Cluster Science of the Ministry of Education School of Chemistry and Chemical Engineering Beijing Institute of Technology of China Beijing 102488 China
| |
Collapse
|
35
|
Chen J, Yin X, Wang B, Zhang K, Meng G, Zhang S, Shi Y, Wang N, Wang S, Chen P. Planar Chiral Organoboranes with Thermoresponsive Emission and Circularly Polarized Luminescence: Integration of Pillar[5]arenes with Boron Chemistry. Angew Chem Int Ed Engl 2020; 59:11267-11272. [PMID: 32220121 DOI: 10.1002/anie.202001145] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/27/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Jin‐Fa Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Key Laboratory of Cluster Science of the Ministry of Education School of Chemistry and Chemical Engineering Beijing Institute of Technology of China Beijing 102488 China
| | - Xiaodong Yin
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Key Laboratory of Cluster Science of the Ministry of Education School of Chemistry and Chemical Engineering Beijing Institute of Technology of China Beijing 102488 China
| | - Bowen Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Key Laboratory of Cluster Science of the Ministry of Education School of Chemistry and Chemical Engineering Beijing Institute of Technology of China Beijing 102488 China
| | - Kai Zhang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Key Laboratory of Cluster Science of the Ministry of Education School of Chemistry and Chemical Engineering Beijing Institute of Technology of China Beijing 102488 China
| | - Guoyun Meng
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Key Laboratory of Cluster Science of the Ministry of Education School of Chemistry and Chemical Engineering Beijing Institute of Technology of China Beijing 102488 China
| | - Songhe Zhang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Key Laboratory of Cluster Science of the Ministry of Education School of Chemistry and Chemical Engineering Beijing Institute of Technology of China Beijing 102488 China
| | - Yafei Shi
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Key Laboratory of Cluster Science of the Ministry of Education School of Chemistry and Chemical Engineering Beijing Institute of Technology of China Beijing 102488 China
| | - Nan Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Key Laboratory of Cluster Science of the Ministry of Education School of Chemistry and Chemical Engineering Beijing Institute of Technology of China Beijing 102488 China
| | - Suning Wang
- Department of Chemistry Queen's University Kingston Ontario K7L 3N6 Canada
| | - Pangkuan Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Key Laboratory of Cluster Science of the Ministry of Education School of Chemistry and Chemical Engineering Beijing Institute of Technology of China Beijing 102488 China
| |
Collapse
|
36
|
Yuan H, Kowah JA, Jiang J. Base-promoted hydrophosphination of para-quinone methides under ultrasonic irradiation: A rapid and efficient synthesis of diarylmethyl phosphorus oxides. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.151748] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
37
|
Li R, Xu FF, Gong ZL, Zhong YW. Thermo-responsive light-emitting metal complexes and related materials. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00779j] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review discusses the fundamentals and design strategies for the development of thermo-responsive metal–ligand coordination materials and the applications of these materials in temperature sensing, bioimaging, information security, etc.
Collapse
Affiliation(s)
- Rui Li
- Beijing National Laboratory for Molecular Sciences
- CAS Key Laboratory of Photochemistry
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Fa-Feng Xu
- Beijing National Laboratory for Molecular Sciences
- CAS Key Laboratory of Photochemistry
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Zhong-Liang Gong
- Beijing National Laboratory for Molecular Sciences
- CAS Key Laboratory of Photochemistry
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Yu-Wu Zhong
- Beijing National Laboratory for Molecular Sciences
- CAS Key Laboratory of Photochemistry
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
| |
Collapse
|
38
|
Koch R, Sun Y, Orthaber A, Pierik AJ, Pammer F. Turn-on fluorescence sensors based on dynamic intramolecular N→B-coordination. Org Chem Front 2020. [DOI: 10.1039/d0qo00267d] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A series of ten aryl-triazole-functionalized boranes bearing BMes2-groups and capable of forming intramolecular five-membered N→B-coordinated heterocycles, has been prepared by 1,3-dipolar cycloaddition.
Collapse
Affiliation(s)
- Raphael Koch
- Institute of Organic Chemistry II and Advanced Materials
- University of Ulm
- 89081 Ulm
- Germany
| | - Yu Sun
- Fachbereich Chemie
- Technische Universität Kaiserslautern
- D-67663 Kaiserslautern
- Germany
| | - Andreas Orthaber
- Department of Chemistry – Ångström laboratories
- Uppsala University
- 75120 Uppsala
- Sweden
| | - Antonio J. Pierik
- Fachbereich Chemie
- Technische Universität Kaiserslautern
- D-67663 Kaiserslautern
- Germany
| | - Frank Pammer
- Institute of Organic Chemistry II and Advanced Materials
- University of Ulm
- 89081 Ulm
- Germany
| |
Collapse
|
39
|
Regulska E, Christ S, Zimmermann J, Rominger F, Hernandez-Sosa G, Romero-Nieto C. Organophosphorus-B(C 6F 5) 3 adducts: towards new solid-state emitting materials. Dalton Trans 2019; 48:12803-12807. [PMID: 31305821 DOI: 10.1039/c9dt02258a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The coordination of B(C6F5)3 to materials based on six-membered phosphorus heterocycles via P[double bond, length as m-dash]O bonds tunes their physicochemical properties both in solution and in the solid state, remarkably improving their performances in light-emitting layers.
Collapse
Affiliation(s)
- Elzbieta Regulska
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany.
| | - Sonja Christ
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany.
| | - Johannes Zimmermann
- Light Technology Institute, Karlsruhe Institute of Technology, Engesserstr. 13, 76131 Karlsruhe, Germany and InnovationLab, Speyerer Str. 4, 69115 Heidelberg, Germany
| | - Frank Rominger
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany.
| | - Gerardo Hernandez-Sosa
- Light Technology Institute, Karlsruhe Institute of Technology, Engesserstr. 13, 76131 Karlsruhe, Germany and InnovationLab, Speyerer Str. 4, 69115 Heidelberg, Germany
| | - Carlos Romero-Nieto
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany. and Faculty of Pharmacy, University of Castilla-La Mancha, Calle Almansa 14 - Edif. Bioincubadora, 02008, Albacete, Spain
| |
Collapse
|
40
|
Dong L, Saraci F, Yuan K, Wang X, Wang S. Push-pull isomers of indolizino[6,5,4,3-def]phenanthridine decorated with a triarylboron moiety. Org Biomol Chem 2019; 17:6470-6477. [PMID: 31206123 DOI: 10.1039/c9ob00923j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
1,3-Dipolar cycloaddition reactions between a new azomethine ylide and three BPhMes2-functionalized internal alkynes produced three pairs of fluorescent push-pull regioisomers, which show distinct electronic and photophysical properties. All the six compounds are found to exhibit charge-transfer (CT) fluorescence, and some of which show rare and interesting temperature "turn-on" fluorescence.
Collapse
Affiliation(s)
- Lei Dong
- Department of Chemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada.
| | - Felix Saraci
- Department of Chemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada.
| | - Kang Yuan
- Department of Chemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada.
| | - Xiang Wang
- Department of Chemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada.
| | - Suning Wang
- Department of Chemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada.
| |
Collapse
|
41
|
Vanga M, Lalancette RA, Jäkle F. Controlling the Optoelectronic Properties of Pyrene by Regioselective Lewis Base‐Directed Electrophilic Aromatic Borylation. Chemistry 2019; 25:10133-10140. [DOI: 10.1002/chem.201901231] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Mukundam Vanga
- Department of Chemistry Rutgers University-Newark 73 Warren Street Newark NJ 07102 USA
| | - Roger A. Lalancette
- Department of Chemistry Rutgers University-Newark 73 Warren Street Newark NJ 07102 USA
| | - Frieder Jäkle
- Department of Chemistry Rutgers University-Newark 73 Warren Street Newark NJ 07102 USA
| |
Collapse
|
42
|
|
43
|
Cao Y, Arsenault NE, Hean D, Wolf MO. Fluorescence Switching of Intramolecular Lewis Acid–Base Pairs on a Flexible Backbone. J Org Chem 2019; 84:5394-5403. [DOI: 10.1021/acs.joc.9b00398] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yang Cao
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Nicole E. Arsenault
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Duane Hean
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Michael O. Wolf
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
44
|
Liu K, Lalancette RA, Jäkle F. Tuning the Structure and Electronic Properties of B–N Fused Dipyridylanthracene and Implications on the Self-Sensitized Reactivity with Singlet Oxygen. J Am Chem Soc 2019; 141:7453-7462. [DOI: 10.1021/jacs.9b01958] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Kanglei Liu
- Department of Chemistry, Rutgers University−Newark, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Roger A. Lalancette
- Department of Chemistry, Rutgers University−Newark, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Frieder Jäkle
- Department of Chemistry, Rutgers University−Newark, 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
45
|
Li HJ, Mellerup SK, Wang X, Wang S. D−π–A Triarylboranes as Reversible Fluorescent Probes for CO2 and Temperature. Org Lett 2019; 21:2838-2842. [DOI: 10.1021/acs.orglett.9b00831] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Hai-Jun Li
- Department of Chemistry, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - Soren K. Mellerup
- Department of Chemistry, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - Xiang Wang
- Department of Chemistry, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - Suning Wang
- Department of Chemistry, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
46
|
Zeng C, Yuan K, Wang N, Peng T, Wu G, Wang S. The opposite and amplifying effect of B ← N coordination on photophysical properties of regioisomers with an unsymmetrical backbone. Chem Sci 2019; 10:1724-1734. [PMID: 30842837 PMCID: PMC6369733 DOI: 10.1039/c8sc04210a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 11/27/2018] [Indexed: 01/28/2023] Open
Abstract
1,3-Dipolar cycloaddition of pyrido[2,1-a]isoindole with internal alkynes functionalized by a BMes2ph and an N-aromatic heterocycle leads to the formation of two types of regioisomers (major a and minor b) that have distinct physical and photophysical properties. Examination on 5 pairs of regioisomers unveils that the major isomers consistently have a smaller optical energy gap and emission energy than the corresponding minor isomers, which is greatly amplified by the formation of an internal B ← N bond. The regioisomers with a B ← N bond display contrasting temperature-dependent structural dynamics and response to fluoride ions, owing to an entropy-driven or fluoride initiated B ← N bond rupture/ring-opening process and the different B ← N bond strength. The opposite inductive effect and the Lewis pair properties of the dichotomic substituent units are responsible for the contrasting properties of the regioisomers in this system.
Collapse
Affiliation(s)
- Chao Zeng
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials , School of Chemistry and Chemical Engineering , Beijing Institute of Technology of China , Beijing, 102488 , People's Republic of China . ;
| | - Kang Yuan
- Department of Chemistry , Queen's University , Kingston , Ontario K7L 3N6 , Canada
| | - Nan Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials , School of Chemistry and Chemical Engineering , Beijing Institute of Technology of China , Beijing, 102488 , People's Republic of China . ;
| | - Tai Peng
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials , School of Chemistry and Chemical Engineering , Beijing Institute of Technology of China , Beijing, 102488 , People's Republic of China . ;
| | - Gang Wu
- Department of Chemistry , Queen's University , Kingston , Ontario K7L 3N6 , Canada
| | - Suning Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials , School of Chemistry and Chemical Engineering , Beijing Institute of Technology of China , Beijing, 102488 , People's Republic of China . ;
- Department of Chemistry , Queen's University , Kingston , Ontario K7L 3N6 , Canada
| |
Collapse
|
47
|
Li HJ, Mellerup SK, Wang X, Wang S. Impact of intramolecular H bond and n-π* interactions on photophysical and CO2 sensing properties of laterally appended D-π-A triarylboron compounds. Tetrahedron 2019. [DOI: 10.1016/j.tet.2018.12.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
48
|
Wang R, Ye G, Zhou W, Jiang F, Wu Y, Hou J, Li D, Wu J, Chang Y, Liang A, Xu J, Du Y. High-quality freestanding flexible poly(5-(2,3-dihydrothieno[3,4- b
][1,4]dioxin-5-yl)-1 H
-indole) film: Electrosyntheses, characterization, and optical properties. J Appl Polym Sci 2019. [DOI: 10.1002/app.47016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- R. Wang
- Jiangxi Engineering Laboratory of Waterborne Coatings; Jiangxi Science and Technology Normal University; Nanchang 330013 China
| | - G. Ye
- Jiangxi Engineering Laboratory of Waterborne Coatings; Jiangxi Science and Technology Normal University; Nanchang 330013 China
| | - W. Zhou
- Jiangxi Engineering Laboratory of Waterborne Coatings; Jiangxi Science and Technology Normal University; Nanchang 330013 China
| | - F. Jiang
- Jiangxi Engineering Laboratory of Waterborne Coatings; Jiangxi Science and Technology Normal University; Nanchang 330013 China
| | - Y. Wu
- Jiangxi Engineering Laboratory of Waterborne Coatings; Jiangxi Science and Technology Normal University; Nanchang 330013 China
| | - J. Hou
- State Key Laboratory for Marine Corrosion and Protection; Luoyang Ship Material Research Institute; Qingdao 266101 China
| | - D. Li
- Jiangxi Engineering Laboratory of Waterborne Coatings; Jiangxi Science and Technology Normal University; Nanchang 330013 China
| | - J. Wu
- Jiangxi Engineering Laboratory of Waterborne Coatings; Jiangxi Science and Technology Normal University; Nanchang 330013 China
| | - Y. Chang
- Jiangxi Engineering Laboratory of Waterborne Coatings; Jiangxi Science and Technology Normal University; Nanchang 330013 China
| | - A. Liang
- Jiangxi Engineering Laboratory of Waterborne Coatings; Jiangxi Science and Technology Normal University; Nanchang 330013 China
| | - J. Xu
- Jiangxi Engineering Laboratory of Waterborne Coatings; Jiangxi Science and Technology Normal University; Nanchang 330013 China
| | - Y. Du
- College of Chemistry, Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 China
| |
Collapse
|
49
|
Abstract
Representative types of boron-based molecular systems that respond to external stimuli such as temperature, pressure, light, or chemicals (oxygen, acid, base etc.) are described in this review article. The boron molecules are classified according to their operating mechanisms, with emphasis on systems, which are based on switchable boron-donor bonds and switchable excited states.
Collapse
Affiliation(s)
- Soren K. Mellerup
- Department of Chemistry
- Queen's University
- Kingston
- Canada
- Institut für Anorganische Chemie
| | - Suning Wang
- Department of Chemistry
- Queen's University
- Kingston
- Canada
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials
| |
Collapse
|
50
|
Sudhakar P, Neena KK, Thilagar P. Borylated perylenediimide: self-assembly, photophysics and sensing application. Dalton Trans 2019; 48:7218-7226. [DOI: 10.1039/c8dt04005b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A red emissive perylenediimide-triarylboron conjugate (PDI-TAB) with interesting 1D self-assembled nanowires, concentration dependent emission colors and potential fluoride ion sensing is reported.
Collapse
Affiliation(s)
- Pagidi Sudhakar
- Department of Inorganic and Physical Chemistry
- Indian Institute of Science
- Bangalore
- India
| | | | - Pakkirisamy Thilagar
- Department of Inorganic and Physical Chemistry
- Indian Institute of Science
- Bangalore
- India
| |
Collapse
|